Skip to content

Latest commit

 

History

History
466 lines (352 loc) · 11.1 KB

link.md

File metadata and controls

466 lines (352 loc) · 11.1 KB

链表

讲数据结构就离不开讲链表。因为数据结构是用来组织数据的,如何将一个数据关联到另外一个数据呢?链表可以将数据和数据之间关联起来,从一个数据指向另外一个数据。

一、链表

定义:

链表由一个个数据节点组成的,它是一个递归结构,要么它是空的,要么它存在一个指向另外一个数据节点的引用。

链表,可以说是最基础的数据结构。

最简单的链表如下:

package main

import (
	"fmt"
)

type LinkNode struct {
	Data     int64
	NextNode *LinkNode
}

func main() {
	// 新的节点
	node := new(LinkNode)
	node.Data = 2

	// 新的节点
	node1 := new(LinkNode)
	node1.Data = 3
	node.NextNode = node1 // node1 链接到 node 节点上

	// 新的节点
	node2 := new(LinkNode)
	node2.Data = 4
	node1.NextNode = node2 // node2 链接到 node1 节点上

	// 按顺序打印数据
	nowNode := node
	for {
		if nowNode != nil {
			// 打印节点值
			fmt.Println(nowNode.Data)
			// 获取下一个节点
			nowNode = nowNode.NextNode
		}

		// 如果下一个节点为空,表示链表结束了
		break
	}
}

打印出:

2
3
4

结构体 LinkNode 有两个字段,一个字段存放数据 Data,另一个字典指向下一个节点 NextNode 。这种从一个数据节点指向下一个数据节点的结构,都可以叫做链表。

有些书籍,把链表做了很细的划分,比如单链表,双链表,循环单链表,循环双链表,其实没有必要强行分类,链表就是从一个数据指向另外一个数据,一种将数据和数据关联起来的结构而已。

好吧,我们还是要知道是什么。

  1. 单链表,就是链表是单向的,像我们上面这个结构一样,可以一直往下找到下一个数据节点,它只有一个方向,它不能往回找。
  2. 双链表,每个节点既可以找到它之前的节点,也可以找到之后的节点,是双向的。
  3. 循环链表,就是它一直往下找数据节点,最后回到了自己那个节点,形成了一个回路。循环单链表和循环双链表的区别就是,一个只能一个方向走,一个两个方向都可以走。

我们来实现一个循环链表 Ring(集链表大成者),参考 Golang 标准库 container/ring::

// 循环链表
type Ring struct {
	next, prev *Ring       // 前驱和后驱节点
	Value      interface{} // 数据
}

该循环链表有一个三个字段,next 表示后驱节点,prev 表示前驱节点,Value 表示值。

我们来分析该结构各操作的时间复杂度。

1.1.初始化循环链表

初始化一个空的循环链表:

package main

import (
	"fmt"
)

// 初始化空的循环链表,前驱和后驱都指向自己,因为是循环的
func (r *Ring) init() *Ring {
	r.next = r
	r.prev = r
	return r
}


func main() {
	r := new(Ring)
	r.init()
}

因为绑定前驱和后驱节点为自己,没有循环,时间复杂度为:O(1)

创建一个指定大小 N 的循环链表,值全为空:

// 创建N个节点的循环链表
func New(n int) *Ring {
	if n <= 0 {
		return nil
	}
	r := new(Ring)
	p := r
	for i := 1; i < n; i++ {
		p.next = &Ring{prev: p}
		p = p.next
	}
	p.next = r
	r.prev = p
	return r
}

会连续绑定前驱和后驱节点,时间复杂度为:O(n)

1.2.获取上一个或下一个节点

// 获取下一个节点
func (r *Ring) Next() *Ring {
	if r.next == nil {
		return r.init()
	}
	return r.next
}

// 获取上一个节点
func (r *Ring) Prev() *Ring {
	if r.next == nil {
		return r.init()
	}
	return r.prev
}

获取前驱或后驱节点,时间复杂度为:O(1)

1.2.获取第 n 个节点

因为链表是循环的,当 n 为负数,表示从前面往前遍历,否则往后面遍历:

func (r *Ring) Move(n int) *Ring {
	if r.next == nil {
		return r.init()
	}
	switch {
	case n < 0:
		for ; n < 0; n++ {
			r = r.prev
		}
	case n > 0:
		for ; n > 0; n-- {
			r = r.next
		}
	}
	return r
}

因为需要遍历 n 次,所以时间复杂度为:O(n)

1.3.添加节点

// 往节点A,链接一个节点,并且返回之前节点A的后驱节点
func (r *Ring) Link(s *Ring) *Ring {
	n := r.Next()
	if s != nil {
		p := s.Prev()
		r.next = s
		s.prev = r
		n.prev = p
		p.next = n
	}
	return n
}

添加节点的操作比较复杂,如果节点 s 是一个新的节点。

那么也就是在 r 节点后插入一个新节点 s,而 r 节点之前的后驱节点,将会链接到新节点后面,并返回 r 节点之前的第一个后驱节点 n,图如下:

可以看到插入新节点,会重新形成一个环,新节点 s 被插入了中间。

执行以下程序:

package main

import (
	"fmt"
)

ffunc linkNewTest() {
 	// 第一个节点
 	r := &Ring{Value: -1}
 
 	// 链接新的五个节点
 	r.Link(&Ring{Value: 1})
 	r.Link(&Ring{Value: 2})
 	r.Link(&Ring{Value: 3})
 	r.Link(&Ring{Value: 4})
 
 	node := r
 	for {
 		// 打印节点值
 		fmt.Println(node.Value)
 
 		// 移到下一个节点
 		node = node.Next()
 
 		//  如果节点回到了起点,结束
 		if node == r {
 			return
 		}
 	}
 }

func main() {
	linkNewTest()
}

输出:

-1
4
3
2
1

每次链接的是一个新节点,那么链会越来越长,仍然是一个环。因为只是更改链接位置,时间复杂度为:O(1)

1.4.删除节点

// 删除节点后面的 n 个节点
func (r *Ring) Unlink(n int) *Ring {
	if n < 0 {
		return nil
	}
	return r.Link(r.Move(n + 1))
}

将循环链表的后面几个节点删除。

执行:

package main

import (
	"fmt"
)

func deleteTest() {
	// 第一个节点
	r := &Ring{Value: -1}

	// 链接新的五个节点
	r.Link(&Ring{Value: 1})
	r.Link(&Ring{Value: 2})
	r.Link(&Ring{Value: 3})
	r.Link(&Ring{Value: 4})

	temp := r.Unlink(3) // 解除了后面两个节点

	// 打印原来的节点
	node := r
	for {
		// 打印节点值
		fmt.Println(node.Value)
		// 移到下一个节点
		node = node.Next()

		//  如果节点回到了起点,结束
		if node == r {
			break
		}
	}

	fmt.Println("------")
	
	// 打印被切断的节点
	node = temp
	for {
		// 打印节点值
		fmt.Println(node.Value)
		// 移到下一个节点
		node = node.Next()

		//  如果节点回到了起点,结束
		if node == temp {
			break
		}
	}
}

func main() {
	deleteTest()
}

输出:

-1
1
------
4
3
2

删除循环链表后面的三个节点:r.Unlink(3)

可以看到节点 r 后面的两个节点被切断了,然后分成了两个循环链表,r 所在的链表变成了 -1,1

而切除的那部分形成一个新循环链表是 4 3 2,并且返回给了用户。

因为只要定位要删除的节点位置,然后进行链接:r.Link(r.Move(n + 1)),所以时间复杂度为:O(n)+O(1)=O(n)

1.5.获取链表长度

// 查看循环链表长度
func (r *Ring) Len() int {
	n := 0
	if r != nil {
		n = 1
		for p := r.Next(); p != r; p = p.next {
			n++
		}
	}
	return n
}

通过循环,当引用回到自己,那么计数完毕,时间复杂度:O(n)

因为循环链表还不够强壮,不知道起始节点是哪个,计数链表长度还要遍历,所以用循环链表实现的双端队列就出现了,一般具体编程都使用更高层次的数据结构。

详细可查看栈和队列章节。

二、数组和链表

数组是编程语言作为一种基本类型提供出来的,相同数据类型的元素按一定顺序排列的集合。

它的作用只有一种:存放数据,让你很快能找到存的数据。如果你不去额外改进它,它就只是存放数据而已,它不会将一个数据节点和另外一个数据节点关联起来。比如建立一个大小为5的数组 array:

package main

import "fmt"


//  打印出:
//  [0 0 0 0 0]
//  [8 9 7 0 0]
//  7
func main() {
	array := [5]int64{}
	fmt.Println(array)
	array[0] = 8
	array[1] = 9
	array[2] = 7
	fmt.Println(array)
	fmt.Println(array[2])
}

我们可以通过下标 0,1,2 来获取到数组中的数据,下标 0,1,2 就表示数据的位置,排第一位,排第二位,我们也可以把指定位置的数据替换成另外一个数据。

数组这一数据类型,是被编程语言高度抽象封装的结构,下标 会转换成 虚拟内存地址,然后操作系统会自动帮我们进行寻址,这个寻址过程是特别快的,所以往数组的某个下标取一个值和放一个值,时间复杂度都为 O(1)

它是一种将 虚拟内存地址数据元素 映射起来的内置语法结构,数据和数据之间是挨着,存放在一个连续的内存区域,每一个固定大小(8字节)的内存片段都有一个虚拟的地址编号。当然这个虚拟内存不是真正的内存,每个程序启动都会有一个虚拟内存空间来映射真正的内存,这是计算机组成的内容,和数据结构也有点关系,我们会在另外的高级专题讲,这里就不展开了。

用数组也可以实现链表,比如定义一个数组 [5]Value,值类型为一个结构体 Value

package main

import "fmt"

func ArrayLink() {
	type Value struct {
		Data      string
		NextIndex int64
	}

	var array [5]Value          // 五个节点的数组
	array[0] = Value{"I", 3}    // 下一个节点的下标为3
	array[1] = Value{"Army", 4} // 下一个节点的下标为4
	array[2] = Value{"You", 1}  // 下一个节点的下标为1
	array[3] = Value{"Love", 2} // 下一个节点的下标为2
	array[4] = Value{"!", -1}   // -1表示没有下一个节点
	node := array[0]
	for {
		fmt.Println(node.Data)
		if node.NextIndex == -1 {
			break
		}
		node = array[node.NextIndex]
	}

}

func main() {
	ArrayLink()
}

打印出:

I
Love
You
Army
!

获取某个 下标 的数据,通过该数据可以知道 下一个数据的下标 是什么,然后拿出该下标的数据,继续往下做。问题是,有时候需要做删除,移动等各种操作,而数组的大小是固定的,需要大量空间移动,所以某些情况下,数组的效率很低。

数组和链表是两个不同的概念。一个是编程语言提供的基本数据类型,表示一个连续的内存空间,可通过一个索引访问数据。另一个是我们定义的数据结构,通过一个数据节点,可以定位到另一个数据节点,不要求连续的内存空间。

数组的优点是占用空间小,查询快,直接使用索引就可以获取数据元素,缺点是移动和删除数据元素要大量移动空间。

链表的优点是移动和删除数据元素速度快,只要把相关的数据元素重新链接起来,但缺点是占用空间大,查找需要遍历。

很多其他的数据结构都由数组和链表配合实现的。

三、总结

链表数组 可以用来辅助构建各种基本数据结构。

数据结构名字特别多,在以后的计算机生涯中,有些自己造的数据结构,或者不常见的别人造的数据结构,不知道叫什么名字是很正常的。我们只需知道常见的数据结构即可,方便与其他程序员交流。