-
Notifications
You must be signed in to change notification settings - Fork 4
/
semantic-kitti.yaml
210 lines (210 loc) · 5.34 KB
/
semantic-kitti.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
labels:
0 : "unlabeled"
1 : "outlier"
10: "car"
11: "bicycle"
13: "bus"
15: "motorcycle"
16: "on-rails"
18: "truck"
20: "other-vehicle"
30: "person"
31: "bicyclist"
32: "motorcyclist"
40: "road"
44: "parking"
48: "sidewalk"
49: "other-ground"
50: "building"
51: "fence"
52: "other-structure"
60: "lane-marking"
70: "vegetation"
71: "trunk"
72: "terrain"
80: "pole"
81: "traffic-sign"
99: "other-object"
252: "moving-car"
253: "moving-bicyclist"
254: "moving-person"
255: "moving-motorcyclist"
256: "moving-on-rails"
257: "moving-bus"
258: "moving-truck"
259: "moving-other-vehicle"
color_map: # bgr
0 : [0, 0, 0]
1 : [0, 0, 255]
10: [245, 150, 100]
11: [245, 230, 100]
13: [250, 80, 100]
15: [150, 60, 30]
16: [255, 0, 0]
18: [180, 30, 80]
20: [255, 0, 0]
30: [30, 30, 255]
31: [200, 40, 255]
32: [90, 30, 150]
40: [255, 0, 255]
44: [255, 150, 255]
48: [75, 0, 75]
49: [75, 0, 175]
50: [0, 200, 255]
51: [50, 120, 255]
52: [0, 150, 255]
60: [170, 255, 150]
70: [0, 175, 0]
71: [0, 60, 135]
72: [80, 240, 150]
80: [150, 240, 255]
81: [0, 0, 255]
99: [255, 255, 50]
252: [245, 150, 100]
256: [255, 0, 0]
253: [200, 40, 255]
254: [30, 30, 255]
255: [90, 30, 150]
257: [250, 80, 100]
258: [180, 30, 80]
259: [255, 0, 0]
content: # as a ratio with the total number of points
0: 0.018889854628292943
1: 0.0002937197336781505
10: 0.040818519255974316
11: 0.00016609538710764618
13: 2.7879693665067774e-05
15: 0.00039838616015114444
16: 0.0
18: 0.0020633612104619787
20: 0.0016218197275284021
30: 0.00017698551338515307
31: 1.1065903904919655e-08
32: 5.532951952459828e-09
40: 0.1987493871255525
44: 0.014717169549888214
48: 0.14392298360372
49: 0.0039048553037472045
50: 0.1326861944777486
51: 0.0723592229456223
52: 0.002395131480328884
60: 4.7084144280367186e-05
70: 0.26681502148037506
71: 0.006035012012626033
72: 0.07814222006271769
80: 0.002855498193863172
81: 0.0006155958086189918
99: 0.009923127583046915
252: 0.001789309418528068
253: 0.00012709999297008662
254: 0.00016059776092534436
255: 3.745553104802113e-05
256: 0.0
257: 0.00011351574470342043
258: 0.00010157861367183268
259: 4.3840131989471124e-05
# classes that are indistinguishable from single scan or inconsistent in
# ground truth are mapped to their closest equivalent
learning_map:
0 : 0 # "unlabeled"
1 : 0 # "outlier" mapped to "unlabeled" --------------------------mapped
10: 1 # "car"
11: 2 # "bicycle"
13: 5 # "bus" mapped to "other-vehicle" --------------------------mapped
15: 3 # "motorcycle"
16: 5 # "on-rails" mapped to "other-vehicle" ---------------------mapped
18: 4 # "truck"
20: 5 # "other-vehicle"
30: 6 # "person"
31: 7 # "bicyclist"
32: 8 # "motorcyclist"
40: 9 # "road"
44: 10 # "parking"
48: 11 # "sidewalk"
49: 12 # "other-ground"
50: 13 # "building"
51: 14 # "fence"
52: 0 # "other-structure" mapped to "unlabeled" ------------------mapped
60: 9 # "lane-marking" to "road" ---------------------------------mapped
70: 15 # "vegetation"
71: 16 # "trunk"
72: 17 # "terrain"
80: 18 # "pole"
81: 19 # "traffic-sign"
99: 0 # "other-object" to "unlabeled" ----------------------------mapped
252: 1 # "moving-car" to "car" ------------------------------------mapped
253: 7 # "moving-bicyclist" to "bicyclist" ------------------------mapped
254: 6 # "moving-person" to "person" ------------------------------mapped
255: 8 # "moving-motorcyclist" to "motorcyclist" ------------------mapped
256: 5 # "moving-on-rails" mapped to "other-vehicle" --------------mapped
257: 5 # "moving-bus" mapped to "other-vehicle" -------------------mapped
258: 4 # "moving-truck" to "truck" --------------------------------mapped
259: 5 # "moving-other"-vehicle to "other-vehicle" ----------------mapped
learning_map_inv: # inverse of previous map
0: 0 # "unlabeled", and others ignored
1: 10 # "car"
2: 11 # "bicycle"
3: 15 # "motorcycle"
4: 18 # "truck"
5: 20 # "other-vehicle"
6: 30 # "person"
7: 31 # "bicyclist"
8: 32 # "motorcyclist"
9: 40 # "road"
10: 44 # "parking"
11: 48 # "sidewalk"
12: 49 # "other-ground"
13: 50 # "building"
14: 51 # "fence"
15: 70 # "vegetation"
16: 71 # "trunk"
17: 72 # "terrain"
18: 80 # "pole"
19: 81 # "traffic-sign"
learning_ignore: # Ignore classes
0: True # "unlabeled", and others ignored
1: False # "car"
2: False # "bicycle"
3: False # "motorcycle"
4: False # "truck"
5: False # "other-vehicle"
6: False # "person"
7: False # "bicyclist"
8: False # "motorcyclist"
9: False # "road"
10: False # "parking"
11: False # "sidewalk"
12: False # "other-ground"
13: False # "building"
14: False # "fence"
15: False # "vegetation"
16: False # "trunk"
17: False # "terrain"
18: False # "pole"
19: False # "traffic-sign"
split: # sequence numbers
train:
- 0
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 9
- 10
valid:
- 8
test:
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21