
Protocols
List of PAKEs to be considered:

Balanced

• ECJPAKE
• SPAKE2
• CPace

Augmented

• SRP
• SPAKE2+
• OPAQUE

Conventions
Input is marked “user” if it is coming from the user and “peer” if it is coming
from the peer. Output is marked by “user” if the user needs that output and by
“peer” if it is eventually consumed by the peer.

The output is called “session key” if it could in theory be used as a key directly
and “key material” if it must only be used as an input to key derivation. It will
be called “explicit” if it has been confirmed by explicit key confirmation and
“implicit” otherwise.

CPace
Standard (draft): draft-haase-cpace-01
Link: https://tools.ietf.org/html/draft-haase-cpace-01
Primitives used: Prime order group, Hash, KDF
Options: Ciphersuite (Prime order group, serialisation and mappings, Hash,
domain separation strings)
Rounds: 2

Inputs:

- sid: Bytes
- channel identifier: Bytes
- password releated string: Bytes

Output:

- session key: Bytes

Round 1

Inputs:

- sid: Bytes (user)
- channel identifier: Bytes (user)

1

- password releated string: Bytes (user)

Outputs:

- key share: Group element (peer)
- ephemeral key: Big integer

Round 2

Inputs:

- peer's key share: Group element (peer)
- ephemeral key: Big integer
- for transcript:

- sid: Bytes
- key share: Group element

Output:

- implicit session key: Bytes (user)

Key Confirmation

Not defined by the standard.

Remarks

• Serialisation is assumed to be defined, but the standard does not define it
• It is a balanced PAKE, but for transcript calculation it needs to know who

sent their key share first, or have an agreement which key share to include
first

SPAKE2
Standard (draft): draft-irtf-cfrg-spake2
Link: https://tools.ietf.org/html/draft-irtf-cfrg-spake2-18
Primitives used: KDF, MAC, Hash
Options: Prime Order Group, Per user M and N
Rounds: 2

Inputs:

- UserID: Bytes
- Peer's UserID: Bytes
- Additional Authenticated Data: Bytes
- PBKDF output: Bytes

Output:

- session key: Bytes

2

Round 1

Inputs:

- PBKDF output: Bytes (user)

Outputs:

- Key share: Group element (peer)
- Ephemeral private key: Big integer

Round 2

Inputs:

- UserID: Bytes (user)
- Peer's UserID: Bytes (user)
- Additional Authenticated Data: Bytes (user)
- Peer's key share: Group element (peer)
- PBKDF output: Bytes
- Key share: Group element
- Ephemeral private key: Big integer

Outputs:

- Key confirmation message: Bytes (peer)
- Key confirmation verification key: Bytes
- Implicit session key (user)

Key confirmation

Inputs:

- Peer's key confirmation message: Bytes (peer)
- Implicit session key
- Key confirmation verification key: Bytes

Outputs:

- Explicit session key (user)

Remarks

• Unlike some other protocols, this standard considers password hashing in
scope, discusses the matter but it is not integral part of the protocol and
any secure pre-agreed method will do. Therefore password hashing is not
listed in the “primitives used” section.

• The KDF is used as part of the protocol, but it does not need to match
the KDF used to derive keys from the shared secret. Because of this, the
KDF is listed in the “primitives used section” In theory any pre-agreed
secure KDF would do, but the “ciphersuites” proposed all use HKDF.

3

J-PAKE
Standard: RFC 8236, THREAD
Link: https://tools.ietf.org/html/rfc8236
Primitives used: Prime order group arithmetic, Schnorr Non-Interactive Zero
Knowledge Proof (NIZKP)
Options: Group (can be over a finite field or an elliptic curve), Rounds (2 or 3),
Hash algorithm
Rounds: 3

Inputs:

- Password: Bytes
- UserID: Bytes

Output:

- Key material: Group element

Round 1

Inputs:

- UserID: Bytes (user)

Outputs:

- Ephemeral public key 1: Group element (peer)
- ZKP for private key 1: Big Integer (peer)
- Ephemeral private key 2: Big Integer
- Ephemeral public key 2: Group element (peer)
- ZKP for private key 2: Big Integer (peer)

Round 2

Inputs:

- Peer's ephemeral public key 1: Group element (peer)
- Peer's ZKP for private key 1: Big Integer (peer)
- Peer's ephemeral public key 2: Group element (peer)
- Peer's ZKP for private key 2: Big Integer (peer)
- Password: Bytes (user)
- UserID: Bytes
- Ephemeral public key 1: Group element
- Ephemeral private key 2: Big Integer

Outputs:

- Round 2 public key: Group element (peer)
- ZKP for Round 2 private key: Big Integer (peer)
- Round 2 private key: Big integer

4

Round 3

Inputs:

- Peer's round 2 public key: Group element (peer)
- Peer's ZKP for Round 2 private key: Big Integer (peer)
- Round 2 private key: Big integer
- UserID: Bytes
- Password: Bytes
- Ephemeral private key 2: Big Integer
- Peer's ephemeral public key 2: Group element

Output:

- Implicit key material: Group element

Key confirmation

Examples provided, but nothing mandated.

Remarks

• Getting the Round 2 private key as an input instead of the password saves
a bignum multiplication, but it probably will be stored in the state and
will be an implementation detail

• Here password means a value derived from the password lower than the
group order. The exact method is out of scope for the standard.

SRP
Standard: RFC2945 (IEEE 1363.2, ISO/IEC 11770-4, RFC5054)
Link: https://tools.ietf.org/html/rfc2945
Primitives used: Hash, Prime field arithmetic
Options: Hash, Prime (preferrably of the form 2p+1), Generator of multiplicative
subgroup
Rounds: 2

Inputs:

- username: Bytes (client)
- password: Bytes (client)
- salt: Bytes
- verifier: Field element (server)

Outputs:

- session key: Bytes

5

Round 1

Client

Inputs: none

Outputs:

- client keyshare: Field element (peer)
- client ephemeral key: Big integer

Server

Inputs:

- verifier: Field element (user)

Outputs:

- server keyshare: Field element (peer)
- server ephemeral key: Big integer

Round 2

Client

Inputs:

- salt: Bytes (user)
- password: Bytes (user)
- username: Bytes (user)
- server keyshare: Field element (peer)
- client keyshare: Field element
- client ephemeral key: Big integer

Outputs:

- client key confirmation: Bytes (peer)
- implicit session key: Bytes

Server

Inputs:

- client keyshare: Field element (peer)
- server keyshare: Field element
- verifier: Field element

Outputs:

- implicit session key: Bytes

6

Key confirmation

Server

Inputs:

- client key confirmation: Bytes (peer)
- transcript:

- username: Bytes
- salt: Bytes
- client keyshare: Field element
- server keyshare: Field element

- implicit session key: Bytes

Outputs:

- explicit session key: Bytes
- server key confirmation: Bytes (peer)

Client

Inputs:

- server key confirmation: Bytes (peer)
- client key confirmation: Bytes
- client keyshare: Field element
- implicit session key: Bytes

Outputs:

- explicit session key: Bytes

Remarks

• The username and the salt are exchanged in plaintext as a setup, leaving
it out from the flow for now

• The standard defines integer serialisation (RFC2945)
• Broader message format is out of scope for the standard (RFC2945), but

they are defined for example for TLS (RFC5054)
• Both RFCs use an instantiation with SHA1, this is clearly outdated
• The RFC2945 standard uses plain hash for key confirmation (in a safe

way), but mentions that HMAC could be used as well
• There are several ways to organise message flow. The above flow was

presented by RFC2945 with the modification that key confirmation is
separated, this way the above abstract API could potentially serve RFC5054
as well, if there is an option for early key extraction

• RFC2945 describes SRP-3, but SRP-6 and SRP-6a only differs in internals
and does not affect the interface

• For the handshake transcript one or two running hashes could be used
as well, or the components stored in a different way as depicted above,

7

but this should be an implementation detail and the API should allow for
different approaches

OPAQUE
Standard (draft): draft-irtf-cfrg-opaque
Link: https://tools.ietf.org/html/draft-irtf-cfrg-opaque-03 (,uses https://tools.ietf.org/html/draft-
irtf-cfrg-voprf-06 for Oblivious PRF)
Primitives used: Authenticated Key Exchange, HKDF, HMAC, Oblivious
Pseudorandom Function, Memory Hard Function
Options: Oblivious PRF (prime order group, hash), Authenticated Key
Exchange (prime order group - it is not a must, but should match the group
in the Oblivious PRF), MHF (Argon2, scypt or PBKDF2), Envelope mode
(authenticated credentials format)
Rounds: 2

Inputs:

- password: Bytes (client)
- client info: Bytes (client)
- server private key: Big integer (server)
- server public key: Group element (server)
- credential file (server):

- oprf private key: Big integer
- client public key: Group element
- envelope (encrypted client private key): Bytes

Output:

- session secret: Bytes
- export key: Bytes (client)

Round 1

Client

Inputs:

- password: Bytes (user)
- client info: Bytes (user)

Outputs:

- blind: Big integer
- client ephemeral private key: Big integer
- key exchange message 1: (peer)

- credential request: Group element
- client keyshare: Group element
- client nonce: Bytes
- client info: Bytes

8

Server

Inputs:

- key exchange message 1: (peer)
- credential request: Group element
- client nonce: Bytes
- client info: Bytes
- client keyshare: Group element

- credential file: (user)
- oprf private key: Big integer
- client public key: Group element
- envelope (encrypted client private key): Bytes

- server public key: Group element (user)
- server private key: Big integer (user)
- client identity: Bytes (user)
- server identity: Bytes (user)

Outputs:

- implicit session key
- client mac: Bytes
- key exchange message 2: (peer)

- credential response:
- Blinded PRF output: Group element
- server public key: Group element
- envelope (encrypted client private key): Bytes

- server nonce: Bytes
- server keyshare: Group element
- encrypted server info: Bytes
- server mac: Bytes

Round 2

Client

Inputs:

- key exchange message 2: (peer)
- credential response:

- Blinded PRF output: Group element
- server public key: Group element
- envelope (encrypted client private key): Bytes

- server nonce: Bytes
- server keyshare: Group element
- encrypted server info: Bytes (optional)
- mac: Bytes

- client identity: Bytes (user)
- server identity: Bytes (user)

9

- key exchange message 1: Bytes

Outputs:

- key exchange message 3 (client mac): Bytes (peer)
- explicit session key: Bytes (user)
- export key: Bytes (user)
- server info: Bytes (user)

Server

Inputs:

- key exchange message 3 (client mac): Bytes (peer)
- implicite session key: Bytes
- client mac: Bytes

Outputs:

- explicit session key: Bytes

Remarks

• Unlike some other PAKE schemes, here the MHF is integral part of the
algorithm, not just some pre-processing

• In theory it can work with any AKE, but the standard only discusses Diffie-
Hellman, after PQ schemes are standardised, it is likely to be extended to
use PQ AKE algorithms

• Input or output marked “virtual” isn’t necessary for the computations and
some of these could be separated from the API if necessary and left to the
user to handle them

• Input or output marked “hide” shouldn’t be released to the user because it
hasn’t been authenticated yet, or it shouldn’t be released to the user at all.

• In the calculation of MAC values a handshake transcript is involved. The
draft standard does not define the handshake transcript, in the above I
am assuming that it can be implemented with a running hash and hidden
in the state. It might or might not be the same as the preamble

• The nonces are not used directly, their only purpose is to randomise the
handshake transcript

• Client and server identities are only used in custom identifier mode and
are communicated out of band, during the registration process

SPAKE2+
Standard (draft): draft-bar-cfrg-spake2plus
Link: https://tools.ietf.org/html/draft-bar-cfrg-spake2plus-02
Primitives used: KDF, MAC, Hash
Options: Group (can be over a finite field or an elliptic curve), key confirmation
method
Rounds: 2

10

Inputs:

- UserID: Bytes
- Peer's UserID: Bytes
- Additional Authenticated Data: Bytes
- PBKDF output: Bytes (client)
- Verification value1: Big Integer (server)
- Verification value2: Group element (server)

Output:

- Shared secret: Bytes

Round 1

Client

Inputs:

- PBKDF output: Bytes (user)

Outputs:

- Key share: Group element (peer)

Server

Inputs:

- PBKDF output: Bytes (user)

Outputs:

- Key share: Group element (peer)

Round 2

Client

Inputs:

- UserID: Bytes (user)
- PBKDF output: Bytes (user)
- Peer's UserID: Bytes (user)
- Additional Authenticated Data: Bytes (user)
- Peer's key share: Group element (peer)
- Key share: Group element

Outputs:

- Key confirmation message: Bytes (peer)
- Key confirmation verification key: Bytes
- implicit session key: Bytes

11

Server

Inputs:

- UserID: Bytes (user)
- Verification value1: Big Integer (user)
- Verification value2: Group element (user)
- Peer's UserID: Bytes (user)
- Additional Authenticated Data: Bytes (user)
- Peer's key share: Group element (peer)
- Key share: Group element

Outputs:

- Key confirmation message: Bytes (peer)
- Key confirmation verification key: Bytes
- implicit session key: Bytes

Key confirmation

Inputs:

- Peer's key confirmation message: Bytes (peer)
- Key confirmation verification key: Bytes
- implicit session key: Bytes

Outputs:

- explicit session key: Bytes (user)

Remarks

• Unlike some other protocols, this standard considers password hashing in
scope, discusses the matter but it is not integral part of the protocol and
any secure pre-agreed method will do. Therefore password hashing is not
listed in the “primitives used” section.

• The KDF is used as part of the protocol, but it does not need to match
the KDF used to derive keys from the shared secret. Because of this, the
KDF is listed in the “primitives used section” In theory any pre-agreed
secure KDF would do, but the “ciphersuites” proposed all use HKDF.

• In Round 2 the implicit session key is deliberately not released to the user
(key confirmation is a MUST in the standard)

12

	Protocols
	Conventions
	CPace
	Round 1
	Round 2
	Key Confirmation
	Remarks

	SPAKE2
	Round 1
	Round 2
	Key confirmation
	Remarks

	J-PAKE
	Round 1
	Round 3
	Key confirmation
	Remarks

	SRP
	Round 1
	Round 2
	Key confirmation
	Remarks

	OPAQUE
	Round 1
	Round 2
	Remarks

	SPAKE2+
	Round 1
	Round 2
	Key confirmation
	Remarks

