-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathrnn_cells.py
109 lines (89 loc) · 4.08 KB
/
rnn_cells.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
import numpy as np
import tensorflow as tf
from tensorflow.contrib.rnn import LSTMStateTuple
from tensorflow.python.ops import random_ops
from tensorflow.python.keras import initializers
class CustomLSTMCell(tf.contrib.rnn.BasicLSTMCell):
def __init__(self, num_units, t_max=784, forget_only=False,
**kwargs):
'''
t_max should be a float value corresponding to the longest possible
time dependency in the input.
'''
self.num_units = num_units
self.t_max = t_max
self.forget_only = forget_only
super(CustomLSTMCell, self).__init__(num_units, **kwargs)
def __call__(self, x, state, scope=None):
"""Long short-term memory cell (LSTM)."""
with tf.variable_scope(scope or type(self).__name__):
if self._state_is_tuple:
c, h = state
else:
c, h = tf.split(value=state, num_or_size_splits=2, axis=1)
all_inputs = tf.concat([x, h], 1)
num_gates = 4
if self.forget_only:
print('Forget-only')
num_gates = 2
x_size = x.get_shape().as_list()[1]
W_xh = tf.get_variable('W_xh',
[x_size, num_gates * self.num_units], initializer=initializers.get('orthogonal'))
W_hh = tf.get_variable('W_hh',
[self.num_units, num_gates * self.num_units], initializer=initializers.get('orthogonal'))
if self.t_max is None:
bias = tf.get_variable('bias', [num_gates * self.num_units],
initializer=bias_initializer(num_gates))
else:
print('Using chrono initializer ...')
bias = tf.get_variable('bias', [num_gates * self.num_units],
initializer=chrono_init(self.t_max,
num_gates))
weights = tf.concat([W_xh, W_hh], 0)
concat = tf.nn.bias_add(tf.matmul(all_inputs, weights), bias)
if num_gates == 4:
# i=input_gate, j=new_input, o=output_gate, f=forget_gate
i, j, o, f = tf.split(value=concat,
num_or_size_splits=num_gates,
axis=1)
new_c = (c * tf.sigmoid(f) + tf.sigmoid(i) *
self._activation(j))
new_h = self._activation(new_c) * tf.sigmoid(o)
elif num_gates == 2:
j, f = tf.split(value=concat, num_or_size_splits=num_gates,
axis=1)
beta = 1
new_c = tf.sigmoid(f)*c + (1-tf.sigmoid(f-beta))*tf.tanh(j)
new_h = self._activation(new_c)
#new_h = new_c
if self._state_is_tuple:
new_state = LSTMStateTuple(new_c, new_h)
else:
new_state = tf.concat([new_c, new_h], 1)
return new_h, new_state
def chrono_init(t_max, num_gates):
def _initializer(shape, dtype=tf.float32, partition_info=None):
num_units = shape[0]//num_gates
uni_vals = tf.log(random_ops.random_uniform([num_units], minval=1.0,
maxval=t_max, dtype=dtype,
seed=42))
if num_gates == 4:
# i, j, o, f
bias_i = -uni_vals
j_o = tf.zeros(2*num_units)
bias_f = uni_vals
return tf.concat([bias_i, j_o, bias_f], 0)
elif num_gates == 2:
bias_j = tf.zeros(num_units)
bias_f = uni_vals
return tf.concat([bias_j, bias_f], 0)
return _initializer
def bias_initializer(num_gates):
def _initializer(shape, dtype=tf.float32, partition_info=None):
p = np.zeros(shape)
num_units = int(shape[0]//num_gates)
# i, j, o, f
# f:
p[-num_units:] = np.ones(num_units)
return tf.constant(p, dtype)
return _initializer