diff --git a/modules/launch_utils.py b/modules/launch_utils.py index 65eb684ff64..e30fbac809d 100644 --- a/modules/launch_utils.py +++ b/modules/launch_utils.py @@ -319,7 +319,7 @@ def prepare_environment(): stable_diffusion_commit_hash = os.environ.get('STABLE_DIFFUSION_COMMIT_HASH', "cf1d67a6fd5ea1aa600c4df58e5b47da45f6bdbf") stable_diffusion_xl_commit_hash = os.environ.get('STABLE_DIFFUSION_XL_COMMIT_HASH', "5c10deee76adad0032b412294130090932317a87") - k_diffusion_commit_hash = os.environ.get('K_DIFFUSION_COMMIT_HASH', "c9fe758757e022f05ca5a53fa8fac28889e4f1cf") + k_diffusion_commit_hash = os.environ.get('K_DIFFUSION_COMMIT_HASH', "ab527a9a6d347f364e3d185ba6d714e22d80cb3c") codeformer_commit_hash = os.environ.get('CODEFORMER_COMMIT_HASH', "c5b4593074ba6214284d6acd5f1719b6c5d739af") blip_commit_hash = os.environ.get('BLIP_COMMIT_HASH', "48211a1594f1321b00f14c9f7a5b4813144b2fb9") diff --git a/modules/sd_samplers_common.py b/modules/sd_samplers_common.py index 09d1e11e3f1..d2fb21f4540 100644 --- a/modules/sd_samplers_common.py +++ b/modules/sd_samplers_common.py @@ -276,19 +276,19 @@ def initialize(self, p) -> dict: s_tmax = getattr(opts, 's_tmax', p.s_tmax) or self.s_tmax # 0 = inf s_noise = getattr(opts, 's_noise', p.s_noise) - if s_churn != self.s_churn: + if 's_churn' in extra_params_kwargs and s_churn != self.s_churn: extra_params_kwargs['s_churn'] = s_churn p.s_churn = s_churn p.extra_generation_params['Sigma churn'] = s_churn - if s_tmin != self.s_tmin: + if 's_tmin' in extra_params_kwargs and s_tmin != self.s_tmin: extra_params_kwargs['s_tmin'] = s_tmin p.s_tmin = s_tmin p.extra_generation_params['Sigma tmin'] = s_tmin - if s_tmax != self.s_tmax: + if 's_tmax' in extra_params_kwargs and s_tmax != self.s_tmax: extra_params_kwargs['s_tmax'] = s_tmax p.s_tmax = s_tmax p.extra_generation_params['Sigma tmax'] = s_tmax - if s_noise != self.s_noise: + if 's_noise' in extra_params_kwargs and s_noise != self.s_noise: extra_params_kwargs['s_noise'] = s_noise p.s_noise = s_noise p.extra_generation_params['Sigma noise'] = s_noise diff --git a/modules/sd_samplers_kdiffusion.py b/modules/sd_samplers_kdiffusion.py index 9a89e7fa7b0..0bacfe8d4e7 100644 --- a/modules/sd_samplers_kdiffusion.py +++ b/modules/sd_samplers_kdiffusion.py @@ -22,6 +22,9 @@ ('DPM++ 2M', 'sample_dpmpp_2m', ['k_dpmpp_2m'], {}), ('DPM++ SDE', 'sample_dpmpp_sde', ['k_dpmpp_sde'], {"second_order": True, "brownian_noise": True}), ('DPM++ 2M SDE', 'sample_dpmpp_2m_sde', ['k_dpmpp_2m_sde_ka'], {"brownian_noise": True}), + ('DPM++ 3M SDE', 'sample_dpmpp_3m_sde', ['k_dpmpp_3m_sde'], {'discard_next_to_last_sigma': True, "brownian_noise": True}), + ('DPM++ 3M SDE Karras', 'sample_dpmpp_3m_sde', ['k_dpmpp_3m_sde_ka'], {'scheduler': 'karras', 'discard_next_to_last_sigma': True, "brownian_noise": True}), + ('DPM++ 3M SDE Exponential', 'sample_dpmpp_3m_sde', ['k_dpmpp_3m_sde_exp'], {'scheduler': 'exponential', 'discard_next_to_last_sigma': True, "brownian_noise": True}), ('DPM fast', 'sample_dpm_fast', ['k_dpm_fast'], {"uses_ensd": True}), ('DPM adaptive', 'sample_dpm_adaptive', ['k_dpm_ad'], {"uses_ensd": True}), ('LMS Karras', 'sample_lms', ['k_lms_ka'], {'scheduler': 'karras'}), @@ -42,6 +45,12 @@ 'sample_euler': ['s_churn', 's_tmin', 's_tmax', 's_noise'], 'sample_heun': ['s_churn', 's_tmin', 's_tmax', 's_noise'], 'sample_dpm_2': ['s_churn', 's_tmin', 's_tmax', 's_noise'], + 'sample_dpm_fast': ['s_noise'], + 'sample_dpm_2_ancestral': ['s_noise'], + 'sample_dpmpp_2s_ancestral': ['s_noise'], + 'sample_dpmpp_sde': ['s_noise'], + 'sample_dpmpp_2m_sde': ['s_noise'], + 'sample_dpmpp_3m_sde': ['s_noise'], } k_diffusion_samplers_map = {x.name: x for x in samplers_data_k_diffusion} diff --git a/modules/shared_options.py b/modules/shared_options.py index 9ae51f1866d..279e9f54603 100644 --- a/modules/shared_options.py +++ b/modules/shared_options.py @@ -290,7 +290,7 @@ 's_churn': OptionInfo(0.0, "sigma churn", gr.Slider, {"minimum": 0.0, "maximum": 100.0, "step": 0.01}, infotext='Sigma churn').info('amount of stochasticity; only applies to Euler, Heun, and DPM2'), 's_tmin': OptionInfo(0.0, "sigma tmin", gr.Slider, {"minimum": 0.0, "maximum": 10.0, "step": 0.01}, infotext='Sigma tmin').info('enable stochasticity; start value of the sigma range; only applies to Euler, Heun, and DPM2'), 's_tmax': OptionInfo(0.0, "sigma tmax", gr.Slider, {"minimum": 0.0, "maximum": 999.0, "step": 0.01}, infotext='Sigma tmax').info("0 = inf; end value of the sigma range; only applies to Euler, Heun, and DPM2"), - 's_noise': OptionInfo(1.0, "sigma noise", gr.Slider, {"minimum": 0.0, "maximum": 1.1, "step": 0.001}, infotext='Sigma noise').info('amount of additional noise to counteract loss of detail during sampling; only applies to Euler, Heun, and DPM2'), + 's_noise': OptionInfo(1.0, "sigma noise", gr.Slider, {"minimum": 0.0, "maximum": 1.1, "step": 0.001}, infotext='Sigma noise').info('amount of additional noise to counteract loss of detail during sampling'), 'k_sched_type': OptionInfo("Automatic", "Scheduler type", gr.Dropdown, {"choices": ["Automatic", "karras", "exponential", "polyexponential"]}, infotext='Schedule type').info("lets you override the noise schedule for k-diffusion samplers; choosing Automatic disables the three parameters below"), 'sigma_min': OptionInfo(0.0, "sigma min", gr.Number, infotext='Schedule max sigma').info("0 = default (~0.03); minimum noise strength for k-diffusion noise scheduler"), 'sigma_max': OptionInfo(0.0, "sigma max", gr.Number, infotext='Schedule min sigma').info("0 = default (~14.6); maximum noise strength for k-diffusion noise scheduler"),