From a6b5a513f9b84384b630cc26f5e7ceea4b64897d Mon Sep 17 00:00:00 2001 From: Kohaku-Blueleaf <59680068+KohakuBlueleaf@users.noreply.github.com> Date: Tue, 19 Mar 2024 20:05:54 +0800 Subject: [PATCH] Implementation for sgm_uniform branch --- modules/sd_samplers_custom_schedulers.py | 12 ++++++++++++ modules/sd_samplers_kdiffusion.py | 9 ++++++++- modules/shared_options.py | 2 +- 3 files changed, 21 insertions(+), 2 deletions(-) create mode 100644 modules/sd_samplers_custom_schedulers.py diff --git a/modules/sd_samplers_custom_schedulers.py b/modules/sd_samplers_custom_schedulers.py new file mode 100644 index 00000000000..78d6a2cd62b --- /dev/null +++ b/modules/sd_samplers_custom_schedulers.py @@ -0,0 +1,12 @@ +import torch + + +def sgm_uniform(n, sigma_min, sigma_max, inner_model, device): + start = inner_model.sigma_to_t(torch.tensor(sigma_max)) + end = inner_model.sigma_to_t(torch.tensor(sigma_min)) + sigs = [ + inner_model.t_to_sigma(ts) + for ts in torch.linspace(start, end, n)[:-1] + ] + sigs += [0.0] + return torch.FloatTensor(sigs).to(device) diff --git a/modules/sd_samplers_kdiffusion.py b/modules/sd_samplers_kdiffusion.py index 337106c0224..516552a1cc4 100644 --- a/modules/sd_samplers_kdiffusion.py +++ b/modules/sd_samplers_kdiffusion.py @@ -3,6 +3,7 @@ import k_diffusion.sampling from modules import sd_samplers_common, sd_samplers_extra, sd_samplers_cfg_denoiser from modules.sd_samplers_cfg_denoiser import CFGDenoiser # noqa: F401 +from modules.sd_samplers_custom_schedulers import sgm_uniform from modules.script_callbacks import ExtraNoiseParams, extra_noise_callback from modules.shared import opts @@ -62,7 +63,8 @@ 'Automatic': None, 'karras': k_diffusion.sampling.get_sigmas_karras, 'exponential': k_diffusion.sampling.get_sigmas_exponential, - 'polyexponential': k_diffusion.sampling.get_sigmas_polyexponential + 'polyexponential': k_diffusion.sampling.get_sigmas_polyexponential, + 'sgm_uniform' : sgm_uniform, } @@ -121,6 +123,11 @@ def get_sigmas(self, p, steps): if opts.k_sched_type != 'exponential' and opts.rho != 0 and opts.rho != default_rho: sigmas_kwargs['rho'] = opts.rho p.extra_generation_params["Schedule rho"] = opts.rho + if opts.k_sched_type == 'sgm_uniform': + # Ensure the "step" will be target step + 1 + steps += 1 if not discard_next_to_last_sigma else 0 + sigmas_kwargs['inner_model'] = self.model_wrap + sigmas_kwargs.pop('rho', None) sigmas = sigmas_func(n=steps, **sigmas_kwargs, device=shared.device) elif self.config is not None and self.config.options.get('scheduler', None) == 'karras': diff --git a/modules/shared_options.py b/modules/shared_options.py index 29f98de314f..84c9b2247de 100644 --- a/modules/shared_options.py +++ b/modules/shared_options.py @@ -368,7 +368,7 @@ 's_tmin': OptionInfo(0.0, "sigma tmin", gr.Slider, {"minimum": 0.0, "maximum": 10.0, "step": 0.01}, infotext='Sigma tmin').info('enable stochasticity; start value of the sigma range; only applies to Euler, Heun, and DPM2'), 's_tmax': OptionInfo(0.0, "sigma tmax", gr.Slider, {"minimum": 0.0, "maximum": 999.0, "step": 0.01}, infotext='Sigma tmax').info("0 = inf; end value of the sigma range; only applies to Euler, Heun, and DPM2"), 's_noise': OptionInfo(1.0, "sigma noise", gr.Slider, {"minimum": 0.0, "maximum": 1.1, "step": 0.001}, infotext='Sigma noise').info('amount of additional noise to counteract loss of detail during sampling'), - 'k_sched_type': OptionInfo("Automatic", "Scheduler type", gr.Dropdown, {"choices": ["Automatic", "karras", "exponential", "polyexponential"]}, infotext='Schedule type').info("lets you override the noise schedule for k-diffusion samplers; choosing Automatic disables the three parameters below"), + 'k_sched_type': OptionInfo("Automatic", "Scheduler type", gr.Dropdown, {"choices": ["Automatic", "karras", "exponential", "polyexponential", "sgm_uniform"]}, infotext='Schedule type').info("lets you override the noise schedule for k-diffusion samplers; choosing Automatic disables the three parameters below"), 'sigma_min': OptionInfo(0.0, "sigma min", gr.Number, infotext='Schedule min sigma').info("0 = default (~0.03); minimum noise strength for k-diffusion noise scheduler"), 'sigma_max': OptionInfo(0.0, "sigma max", gr.Number, infotext='Schedule max sigma').info("0 = default (~14.6); maximum noise strength for k-diffusion noise scheduler"), 'rho': OptionInfo(0.0, "rho", gr.Number, infotext='Schedule rho').info("0 = default (7 for karras, 1 for polyexponential); higher values result in a steeper noise schedule (decreases faster)"),