-
Notifications
You must be signed in to change notification settings - Fork 7
/
train_region.py
173 lines (153 loc) · 8.02 KB
/
train_region.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import warnings
import os
from model_function import *
from model_utils import *
from utils import *
from torch.utils.data import DataLoader
import torch.nn.functional as Fin
import timeit
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import matplotlib
from torchdiffeq import odeint as odeint
import matplotlib
matplotlib.use('Agg')
import argparse
import sys
import time
import torch
torch.manual_seed(42)
torch.cuda.empty_cache()
import torch.optim as optim
import random
import logging
logging.propagate = False
logging.getLogger().setLevel(logging.ERROR)
import sys
set_seed(42)
cwd = os.getcwd()
#data_path = {'z500':str(cwd) + '/era5_data/geopotential_500/*.nc','t850':str(cwd) + '/era5_data/temperature_850/*.nc'}
SOLVERS = ["dopri8","dopri5", "bdf", "rk4", "midpoint", 'adams', 'explicit_adams', 'fixed_adams',"adaptive_heun","euler"]
parser = argparse.ArgumentParser('ClimODE')
parser.add_argument('--solver', type=str, default="euler", choices=SOLVERS)
parser.add_argument('--atol', type=float, default=5e-3)
parser.add_argument('--rtol', type=float, default=5e-3)
parser.add_argument("--step_size", type=float, default=None, help="Optional fixed step size.")
parser.add_argument('--niters', type=int, default=300)
parser.add_argument('--batch_size', type=int, default=8)
parser.add_argument('--scale', type=int, default=0)
parser.add_argument('--spectral', type=int, default=0,choices=[0,1])
parser.add_argument('--lr', type=float, default=0.0005)
parser.add_argument('--weight_decay', type=float, default=1e-5)
parser.add_argument('--region', type=str, default='NorthAmerica',choices=BOUNDARIES)
args = parser.parse_args()
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
train_time_scale= slice('2006','2016')
val_time_scale = slice('2016','2016')
test_time_scale = slice('2017','2018')
paths_to_data = [str(cwd) + '/era5_data/geopotential_500/*.nc',str(cwd) + '/era5_data/temperature_850/*.nc',str(cwd) + '/era5_data/2m_temperature/*.nc',str(cwd) + '/era5_data/10m_u_component_of_wind/*.nc',str(cwd) + '/era5_data/10m_v_component_of_wind/*.nc']
const_info_path = [str(cwd) + '/era5_data/constants/constants_5.625deg.nc']
levels = ["z","t","t2m","u10","v10"]
paths_to_data = paths_to_data[0:5]
levels = levels[0:5]
assert len(paths_to_data) == len(levels), "Paths to different type of data must be same as number of types of observations"
print("############################ Data is loading ###########################")
Final_train_data = 0
Final_val_data = 0
Final_test_data = 0
max_lev = []
min_lev = []
for idx,data in enumerate(paths_to_data):
Train_data,Val_data,Test_data,time_steps,lat,lon,mean,std,time_stamp = get_train_test_data_batched_regional(data,train_time_scale,val_time_scale,test_time_scale,levels[idx],args.spectral,args.region)
max_lev.append(mean)
min_lev.append(std)
if idx==0:
Final_train_data = Train_data
Final_val_data = Val_data
Final_test_data = Test_data
else:
Final_train_data = torch.cat([Final_train_data,Train_data],dim=2)
Final_val_data = torch.cat([Final_val_data,Val_data],dim=2)
Final_test_data = torch.cat([Final_test_data,Test_data],dim=2)
print("Length of training data",len(Final_train_data))
print("Length of validation data",len(Final_val_data))
print("Length of testing data",len(Final_test_data))
H,W = Train_data.shape[3],Train_data.shape[4]
const_channels_info,lat_map,lon_map = add_constant_info_region(const_info_path,args.region,H,W)
Train_loader = DataLoader(Final_train_data[2:],batch_size=args.batch_size,shuffle=False,pin_memory=False)
Val_loader = DataLoader(Final_val_data[2:],batch_size=args.batch_size,shuffle=False,pin_memory=False)
Test_loader = DataLoader(Final_test_data[2:],batch_size=args.batch_size,shuffle=False,pin_memory=False)
time_loader = DataLoader(time_steps[2:],batch_size=args.batch_size,shuffle=False,pin_memory=False)
time_idx_steps = torch.tensor([i for i in range(365*4)]).view(-1,1)
time_idx = DataLoader(time_idx_steps[2:],batch_size=args.batch_size,shuffle=False,pin_memory=False)
#Model declaration
num_years = len(range(2006,2016))
model = Climate_encoder_free_uncertain_region(len(paths_to_data),2,out_types=len(paths_to_data),method=args.solver,use_att=True,use_err=True,use_pos=False).to(device)
#model.apply(weights_init_uniform_rule)
param = count_parameters(model)
optimizer = optim.AdamW(model.parameters(), lr=args.lr)
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, 300)
best_loss = float('inf')
train_best_loss = float('inf')
best_epoch = float('inf')
print("############################ Data is loaded, Fitting the velocity #########################")
get_gauss_kernel_region((H,W),lat,lon,args.region)
kernel = torch.from_numpy(np.load(str(cwd) +"/kernel_"+str(args.region)+".npy"))
fit_velocity(time_idx,time_loader,Final_train_data,Train_loader,torch.device('cpu'),num_years,paths_to_data,args.scale,H,W,types='train_10year_2day_mm_' + str(args.region),vel_model=Optim_velocity,kernel=kernel,lat=lat,lon=lon)
fit_velocity(time_idx,time_loader,Final_val_data,Val_loader,torch.device('cpu'),1,paths_to_data,args.scale,H,W,types='val_10year_2day_mm_'+ str(args.region),vel_model=Optim_velocity,kernel=kernel,lat=lat,lon=lon)
fit_velocity(time_idx,time_loader,Final_test_data,Test_loader,torch.device('cpu'),2,paths_to_data,args.scale,H,W,types='test_10year_2day_mm_'+ str(args.region),vel_model=Optim_velocity,kernel=kernel,lat=lat,lon=lon)
vel_train,vel_val = load_velocity(['train_10year_2day_mm_' + str(args.region),'val_10year_2day_mm_'+ str(args.region)])
print("############################ Velocity loaded, Model starts to train #########################")
print(model)
print("####################### Total Parameters",param ,"################################")
model.train()
for epoch in range(args.niters):
total_train_loss = 0
val_loss = 0
test_loss = 0
RMSD = []
#breakpoint()
if epoch == 0:
var_coeff = 0.001
else:
var_coeff = 2*scheduler.get_last_lr()[0]
for entry,(time_steps,batch) in enumerate(zip(time_loader,Train_loader)):
optimizer.zero_grad()
data = batch[0].to(device).view(num_years,1,len(paths_to_data)*(args.scale+1),H,W)
past_sample = vel_train[entry].view(num_years,2*len(paths_to_data)*(args.scale+1),H,W).to(device)
model.update_param([past_sample,const_channels_info.to(device),lat_map.to(device),lon_map.to(device)])
t = time_steps.float().to(device).flatten()
mean,std = model(t,data)
loss = nll(mean,std,batch.float().to(device),lat,var_coeff)
l2_lambda = 0.001
l2_norm = sum(p.pow(2.0).sum()
for p in model.parameters())
loss = loss + l2_lambda * l2_norm
loss.backward()
optimizer.step()
print("Loss for batch is ",loss.item())
if torch.isnan(loss) :
print("Quitting due to Nan loss")
quit()
total_train_loss = total_train_loss + loss.item()
lr_val = scheduler.get_last_lr()[0]
scheduler.step()
print("|Iter ",epoch," | Total Train Loss ", total_train_loss,"|")
for entry,(time_steps,batch) in enumerate(zip(time_loader,Val_loader)):
data = batch[0].to(device).view(1,1,len(paths_to_data)*(args.scale+1),H,W)
past_sample = vel_val[entry].view(1,2*len(paths_to_data)*(args.scale+1),H,W).to(device)
model.update_param([past_sample,const_channels_info.to(device),lat_map.to(device),lon_map.to(device)])
t = time_steps.float().to(device).flatten()
mean,std = model(t,data)
loss = nll(mean,std,batch.float().to(device),lat,var_coeff)
if torch.isnan(loss) :
print("Quitting due to Nan loss")
quit()
print("Val Loss for batch is ",loss.item())
val_loss = val_loss + loss.item()
print("|Iter ",epoch," | Total Val Loss ", val_loss,"|")
if val_loss < best_loss:
best_loss = val_loss
best_epoch = epoch
torch.save(model,str(cwd) + "/Models/" + "ClimODE_region_"+str(args.region)+"_"+args.solver+"_"+str(args.spectral)+"_model_" + str(epoch) + ".pt")