diff --git a/.gitignore b/.gitignore index 09734267ff5..6790e9ee728 100644 --- a/.gitignore +++ b/.gitignore @@ -37,3 +37,4 @@ notification.mp3 /node_modules /package-lock.json /.coverage* +/test/test_outputs diff --git a/modules/codeformer_model.py b/modules/codeformer_model.py index 517eadfd8de..ceda4bab919 100644 --- a/modules/codeformer_model.py +++ b/modules/codeformer_model.py @@ -1,140 +1,62 @@ -import os +from __future__ import annotations + +import logging -import cv2 import torch -import modules.face_restoration -import modules.shared -from modules import shared, devices, modelloader, errors -from modules.paths import models_path +from modules import ( + devices, + errors, + face_restoration, + face_restoration_utils, + modelloader, + shared, +) + +logger = logging.getLogger(__name__) -model_dir = "Codeformer" -model_path = os.path.join(models_path, model_dir) model_url = 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/codeformer.pth' +model_download_name = 'codeformer-v0.1.0.pth' -codeformer = None +# used by e.g. postprocessing_codeformer.py +codeformer: face_restoration.FaceRestoration | None = None -class FaceRestorerCodeFormer(modules.face_restoration.FaceRestoration): +class FaceRestorerCodeFormer(face_restoration_utils.CommonFaceRestoration): def name(self): return "CodeFormer" - def __init__(self, dirname): - self.net = None - self.face_helper = None - self.cmd_dir = dirname - - def create_models(self): - from facexlib.detection import retinaface - from facexlib.utils.face_restoration_helper import FaceRestoreHelper - - if self.net is not None and self.face_helper is not None: - self.net.to(devices.device_codeformer) - return self.net, self.face_helper - model_paths = modelloader.load_models( - model_path, - model_url, - self.cmd_dir, - download_name='codeformer-v0.1.0.pth', + def load_net(self) -> torch.Module: + for model_path in modelloader.load_models( + model_path=self.model_path, + model_url=model_url, + command_path=self.model_path, + download_name=model_download_name, ext_filter=['.pth'], - ) - - if len(model_paths) != 0: - ckpt_path = model_paths[0] - else: - print("Unable to load codeformer model.") - return None, None - net = modelloader.load_spandrel_model(ckpt_path, device=devices.device_codeformer) - - if hasattr(retinaface, 'device'): - retinaface.device = devices.device_codeformer - - face_helper = FaceRestoreHelper( - upscale_factor=1, - face_size=512, - crop_ratio=(1, 1), - det_model='retinaface_resnet50', - save_ext='png', - use_parse=True, - device=devices.device_codeformer, - ) - - self.net = net - self.face_helper = face_helper - - def send_model_to(self, device): - self.net.to(device) - self.face_helper.face_det.to(device) - self.face_helper.face_parse.to(device) - - def restore(self, np_image, w=None): - from torchvision.transforms.functional import normalize - from basicsr.utils import img2tensor, tensor2img - np_image = np_image[:, :, ::-1] - - original_resolution = np_image.shape[0:2] - - self.create_models() - if self.net is None or self.face_helper is None: - return np_image - - self.send_model_to(devices.device_codeformer) - - self.face_helper.clean_all() - self.face_helper.read_image(np_image) - self.face_helper.get_face_landmarks_5(only_center_face=False, resize=640, eye_dist_threshold=5) - self.face_helper.align_warp_face() - - for cropped_face in self.face_helper.cropped_faces: - cropped_face_t = img2tensor(cropped_face / 255., bgr2rgb=True, float32=True) - normalize(cropped_face_t, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True) - cropped_face_t = cropped_face_t.unsqueeze(0).to(devices.device_codeformer) - - try: - with torch.no_grad(): - res = self.net(cropped_face_t, w=w if w is not None else shared.opts.code_former_weight, adain=True) - if isinstance(res, tuple): - output = res[0] - else: - output = res - if not isinstance(res, torch.Tensor): - raise TypeError(f"Expected torch.Tensor, got {type(res)}") - restored_face = tensor2img(output, rgb2bgr=True, min_max=(-1, 1)) - del output - devices.torch_gc() - except Exception: - errors.report('Failed inference for CodeFormer', exc_info=True) - restored_face = tensor2img(cropped_face_t, rgb2bgr=True, min_max=(-1, 1)) - - restored_face = restored_face.astype('uint8') - self.face_helper.add_restored_face(restored_face) - - self.face_helper.get_inverse_affine(None) - - restored_img = self.face_helper.paste_faces_to_input_image() - restored_img = restored_img[:, :, ::-1] + ): + return modelloader.load_spandrel_model( + model_path, + device=devices.device_codeformer, + ).model + raise ValueError("No codeformer model found") - if original_resolution != restored_img.shape[0:2]: - restored_img = cv2.resize( - restored_img, - (0, 0), - fx=original_resolution[1]/restored_img.shape[1], - fy=original_resolution[0]/restored_img.shape[0], - interpolation=cv2.INTER_LINEAR, - ) + def get_device(self): + return devices.device_codeformer - self.face_helper.clean_all() + def restore(self, np_image, w: float | None = None): + if w is None: + w = getattr(shared.opts, "code_former_weight", 0.5) - if shared.opts.face_restoration_unload: - self.send_model_to(devices.cpu) + def restore_face(cropped_face_t): + assert self.net is not None + return self.net(cropped_face_t, w=w, adain=True)[0] - return restored_img + return self.restore_with_helper(np_image, restore_face) -def setup_model(dirname): - os.makedirs(model_path, exist_ok=True) +def setup_model(dirname: str) -> None: + global codeformer try: - global codeformer codeformer = FaceRestorerCodeFormer(dirname) shared.face_restorers.append(codeformer) except Exception: diff --git a/modules/face_restoration_utils.py b/modules/face_restoration_utils.py new file mode 100644 index 00000000000..c65c85ef89d --- /dev/null +++ b/modules/face_restoration_utils.py @@ -0,0 +1,163 @@ +from __future__ import annotations + +import logging +import os +from functools import cached_property +from typing import TYPE_CHECKING, Callable + +import cv2 +import numpy as np +import torch + +from modules import devices, errors, face_restoration, shared + +if TYPE_CHECKING: + from facexlib.utils.face_restoration_helper import FaceRestoreHelper + +logger = logging.getLogger(__name__) + + +def create_face_helper(device) -> FaceRestoreHelper: + from facexlib.detection import retinaface + from facexlib.utils.face_restoration_helper import FaceRestoreHelper + if hasattr(retinaface, 'device'): + retinaface.device = device + return FaceRestoreHelper( + upscale_factor=1, + face_size=512, + crop_ratio=(1, 1), + det_model='retinaface_resnet50', + save_ext='png', + use_parse=True, + device=device, + ) + + +def restore_with_face_helper( + np_image: np.ndarray, + face_helper: FaceRestoreHelper, + restore_face: Callable[[np.ndarray], np.ndarray], +) -> np.ndarray: + """ + Find faces in the image using face_helper, restore them using restore_face, and paste them back into the image. + + `restore_face` should take a cropped face image and return a restored face image. + """ + from basicsr.utils import img2tensor, tensor2img + from torchvision.transforms.functional import normalize + np_image = np_image[:, :, ::-1] + original_resolution = np_image.shape[0:2] + + try: + logger.debug("Detecting faces...") + face_helper.clean_all() + face_helper.read_image(np_image) + face_helper.get_face_landmarks_5(only_center_face=False, resize=640, eye_dist_threshold=5) + face_helper.align_warp_face() + logger.debug("Found %d faces, restoring", len(face_helper.cropped_faces)) + for cropped_face in face_helper.cropped_faces: + cropped_face_t = img2tensor(cropped_face / 255., bgr2rgb=True, float32=True) + normalize(cropped_face_t, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True) + cropped_face_t = cropped_face_t.unsqueeze(0).to(devices.device_codeformer) + + try: + with torch.no_grad(): + restored_face = tensor2img( + restore_face(cropped_face_t), + rgb2bgr=True, + min_max=(-1, 1), + ) + devices.torch_gc() + except Exception: + errors.report('Failed face-restoration inference', exc_info=True) + restored_face = tensor2img(cropped_face_t, rgb2bgr=True, min_max=(-1, 1)) + + restored_face = restored_face.astype('uint8') + face_helper.add_restored_face(restored_face) + + logger.debug("Merging restored faces into image") + face_helper.get_inverse_affine(None) + img = face_helper.paste_faces_to_input_image() + img = img[:, :, ::-1] + if original_resolution != img.shape[0:2]: + img = cv2.resize( + img, + (0, 0), + fx=original_resolution[1] / img.shape[1], + fy=original_resolution[0] / img.shape[0], + interpolation=cv2.INTER_LINEAR, + ) + logger.debug("Face restoration complete") + finally: + face_helper.clean_all() + return img + + +class CommonFaceRestoration(face_restoration.FaceRestoration): + net: torch.Module | None + model_url: str + model_download_name: str + + def __init__(self, model_path: str): + super().__init__() + self.net = None + self.model_path = model_path + os.makedirs(model_path, exist_ok=True) + + @cached_property + def face_helper(self) -> FaceRestoreHelper: + return create_face_helper(self.get_device()) + + def send_model_to(self, device): + if self.net: + logger.debug("Sending %s to %s", self.net, device) + self.net.to(device) + if self.face_helper: + logger.debug("Sending face helper to %s", device) + self.face_helper.face_det.to(device) + self.face_helper.face_parse.to(device) + + def get_device(self): + raise NotImplementedError("get_device must be implemented by subclasses") + + def load_net(self) -> torch.Module: + raise NotImplementedError("load_net must be implemented by subclasses") + + def restore_with_helper( + self, + np_image: np.ndarray, + restore_face: Callable[[np.ndarray], np.ndarray], + ) -> np.ndarray: + try: + if self.net is None: + self.net = self.load_net() + except Exception: + logger.warning("Unable to load face-restoration model", exc_info=True) + return np_image + + try: + self.send_model_to(self.get_device()) + return restore_with_face_helper(np_image, self.face_helper, restore_face) + finally: + if shared.opts.face_restoration_unload: + self.send_model_to(devices.cpu) + + +def patch_facexlib(dirname: str) -> None: + import facexlib.detection + import facexlib.parsing + + det_facex_load_file_from_url = facexlib.detection.load_file_from_url + par_facex_load_file_from_url = facexlib.parsing.load_file_from_url + + def update_kwargs(kwargs): + return dict(kwargs, save_dir=dirname, model_dir=None) + + def facex_load_file_from_url(**kwargs): + return det_facex_load_file_from_url(**update_kwargs(kwargs)) + + def facex_load_file_from_url2(**kwargs): + return par_facex_load_file_from_url(**update_kwargs(kwargs)) + + facexlib.detection.load_file_from_url = facex_load_file_from_url + facexlib.parsing.load_file_from_url = facex_load_file_from_url2 diff --git a/modules/gfpgan_model.py b/modules/gfpgan_model.py index 6b6f17c435a..a356b56fe1a 100644 --- a/modules/gfpgan_model.py +++ b/modules/gfpgan_model.py @@ -1,126 +1,68 @@ +from __future__ import annotations + +import logging import os -import modules.face_restoration -from modules import paths, shared, devices, modelloader, errors +from modules import ( + devices, + errors, + face_restoration, + face_restoration_utils, + modelloader, + shared, +) -model_dir = "GFPGAN" -user_path = None -model_path = os.path.join(paths.models_path, model_dir) -model_file_path = None +logger = logging.getLogger(__name__) model_url = "https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth" -have_gfpgan = False -loaded_gfpgan_model = None - - -def gfpgann(): - global loaded_gfpgan_model - global model_path - global model_file_path - if loaded_gfpgan_model is not None: - loaded_gfpgan_model.gfpgan.to(devices.device_gfpgan) - return loaded_gfpgan_model - - if gfpgan_constructor is None: - return None - - models = modelloader.load_models(model_path, model_url, user_path, ext_filter=['.pth']) - - if len(models) == 1 and models[0].startswith("http"): - model_file = models[0] - elif len(models) != 0: - gfp_models = [] - for item in models: - if 'GFPGAN' in os.path.basename(item): - gfp_models.append(item) - latest_file = max(gfp_models, key=os.path.getctime) - model_file = latest_file - else: - print("Unable to load gfpgan model!") - return None - - import facexlib.detection.retinaface - - if hasattr(facexlib.detection.retinaface, 'device'): - facexlib.detection.retinaface.device = devices.device_gfpgan - model_file_path = model_file - model = gfpgan_constructor(model_path=model_file, upscale=1, arch='clean', channel_multiplier=2, bg_upsampler=None, device=devices.device_gfpgan) - loaded_gfpgan_model = model - - return model - - -def send_model_to(model, device): - model.gfpgan.to(device) - model.face_helper.face_det.to(device) - model.face_helper.face_parse.to(device) +model_download_name = "GFPGANv1.4.pth" +gfpgan_face_restorer: face_restoration.FaceRestoration | None = None + + +class FaceRestorerGFPGAN(face_restoration_utils.CommonFaceRestoration): + def name(self): + return "GFPGAN" + + def get_device(self): + return devices.device_gfpgan + + def load_net(self) -> None: + for model_path in modelloader.load_models( + model_path=self.model_path, + model_url=model_url, + command_path=self.model_path, + download_name=model_download_name, + ext_filter=['.pth'], + ): + if 'GFPGAN' in os.path.basename(model_path): + net = modelloader.load_spandrel_model( + model_path, + device=self.get_device(), + ).model + net.different_w = True # see https://github.com/chaiNNer-org/spandrel/pull/81 + return net + raise ValueError("No GFPGAN model found") + + def restore(self, np_image): + def restore_face(cropped_face_t): + assert self.net is not None + return self.net(cropped_face_t, return_rgb=False)[0] + + return self.restore_with_helper(np_image, restore_face) def gfpgan_fix_faces(np_image): - model = gfpgann() - if model is None: - return np_image - - send_model_to(model, devices.device_gfpgan) - - np_image_bgr = np_image[:, :, ::-1] - cropped_faces, restored_faces, gfpgan_output_bgr = model.enhance(np_image_bgr, has_aligned=False, only_center_face=False, paste_back=True) - np_image = gfpgan_output_bgr[:, :, ::-1] - - model.face_helper.clean_all() - - if shared.opts.face_restoration_unload: - send_model_to(model, devices.cpu) - + if gfpgan_face_restorer: + return gfpgan_face_restorer.restore(np_image) + logger.warning("GFPGAN face restorer not set up") return np_image -gfpgan_constructor = None +def setup_model(dirname: str) -> None: + global gfpgan_face_restorer - -def setup_model(dirname): try: - os.makedirs(model_path, exist_ok=True) - import gfpgan - import facexlib.detection - import facexlib.parsing - - global user_path - global have_gfpgan - global gfpgan_constructor - global model_file_path - - facexlib_path = model_path - - if dirname is not None: - facexlib_path = dirname - - load_file_from_url_orig = gfpgan.utils.load_file_from_url - facex_load_file_from_url_orig = facexlib.detection.load_file_from_url - facex_load_file_from_url_orig2 = facexlib.parsing.load_file_from_url - - def my_load_file_from_url(**kwargs): - return load_file_from_url_orig(**dict(kwargs, model_dir=model_file_path)) - - def facex_load_file_from_url(**kwargs): - return facex_load_file_from_url_orig(**dict(kwargs, save_dir=facexlib_path, model_dir=None)) - - def facex_load_file_from_url2(**kwargs): - return facex_load_file_from_url_orig2(**dict(kwargs, save_dir=facexlib_path, model_dir=None)) - - gfpgan.utils.load_file_from_url = my_load_file_from_url - facexlib.detection.load_file_from_url = facex_load_file_from_url - facexlib.parsing.load_file_from_url = facex_load_file_from_url2 - user_path = dirname - have_gfpgan = True - gfpgan_constructor = gfpgan.GFPGANer - - class FaceRestorerGFPGAN(modules.face_restoration.FaceRestoration): - def name(self): - return "GFPGAN" - - def restore(self, np_image): - return gfpgan_fix_faces(np_image) - - shared.face_restorers.append(FaceRestorerGFPGAN()) + face_restoration_utils.patch_facexlib(dirname) + gfpgan_face_restorer = FaceRestorerGFPGAN(model_path=dirname) + shared.face_restorers.append(gfpgan_face_restorer) except Exception: errors.report("Error setting up GFPGAN", exc_info=True) diff --git a/requirements.txt b/requirements.txt index 36f5674ad99..b1329c9e3ab 100644 --- a/requirements.txt +++ b/requirements.txt @@ -8,7 +8,6 @@ clean-fid einops facexlib fastapi>=0.90.1 -gfpgan gradio==3.41.2 inflection jsonmerge diff --git a/requirements_versions.txt b/requirements_versions.txt index 29f5c4de801..9bc19494362 100644 --- a/requirements_versions.txt +++ b/requirements_versions.txt @@ -7,7 +7,6 @@ clean-fid==0.1.35 einops==0.4.1 facexlib==0.3.0 fastapi==0.94.0 -gfpgan==1.3.8 gradio==3.41.2 httpcore==0.15 inflection==0.5.1 diff --git a/test/conftest.py b/test/conftest.py index 31a5d9eafb8..99e9e50f005 100644 --- a/test/conftest.py +++ b/test/conftest.py @@ -5,6 +5,7 @@ test_files_path = os.path.dirname(__file__) + "/test_files" +test_outputs_path = os.path.dirname(__file__) + "/test_outputs" def file_to_base64(filename): diff --git a/test/test_face_restorers.py b/test/test_face_restorers.py new file mode 100644 index 00000000000..1adeeab85f9 --- /dev/null +++ b/test/test_face_restorers.py @@ -0,0 +1,26 @@ +import os +from test.conftest import test_files_path, test_outputs_path + +import numpy as np +import pytest +from PIL import Image + + +@pytest.mark.parametrize("restorer_name", ["gfpgan", "codeformer"]) +def test_face_restorers(restorer_name): + from modules.shared import cmd_opts + if restorer_name == "gfpgan": + from modules import gfpgan_model + gfpgan_model.setup_model(cmd_opts.gfpgan_models_path) + restorer = gfpgan_model.gfpgan_fix_faces + elif restorer_name == "codeformer": + from modules import codeformer_model + codeformer_model.setup_model(cmd_opts.codeformer_models_path) + restorer = codeformer_model.codeformer.restore + else: + raise NotImplementedError("...") + img = Image.open(os.path.join(test_files_path, "two-faces.jpg")) + np_img = np.array(img, dtype=np.uint8) + fixed_image = restorer(np_img) + assert fixed_image.shape == np_img.shape + Image.fromarray(fixed_image).save(os.path.join(test_outputs_path, f"{restorer_name}.png")) diff --git a/test/test_files/two-faces.jpg b/test/test_files/two-faces.jpg new file mode 100644 index 00000000000..c9d1b01032a Binary files /dev/null and b/test/test_files/two-faces.jpg differ diff --git a/test/test_outputs/.gitkeep b/test/test_outputs/.gitkeep new file mode 100644 index 00000000000..e69de29bb2d diff --git a/webui.py b/webui.py index 9ed20b30672..fc7f786c608 100644 --- a/webui.py +++ b/webui.py @@ -70,11 +70,11 @@ def webui(): gradio_auth_creds = list(initialize_util.get_gradio_auth_creds()) or None auto_launch_browser = False - if os.getenv('SD_WEBUI_RESTARTING') != '1': - if shared.opts.auto_launch_browser == "Remote" or cmd_opts.autolaunch: - auto_launch_browser = True - elif shared.opts.auto_launch_browser == "Local": - auto_launch_browser = not cmd_opts.webui_is_non_local + # if os.getenv('SD_WEBUI_RESTARTING') != '1': + # if shared.opts.auto_launch_browser == "Remote" or cmd_opts.autolaunch: + # auto_launch_browser = True + # elif shared.opts.auto_launch_browser == "Local": + # auto_launch_browser = not cmd_opts.webui_is_non_local app, local_url, share_url = shared.demo.launch( share=cmd_opts.share,