-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
184 lines (155 loc) · 8.04 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader
from torch.nn import Conv2d,LeakyReLU,BatchNorm2d, ConvTranspose2d,ReLU
import cv2,datetime,os
from net2 import GeneratorNet,DiscrimiterNet
import torch.optim as optim
from dataset import MYDataSet
from utils import loss_igdl
import argparse
from tensorboardX import SummaryWriter
import numpy as np
from nets.commons import VGG19_PercepLoss
def ToTensor(image):
"""Convert ndarrays in sample to Tensors."""
# numpy image: H x W x C
# torch image: C X H X W
image = image.transpose((2, 0, 1))
# Normalize image from [0, 255] to [0, 1]
image = 1 / 255.0 * image
return torch.from_numpy(image).type(dtype=torch.float)
parser = argparse.ArgumentParser()
parser.add_argument('--trainA_path',type=str,default='./data/trainA')
parser.add_argument('--trainB_path',type=str,default='./data/trainB')
parser.add_argument('--use_wgan',type=bool,default=True,help='Use WGAN to train')
parser.add_argument('--lr',type=float,default=1e-4,help='learning rate')
parser.add_argument('--max_epoch',type=int,default=500,help='Max epoch for training')
parser.add_argument('--bz',type=int,default=10,help='batch size for training')
parser.add_argument('--lbda1',type=int,default=100,help='weight for L1 loss')
parser.add_argument('--lbda2',type=int,default=10,help='weight for iamge gradient difference loss')
parser.add_argument('--lbda3',type=int,default=30,help='weight for iamge gradient difference loss')
parser.add_argument('--num_workers',type=int,default=4,help='Use multiple kernels to load dataset')
parser.add_argument('--checkpoints_root',type=str,default='checkpoints',help='The root path to save checkpoints')
parser.add_argument('--log_root',type=str,default='./log',help='The root path to save log files which are writtern by tensorboardX')
parser.add_argument('--gpu_id',type=str,default='0',help='Choose one gpu to use. Only single gpu training is supported currently')
args = parser.parse_args()
if __name__ == "__main__":
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_id
wgan = args.use_wgan
learnint_rate = args.lr
max_epoch = args.max_epoch
batch_size = args.bz
lambda_1 = args.lbda1
lambda_2 = args.lbda2
lambda_3 = args.lbda3
# Weight for image gradient difference loss
#netG = GeneratorNet().cuda()
netG = GeneratorNet().cuda()
netD = DiscrimiterNet(wgan_loss=wgan).cuda()
optimizer_g = optim.Adam(netG.parameters(),lr=learnint_rate)
optimizer_d = optim.Adam(netD.parameters(),lr=learnint_rate)
dataset = MYDataSet(src_data_path=args.trainA_path,dst_data_path=args.trainB_path)
datasetloader = DataLoader(dataset,batch_size=batch_size,shuffle=False,num_workers=args.num_workers)
log_root = args.log_root
date = datetime.datetime.now().strftime('%F_%T').replace(':','_')
log_folder = date
log_dir = os.path.join(log_root,log_folder)
if not os.path.exists(log_dir):
os.makedirs(log_dir)
writer = SummaryWriter(log_dir=log_dir)
checkpoint_root = args.checkpoints_root
checkpoint_folder = date
checkpoint_dir = os.path.join(checkpoint_root,checkpoint_folder)
if not os.path.exists(checkpoint_dir):
os.makedirs(checkpoint_dir)
for epoch in range(0,max_epoch):
d_loss_log_list = []
g_loss_log_list = []
for iteration, data in enumerate(datasetloader):
#batchtensor_A = data[0].cuda()
# batchtensor_B = data[1].cuda()
batchtensor_A = data[0].cuda()
batchtensor_B = data[1].cuda()
generated_batchtensor = netG.forward(batchtensor_A)
######################
# (1) Train Discriminator
######################
num_critic = 1
if wgan:
num_critic = 5
for i in range(num_critic):
optimizer_d.zero_grad()
d_fake = netD(generated_batchtensor)
d_real = netD(batchtensor_B)
#------------------------------#
#--- wgan loss cost function---#
d_loss = torch.mean(d_fake) - torch.mean(d_real) # E[D(I_C)] = E[D(G(I_D))]
lambda_gp = 10 # as setted in the paper
epsilon = torch.rand(batchtensor_B.size()[0], 1, 1, 1).cuda()
x_hat = batchtensor_B * epsilon + (1 -epsilon)*generated_batchtensor
d_hat = netD.forward(x_hat)
# Following code is taken from https://github.com/EmilienDupont/wgan-gp/blob/master/training.py
# to calculate gradients penalty
grad_outputs = torch.ones(d_hat.size()).cuda()
gradients = torch.autograd.grad( # Calculate gradients of probabilities with respect to examples
outputs=d_hat,
inputs=x_hat,
grad_outputs=grad_outputs,
create_graph=True,
retain_graph=True
)[0]
# Gradients have shape (batch_size, num_channels, img_width, img_height),
# so flatten to easily take norm per example in batch
gradients = gradients.view(batch_size,-1)
# Derivatives of the gradient close to 0 can cause problems because of
# the square root, so manually calculate norm and add epsilon
gradients_norm = torch.sqrt(torch.sum(gradients ** 2, dim=1) + 1e-12)
# Calculate gradient penalty
gradient_penalty = lambda_gp*torch.mean((gradients_norm - 1) ** 2)
d_loss += gradient_penalty
#--- wgan loss cost function---#
#------------------------------#
d_loss.backward(retain_graph=True)
netG.zero_grad()
optimizer_d.step()
d_loss_log = d_loss.item()
d_loss_log_list.append(d_loss_log)
######################
# (2) Train G network
######################
optimizer_g.zero_grad()
d_fake = netD(generated_batchtensor)
L_vgg = VGG19_PercepLoss() # content loss (vgg)
if torch.cuda.is_available():
L_vgg = L_vgg.cuda()
Tensor = torch.cuda.FloatTensor
else:
Tensor = torch.FloatTensor
loss_con = L_vgg(batchtensor_B,generated_batchtensor) # content loss
g_loss = -torch.mean(d_fake)
base_loss_log = g_loss.item()
l1_loss = torch.mean(torch.abs(generated_batchtensor-batchtensor_B))
l1_loss_log = l1_loss.item()
igdl_loss = loss_igdl(batchtensor_B,generated_batchtensor)
igdl_loss_log = igdl_loss.item()
g_loss += lambda_1 *l1_loss + lambda_2*igdl_loss+ lambda_3*loss_con
#g_loss += lambda_1 * l1_loss
g_loss_log = g_loss.item()
g_loss_log_list.append(g_loss_log)
g_loss.backward()
netD.zero_grad()
optimizer_g.step()
writer.add_scalar('G_loss',g_loss_log,(epoch*len(datasetloader)+iteration))
writer.add_scalar('D_loss',d_loss_log,(epoch*len(datasetloader)+iteration))
writer.add_scalar('base_loss',base_loss_log,(epoch*len(datasetloader)+iteration))
writer.add_scalar('l1_loss',l1_loss_log,(epoch*len(datasetloader)+iteration))
writer.add_scalar('IGDL_loss',igdl_loss_log,(epoch*len(datasetloader)+iteration))
print('==>Epoch:%d/%d:%d d_loss:%.3f g_loss:%.3f'%(epoch,max_epoch,iteration,d_loss_log,g_loss_log))
d_loss_average_log = np.array(d_loss_log_list).mean()
g_loss_average_log = np.array(g_loss_log_list).mean()
writer.add_scalar('D_loss_epoch',d_loss_average_log,epoch)
writer.add_scalar('G_loss_epoch',g_loss_average_log,epoch)
# torch.save(netD.state_dict(),os.path.join(checkpoint_dir,'netD_%d.pth'%epoch))
torch.save(netG.state_dict(),os.path.join(checkpoint_dir,'netG_%d.pth'%epoch))
writer.close()