forked from caiespin/CreateHighDynamicRangeImage
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgamma_exp.m
278 lines (254 loc) · 6.7 KB
/
gamma_exp.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
%Gamma experiment
clear all;
close all;
x_min = 2650;
x_max = 2750;
y_min = 1300;
y_max = 1400;
times_sony = [1/125;1/160;1/160;1/200;1/250;1/320;1/400;1/500;1/640;1/800;1/1000;1/1250;1/1600;1/2000];
baseFN = 373;
baseFName = 'Gamma_img/DSC00';
fext = '.JPG';
files = 387-374;
for file = 1:files+1
FN = baseFN+file;
FNstr = num2str(FN);
fName = strcat(baseFName,FNstr,fext);
pic = imread(fName);
mask = pic(y_min:y_max,x_min:x_max,:);
R = mask(:,:,1);
G = mask(:,:,2);
B = mask(:,:,3);
mean_R(file) = mean2(R);
mean_G(file) = mean2(G);
mean_B(file) = mean2(B);
end
%% Calculate the Fuji X-E2 compression algorithm
%filename base string
baseFujiFName = 'Gamma_img/FUJI/_DSF16';
%extension string
fext = '.JPG';
%which files to use
baseFujiFN = 87-1;
x_min = 1600;
y_min = 1200;
files = 93-87; %number of files
%times_fuji = [1/30;1/60;1/125;1/250;1/500;1/1000]; %exposure data
times_fuji = [1/4000;1/2000;1/1000;1/500;1/250;1/125;1/60];
for file = 1:files+1
%choose the file based on the index
FN = baseFujiFN+file;
FNstr = num2str(FN);
%calculate the filename
fName = strcat(baseFujiFName,FNstr,fext);
%read image data
pic = imread(fName);
%mask off central white portion
mask = imcrop(pic,[x_min y_min,100,100]);
%split into channels
RF = mask(:,:,1);
GF = mask(:,:,2);
BF = mask(:,:,3);
%calculate mean brightness
mean_RF(file) = mean2(RF);
mean_GF(file) = mean2(GF);
mean_BF(file) = mean2(BF);
end
%Show all the images for linearization experiments.
figure()
subplot(2,1,1)
plot(times_sony,mean_R,'r--x')
hold on
plot(times_sony,mean_G, 'g--x')
plot(times_sony,mean_B, 'b--x')
hold off
title('Sony Camera Compression Data')
xlabel('Exposure time [sec]')
ylabel('Brightness [au]')
legend('Red','Blue','Green')
subplot(2,1,2)
plot(times_fuji,mean_RF,'r--x')
hold on
plot(times_fuji,mean_BF, 'b--x')
plot(times_fuji,mean_GF, 'g--x')
hold off
title('Fuji X-E2 Camera Compression Data')
xlabel('Exposure time [sec]')
ylabel('Brightness [au]')
legend('Red','Blue','Green')
%% Calculate the compression algorithm
%for the Fuji camera:
t = times_fuji;
E = t/max(t); %normalize exposure to 1 for max t
%fit each channel separately
%blue channel
y = mean_BF';
A = zeros(length(E),4)
for i = 1:length(E)
A(i,:) = [1,E(i),E(i)^2,E(i)^3];
end
gammaFun = @(x,E)x(1)*E.^(1/x(2));
x0 = [40 1];
gamma_fit = lsqcurvefit(gammaFun,x0,E,mean_RF')
%use least squares fit to find polynomial coefficients
b = A\y;
%red channel
y = mean_RF';
r = A\y;
%green channel
y = mean_GF';
g = A\y;
%calculate interpolation vector
for i = 1:255
e(i) = i/255;
r_e(i) = pixel_fit(e(i),1,r,g,b,1);
g_e(i) = pixel_fit(e(i),2,r,g,b,1);
b_e(i) = pixel_fit(e(i),3,r,g,b,1);
end
e = e';
%test an inverse function given e input vector and r_e data
%in other words e = Bx
B_inv = zeros(255, 4);
G_inv = B_inv;
R_inv = B_inv;
for i = 1:255
R_inv(i,:) = [1 r_e(i) r_e(i)^2 r_e(i)^3];
G_inv(i,:) = [1 g_e(i) g_e(i)^2 g_e(i)^3];
B_inv(i,:) = [1 b_e(i) b_e(i)^2 b_e(i)^3];
end
r_inv = R_inv\e
g_inv = G_inv\e
b_inv = B_inv\e
r_lin = r_inv(1) + r_inv(2)*mean_RF + r_inv(3)*mean_RF.^2 + r_inv(4)*mean_RF.^3;
%% Linearize
fit_lin = r(1) + r(2)*E + r(3)*E.^2 + r(4)*E.^3;
gfit = gammaFun(gamma_fit,E)
figure(2)
%show different linearization results
plot(E, mean_RF,'rx');
hold on
plot(E,gfit,'k-x');
plot(E,fit_lin,'b-');
plot(E,r_lin*255,'g-o')
hold off
title('Polynomial Fit to Red Channel')
legend('Data', 'Gamma it','Poly fit','Linear(poly)')
xlabel('Normalized Exposure [au]')
ylabel('Brightness [au]')
scale = 255;
for i = 1:length(t)
R_lin(i) =E(i)*scale* mean_RF(i)/fit_lin(i);
end
glinData = mean_RF.^(g(2)*1.0);
glinData = glinData/max(glinData) * 255;
%plot an example of the linearization function along with original data
% figure(4)
% plot(E,mean_RF,'rx')
% hold on
% plot(E,R_lin,'r-')
% plot(E,glinData,'k-x')
% hold off
% title('Linearized Red Channel Data')
% legend('Data', 'Linearized','gamma linearized')
% xlabel('Normalized Exposure [au]')
% ylabel('Brightness [au]')
%% Normalize image data
fName = ('Mission Chapel/_DSF1678.JPG')
im_scale = 255/pixel_fit(255,1,r_inv,b_inv,b_inv,scale);
%fName = ('Bike/_DSF1704.JPG')
Pic1 = imread(fName);
x_max = size(Pic1, 1);
y_max = size(Pic1, 2);
color_max = 3;
scale = 255.0;
Pic1_norm = double(Pic1);
Pic1_lin = zeros(x_max,y_max,color_max);
for x = 1:x_max
for y = 1:y_max
for color = 1:color_max %R = 1, G = 2 B = 3
alpha = Pic1_norm(x,y,color);
alpha_lin = pixel_fit(alpha,color,r_inv,b_inv,b_inv,scale);
Pic1_lin(x,y,color) = alpha_lin;
end
end
end
Pic1_lin = Pic1_lin*im_scale;
figure()
subplot(3,2,[1 3 5])
imshow(uint8(Pic1_lin));
subplot(3,2,2)
histogram(Pic1_lin(:,:,1))
subplot(3,2,4)
histogram(Pic1_lin(:,:,2))
subplot(3,2,6)
histogram(Pic1_lin(:,:,3))
%% Scale image 2 Middle picture
fName = ('Mission Chapel/_DSF1674.JPG')
%fName = ('Bike/_DSF1702.JPG')
Pic2 = imread(fName);
x_max = size(Pic2, 1);
y_max = size(Pic2, 2);
color_max = 3;
Pic2_norm = double(Pic2);
Pic2_lin = zeros(x_max,y_max,color_max);
for x = 1:x_max
for y = 1:y_max
for color = 1:color_max %R = 1, G = 2 B = 3
alpha = Pic2_norm(x,y,color);
alpha_lin = pixel_fit(alpha,color,r_inv,b_inv,b_inv,scale);
Pic2_lin(x,y,color) = alpha_lin;
end
end
end
Pic2_lin = Pic2_lin*im_scale;
Pic2_lin = threshold(Pic2_lin);
figure()
subplot(3,2,[1 3 5])
imshow(uint8(Pic2_lin));
subplot(3,2,2)
histogram(Pic2_lin(:,:,1))
subplot(3,2,4)
histogram(Pic2_lin(:,:,2))
subplot(3,2,6)
histogram(Pic2_lin(:,:,3))
%% Pic 3 lightest picture
fName = ('Mission Chapel/_DSF1676.JPG')
%fName = ('Bike/_DSF1701.JPG')
Pic3 = imread(fName);
x_max = size(Pic3, 1);
y_max = size(Pic3, 2);
color_max = 3;
Pic3_norm = double(Pic3);
Pic3_lin = zeros(x_max,y_max,color_max);
for x = 1:x_max
for y = 1:y_max
for color = 1:color_max %R = 1, G = 2 B = 3
alpha = Pic3_norm(x,y,color);
alpha_lin = pixel_fit(alpha,color,r_inv,b_inv,b_inv,scale);
Pic3_lin(x,y,color) = alpha_lin;
end
end
end
Pic3_lin = Pic3_lin*im_scale;
Pic3_lin = threshold(Pic3_lin);
figure()
subplot(3,2,[1 3 5])
imshow(uint8(Pic3_lin));
subplot(3,2,2)
histogram(Pic3_lin(:,:,1))
subplot(3,2,4)
histogram(Pic3_lin(:,:,2))
subplot(3,2,6)
histogram(Pic3_lin(:,:,3))
%% Scale by ratio of time
t = [1/1000;1/125;1/30];
%t = [1/60;1/15;1/8];
a(1) = 1;
a(2) = t(2)/t(1); %scale factor between image two and one
a(3) = t(3)/t(1); %scale factor betweem image three and image one
%composition 1
comp1HDR = pic_combine(Pic1_lin,Pic2_lin,Pic3_lin,a);
comp1 = tonemap(comp1HDR,'AdjustSaturation',2.5, 'AdjustLightness', [0.2 1]);
figure()
comp1_rsize = imresize(comp1, 0.5);
imshow(comp1_rsize)