-
Notifications
You must be signed in to change notification settings - Fork 430
/
huffman_tree.c
144 lines (139 loc) · 4.6 KB
/
huffman_tree.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
#include<stdlib.h>
#include<stdio.h>
#include<string.h>
//哈夫曼树结点结构
typedef struct {
int weight;//结点权重
int parent, left, right;//父结点、左孩子、右孩子在数组中的位置下标
}HTNode, *HuffmanTree;
//动态二维数组,存储哈夫曼编码
typedef char ** HuffmanCode;
//HT数组中存放的哈夫曼树,end表示HT数组中存放结点的最终位置,s1和s2传递的是HT数组中权重值最小的两个结点在数组中的位置
void Select(HuffmanTree HT, int end, int *s1, int *s2)
{
int min1, min2;
//遍历数组初始下标为 1
int i = 1;
//找到还没构建树的结点
while(HT[i].parent != 0 && i <= end){
i++;
}
min1 = HT[i].weight;
*s1 = i;
i++;
while(HT[i].parent != 0 && i <= end){
i++;
}
//对找到的两个结点比较大小,min2为大的,min1为小的
if(HT[i].weight < min1){
min2 = min1;
*s2 = *s1;
min1 = HT[i].weight;
*s1 = i;
}else{
min2 = HT[i].weight;
*s2 = i;
}
//两个结点和后续的所有未构建成树的结点做比较
for(int j=i+1; j <= end; j++)
{
//如果有父结点,直接跳过,进行下一个
if(HT[j].parent != 0){
continue;
}
//如果比最小的还小,将min2=min1,min1赋值新的结点的下标
if(HT[j].weight < min1){
min2 = min1;
min1 = HT[j].weight;
*s2 = *s1;
*s1 = j;
}
//如果介于两者之间,min2赋值为新的结点的位置下标
else if(HT[j].weight >= min1 && HT[j].weight < min2){
min2 = HT[j].weight;
*s2 = j;
}
}
}
//HT为地址传递的存储哈夫曼树的数组,w为存储结点权重值的数组,n为结点个数
void CreateHuffmanTree(HuffmanTree *HT, int *w, int n)
{
if(n<=1) return; // 如果只有一个编码就相当于0
int m = 2*n-1; // 哈夫曼树总节点数,n就是叶子结点
*HT = (HuffmanTree) malloc((m+1) * sizeof(HTNode)); // 0号位置不用
HuffmanTree p = *HT;
// 初始化哈夫曼树中的所有结点
for(int i = 1; i <= n; i++)
{
(p+i)->weight = *(w+i-1);
(p+i)->parent = 0;
(p+i)->left = 0;
(p+i)->right = 0;
}
//从树组的下标 n+1 开始初始化哈夫曼树中除叶子结点外的结点
for(int i = n+1; i <= m; i++)
{
(p+i)->weight = 0;
(p+i)->parent = 0;
(p+i)->left = 0;
(p+i)->right = 0;
}
//构建哈夫曼树
for(int i = n+1; i <= m; i++)
{
int s1, s2;
Select(*HT, i-1, &s1, &s2);
(*HT)[s1].parent = (*HT)[s2].parent = i;
(*HT)[i].left = s1;
(*HT)[i].right = s2;
(*HT)[i].weight = (*HT)[s1].weight + (*HT)[s2].weight;
}
}
//HT为哈夫曼树,HC为存储结点哈夫曼编码的二维动态数组,n为结点的个数
void HuffmanCoding(HuffmanTree HT, HuffmanCode *HC,int n){
*HC = (HuffmanCode) malloc((n+1) * sizeof(char *));
char *cd = (char *)malloc(n*sizeof(char)); //存放结点哈夫曼编码的字符串数组
cd[n-1] = '\0';//字符串结束符
for(int i=1; i<=n; i++){
//从叶子结点出发,得到的哈夫曼编码是逆序的,需要在字符串数组中逆序存放
int start = n-1;
//当前结点在数组中的位置
int c = i;
//当前结点的父结点在数组中的位置
int j = HT[i].parent;
// 一直寻找到根结点
while(j != 0){
// 如果该结点是父结点的左孩子则对应路径编码为0,否则为右孩子编码为1
if(HT[j].left == c)
cd[--start] = '0';
else
cd[--start] = '1';
//以父结点为孩子结点,继续朝树根的方向遍历
c = j;
j = HT[j].parent;
}
//跳出循环后,cd数组中从下标 start 开始,存放的就是该结点的哈夫曼编码
(*HC)[i] = (char *)malloc((n-start)*sizeof(char));
strcpy((*HC)[i], &cd[start]);
}
//使用malloc申请的cd动态数组需要手动释放
free(cd);
}
//打印哈夫曼编码的函数
void PrintHuffmanCode(HuffmanCode htable,int *w,int n)
{
printf("Huffman code : \n");
for(int i = 1; i <= n; i++)
printf("%d code = %s\n",w[i-1], htable[i]);
}
int main(void)
{
int w[7] = {3,12,7,4,2,8,11};
int n = 7;
HuffmanTree htree;
HuffmanCode htable;
CreateHuffmanTree(&htree, w, n);
HuffmanCoding(htree, &htable, n);
PrintHuffmanCode(htable,w, n);
return 0;
}