Skip to content

Latest commit

 

History

History
114 lines (102 loc) · 3.02 KB

410. Split Array Largest Sum.md

File metadata and controls

114 lines (102 loc) · 3.02 KB

leetcode-cn Daily Challenge on July 26th, 2020.


Difficulty : Hard

Related Topics : Binary SearchDynamic Programming


Given an array which consists of non-negative integers and an integer m, you can split the array into m non-empty continuous subarrays. Write an algorithm to minimize the largest sum among these m subarrays.

Note:

If n is the length of array, assume the following constraints are satisfied:

  • 1 ≤ n ≤ 1000
  • 1 ≤ m ≤ min(50, n)

Examples:

Input:
nums = [7,2,5,10,8]
m = 2

Output:
18

Explanation:
There are four ways to split nums into two subarrays.
The best way is to split it into [7,2,5] and [10,8],
where the largest sum among the two subarrays is only 18.

Solution

  • mine
    • Java
      • BinarySearch Runtime: 1 ms, faster than 71.83%, Memory Usage: 36.9 MB, less than 57.35% of Java online submissions
        // O(N * D)time   D = sum(nums) - max(nums)
        // O(1)space
        public int splitArray(int[] nums, int m) {
            int n = nums.length;
            long l = 0, r = 0;
            for (int num : nums) {
                l = Math.max(l, num);
                r += num;
            }
            long res = 0;
            while (l < r) {
                res = 0;
                long mid = (l + r) >> 1;
                int t = 1;
                long sum = 0;
                for (int i = 0; i < n; i++) {
                    if (sum + nums[i] > mid) {
                        t++;
                        sum = nums[i];
                    } else {
                        sum += nums[i];
                    }
                    res = Math.max(res, sum);
                    if (t > m) {
                        break;
                    }
                }
                if (t > m) {
                    l = mid + 1;
                    res = l;
                } else {
                    r = mid;
                }
            }
            return (int) res;
        }
        

  • leetcode solution
  • DP Runtime: 39 ms, faster than 21.72%, Memory Usage: 37.3 MB, less than 11.11% of Java online submissions
    // O(N^2 * M)time
    // O(N * M) space
    public int splitArray(int[] nums, int m) {
        int n = nums.length;
        int[][] dp = new int[n + 1][m + 1];
        for (int i = 0; i <= n; i++) {
            Arrays.fill(dp[i], Integer.MAX_VALUE);
        }
        int[] sum = new int[n + 1];
        for (int i = 0; i < n; i++) {
            sum[i + 1] = sum[i] + nums[i];
        }
        dp[0][0] = 0;
        for (int i = 1; i <= n; i++) {
            for (int j = 1; j <= Math.min(i, m); j++) {
                for (int k = 0; k < i; k++) {
                    //dp[k][j - 1] mean k num in the before and split as j-1 
                    dp[i][j] = Math.min(dp[i][j], Math.max(dp[k][j - 1], sum[i] - sum[k]));
                }
            }
        }
        return dp[n][m];
    }