-
Notifications
You must be signed in to change notification settings - Fork 15
/
baggingPU.py
779 lines (609 loc) · 29.1 KB
/
baggingPU.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
"""Bagging meta-estimator for PU learning."""
# Author: Gilles Louppe <g.louppe@gmail.com>
# License: BSD 3 clause
#
#
# Adapted for PU learning by Roy Wright <roy.w.wright@gmail.com>
# (work in progress)
#
# A better idea: instead of a separate PU class, modify the original
# sklearn BaggingClassifier so that the parameters `max_samples`
# and `bootstrap` may be lists or dicts...
# e.g. for a PU problem with 500 positives and 10000 unlabeled, we might set
# max_samples = [500, 500] (to balance P and U in each bag)
# bootstrap = [True, False] (to only bootstrap the unlabeled)
from __future__ import division
import itertools
import numbers
import numpy as np
from abc import ABCMeta, abstractmethod
def warn(*args, **kwargs):
pass
import warnings
warnings.warn = warn
from sklearn.base import ClassifierMixin, RegressorMixin
from sklearn.externals.joblib import Parallel, delayed
from sklearn.externals.six import with_metaclass
from sklearn.externals.six.moves import zip
from sklearn.metrics import r2_score, accuracy_score
from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor
from sklearn.utils import check_random_state, check_X_y, check_array, column_or_1d
from sklearn.utils.random import sample_without_replacement
from sklearn.utils.validation import has_fit_parameter, check_is_fitted
from sklearn.utils import indices_to_mask, check_consistent_length
from sklearn.utils.metaestimators import if_delegate_has_method
from sklearn.utils.multiclass import check_classification_targets
from sklearn.ensemble.base import BaseEnsemble, _partition_estimators
__all__ = ["BaggingClassifierPU"]
MAX_INT = np.iinfo(np.int32).max
def _generate_indices(random_state, bootstrap, n_population, n_samples):
"""Draw randomly sampled indices."""
# Draw sample indices
if bootstrap:
indices = random_state.randint(0, n_population, n_samples)
else:
indices = sample_without_replacement(n_population, n_samples,
random_state=random_state)
return indices
def _generate_bagging_indices(random_state, bootstrap_features,
bootstrap_samples, n_features, n_samples,
max_features, max_samples):
"""Randomly draw feature and sample indices."""
# Get valid random state
random_state = check_random_state(random_state)
# Draw indices
feature_indices = _generate_indices(random_state, bootstrap_features,
n_features, max_features)
sample_indices = _generate_indices(random_state, bootstrap_samples,
n_samples, max_samples)
return feature_indices, sample_indices
def _parallel_build_estimators(n_estimators, ensemble, X, y, sample_weight,
seeds, total_n_estimators, verbose):
"""Private function used to build a batch of estimators within a job."""
# Retrieve settings
n_samples, n_features = X.shape
max_features = ensemble._max_features
max_samples = ensemble._max_samples
bootstrap = ensemble.bootstrap
bootstrap_features = ensemble.bootstrap_features
support_sample_weight = has_fit_parameter(ensemble.base_estimator_,
"sample_weight")
if not support_sample_weight and sample_weight is not None:
raise ValueError("The base estimator doesn't support sample weight")
# Build estimators
estimators = []
estimators_features = []
for i in range(n_estimators):
if verbose > 1:
print("Building estimator %d of %d for this parallel run "
"(total %d)..." % (i + 1, n_estimators, total_n_estimators))
random_state = np.random.RandomState(seeds[i])
estimator = ensemble._make_estimator(append=False,
random_state=random_state)
################ MAIN MODIFICATION FOR PU LEARNING ##################
iP = [pair[0] for pair in enumerate(y) if pair[1] == 1]
iU = [pair[0] for pair in enumerate(y) if pair[1] < 1]
features, indices = _generate_bagging_indices(random_state,
bootstrap_features,
bootstrap, n_features,
len(iU), max_features,
max_samples)
indices = [iU[i] for i in indices] + iP
#####################################################################
# Draw samples, using sample weights, and then fit
if support_sample_weight:
if sample_weight is None:
curr_sample_weight = np.ones((n_samples,))
else:
curr_sample_weight = sample_weight.copy()
if bootstrap:
sample_counts = np.bincount(indices, minlength=n_samples)
curr_sample_weight *= sample_counts
else:
not_indices_mask = ~indices_to_mask(indices, n_samples)
curr_sample_weight[not_indices_mask] = 0
estimator.fit(X[:, features], y, sample_weight=curr_sample_weight)
# Draw samples, using a mask, and then fit
else:
estimator.fit((X[indices])[:, features], y[indices])
estimators.append(estimator)
estimators_features.append(features)
return estimators, estimators_features
def _parallel_predict_proba(estimators, estimators_features, X, n_classes):
"""Private function used to compute (proba-)predictions within a job."""
n_samples = X.shape[0]
proba = np.zeros((n_samples, n_classes))
for estimator, features in zip(estimators, estimators_features):
if hasattr(estimator, "predict_proba"):
proba_estimator = estimator.predict_proba(X[:, features])
if n_classes == len(estimator.classes_):
proba += proba_estimator
else:
proba[:, estimator.classes_] += \
proba_estimator[:, range(len(estimator.classes_))]
else:
# Resort to voting
predictions = estimator.predict(X[:, features])
for i in range(n_samples):
proba[i, predictions[i]] += 1
return proba
def _parallel_predict_log_proba(estimators, estimators_features, X, n_classes):
"""Private function used to compute log probabilities within a job."""
n_samples = X.shape[0]
log_proba = np.empty((n_samples, n_classes))
log_proba.fill(-np.inf)
all_classes = np.arange(n_classes, dtype=np.int)
for estimator, features in zip(estimators, estimators_features):
log_proba_estimator = estimator.predict_log_proba(X[:, features])
if n_classes == len(estimator.classes_):
log_proba = np.logaddexp(log_proba, log_proba_estimator)
else:
log_proba[:, estimator.classes_] = np.logaddexp(
log_proba[:, estimator.classes_],
log_proba_estimator[:, range(len(estimator.classes_))])
missing = np.setdiff1d(all_classes, estimator.classes_)
log_proba[:, missing] = np.logaddexp(log_proba[:, missing],
-np.inf)
return log_proba
def _parallel_decision_function(estimators, estimators_features, X):
"""Private function used to compute decisions within a job."""
return sum(estimator.decision_function(X[:, features])
for estimator, features in zip(estimators,
estimators_features))
class BaseBaggingPU(with_metaclass(ABCMeta, BaseEnsemble)):
"""Base class for Bagging PU meta-estimator.
Warning: This class should not be used directly. Use derived classes
instead.
"""
@abstractmethod
def __init__(self,
base_estimator=None,
n_estimators=10,
max_samples=1.0,
max_features=1.0,
bootstrap=True,
bootstrap_features=False,
oob_score=True,
warm_start=False,
n_jobs=1,
random_state=None,
verbose=0):
super(BaseBaggingPU, self).__init__(
base_estimator=base_estimator,
n_estimators=n_estimators)
self.max_samples = max_samples
self.max_features = max_features
self.bootstrap = bootstrap
self.bootstrap_features = bootstrap_features
self.oob_score = oob_score
self.warm_start = warm_start
self.n_jobs = n_jobs
self.random_state = random_state
self.verbose = verbose
def fit(self, X, y, sample_weight=None):
"""Build a Bagging ensemble of estimators from the training
set (X, y).
Parameters
----------
X : {array-like, sparse matrix} of shape = [n_samples, n_features]
The training input samples. Sparse matrices are accepted only if
they are supported by the base estimator.
y : array-like, shape = [n_samples]
The target values (1 for positive, 0 for unlabeled).
sample_weight : array-like, shape = [n_samples] or None
Sample weights. If None, then samples are equally weighted.
Note that this is supported only if the base estimator supports
sample weighting.
Returns
-------
self : object
Returns self.
"""
return self._fit(X, y, self.max_samples, sample_weight=sample_weight)
def _fit(self, X, y, max_samples=None, max_depth=None, sample_weight=None):
"""Build a Bagging ensemble of estimators from the training
set (X, y).
Parameters
----------
X : {array-like, sparse matrix} of shape = [n_samples, n_features]
The training input samples. Sparse matrices are accepted only if
they are supported by the base estimator.
y : array-like, shape = [n_samples]
The target values (1 for positive, 0 for unlabeled).
max_samples : int or float, optional (default=None)
Argument to use instead of self.max_samples.
max_depth : int, optional (default=None)
Override value used when constructing base estimator. Only
supported if the base estimator has a max_depth parameter.
sample_weight : array-like, shape = [n_samples] or None
Sample weights. If None, then samples are equally weighted.
Note that this is supported only if the base estimator supports
sample weighting.
Returns
-------
self : object
Returns self.
"""
random_state = check_random_state(self.random_state)
self.y = y
# Convert data
X, y = check_X_y(X, y, ['csr', 'csc'])
if sample_weight is not None:
sample_weight = check_array(sample_weight, ensure_2d=False)
check_consistent_length(y, sample_weight)
# Remap output
n_samples, self.n_features_ = X.shape
self._n_samples = n_samples
y = self._validate_y(y)
# Check parameters
self._validate_estimator()
if max_depth is not None:
self.base_estimator_.max_depth = max_depth
# Validate max_samples
if max_samples is None:
max_samples = self.max_samples
elif not isinstance(max_samples, (numbers.Integral, np.integer)):
max_samples = int(max_samples * sum(y < 1))
if not (0 < max_samples <= sum(y < 1)):
raise ValueError("max_samples must be positive"
" and no larger than the number of unlabeled points")
# Store validated integer row sampling value
self._max_samples = max_samples
# Validate max_features
if isinstance(self.max_features, (numbers.Integral, np.integer)):
max_features = self.max_features
else: # float
max_features = int(self.max_features * self.n_features_)
if not (0 < max_features <= self.n_features_):
raise ValueError("max_features must be in (0, n_features]")
# Store validated integer feature sampling value
self._max_features = max_features
# Other checks
if not self.bootstrap and self.oob_score:
raise ValueError("Out of bag estimation only available"
" if bootstrap=True")
if self.warm_start and self.oob_score:
raise ValueError("Out of bag estimate only available"
" if warm_start=False")
if hasattr(self, "oob_score_") and self.warm_start:
del self.oob_score_
if not self.warm_start or not hasattr(self, 'estimators_'):
# Free allocated memory, if any
self.estimators_ = []
self.estimators_features_ = []
n_more_estimators = self.n_estimators - len(self.estimators_)
if n_more_estimators < 0:
raise ValueError('n_estimators=%d must be larger or equal to '
'len(estimators_)=%d when warm_start==True'
% (self.n_estimators, len(self.estimators_)))
elif n_more_estimators == 0:
warn("Warm-start fitting without increasing n_estimators does not "
"fit new trees.")
return self
# Parallel loop
n_jobs, n_estimators, starts = _partition_estimators(n_more_estimators,
self.n_jobs)
total_n_estimators = sum(n_estimators)
# Advance random state to state after training
# the first n_estimators
if self.warm_start and len(self.estimators_) > 0:
random_state.randint(MAX_INT, size=len(self.estimators_))
seeds = random_state.randint(MAX_INT, size=n_more_estimators)
self._seeds = seeds
all_results = Parallel(n_jobs=n_jobs, verbose=self.verbose)(
delayed(_parallel_build_estimators)(
n_estimators[i],
self,
X,
y,
sample_weight,
seeds[starts[i]:starts[i + 1]],
total_n_estimators,
verbose=self.verbose)
for i in range(n_jobs))
# Reduce ################################################################
self.estimators_ += list(itertools.chain.from_iterable(
t[0] for t in all_results))
self.estimators_features_ += list(itertools.chain.from_iterable(
t[1] for t in all_results))
if self.oob_score:
self._set_oob_score(X, y)
return self
@abstractmethod
def _set_oob_score(self, X, y):
"""Calculate out of bag predictions and score."""
def _validate_y(self, y):
# Default implementation
return column_or_1d(y, warn=True)
def _get_estimators_indices(self):
# Get drawn indices along both sample and feature axes
for seed in self._seeds:
# Operations accessing random_state must be performed identically
# to those in `_parallel_build_estimators()`
random_state = np.random.RandomState(seed)
############ MAIN MODIFICATION FOR PU LEARNING ###############
iP = [pair[0] for pair in enumerate(self.y) if pair[1] == 1]
iU = [pair[0] for pair in enumerate(self.y) if pair[1] < 1]
feature_indices, sample_indices = _generate_bagging_indices(
random_state, self.bootstrap_features, self.bootstrap,
self.n_features_, len(iU), self._max_features,
self._max_samples)
sample_indices = [iU[i] for i in sample_indices] + iP
###############################################################
yield feature_indices, sample_indices
@property
def estimators_samples_(self):
"""The subset of drawn samples for each base estimator.
Returns a dynamically generated list of boolean masks identifying
the samples used for fitting each member of the ensemble, i.e.,
the in-bag samples.
Note: the list is re-created at each call to the property in order
to reduce the object memory footprint by not storing the sampling
data. Thus fetching the property may be slower than expected.
"""
sample_masks = []
for _, sample_indices in self._get_estimators_indices():
mask = indices_to_mask(sample_indices, self._n_samples)
sample_masks.append(mask)
return sample_masks
class BaggingClassifierPU(BaseBaggingPU, ClassifierMixin):
"""A Bagging PU classifier.
Adapted from sklearn.ensemble.BaggingClassifier, based on
A bagging SVM to learn from positive and unlabeled examples (2013) by Mordelet and Vert
http://dx.doi.org/10.1016/j.patrec.2013.06.010
http://members.cbio.mines-paristech.fr/~jvert/svn/bibli/local/Mordelet2013bagging.pdf
Parameters
----------
base_estimator : object or None, optional (default=None)
The base estimator to fit on random subsets of the dataset.
If None, then the base estimator is a decision tree.
n_estimators : int, optional (default=10)
The number of base estimators in the ensemble.
max_samples : int or float, optional (default=1.0)
The number of unlabeled samples to draw to train each base estimator.
max_features : int or float, optional (default=1.0)
The number of features to draw from X to train each base estimator.
- If int, then draw `max_features` features.
- If float, then draw `max_features * X.shape[1]` features.
bootstrap : boolean, optional (default=True)
Whether samples are drawn with replacement.
bootstrap_features : boolean, optional (default=False)
Whether features are drawn with replacement.
oob_score : bool, optional (default=True)
Whether to use out-of-bag samples to estimate
the generalization error.
warm_start : bool, optional (default=False)
When set to True, reuse the solution of the previous call to fit
and add more estimators to the ensemble, otherwise, just fit
a whole new ensemble.
n_jobs : int, optional (default=1)
The number of jobs to run in parallel for both `fit` and `predict`.
If -1, then the number of jobs is set to the number of cores.
random_state : int, RandomState instance or None, optional (default=None)
If int, random_state is the seed used by the random number generator;
If RandomState instance, random_state is the random number generator;
If None, the random number generator is the RandomState instance used
by `np.random`.
verbose : int, optional (default=0)
Controls the verbosity of the building process.
Attributes
----------
base_estimator_ : estimator
The base estimator from which the ensemble is grown.
estimators_ : list of estimators
The collection of fitted base estimators.
estimators_samples_ : list of arrays
The subset of drawn samples (i.e., the in-bag samples) for each base
estimator. Each subset is defined by a boolean mask.
estimators_features_ : list of arrays
The subset of drawn features for each base estimator.
classes_ : array of shape = [n_classes]
The classes labels.
n_classes_ : int or list
The number of classes.
oob_score_ : float
Score of the training dataset obtained using an out-of-bag estimate.
oob_decision_function_ : array of shape = [n_samples, n_classes]
Decision function computed with out-of-bag estimate on the training
set. Positive data points, and perhaps some of the unlabeled,
are left out during the bootstrap. In these cases,
`oob_decision_function_` contains NaN.
"""
def __init__(self,
base_estimator=None,
n_estimators=10,
max_samples=1.0,
max_features=1.0,
bootstrap=True,
bootstrap_features=False,
oob_score=True,
warm_start=False,
n_jobs=1,
random_state=None,
verbose=0):
super(BaggingClassifierPU, self).__init__(
base_estimator,
n_estimators=n_estimators,
max_samples=max_samples,
max_features=max_features,
bootstrap=bootstrap,
bootstrap_features=bootstrap_features,
oob_score=oob_score,
warm_start=warm_start,
n_jobs=n_jobs,
random_state=random_state,
verbose=verbose)
def _validate_estimator(self):
"""Check the estimator and set the base_estimator_ attribute."""
super(BaggingClassifierPU, self)._validate_estimator(
default=DecisionTreeClassifier())
def _set_oob_score(self, X, y):
n_samples = y.shape[0]
n_classes_ = self.n_classes_
classes_ = self.classes_
predictions = np.zeros((n_samples, n_classes_))
for estimator, samples, features in zip(self.estimators_,
self.estimators_samples_,
self.estimators_features_):
# Create mask for OOB samples
mask = ~samples
if hasattr(estimator, "predict_proba"):
predictions[mask, :] += estimator.predict_proba(
(X[mask, :])[:, features])
else:
p = estimator.predict((X[mask, :])[:, features])
j = 0
for i in range(n_samples):
if mask[i]:
predictions[i, p[j]] += 1
j += 1
# Modified: no warnings about non-OOB points (i.e. positives)
with np.errstate(invalid='ignore'):
oob_decision_function = (predictions /
predictions.sum(axis=1)[:, np.newaxis])
oob_score = accuracy_score(y, np.argmax(predictions, axis=1))
self.oob_decision_function_ = oob_decision_function
self.oob_score_ = oob_score
def _validate_y(self, y):
y = column_or_1d(y, warn=True)
check_classification_targets(y)
self.classes_, y = np.unique(y, return_inverse=True)
self.n_classes_ = len(self.classes_)
return y
def predict(self, X):
"""Predict class for X.
The predicted class of an input sample is computed as the class with
the highest mean predicted probability. If base estimators do not
implement a ``predict_proba`` method, then it resorts to voting.
Parameters
----------
X : {array-like, sparse matrix} of shape = [n_samples, n_features]
The training input samples. Sparse matrices are accepted only if
they are supported by the base estimator.
Returns
-------
y : array of shape = [n_samples]
The predicted classes.
"""
predicted_probabilitiy = self.predict_proba(X)
return self.classes_.take((np.argmax(predicted_probabilitiy, axis=1)),
axis=0)
def predict_proba(self, X):
"""Predict class probabilities for X.
The predicted class probabilities of an input sample is computed as
the mean predicted class probabilities of the base estimators in the
ensemble. If base estimators do not implement a ``predict_proba``
method, then it resorts to voting and the predicted class probabilities
of an input sample represents the proportion of estimators predicting
each class.
Parameters
----------
X : {array-like, sparse matrix} of shape = [n_samples, n_features]
The training input samples. Sparse matrices are accepted only if
they are supported by the base estimator.
Returns
-------
p : array of shape = [n_samples, n_classes]
The class probabilities of the input samples. The order of the
classes corresponds to that in the attribute `classes_`.
"""
check_is_fitted(self, "classes_")
# Check data
X = check_array(X, accept_sparse=['csr', 'csc'])
if self.n_features_ != X.shape[1]:
raise ValueError("Number of features of the model must "
"match the input. Model n_features is {0} and "
"input n_features is {1}."
"".format(self.n_features_, X.shape[1]))
# Parallel loop
n_jobs, n_estimators, starts = _partition_estimators(self.n_estimators,
self.n_jobs)
all_proba = Parallel(n_jobs=n_jobs, verbose=self.verbose)(
delayed(_parallel_predict_proba)(
self.estimators_[starts[i]:starts[i + 1]],
self.estimators_features_[starts[i]:starts[i + 1]],
X,
self.n_classes_)
for i in range(n_jobs))
# Reduce
proba = sum(all_proba) / self.n_estimators
return proba
def predict_log_proba(self, X):
"""Predict class log-probabilities for X.
The predicted class log-probabilities of an input sample is computed as
the log of the mean predicted class probabilities of the base
estimators in the ensemble.
Parameters
----------
X : {array-like, sparse matrix} of shape = [n_samples, n_features]
The training input samples. Sparse matrices are accepted only if
they are supported by the base estimator.
Returns
-------
p : array of shape = [n_samples, n_classes]
The class log-probabilities of the input samples. The order of the
classes corresponds to that in the attribute `classes_`.
"""
check_is_fitted(self, "classes_")
if hasattr(self.base_estimator_, "predict_log_proba"):
# Check data
X = check_array(X, accept_sparse=['csr', 'csc'])
if self.n_features_ != X.shape[1]:
raise ValueError("Number of features of the model must "
"match the input. Model n_features is {0} "
"and input n_features is {1} "
"".format(self.n_features_, X.shape[1]))
# Parallel loop
n_jobs, n_estimators, starts = _partition_estimators(
self.n_estimators, self.n_jobs)
all_log_proba = Parallel(n_jobs=n_jobs, verbose=self.verbose)(
delayed(_parallel_predict_log_proba)(
self.estimators_[starts[i]:starts[i + 1]],
self.estimators_features_[starts[i]:starts[i + 1]],
X,
self.n_classes_)
for i in range(n_jobs))
# Reduce
log_proba = all_log_proba[0]
for j in range(1, len(all_log_proba)):
log_proba = np.logaddexp(log_proba, all_log_proba[j])
log_proba -= np.log(self.n_estimators)
return log_proba
else:
return np.log(self.predict_proba(X))
@if_delegate_has_method(delegate='base_estimator')
def decision_function(self, X):
"""Average of the decision functions of the base classifiers.
Parameters
----------
X : {array-like, sparse matrix} of shape = [n_samples, n_features]
The training input samples. Sparse matrices are accepted only if
they are supported by the base estimator.
Returns
-------
score : array, shape = [n_samples, k]
The decision function of the input samples. The columns correspond
to the classes in sorted order, as they appear in the attribute
``classes_``. Regression and binary classification are special
cases with ``k == 1``, otherwise ``k==n_classes``.
"""
check_is_fitted(self, "classes_")
# Check data
X = check_array(X, accept_sparse=['csr', 'csc'])
if self.n_features_ != X.shape[1]:
raise ValueError("Number of features of the model must "
"match the input. Model n_features is {0} and "
"input n_features is {1} "
"".format(self.n_features_, X.shape[1]))
# Parallel loop
n_jobs, n_estimators, starts = _partition_estimators(self.n_estimators,
self.n_jobs)
all_decisions = Parallel(n_jobs=n_jobs, verbose=self.verbose)(
delayed(_parallel_decision_function)(
self.estimators_[starts[i]:starts[i + 1]],
self.estimators_features_[starts[i]:starts[i + 1]],
X)
for i in range(n_jobs))
# Reduce
decisions = sum(all_decisions) / self.n_estimators
return decisions