-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindex.Rmd
42 lines (34 loc) · 2 KB
/
index.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
---
title: "An Introduction to Reproducible Analyses in R"
subtitle: "White Rose BBSRC DTP Training"
author: "Emma Rand"
institute: "University of York, UK"
output:
xaringan::moon_reader:
css: [default, css_files/emma.css, css_files/emma-fonts.css]
lib_dir: libs
seal: true
nature:
highlightStyle: github
highlightLines: true
countIncrementalSlides: false
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE,
message = FALSE,
warning = FALSE)
options(htmltools.dir.version = FALSE)
```
# Module Index
1. [Introduction and Principles of reproducibility](slides/01_intro_and_principles_of_repro.html)
2. [Introduction to R and working with data](slides/02_intro_to_r_and_working_with_data.html)
3. [Project-oriented workflow](slides/03_rstudio_projects.html)
4. [Tidying data and the tidyverse including the pipe](slides/04_tidying_data_and_the_tidyverse.html)
5. [Advanced data import](slides/05_advanced_data_import.html)
6. [Quarto for Reproducible Reports](....)
---
# Introduction to Reproducibility in R
## Materials
<a rel="license" href="http://creativecommons.org/licenses/by-nc-sa/4.0/"><img alt="Creative Commons License" style="border-width:0" src="https://i.creativecommons.org/l/by-nc-sa/4.0/88x31.png" /></a><br /><span xmlns:dct="http://purl.org/dc/terms/" property="dct:title">White Rose BBSRC Doctoral Training Partnership (DTP) in Mechanistic Biology Analytics 1: Introduction to reproducible analyses in R</span> by <span xmlns:cc="http://creativecommons.org/ns#" property="cc:attributionName">Emma Rand</span> is licensed under a <a rel="license" href="http://creativecommons.org/licenses/by-nc-sa/4.0/">Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License</a>.
Please cite as:
Rand E. (2023). White Rose BBSRC DTP Training: An Introduction to Reproducible Analyses in R (version v1.2). DOI: https://doi.org/10.5281/zenodo.3859818 URL: https://github.com/3mmaRand/pgr_reproducibility