-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain_fec.py
246 lines (166 loc) · 9.1 KB
/
main_fec.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
'''
Aum Sri Sai Ram
Implementation of CCT: Consensual Collaborative Training for Facial Expression Recognition with Noisy Annotations
Authors: Darshan Gera and Dr. S. Balasubramanian, SSSIHL
Date: 20-01-2021
Email: darshangera@sssihl.edu.in
'''
import os
import torch
import torchvision.transforms as transforms
import torch.utils.data as data
import sys
import datetime
import cv2
import argparse,random
from PIL import Image
import pandas as pd
from algorithm.noisyfer import noisyfer
import image_utils
parser = argparse.ArgumentParser()
parser.add_argument('--lr', type=float, default=0.001)
parser.add_argument('--result_dir', type=str, help='dir to save result txt files', default='results')
parser.add_argument('--fec_path', type=str, default='data/FEC/', help='FEC dataset path.')
parser.add_argument('--pretrained', type=str, default='pretrained/res18_naive.pth_MSceleb.tar',
help='Pretrained weights')
parser.add_argument('--resume', type=str, default='checkpoints')
parser.add_argument('--noise_rate', type=float, help='corruption rate, should be less than 1', default=0.1)
parser.add_argument('--forget_rate', type=float, help='forget rate', default=None)
parser.add_argument('--noise_type', type=str, help='[pairflip, symmetric, asymmetric]', default='pairflip')
parser.add_argument('--num_gradual', type=int, default=10,
help='how many epochs for linear drop rate, can be 5, 10, 15. This parameter is equal to Tk for R(T) in Co-teaching paper.')
parser.add_argument('--exponent', type=float, default=1,
help='exponent of the forget rate, can be 0.5, 1, 2. This parameter is equal to c in Tc for R(T) in Co-teaching paper.')
parser.add_argument('--dataset', type=str, help='mnist, cifar10, or cifar100', default='fec')
parser.add_argument('--noise_file', type=str, help='trainfile path', default='fec_train_expression_by_SCN.txt')
parser.add_argument('--test_file', type=str, help='test path', default='fec_result_file_PMCRH_16.csv')
parser.add_argument('--batch_size', type=int, default=128, help='batch_size')
parser.add_argument('--beta', type=float, default=.65, help='..based on ')
parser.add_argument('--num_models', type=int, default=3)
parser.add_argument('--num_classes', type=int, default=7, help='number of expressions(class)')
parser.add_argument('--co_lambda_max', type=float, default=.9, help='..based on ')
parser.add_argument('--n_epoch', type=int, default=25)
parser.add_argument('--seed', type=int, default=1)
parser.add_argument('--print_freq', type=int, default=100)
parser.add_argument('--num_workers', type=int, default=4, help='how many subprocesses to use for data loading')
parser.add_argument('--num_iter_per_epoch', type=int, default=400)
parser.add_argument('--epoch_decay_start', type=int, default=80)
parser.add_argument('--gpu', type=int, default=0)
parser.add_argument('--co_lambda', type=float, default=0.1)
parser.add_argument('--adjust_lr', type=int, default=1)
parser.add_argument('--evaluate', type=int, default=1)
parser.add_argument('--model_type', type=str, help='[res]', default='res')
parser.add_argument('--save_model', type=str, help='save model?', default="False")
parser.add_argument('--save_result', type=str, help='save result?', default="True")
parser.add_argument('--drop_rate', type=float, default=0, help='Drop out rate.')
parser.add_argument('--model_dir','-m', default='checkpoints/fecrepeat', type=str)
args = parser.parse_args()
# Seed
torch.manual_seed(args.seed)
if args.gpu is not None:
device = torch.device('cuda:{}'.format(args.gpu))
torch.cuda.manual_seed(args.seed)
else:
device = torch.device('cpu')
torch.manual_seed(args.seed)
# Hyper Parameters
batch_size = args.batch_size
learning_rate = args.lr
class FECDataset(data.Dataset):
def __init__(self, fec_path, phase, transform = None, basic_aug = False):
self.phase = phase
self.transform = transform
self.fec_path = fec_path
NAME_COLUMN = 1
LABEL_COLUMN = 3
df_train_clean = pd.read_csv(os.path.join(self.fec_path, args.noise_file), sep=',', header=None)
if phase == 'train':
dataset_train_clean = df_train_clean
dataset_train_clean = dataset_train_clean[dataset_train_clean[LABEL_COLUMN] < 7 ]
dataset_train_clean = dataset_train_clean[dataset_train_clean[LABEL_COLUMN] >=0 ]
self.label = dataset_train_clean.iloc[:, LABEL_COLUMN].values
file_names = dataset_train_clean.iloc[:, NAME_COLUMN].values
else:
NAME_COLUMN = 0
LABEL_COLUMN = 1
df_test = pd.read_csv(os.path.join(self.fec_path, args.test_file), sep=',', header=None)
df_test = df_test[df_test[LABEL_COLUMN] < 7 ]
dataset = df_test[df_test[LABEL_COLUMN] >=0 ]
self.label = dataset.iloc[:, LABEL_COLUMN].values
file_names = dataset.iloc[:, NAME_COLUMN].values
self.noise_or_not = (self.label == self.label)
self.file_paths = []
for f in file_names:
if phase == 'train':
f = 'aligned_train_Data_FEC/'+f
else:
f = 'aligned_test_Data_FEC/'+str(f)+'.jpg'
path = os.path.join(self.fec_path, f)
self.file_paths.append(path)
self.basic_aug = basic_aug
self.aug_func = [image_utils.flip_image,image_utils.add_gaussian_noise]
def __len__(self):
return len(self.file_paths)
def __getitem__(self, idx):
path = self.file_paths[idx]
image = cv2.imread(path)
image = image[:, :, ::-1] # BGR to RGB
label = self.label[idx]
# augmentation
if self.phase == 'train':
if self.basic_aug and random.uniform(0, 1) > 0.5:
index = random.randint(0,1)
image = self.aug_func[index](image)
if self.transform is not None:
image = self.transform(image)
return image, label, idx
if args.dataset == 'fec':
input_channel = 3
num_classes = 7
init_epoch = 5
data_transforms = transforms.Compose([
transforms.ToPILImage(),
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
data_transforms_val = transforms.Compose([
transforms.ToPILImage(),
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])])
train_dataset = FECDataset(args.fec_path, phase = 'train', transform = data_transforms, basic_aug = True)
print('Train set size:', train_dataset.__len__())
test_dataset = FECDataset(args.fec_path, phase = 'test', transform = data_transforms_val)
print('Validation set size:', test_dataset.__len__())
if args.forget_rate is None:
forget_rate = args.noise_rate
else:
forget_rate = args.forget_rate
def main():
print('\n\t\t\tAum Sri Sai Ram\n')
print('FER with noisy annotations on FEC annotated using Self-Cure-network\n')
print(args)
print('\n\nNoise level:', args.noise_file)
train_loader = torch.utils.data.DataLoader(train_dataset,
batch_size = batch_size,
num_workers = args.num_workers,
drop_last=True,
shuffle = True,
pin_memory = True)
test_loader = torch.utils.data.DataLoader(test_dataset,
batch_size = batch_size,
num_workers = args.num_workers,
shuffle = False,
pin_memory = True)
# Define models
print('building model...')
model= noisyfer(args, train_dataset, device, input_channel, num_classes)
epoch = 0
for epoch in range(0, args.n_epoch):
train_acc1, train_acc2, train_acc3, acc = model.train(train_loader, epoch)
test_acc1, test_acc2, test_acc3, acc = model.evaluate(test_loader)
print( 'Epoch [%d/%d] Test Accuracy on the %s test images: Model1 %.4f %% Model2 %.4f %% Model3 %.4f %% Avg Accuracy %.4f' % (
epoch + 1, args.n_epoch, len(test_dataset), test_acc1, test_acc2, test_acc3,acc))
if __name__ == '__main__':
main()