-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathhla.rs
317 lines (274 loc) · 10.4 KB
/
hla.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
// Copyright (c) 2019 10x Genomics, Inc. All rights reserved.
use bio::io::fasta;
use debruijn::dna_string::DnaString;
use debruijn_mapping::build_index::build_index;
use debruijn_mapping::config::KmerType;
use failure::Error;
use itertools::Itertools;
use regex::Regex;
use serde::Serialize;
use std::collections::{HashMap, HashSet};
use std::fmt;
use std::io::Read;
use std::path::PathBuf;
use std::str::FromStr;
use std::string::String;
/// Represent an HLA allele. The gene and 1st field (`f1`) are required,
/// additional fields are optional (`f2`, `f3`, `f4`). The expression character
/// is currently dropped.
/// See this reference for details: http://hla.alleles.org/nomenclature/naming.html
#[derive(Clone, Debug, Serialize, Deserialize, Eq, PartialEq, Ord, PartialOrd)]
pub struct Allele {
pub gene: Vec<u8>,
pub f1: u16,
pub f2: Option<u16>,
pub f3: Option<u16>,
pub f4: Option<u16>,
pub name: Vec<u8>,
}
impl fmt::Display for Allele {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "{}", String::from_utf8(self.name.clone()).unwrap())
}
}
/// Parser for HLA alleles.
pub struct AlleleParser {
valid_regex: Regex,
field_regex: Regex,
}
impl AlleleParser {
/// Initialize an `AlleleParser`
pub fn new() -> AlleleParser {
let valid_regex = Regex::new("^[A-Z0-9]+[*][0-9]+(:[0-9]+)*[A-Z]?$").unwrap();
let field_regex = Regex::new("[0-9]+(:[0-9]+)*").unwrap();
AlleleParser {
valid_regex,
field_regex,
}
}
/// Parse an HLA allele string. The string must be a valid HLA allele as defined by
/// http://hla.alleles.org/nomenclature/naming.html
pub fn parse(&self, s: &str) -> Result<Allele, Error> {
if !self.valid_regex.is_match(s) {
return Err(format_err!("invalid allele string: {}", s));
}
let mut star_split = s.split('*');
let gene = star_split
.next()
.ok_or_else(|| format_err!("no split: {}", s))?;
let suffix = star_split
.next()
.ok_or_else(|| format_err!("invalid allele no star separator: {}", s))?;
let flds = self
.field_regex
.find(suffix)
.ok_or_else(|| format_err!("no alleles found {}", s))?;
let fld_str = flds.as_str();
let mut flds = fld_str.split(':');
let f1 = u16::from_str(flds.next().unwrap()).unwrap();
let f2 = flds.next().map(|f| u16::from_str(f).unwrap());
let f3 = flds.next().map(|f| u16::from_str(f).unwrap());
let f4 = flds.next().map(|f| u16::from_str(f).unwrap());
Ok(Allele {
gene: gene.as_bytes().to_vec(),
f1,
f2,
f3,
f4,
name: s.as_bytes().to_vec(),
})
}
}
/// Load the HLA nucleotide sequence database, typically downloaded from:
/// ftp://ftp.ebi.ac.uk/pub/databases/ipd/imgt/hla/hla_nuc.fasta
/// This method select a single representative sequence for each 2-digit allele. The representative
/// sequence is simply the longest sequence in the group of all entries with the same 2-digit allele.
/// Only alleles from the main class-I and class-II genes are returned (A,B,C,DRB1,DPA1,DPB1,DQA1,DQB1)
/// If `use_filter == True`, only alleles listed in `allele_set` will be returned. If `use_filter == False`,
/// the method returns only the longest sequence for each 2-digit allele.
pub fn read_hla_cds(
reader: fasta::Reader<impl Read>,
allele_set: HashSet<String>,
use_filter: bool,
) -> Result<(Vec<DnaString>, Vec<String>), Error> {
//TODO make these arguments or config variables
let genes = [
b"A".to_vec(),
b"B".to_vec(),
b"C".to_vec(),
b"DRB1".to_vec(),
b"DPA1".to_vec(),
b"DPB1".to_vec(),
b"DQA1".to_vec(),
b"DQB1".to_vec(),
];
let mut seqs = Vec::new();
let mut transcript_counter = 0;
let mut tx_ids = Vec::new();
let allele_parser = AlleleParser::new();
info!("Starting reading the Fasta file");
let mut hlas = Vec::new();
for result in reader.records() {
let record = result?;
let dna_string = DnaString::from_acgt_bytes(record.seq());
let allele_str = record.desc().ok_or_else(|| format_err!("no HLA allele"))?;
let allele_str = allele_str
.split(' ')
.next()
.ok_or_else(|| format_err!("no HLA allele"))?;
if use_filter && !allele_set.contains(&allele_str.to_string()) {
continue;
}
let allele = allele_parser.parse(allele_str)?;
if genes.contains(&allele.gene) {
let tx_id = record.id().to_string();
let data = (allele, tx_id, allele_str.to_string(), dna_string);
hlas.push(data);
}
}
hlas.sort();
let mut lengths = HashMap::new();
// If we are not filtering using the external database, do this step
if !use_filter {
// All the alleles with a common 2-digit prefix must have the same length -- they can only differ by an synonymous mutation.
// Collate these lengths so that we can filter out non-full length sequences.
for (two_digit, alleles) in &hlas.iter().group_by(|v| (v.0.gene.clone(), v.0.f1, v.0.f2)) {
let mut ma: Vec<_> = alleles.collect();
//println!("td: {:?}, alleles: {:?}", two_digit, ma.len());
// Pick the longest representative
ma.sort_by_key(|v| v.3.len());
let longest = ma.pop().unwrap();
let (_, _, _, dna_string) = longest;
lengths.insert(two_digit.clone(), dna_string.len());
}
}
for (three_digit, alleles) in &hlas
.iter()
.group_by(|v| (v.0.gene.clone(), v.0.f1, v.0.f2, v.0.f3))
{
let mut ma: Vec<_> = alleles.collect();
//println!("td: {:?}, alleles: {:?}", three_digit, ma.len());
// Pick the longest representative
ma.sort_by_key(|v| v.3.len());
let longest = ma.pop().unwrap();
let (_, _, allele_str, dna_string) = longest;
// Get the length of longest 2-digit entry
if !use_filter {
let req_len = lengths[&(three_digit.0.clone(), three_digit.1, three_digit.2)];
let mylen = dna_string.len();
//println!("td: {:?}, alleles: {:?}, max_len: {}, req_len: {}", three_digit, nalleles, mylen, req_len);
if mylen >= req_len {
//TODO
//the CDS only has three-digit resolution so having more than that in allele_str is misleading
//when that's reported as the HLA type
seqs.push(dna_string.clone());
tx_ids.push(allele_str.to_string());
transcript_counter += 1;
}
} else {
seqs.push(dna_string.clone());
tx_ids.push(allele_str.to_string());
transcript_counter += 1;
}
}
info!(
"Read {} Alleles, deduped into {} full-length 3-digit alleles",
hlas.len(),
transcript_counter
);
Ok((seqs, tx_ids))
}
/// Same functionality as `read_hla_cds` but returns the allele sequences as byte arrays rather
/// than DnaStrings.
pub fn read_hla_cds_string(
reader: fasta::Reader<impl Read>,
allele_set: HashSet<String>,
use_filter: bool,
) -> Result<(Vec<Vec<u8>>, Vec<String>), Error> {
let (dna_strings, tx_ids) = read_hla_cds(reader, allele_set, use_filter)?;
let byte_strings = dna_strings.into_iter().map(|s| s.to_ascii_vec()).collect();
Ok((byte_strings, tx_ids))
}
/// Create a DeBruijn graph index of the HLA alleles listed in the CSV `allele_status`
/// using allele sequences loaded from the FASTA files `hla_fasta`, and write the index
/// to `hla_index`. The index is in an opaque serde/bincode format & can generally only be
/// read by the same build of scHLAcount that produced it.
pub fn make_hla_index(
hla_fasta: PathBuf,
hla_index: PathBuf,
allele_status: PathBuf,
) -> Result<PathBuf, Error> {
info!("Building index from fasta");
let mut allele_set = HashSet::new();
let mut rdr = csv::ReaderBuilder::new()
.comment(Some(b'#'))
.from_path(allele_status)?;
for result in rdr.records() {
let record = result?;
let name: String = record[0].parse()?;
let conf: String = record[3].parse()?;
let partial: String = record[6].parse()?;
let dna: String = record[7].parse()?;
//don't use null alleles; we will never see them in RNA!
if name.rfind('N').is_none() && conf == "Confirmed" && partial == "Full" && dna == "gDNA" {
allele_set.insert(name);
}
}
info!(
"Found {} \"Confirmed\" + \"Full\" + \"gDNA\" + non-Null alleles in allele status file",
allele_set.len()
);
let fasta = fasta::Reader::from_file(hla_fasta)?;
let (seqs, tx_names) = read_hla_cds(fasta, allele_set, true)?;
let tx_gene_map = HashMap::new();
let index = build_index::<KmerType>(&seqs, &tx_names, &tx_gene_map)?;
info!("Finished building index!");
info!("Writing index to disk");
debruijn_mapping::utils::write_obj(&index, hla_index.clone())?;
info!("Finished writing index!");
Ok(hla_index)
}
#[cfg(test)]
mod test {
use super::*;
const T1: &str = "A*01:01:01:01";
#[test]
fn test_parse1() {
let parser = AlleleParser::new();
let al = parser.parse(T1).unwrap();
assert_eq!(String::from_utf8(al.gene).unwrap(), "A");
assert_eq!(al.f1, 1);
assert_eq!(al.f2, Some(1));
assert_eq!(al.f3, Some(1));
assert_eq!(al.f4, Some(1));
}
const T2: &str = "A*01:01:38L";
#[test]
fn test_parse2() {
let parser = AlleleParser::new();
let al = parser.parse(T2).unwrap();
assert_eq!(String::from_utf8(al.gene).unwrap(), "A");
assert_eq!(al.f1, 1);
assert_eq!(al.f2, Some(1));
assert_eq!(al.f3, Some(38));
assert_eq!(al.f4, None);
}
const T3: &str = "MICB*012";
#[test]
fn test_parse3() {
let parser = AlleleParser::new();
let al = parser.parse(T3).unwrap();
assert_eq!(String::from_utf8(al.gene).unwrap(), "MICB");
assert_eq!(al.f1, 12);
assert_eq!(al.f2, None);
assert_eq!(al.f3, None);
assert_eq!(al.f4, None);
}
const T4: &str = "MICB*012,5";
#[test]
fn test_parse4() {
let parser = AlleleParser::new();
let al = parser.parse(T4);
assert!(al.is_err());
}
}