forked from caiy0220/XPROAX
-
Notifications
You must be signed in to change notification settings - Fork 0
/
utils.py
executable file
·313 lines (259 loc) · 8.92 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
import os
import re
import string
import time
import pickle
import numpy as np
import yaml
from scipy.spatial.distance import cdist
from sklearn.pipeline import make_pipeline
LOG_LEVEL = 1
# 0: all log allowed
# 1: debug disabled
# 2: only warning and error
# 3: only error
LOG_PREF = ['DEBUG', 'INFO', 'WARN', 'ERR']
class MyTimer:
def __init__(self):
self.clock = {}
return
def tiktok(self, stamp):
if stamp not in self.clock:
self.clock[stamp] = time.time()
diff = -1
else:
cur = time.time()
diff = cur - self.clock[stamp]
self.clock[stamp] = cur
return diff
class IndexedStrings(object):
"""String with various indexes."""
def __init__(self, raw_strings, vocab_size_limit=200, mask_string=None, forward_selection=False):
"""Initializer.
Args:
raw_strings: strings with raw texts in it
mask_string: If not None, replace words with this if bow=False
if None, default value is UNKWORDZ
"""
self.raw = raw_strings
self.mask_string = 'UNKWORDZ' if mask_string is None else mask_string
self.as_list = [re.sub('[{}]'.format(string.punctuation), " ", sent).split() for sent in self.raw]
# self.as_list = [sent.split() for sent in self.raw]
self.as_np = np.array(self.as_list)
self.vocab = {}
self.inverse_vocab = []
self.positions = []
self.max_sequence = 0
# Build the vocabulary
if forward_selection:
# appearance based
for sent in self.as_np:
if len(sent) > self.max_sequence:
self.max_sequence = len(sent)
for word in sent:
if word not in self.vocab:
if len(self.vocab) >= vocab_size_limit:
break
self.vocab[word] = len(self.vocab)
self.inverse_vocab.append(word)
if len(self.vocab) >= vocab_size_limit:
break
else:
# target sentence based
target_sent = self.as_np[0]
self.max_sequence = len(target_sent)
for word in target_sent:
if word not in self.vocab:
self.vocab[word] = len(self.vocab)
self.inverse_vocab.append(word)
vocab_size_limit = max(0, vocab_size_limit - len(self.vocab))
buff_vocab = {}
for sent in self.as_np[1:]:
if len(sent) > self.max_sequence:
self.max_sequence = len(sent)
for i, word in enumerate(sent):
if word in self.vocab:
continue
if word not in buff_vocab:
buff_vocab[word] = 1
else:
buff_vocab[word] += 1
sorted_list = sorted(buff_vocab.items(), key=lambda ins: ins[1])
start_from = max(0, len(sorted_list) - vocab_size_limit)
sorted_list = sorted_list[start_from:]
for w_count_pair in sorted_list[::-1]:
w = w_count_pair[0]
self.vocab[w] = len(self.vocab)
self.inverse_vocab.append(w)
self.vocab[self.mask_string] = len(self.vocab)
self.inverse_vocab.append(self.mask_string)
def get_indexed(self, sents=None, bow=True):
if sents is not None:
sents = [re.sub('[{}]'.format(string.punctuation), " ", sent).split() for sent in sents]
sents = np.array(sents)
else:
sents = self.as_np
feature_size = self.num_words() if bow else self.max_sequence
res = np.zeros([len(sents), feature_size])
for i, sent in enumerate(sents):
for j, word in enumerate(sent):
if word in self.vocab:
word_idx = self.vocab[word]
else:
word_idx = self.vocab[self.mask_string]
if bow:
res[i, word_idx] = 1
else:
if j >= self.max_sequence:
break
res[i, j] = word_idx
return res
def get_indexed_summary(self, sents=None):
if sents is not None:
sents = [re.sub('[{}]'.format(string.punctuation), " ", sent).split() for sent in sents]
sents = np.array(sents)
else:
sents = self.as_np
feature_size = self.num_words()
res = np.zeros([len(sents), feature_size*3])
for i, sent in enumerate(sents):
for j, word in enumerate(sent):
if word in self.vocab:
word_idx = self.vocab[word]
else:
word_idx = self.vocab[self.mask_string]
real_idx = word_idx*3
res[i, real_idx] += j # LS
res[i, real_idx + 1] += j*j # SS^2
res[i, real_idx + 2] += 1 # N
return res
def raw_string(self):
"""Returns the original raw string"""
return self.raw
def num_words(self):
"""Returns the number of tokens in the vocabulary for this document."""
return len(self.inverse_vocab)
def word(self, id_):
"""Returns the word that corresponds to id_ (int)"""
return self.inverse_vocab[id_]
def set_log_level(lvl):
global LOG_LEVEL
LOG_LEVEL = lvl
def log(content='', lvl=1, end='\n'):
if LOG_LEVEL > lvl:
return
pref = LOG_PREF[lvl] + '[' + time.strftime('%x,%X') + ']:'
print(pref, end='\t')
print(content, end=end)
def is_number(src_str):
try:
float(src_str)
return True
except ValueError:
return False
def sorting_neigh(z, idx_list, metric, z_target=None):
z = np.array(z)
if z_target is None:
z_target = z[0]
dist = cdist(z[idx_list], z_target.reshape(1, -1), metric=metric).ravel()
dist_dic = dict(zip(idx_list, dist))
sorted_list = sorted(dist_dic.items(), key=lambda ins: ins[1])
return sorted_list
def calc_distance_objs2obj(li_objs, obj, metric='cosine'):
if len(li_objs) == 0:
return np.array([float('inf')])
li = [o.z for o in li_objs]
li = np.array(li)
p = np.array(obj.z)
return cdist(li, p.reshape(1, -1), metric=metric).ravel()
def load_config(path):
try:
f = open(path)
config = yaml.load(f.read())
except FileNotFoundError:
config = None
return config
def load_RF(model_filename, vec_filename):
loaded_model = pickle.load(open(model_filename, 'rb'))
vectorizer = None
if vec_filename is not None:
vectorizer = pickle.load(open(vec_filename, 'rb'))
return loaded_model, vectorizer
def load_DNN(model_filename):
model = pickle.load(open(model_filename, 'rb'))
return model
def get_pipeline(model, vectorizer):
return make_pipeline(vectorizer, model)
def get_prediction(m, x, c=None, get_proba=False):
"""
Parameters:
---------
m: model
x: list of instances
c: class labels
get_proba: flag for returning confidence score
"""
if c is not None:
pass
score = m.predict_proba(x)
y_p = np.argmax(score, axis=1)
if get_proba:
y_p = [y_p, score]
return y_p
def get_prediction_instance(m, x, c=None, get_proba=False):
"""
Parameters:
---------
m: model
x: list of instances
c: class labels
get_proba: flag for returning confidence score
"""
if c is not None:
pass
score = m.predict_proba([x])
y_p = np.argmax(score, axis=1)
y_p = y_p[0]
score = score[0]
if get_proba:
y_p = [y_p, score]
return y_p
def lerp(t, p, q):
return (1-t) * p + t * q
def interpolate(z1, z2, n):
z = []
for i in range(n):
zi = lerp(1.0*i/(n-1), z1, z2)
z.append(np.expand_dims(zi, axis=0))
return np.concatenate(z, axis=0)
def find_pth2workspace(folder_name):
pref = ''
pth = os.getcwd()
pth_segs = pth.split(os.sep)
pth_segs = pth_segs[::-1]
found = False
for dir_name in pth_segs:
if dir_name != folder_name:
pref += '../'
else:
found = True
break
if not found:
raise Exception('Cannot find workspace {}'.format(folder_name))
return pref
def distance_neighbors(a):
a = a if isinstance(a, np.ndarray) else np.array(a)
d = cdist(a, a[0].reshape(1, -1), metric='cosine').ravel()
return np.mean(d)
def diversity_neighbors(a):
a = a if isinstance(a, np.ndarray) else np.array(a)
b = pickle.loads(pickle.dumps(a))
b = b - b[0]
num = len(b)
normalize = (num**2 + num) / 2
res = 0.
for i in range(1, num):
for j in range(1, num):
d = cdist(b[i].reshape(1, -1), b[j].reshape(1, -1), metric='cosine').ravel()[0]
res += 0. if np.isnan(d) else d/normalize
return res