From c2c05fcca8f3547783c5440c04ec10cc63c65db5 Mon Sep 17 00:00:00 2001 From: Kohaku-Blueleaf <59680068+KohakuBlueleaf@users.noreply.github.com> Date: Tue, 9 Jan 2024 22:53:58 +0800 Subject: [PATCH] linting and debugs --- modules/devices.py | 12 ++++++------ 1 file changed, 6 insertions(+), 6 deletions(-) diff --git a/modules/devices.py b/modules/devices.py index e05740524f3..ad36f6562bc 100644 --- a/modules/devices.py +++ b/modules/devices.py @@ -140,20 +140,20 @@ def forward_wrapper(self, *args, **kwargs): ): args = [arg.to(target_dtype) if isinstance(arg, torch.Tensor) else arg for arg in args] kwargs = {k: v.to(target_dtype) if isinstance(v, torch.Tensor) else v for k, v in kwargs.items()} - + org_dtype = torch_utils.get_param(self).dtype if org_dtype != target_dtype: self.to(target_dtype) result = self.org_forward(*args, **kwargs) if org_dtype != target_dtype: self.to(org_dtype) - + if target_dtype != dtype_inference: if isinstance(result, tuple): result = tuple( - i.to(dtype_inference) - if isinstance(i, torch.Tensor) - else i + i.to(dtype_inference) + if isinstance(i, torch.Tensor) + else i for i in result ) elif isinstance(result, torch.Tensor): @@ -185,7 +185,7 @@ def autocast(disable=False): if fp8 and device==cpu: return torch.autocast("cpu", dtype=torch.bfloat16, enabled=True) - if dtype == torch.float32 and shared.cmd_opts.precision == "full": + if dtype == torch.float32: return contextlib.nullcontext() if has_xpu() or has_mps() or cuda_no_autocast():