forked from MHS-Math-Club/Deaflingo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
130 lines (94 loc) · 3.73 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
from flask import Flask, render_template, request, send_from_directory, make_response
import numpy as np
from PIL import Image, ImageEnhance
import cv2
import io
import base64
import pickle
import mediapipe as mp
import json
app = Flask(__name__)
model_dict = pickle.load(open('./model.p', 'rb'))
model = model_dict['model']
mp_hands = mp.solutions.hands
mp_drawing = mp.solutions.drawing_utils
mp_drawing_styles = mp.solutions.drawing_styles
hands = mp_hands.Hands(static_image_mode=True, min_detection_confidence=0.3)
labels_dict = {
0: 'A', 1: 'B', 2: 'C', 3: 'D', 4: 'E', 5: 'F', 6: 'G', 7: 'H', 8: 'I', 9: 'J',
10: 'K', 11: 'L', 12: 'M', 13: 'N', 14: 'O', 15: 'P', 16: 'Q', 17: 'R', 18: 'S',
19: 'T', 20: 'U', 21: 'V', 22: 'W', 23: 'X', 24: 'Y', 25: 'Z'
}
def update():
# Open the raw image
try:
raw_image = Image.open("images/raw.jpg")
except FileNotFoundError:
print("Error: The file 'raw.jpg' was not found.")
return
frame = np.array(raw_image)
H, W, _ = frame.shape
# Convert the frame from RGB to BGR
frame_bgr = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
results = hands.process(frame_bgr)
if results.multi_hand_landmarks:
# Take the first detected hand
hand_landmarks = results.multi_hand_landmarks[0]
mp_drawing.draw_landmarks(
frame_bgr, # image to draw
hand_landmarks, # model output
mp_hands.HAND_CONNECTIONS, # hand connections
mp_drawing_styles.get_default_hand_landmarks_style(),
mp_drawing_styles.get_default_hand_connections_style())
data_aux = []
x_ = []
y_ = []
for i in range(len(hand_landmarks.landmark)):
x = hand_landmarks.landmark[i].x
y = hand_landmarks.landmark[i].y
x_.append(x)
y_.append(y)
for i in range(len(hand_landmarks.landmark)):
x = hand_landmarks.landmark[i].x
y = hand_landmarks.landmark[i].y
data_aux.append(x - min(x_))
data_aux.append(y - min(y_))
x1 = int(min(x_) * W) - 10
y1 = int(min(y_) * H) - 10
x2 = int(max(x_) * W) - 10
y2 = int(max(y_) * H) - 10
prediction = model.predict([np.asarray(data_aux)])
predicted_character = labels_dict[int(prediction[0])]
data = {"predicted_character": predicted_character}
with open('json/output.json', 'w') as json_file:
json.dump(data, json_file)
# Convert numpy array back to PIL image
processed = Image.fromarray(cv2.cvtColor(frame_bgr, cv2.COLOR_BGR2RGB))
# Save the processed image with text as "processed.jpg"
processed.save("images/processed.jpg")
@app.route('/', methods=['GET', 'POST'])
def camera():
if request.method == 'POST' and request.form.get("photo") != None:
base64_string = request.form.get("photo")
image_bytes = base64.b64decode(base64_string)
in_memory_file = io.BytesIO(image_bytes)
data = np.frombuffer(in_memory_file.getvalue(), dtype=np.uint8)
color_image_flag = 1
img = cv2.imdecode(data, color_image_flag)
cv2.imwrite("images/raw.jpg", img)
update()
return render_template('index.html')
else:
return render_template('index.html')
@app.route('/images/<path:path>')
def static_proxy(path):
return send_from_directory('images', path)
@app.route('/json/<path:path>')
def send_json(path):
response = make_response(send_from_directory('json', path))
response.headers['Cache-Control'] = 'no-cache, no-store, must-revalidate'
response.headers['Pragma'] = 'no-cache'
response.headers['Expires'] = '0'
return response
if __name__ == "__main__":
app.run(debug=True, port=8001)