-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAG.py
79 lines (64 loc) · 2.13 KB
/
AG.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import cv2
import torch
import os
import collections
from collections import Counter
import math
import numpy as np
import math
from PIL import Image
from tqdm import tqdm
#img = cv2.imread('./PyTorch/data/car/1/13.jpg') #读取图像
'''
def spatialF(path):
image = Image.open(path).convert('L')
image = np.array(image)
M = image.shape[0]
N = image.shape[1]
cf = 0
rf = 0
for i in range(1, M - 1):
for j in range(1, N - 1):
dx = float(image[i, j - 1]) - float(image[i, j])
rf += dx ** 2
dy = float(image[i - 1, j]) - float(image[i, j])
cf += dy ** 2
RF = math.sqrt(rf / (M * N))
CF = math.sqrt(cf / (M * N))
SF = math.sqrt(RF ** 2 + CF ** 2)
return round(SF,2)
if __name__ == "__main__":
for root, dirs, files in os.walk('./PyTorch/data/car/1/'):
for i in files:
# print(i)'
#print(str(i) + ':' + str(spatialF('./PyTorch/data/car/2/' + str(i))))
print(str(spatialF('./PyTorch/data/car/1/' + str(i))))'''
'''
image_dir = './PyTorch/data/sesr/1/9.jpg'
img = cv2.imread(image_dir, flags=cv2.IMREAD_GRAYSCALE)
img = torch.from_numpy(img)
compare_list = []
for m in range(1, img.size()[0] - 1):
for n in range(1, img.size()[0] - 1):
sum_element = img[m - 1, n - 1] + img[m - 1, n] + img[m - 1, n + 1] + img[m, n - 1] + img[m, n + 1] + img[
m + 1, n - 1] + img[m + 1, n] + img[m + 1, n + 1]
sum_element = int(sum_element)
mean_element = sum_element // 8
pix = int(img[m, n])
temp = (pix, mean_element)
compare_list.append(temp)
#print(compare_list)
compare_dict = collections.Counter(compare_list)
H = 0.0
for freq in compare_dict.values():
f_n2 = freq / img.size()[0] ** 2
log_f_n2 = math.log(f_n2)
h = -(f_n2 * log_f_n2)
H += h
print(H)'''
'''
if __name__ == "__main__":
for root, dirs, files in os.walk('./PyTorch/data/car/1/'):
for i in files:
# print(i)
print(str(i)+':'+str(avgGradient('./PyTorch/data/car/1/' + str(i))))'''