-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcpu.c
527 lines (456 loc) · 14.2 KB
/
cpu.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
/**
* Gedare Bloom
* Bijesh Subedi
* Kishor Subedi
* Aayush Gupta
* Suraj Upreti
* cpu.c
*
* Implementation of simulated processor.
*/
#include "cpu.h"
#include "memory.h"
#include "syscall.h"
#include <string.h>
#include <stdio.h>
#include <stdbool.h>
#define ENABLE_FORWARDING
#define DECODE_STAGE_JUMP
#define DECODE_STAGE_BRANCH
#define ENABLE_PIPELINE
bool pc_write = true;
bool if_id_write = true;
bool squash = false;
int stalls = 0;
int squashs = 0;
struct cpu_context cpu_ctx;
struct IF_ID_buffer if_id;
struct ID_EX_buffer id_ex;
struct EX_MEM_buffer ex_mem;
struct MEM_WB_buffer mem_wb;
int fetch()
{
// Finding the new PC and retrieving the instruction
add_instruction(instruction_memory[(cpu_ctx.PC - 0x400000)/4]);
if_id.next_pc = cpu_ctx.PC + 0x4;
update_pc(if_id.next_pc);
return 0;
}
int decode()
{
/*
1. Pass the instruction from the IF/ID buffer to the ID/EX buffer.
2. Decode Instruction and write to the ID/EX buffer.
3. Decode Opcode and Set Control Signals. < Bring the set Control signal to the main function.
4. Choose the destination register by using the RegDst multiplexer.
*/
id_ex.instruction = if_id.instruction;
decode_instructions(); // Reads the instruction and writes to the target buffer.
// Decode the opcode to find the control signals
uint8_t opcode = shift_and_find(if_id.instruction, 0, 26);
uint8_t funct = shift_and_find(if_id.instruction, 26, 26);
decode_opcode(opcode, funct);
register_destination_multiplexer(); // Chosing the write register.
#if defined(ENABLE_DECODE_STAGE_BRANCHES)
// Hazard Detection Unit Reguired.
decode_stage_branch();
#endif
#if defined(ENABLE_DECODE_STAGE_JUMPS)
// Hazard Detection Unit Required.
decode_stage_jump();
#endif
#if defined(ENABLE_PIPELINE)
hazard_detection();
#endif
// << Place hazard Unit before writing to the buffer. >>
register_destination_multiplexer();
return 0;
}
int execute()
{
ex_mem.instruction = id_ex.instruction;
// Handling the syscall
ex_mem.is_syscall = id_ex.is_syscall;
// The operation in ALU after selecting the ALUSRC
ex_mem.alu_result = alu_operation();
// printf("Check alu result: %u \n", ex_mem.alu_result);
ex_mem.alu_zero = (ex_mem.alu_result == 0) ? true: false;
// Calculate the result for the branch instruction
int32_t left_shifted_imm = id_ex.sign_extended_immediate << 2;
ex_mem.branch_target = left_shifted_imm + id_ex.next_pc;
// Carrying on other control signals
ex_mem.branch = id_ex.branch;
ex_mem.branch_ne = id_ex.branch_ne;
ex_mem.mem_read = id_ex.mem_read;
ex_mem.mem_write = id_ex.mem_write;
ex_mem.reg_write = id_ex.reg_write;
ex_mem.mem_to_reg = id_ex.mem_to_reg;
ex_mem.read_data2 = id_ex.read_data2;
ex_mem.write_register = id_ex.write_register;
ex_mem.jump_ctrl = id_ex.jump_ctrl;
ex_mem.jump_address = id_ex.jump_address << 2;
ex_mem.next_pc = id_ex.next_pc;
// Indicating successful completion of the function
return 0;
}
int memory()
{
mem_wb.is_syscall = ex_mem.is_syscall;
mem_wb.instruction = ex_mem.instruction;
// Checking the result of the branch statement
#if !defined(ENABLE_DECODE_STAGE_BRANCH)
if(branch_taken())
// Update only if decode stage branch is disabled. PC Updated with Decode stage branch.
update_pc(ex_mem.branch_target);
#endif
// Check if we have to read or write to the memory
int32_t read_data_memory = 0;
// << Need to confirm the write address .. >>
if (ex_mem.mem_read)
read_data_memory = data_memory[(ex_mem.alu_result - 0x10000000) / 4];
// << Need to confirm the write memory address ..>>
if (ex_mem.mem_write)
data_memory[(ex_mem.alu_result - 0x10000000) / 4] = ex_mem.read_data2;
// Check what value to send to the write register
mem_wb.write_register = ex_mem.write_register;
mem_wb.write_data = (ex_mem.mem_to_reg)? read_data_memory : ex_mem.alu_result;
// Passing the control signals
mem_wb.reg_write = ex_mem.reg_write;
// Check if the instruction is a jump instruction.
check_jump();
return 0;
}
int writeback()
{
if (mem_wb.is_syscall) {
// Copy the content of the v0 register to determine the type of operation.
syscall(cpu_ctx.GPR[2], 4);
} else if (mem_wb.reg_write)
// Writing the data in the given register
cpu_ctx.GPR[mem_wb.write_register] = mem_wb.write_data;
return 0;
}
int32_t shift_and_find(uint32_t instruction, uint8_t left, uint8_t right){
return (instruction << left) >> right;
}
void set_control_signals(char arr[]){
id_ex.branch = convert_to_bool(arr[0]);
id_ex.mem_read = convert_to_bool(arr[1]);
id_ex.mem_to_reg = convert_to_bool(arr[2]);
id_ex.mem_write = convert_to_bool(arr[3]);
id_ex.reg_write = convert_to_bool(arr[4]);
id_ex.alu_src = convert_to_bool(arr[5]);
id_ex.branch_ne = convert_to_bool(arr[6]);
id_ex.reg_dst = convert_to_bool(arr[7]);
}
bool convert_to_bool(char a) {
return a != '0';
}
int32_t alu_operation(){
int32_t src1 = forward(id_ex.read_address1);
int32_t src2 = forward(id_ex.read_address2);
src2 = (id_ex.alu_src) ? id_ex.sign_extended_immediate : src2;
uint32_t u_src2 = src2;
switch(id_ex.alu_control){
case ADD:
return (src1 + src2);
case SUB:
return src1 - src2;
case AND:
return src1 & src2;
case OR:
return src1 | src2;
case NOR:
return ~(src1 | src2);
case XOR:
return src1 ^ src2;
case LUI:
return src2 << 16;
case SLL:
return src2 << (id_ex.shamt);
case SLT:
return (src1 < src2) ? 1 : 0;
case SRL:
return u_src2 >> (id_ex.shamt);
case SRA:
return src2 >> (id_ex.shamt);
default:
return 0;
}
}
void check_jump(){
switch(ex_mem.jump_ctrl){
case NONE:
return;
case JUMP:
update_pc(ex_mem.jump_address);
return;
case JAL:
mem_wb.write_data = ex_mem.next_pc;
update_pc(ex_mem.jump_address);
mem_wb.write_register = 31;
mem_wb.reg_write = true;
return;
case JR:
update_pc(ex_mem.alu_result);
return;
}
}
int decode_rformat(uint8_t funct, char *control_signal){
switch (funct)
{
case 8: //jr
id_ex.jump_ctrl = JR;
strcpy(control_signal, "00000000");
id_ex.alu_control = ADD;
case 32:
id_ex.alu_control = ADD;
break;
case 33:
id_ex.alu_control = ADD;
break;
case 36:
id_ex.alu_control = AND;
break;
case 37:
id_ex.alu_control = OR;
break;
case 0:
id_ex.alu_control = SLL;
break;
case 42:
id_ex.alu_control = SLT;
break;
case 2:
id_ex.alu_control = SRL;
break;
case 39:
id_ex.alu_control = NOR;
break;
case 3:
id_ex.alu_control = SRA;
break;
case 38:
id_ex.alu_control = XOR;
break;
case 40:
id_ex.alu_control = SUB;
break;
}
return 0;
}
int decode_opcode(uint8_t opcode, uint8_t funct){
char control_signal[9];
switch(opcode){
case 0:
strcpy(control_signal, "00001001");
if(funct == 12){ // Syscall
id_ex.is_syscall = true;
break;
}
decode_rformat(funct, control_signal);
break;
case 2: // Jump instruction
id_ex.jump_ctrl = JUMP;
strcpy(control_signal, "00000000");
break;
case 3: // JAL instruction
id_ex.jump_ctrl = JAL;
strcpy(control_signal, "00000000");
case 8: // Add immediate.
id_ex.alu_control = ADD;
strcpy(control_signal, "00001100");
break;
case 12: // And immediate.
id_ex.alu_control = AND;
strcpy(control_signal, "00001100");
break;
case 4: // Branch if equal.
id_ex.alu_control = SUB;
strcpy(control_signal, "10000000");
break;
case 5: // Branch if not equal.
id_ex.alu_control = SUB;
strcpy(control_signal, "10000010");
break;
case 13: // Or immediate.
id_ex.alu_control = OR;
strcpy(control_signal, "00001100");
break;
case 10: // Set if less than immediate.
id_ex.alu_control = SLT;
strcpy(control_signal, "00001100");
break;
case 14: // XOR immediate.
id_ex.alu_control = XOR;
strcpy(control_signal, "00001100");
break;
case 35: // Load word.
id_ex.alu_control = SUB;
strcpy(control_signal, "01101100");
break;
case 43: // Store Word.
id_ex.alu_control = ADD;
strcpy(control_signal, "00010100");
break;
case 15: // Load upper immediate.
id_ex.alu_control = LUI;
strcpy(control_signal, "00001100");
break;
}
set_control_signals(control_signal);
return 0;
}
int hazard_detection(){
# if defined(ENABLE_FORWARDING)
if (ex_mem.mem_read &&
(id_ex.read_address1 == ex_mem.write_register ||
id_ex.read_address2 == ex_mem.write_register)){
stall();
}
# else
// If forwarding is not defined
// <-- What about load use stalls -->
if (ex_mem.reg_write && ex_mem.write_register != 0 &&
(id_ex.read_address1 == ex_mem.write_register ||
id_ex.read_address2 == ex_mem.write_register)){
stall();
} else if (mem_wb.reg_write && ex_mem.write_register != 0 &&
(id_ex.read_address1 == mem_wb.write_register ||
id_ex.read_address2 == mem_wb.write_register)){
stall();
}
#endif
// Check for branch instruction
if (branch_taken()){
// Squashing the instruction fetched
squash = true;
#if defined(DECODE_STAGE_BRANCH)
squashs++;
#else
squashs += 2;
// Squashing the instruction in decode stage
id_ex.reg_write = 0;
id_ex.mem_write = 0;
id_ex.is_syscall = false;
#endif
}
// For jumps
if (ex_mem.jump_ctrl != NONE){
squash = true;
#if defined(DECODE_STAGE_JUMP)
squashs++;
#else
squashs += 2;
id_ex.reg_write = 0;
id_ex.mem_write = 0;
id_ex.is_syscall = false;
#endif
}
return 0;
}
void update_pc(uint32_t new_pc){
if (pc_write){
cpu_ctx.PC = new_pc;
}
}
void add_instruction(uint32_t new_instruction){
if (if_id_write){
if_id.instruction = new_instruction;
}
if (squash){
if_id.instruction = 0;
}
}
void reset_write_signals(){
pc_write = true;
if_id_write = true;
squash = false;
}
void stall(){
printf("stalled");
stalls++;
pc_write = false;
if_id_write = false;
id_ex.reg_write = 0;
id_ex.mem_write = 0;
id_ex.is_syscall = false;
}
int32_t forward(uint32_t reg_addr){
# if defined(ENABLE_FORWARDING)
if (ex_mem.reg_write == 1 && ex_mem.write_register == reg_addr)
return ex_mem.alu_result;
if (mem_wb.reg_write == 1 && mem_wb.write_register == reg_addr)
return mem_wb.write_data;
# endif
return cpu_ctx.GPR[reg_addr];
}
void decode_instructions(){
// Figuring out addresses and data
id_ex.is_syscall = false;
id_ex.read_address1 = shift_and_find(if_id.instruction, 6, 27);
id_ex.read_address2 = shift_and_find(if_id.instruction, 11, 27);
id_ex.write_register = shift_and_find(if_id.instruction, 16, 27);
id_ex.shamt = shift_and_find(if_id.instruction, 21, 27);
id_ex.jump_address = shift_and_find(if_id.instruction, 6, 6);
id_ex.sign_extended_immediate = shift_and_find(if_id.instruction, 16, 16);
id_ex.read_data2 = cpu_ctx.GPR[id_ex.read_address2];
id_ex.read_data1 = cpu_ctx.GPR[id_ex.read_address1];
id_ex.next_pc = if_id.next_pc;
id_ex.jump_ctrl = NONE;
}
void register_destination_multiplexer(){
if (!id_ex.reg_dst) id_ex.write_register = shift_and_find(if_id.instruction, 11, 27);
}
int no_of_stalls(){
return stalls;
}
int no_of_squashes(){
return squashs;
}
bool branch_taken(){
return (ex_mem.branch && ex_mem.alu_result == 0) ||
(ex_mem.branch_ne && ex_mem.alu_result != 0);
}
void decode_stage_branch(){
/*
1. Look if need to forward data from the next stages.
2. Calculate branch target.
3. If taken, update PC.
4. Set branch and branch_ne to 0.
*/
uint32_t src_forwarded_1 = forward(id_ex.read_address1);
uint32_t src_forwarded_2 = forward(id_ex.read_address2);
if (id_ex.branch || id_ex.branch_ne){
printf("Read address 1: %d Read Data 1: %d Read Address 2: %d Read Data 2: %d \n", id_ex.read_address1, id_ex.read_data1, id_ex.read_address2, id_ex.read_data2);
}
int32_t left_shifted_imm = id_ex.sign_extended_immediate << 2;
uint32_t next_pc = left_shifted_imm + id_ex.next_pc;
if ((src_forwarded_1 == src_forwarded_2 && id_ex.branch) || (src_forwarded_1 != src_forwarded_2 && id_ex.branch_ne)){
update_pc(next_pc);
id_ex.branch_taken = true;
}else{
id_ex.branch_taken = false;
}
}
void decode_stage_jump(){
switch(id_ex.jump_ctrl){
case NONE:
return;
case JUMP:
// Jump address the 1st 4 bits is always 0 for this program.
update_pc(id_ex.jump_address << 2);
break;
case JAL:
// Writing to the register file done in the Memory stage.
update_pc(id_ex.jump_address << 2);
id_ex.write_register = 31;
id_ex.reg_write = true;
break;
case JR:
update_pc(id_ex.read_data1);
break;
}
// Set the jump control to 0.
return ;
}