-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathchatbot.py
71 lines (59 loc) · 2.17 KB
/
chatbot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
import nltk
from nltk.stem import WordNetLemmatizer
import json
import pickle
import numpy as np
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Activation, Dropout
from tensorflow.keras.optimizers import SGD
import random
nltk.download('punkt')
nltk.download('wordnet')
nltk.download('omw-1.4')
lemmatizer = WordNetLemmatizer()
words = []
classes = []
word_class_pairs = []
ignore_words = ['?', '!']
data_file = open('intents.json', encoding='utf-8').read()
intent_data = json.loads(data_file)
for intent in intent_data['intents']:
for pattern in intent['patterns']:
w = nltk.word_tokenize(pattern)
words.extend(w)
word_class_pairs.append((w, intent['tag']))
if intent['tag'] not in classes:
classes.append(intent['tag'])
words = [lemmatizer.lemmatize(w.lower()) for w in words if w not in ignore_words]
words = sorted(list(set(words)))
classes = sorted(list(set(classes)))
print(len(word_class_pairs), "documents")
print(len(classes), "classes", classes)
print(len(words), "unique lemmatized words", words)
pickle.dump(words,open('words.pkl','wb'))
pickle.dump(classes,open('classes.pkl','wb'))
training = []
output_empty = [0] * len(classes)
for wc in word_class_pairs:
bag = []
pattern_words = wc[0]
pattern_words = [lemmatizer.lemmatize(word.lower()) for word in pattern_words]
for w in words:
bag.append(1) if w in pattern_words else bag.append(0)
output_row = list(output_empty)
output_row[classes.index(wc[1])] = 1
training.append([bag, output_row])
random.shuffle(training)
training = np.array(training)
train_x = list(training[:,0])
train_y = list(training[:,1])
model = Sequential()
model.add(Dense(128, input_shape=(len(train_x[0]),), activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(64, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(len(train_y[0]), activation='softmax'))
sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
model.compile(loss='categorical_crossentropy', optimizer=sgd, metrics=['accuracy'])
hist = model.fit(np.array(train_x), np.array(train_y), epochs=200, batch_size=5, verbose=1)
model.save('chatbot_model.h5', hist)