forked from auspicious3000/autovc
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel_vc.py
204 lines (152 loc) · 6.47 KB
/
model_vc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
class LinearNorm(torch.nn.Module):
def __init__(self, in_dim, out_dim, bias=True, w_init_gain='linear'):
super(LinearNorm, self).__init__()
self.linear_layer = torch.nn.Linear(in_dim, out_dim, bias=bias)
torch.nn.init.xavier_uniform_(
self.linear_layer.weight,
gain=torch.nn.init.calculate_gain(w_init_gain))
def forward(self, x):
return self.linear_layer(x)
class ConvNorm(torch.nn.Module):
def __init__(self, in_channels, out_channels, kernel_size=1, stride=1,
padding=None, dilation=1, bias=True, w_init_gain='linear'):
super(ConvNorm, self).__init__()
if padding is None:
assert(kernel_size % 2 == 1)
padding = int(dilation * (kernel_size - 1) / 2)
self.conv = torch.nn.Conv1d(in_channels, out_channels,
kernel_size=kernel_size, stride=stride,
padding=padding, dilation=dilation,
bias=bias)
torch.nn.init.xavier_uniform_(
self.conv.weight, gain=torch.nn.init.calculate_gain(w_init_gain))
def forward(self, signal):
conv_signal = self.conv(signal)
return conv_signal
class Encoder(nn.Module):
"""Encoder module:
"""
def __init__(self, dim_neck, dim_emb, freq):
super(Encoder, self).__init__()
self.dim_neck = dim_neck
self.freq = freq
convolutions = []
for i in range(3):
conv_layer = nn.Sequential(
ConvNorm(80+dim_emb if i==0 else 512,
512,
kernel_size=5, stride=1,
padding=2,
dilation=1, w_init_gain='relu'),
nn.BatchNorm1d(512))
convolutions.append(conv_layer)
self.convolutions = nn.ModuleList(convolutions)
self.lstm = nn.LSTM(512, dim_neck, 2, batch_first=True, bidirectional=True)
def forward(self, x, c_org):
x = x.squeeze(1).transpose(2,1)
c_org = c_org.unsqueeze(-1).expand(-1, -1, x.size(-1))
x = torch.cat((x, c_org), dim=1)
for conv in self.convolutions:
x = F.relu(conv(x))
x = x.transpose(1, 2)
self.lstm.flatten_parameters()
outputs, _ = self.lstm(x)
out_forward = outputs[:, :, :self.dim_neck]
out_backward = outputs[:, :, self.dim_neck:]
codes = []
for i in range(0, outputs.size(1), self.freq):
codes.append(torch.cat((out_forward[:,i+self.freq-1,:],out_backward[:,i,:]), dim=-1))
return codes
class Decoder(nn.Module):
"""Decoder module:
"""
def __init__(self, dim_neck, dim_emb, dim_pre):
super(Decoder, self).__init__()
self.lstm1 = nn.LSTM(dim_neck*2+dim_emb, dim_pre, 1, batch_first=True)
convolutions = []
for i in range(3):
conv_layer = nn.Sequential(
ConvNorm(dim_pre,
dim_pre,
kernel_size=5, stride=1,
padding=2,
dilation=1, w_init_gain='relu'),
nn.BatchNorm1d(dim_pre))
convolutions.append(conv_layer)
self.convolutions = nn.ModuleList(convolutions)
self.lstm2 = nn.LSTM(dim_pre, 1024, 2, batch_first=True)
self.linear_projection = LinearNorm(1024, 80)
def forward(self, x):
#self.lstm1.flatten_parameters()
x, _ = self.lstm1(x)
x = x.transpose(1, 2)
for conv in self.convolutions:
x = F.relu(conv(x))
x = x.transpose(1, 2)
outputs, _ = self.lstm2(x)
decoder_output = self.linear_projection(outputs)
return decoder_output
class Postnet(nn.Module):
"""Postnet
- Five 1-d convolution with 512 channels and kernel size 5
"""
def __init__(self):
super(Postnet, self).__init__()
self.convolutions = nn.ModuleList()
self.convolutions.append(
nn.Sequential(
ConvNorm(80, 512,
kernel_size=5, stride=1,
padding=2,
dilation=1, w_init_gain='tanh'),
nn.BatchNorm1d(512))
)
for i in range(1, 5 - 1):
self.convolutions.append(
nn.Sequential(
ConvNorm(512,
512,
kernel_size=5, stride=1,
padding=2,
dilation=1, w_init_gain='tanh'),
nn.BatchNorm1d(512))
)
self.convolutions.append(
nn.Sequential(
ConvNorm(512, 80,
kernel_size=5, stride=1,
padding=2,
dilation=1, w_init_gain='linear'),
nn.BatchNorm1d(80))
)
def forward(self, x):
for i in range(len(self.convolutions) - 1):
x = torch.tanh(self.convolutions[i](x))
x = self.convolutions[-1](x)
return x
class Generator(nn.Module):
"""Generator network."""
def __init__(self, dim_neck, dim_emb, dim_pre, freq):
super(Generator, self).__init__()
self.encoder = Encoder(dim_neck, dim_emb, freq)
self.decoder = Decoder(dim_neck, dim_emb, dim_pre)
self.postnet = Postnet()
def forward(self, x, c_org, c_trg):
codes = self.encoder(x, c_org)
if c_trg is None:
return torch.cat(codes, dim=-1)
tmp = []
for code in codes:
tmp.append(code.unsqueeze(1).expand(-1,int(x.size(1)/len(codes)),-1))
code_exp = torch.cat(tmp, dim=1)
encoder_outputs = torch.cat((code_exp, c_trg.unsqueeze(1).expand(-1,x.size(1),-1)), dim=-1)
mel_outputs = self.decoder(encoder_outputs)
mel_outputs_postnet = self.postnet(mel_outputs.transpose(2,1))
mel_outputs_postnet = mel_outputs + mel_outputs_postnet.transpose(2,1)
mel_outputs = mel_outputs.unsqueeze(1)
mel_outputs_postnet = mel_outputs_postnet.unsqueeze(1)
return mel_outputs, mel_outputs_postnet, torch.cat(codes, dim=-1)