Skip to content

Latest commit

 

History

History
68 lines (53 loc) · 2.2 KB

README.md

File metadata and controls

68 lines (53 loc) · 2.2 KB

imax

tests PyPI version Open In Colab

Image augmentation library for Jax.

sample_images

Installation

pip install imax

Usage

from jax import random
import jax.numpy as jnp
from PIL import Image
from matplotlib import pyplot as plt
from mpl_toolkits.axes_grid1 import ImageGrid

from imax import transforms, color_transforms, randaugment

# Setup
random_key = random.PRNGKey(32)
random_key, split_key = random.split(random_key)
image = jnp.asarray(Image.open('./test.jpeg').convert('RGBA')).astype('uint8')

# Geometric transforms:
transform = transforms.rotate(rad=0.7)  # create transformation matrix
transformed_image = transforms.apply_transform(image,    # apply transformation
                                               transform,
                                               mask_value=jnp.array([0, 0, 0, 255]))

# multiple transformations can be combined through matrix multiplication
# this makes multiple sequential transforms much faster
multi_transform = transform @ transform @ transform
multi_transformed_image = transforms.apply_transform(image,
                                                     multi_transform,
                                                     mask_value=-1)

# Color transforms:
adjusted_image = color_transforms.posterize(image, bits=2)

# Randaugment:
randomized_image = randaugment.distort_image_with_randaugment(
    image,
    num_layers=3,   # number of random augmentations in sequence
    magnitude=10,   # magnitude of random augmentations
    random_key=split_key
)

# Show results:
results = [transformed_image, multi_transformed_image, adjusted_image, randomized_image]
fig = plt.figure(figsize=(10., 10.))
grid = ImageGrid(fig, 111,
                 nrows_ncols=(2, 2),
                 axes_pad=0.1)

for ax, im in zip(grid, results):
    ax.axis('off')
    ax.imshow(im)
plt.show()