Python Cheat Sheet Made by Abdul Malik

Portfolio Website : https://www.maliksquared.com/

ax

Data Structures

Important data structures for Leetcode

Lists

Lists are used to store multiple items in a single variable

Operations Time Complexities

The Average Case assumes parameters generated uniformly at random.

Internally, a list is represented as an array; the largest costs come from growing beyond the current allocation size (because
everything must move), or from inserting or deleting somewhere near the beginning (because everything after that must move). If
you need to add/remove at both ends, consider using a collections.deque instead.

Operation Average Case () Amortized Worst Case
Copy O(n) O(n)
Append[1] O(1) o(1)

Pop last (1) O(1)

Pop intermediate[2] | O(n) O(n)
Insert O(n) Q(n)

Get Item o(1) o(1)

Set Item o(1) o(1)
Delete Item Q(n) Q(n)
lteration O(n) o(n)

Get Slice O(k) O(k)

Del Slice O(n) Q(n)

Set Slice O(k+n) O(k+n)
Extend[1] O(k) O(k)

@ Sort O(n log n) O(n log n)
Multiply O(nk) O(nk)
Xins O(n)

min(s), max(s) O(n)

Get Length o(1) o(1)

nums = [1,2,3]

nums.index(1) # returns index

nums.append(1) # appends 1

nums.insert(0,10) # inserts 10 at O0th index

nums.remove(3) # removes all instances of 3

nums.copy(1) # returns copy of the list

nums.count(1) # returns no.of times '1' is present in the list

nums.extend(someOtherList) # ...

nums.pop() # pops last element [which element to pop can also be given as optional argument]
nums.reverse() # reverses original list (nums in this case)

nums.sort() # sorts list [does NOT return sorted list]

Python Cheat Sheet Made by Abdul Malik

https://www.maliksquared.com/

Dictionary
Dictionaries are used to store data values in key:value pairs. Info about collections.Counter() available below.

Operations Time Complexities

dict

The Average Case times listed for dict objects assume that the hash function for the
objects is sufficiently robust to make collisions uncommon. The Average Case assumes
the keys used in parameters are selected uniformly at random from the set of all keys.

Note that there is a fast-path for dicts that (in practice) only deal with str keys; this
doesn't affect the algorithmic complexity, but it can significantly affect the constant
factors: how quickly a typical program finishes.

Operation Average Case Amortized Worst Case

kind 0o(1) O(n)

Copy[3] o(n) O(n)
Getltem O(1) O(n)
Set Iltem[1] O(1) o(n)
Delete ltem O(1) O(n)
lteration[3] O(n) O(n)

dict = {'a':1,'b':2,'c':3}

dict.keys() # returns list of keys of dictionary

dict.values() # returns list of values of dictionary

dict.get('a') # returns value for any corresponding key

dict.items() # returns [('a',1),('b',2),('c',3)]

dict.copy() # returns copy of the dictionary

NOTE : items() Returns view object that will be updated with any future changes to dict
dict.pop(KEY) # pops key-value pair with that key

dict.popitem() # removes most recent pair added

dict.setDefault (KEY,DEFAULT_VALUE) # returns value of key, if key exists, else default value returned
If the key exist, this parameter(DEFAULT_VALUE) has no effect.

If the key does not exist, DEFAULT_VALUE becomes the key's value. 2nd argument's default is None.
dict.update({KEY:VALUE}) # inserts pair in dictionary if not present, if present, corresponding value is overriden (not key)
defaultdict ensures that if any element is accessed that is not present in the dictionary

it will be created and error will not be thrown (which happens in normal dictionary)

Also, the new element created will be of argument type, for example in the below line

an element of type 'list' will be made for a Key that does not exist

myDictionary = defaultdict(list)

Python Cheat Sheet Made by Abdul Malik

Counter

Python Counter is a container that will hold the count of each of the elements present in the container. The counter is a
sub-class available inside the dictionary class. Specifically used for element frequencies

Pretty similar to dictionary, infact | use defaultdict(int) most of the time

from collections import Counter #(capital 'C')
can also be used as 'collections.Counter()' in code

listl = ['x','y', 'z, 'x', "%, %,y 2]
Initialization

Counter(listl) # => Counter({'x': 4, 'y': 2, 'z': 2})

Counter("welcome to Guru99 Tutorials!") # => Counter({'o': 3, ' ': 3, 'u': 3, 'e': 2..... 1)
Updating

counterObject = collections.Counter(listl)

counterObject.update("some string") # => Counter({'o': 3, 'u': 3, 'e': 2, 's': 2})

counterObject['s'] += 1 # Increase/Decrease frequency

Accessing
frequency_of_s = counterObject['s']

Deleting
del couterObject['s']

Deque
| A double-ended queue, or deque, has the feature of adding and removing elements from either end.

Operations Time Complexities

collections.deque

Adeque (double-ended queue) is represented internally as a doubly
linked list. (Well, a list of arrays rather than objects, for greater efficiency.)
Both ends are accessible, but even looking at the middle is slow, and
adding to or removing from the middle is slower still.

Operation Average Case Amortized Worst Case

Copy o(n) O(n)
append o) (1)
appendleft | O(1) o)
pop o) O(1)
popleft o) Q1)
extend Q(k) Ol(k)
extendleft | O(k) O(k)
rotate O(k) O(k)
remove Q(n) O(n)

from collections import deque
queue = deque(['name', 'age', 'DOB'])

queue.append("append_from_right") # Append from right
queue.pop() # Pop from right

queue.appendleft("fromLeft") # Append from left
queue.popleft() # Pop from left

queue.index(element, begin_index, end_index) # Returns first index of element b/w the 2 indices.
queue.insert(index, element)
queue.remove() # removes first occurrance

queue.count() # obvious

queue.reverse() # reverses order of queue elements

Python Cheat Sheet Made by Abdul Malik

Heapq

As we know the Heap Data Structure is used to implement the Priority Queue ADT. In python we can directly access a
Priority Queue implemented using a Heap by using the Heapq library/module.

Operations Time Complexities

1. Using heaps.heapify() can reduce both time and space complexity because
heaps.heapify() is an in-place heapify and costs linear time to run it.

2. both heapgq.heappush() and heapg.heappop() cost O(logN) time complexity

Final code will be like this ...

import heapq

def findKthLargest(self, nums, Kk):

heaps.heapify(nums) # in-place heapify -= cost O(N) time
for _ in range(len(nums)-k): # run (N-k) times
heapq.heappop(heap) # cost O(logN) time

return heapq.heappop(heap)

¢ Total time complexity is O((N - k)logN)

e Total space complexity is O(1)

import heapq # (minHeap by Default)
nums = [5, 7, 9, 1, 3]

heapq.heapify(nums) # converts list into heap. Can be converted back to list by list(nums).

heapq.heappush(nums, element) # Push an element into the heap

heapq.heappop(nums) # Pop an element from the heap

#heappush(heap, ele) :- This function is used to insert the element mentioned in its arguments into heap. The order is adjusted, so as heap structure is maintained.
#heappop(heap) :- This function is used to remove and return the smallest element from heap. The order is adjusted, so as heap structure is maintained.

Rarely used methods

Used to return the k largest elements from the iterable specified
and satisfying the key (if is is mentioned).

heapq.nlargest(k, iterable, key = fun)

heapq.nsmallest(k, iterable, key = fun)

Python Cheat Sheet Made by Abdul Malik

Sets

A set is a collection which is unordered, immutable, unindexed, No Duplicates.

Operations Time Complexities

set

set
set
set

set
set
set

set
set
set
set
set

set

set

See dict -- the implementation is intentionally very similar.

Operation Average case Worst Case notes
xins o(1) O(n)
Union s|t O(len(s)+len(t))
O(min(replace "min"
Intersection s&t Iegpt')?{ Nk ogens) * lentt) with "max” if t is
not a set
Multiple intersection (n-1)*0(l) where | is
s1&s28& &sn max(len(s1),._len(sn))
Difference s- O(len(s))
s.difference_update(t) O(len(t))
Symmetric Difference s™ O(len(s)) Oflen(s) * len(t))
s.symmetric_difference_update(t) | O(len(t)) O(len(t) * len(s))

» As seen in the & source code the complexities for set difference s-t or s difference(t)
(set_difference()) and in-place set difference s difference_update(t)
(set_difference_update_internal()) are differentl The first one is O(len(s)) (for every element in s
add it to the new set, if not in t). The second one is O(len(t)) (for every element in t remove it from
s). 5o care must be taken as to which is preferred, depending on which one is the longest set and
whether a new set is needed.

» To perform set operations like s-t, both s and t need to be sets. However you can do the method
equivalents even if t is any iterable, for example s.difference(l), where | is a list.

= {1,2,3}

.add(item)

.remove(item)

.discard(item) | set.remove(item) # removes item | remove will throw error if item is not there, discard will not
set.

pop() # removes random item (since unordered)

.isdisjoint(anotherSet) # returns true if no common elements
.issubset(anotherSet) # returns true if all elements from anotherSet is present in original set
.issuperset(anotherSet) # returns true if all elements from original set is present in anotherSet

.difference(anotherSet) # returns set containing items ONLY in first set

.difference_update(anotherSet) # removes common elements from first set [no new set is created or returned]
.intersection(anotherSet) # returns new set with common elements

.intersection_update(anotherSet) # modifies first set keeping only common elements
.symmetric_difference(anotherSet) # returns set containing all non-common elements of both sets

set.

symmetric_difference_update(anotherSet) # same as symmetric_difference but changes are made on original set

.union(anotherSet) # ...
set.

update(anotherSet) # adds anotherSet without duplicate

Python Cheat Sheet Made by Abdul Malik

Tuple
| A tuple is a collection which is ordered, unchangeable and can contain duplicate values

Operations Time Complexities

Similar to list

tuple = (1,2,3,1)

tuple.count(1) # returns occurence of an item
tuple.index(1) # returns index of 1 in array

Built-in or Library functions

** map(fun, iter) **
#fun : It is a function to which map passes each element of given iterable.
#iter : It is a iterable which is to be mapped.

** zip(list, list) **
for elemi,elem2 in zip(firstList, secondList):
will merge both lists and produce tuples with both elements
Tuples will stop at shortest list (in case of both lists having different len)

** any(list) ** [OPPOSITE IS => ** all() **]
any(someList) # returns true if ANY element in list is true [any string, all numbers except © also count as true]

** enumerate(list|tuple) **
[when you need to attach indexes to lists or tuples]
enumerate(anyList) # ['a','b','c'] => [(0, 'a'), (2, 'b"'), (2, 'c")]

** filter(function|list) **
filter(myFunction, list) # returns list with elements that returned true when passed in function

Kk kkk kKK KKK KRK KKK * import DASECT *** ko kkok ok ok ok ok ok ok ok ok kK ok Kk

** pisect.bisect(list, number,begin,end) ** 0(log(n))

[returns the index where the element should be inserted

such that sorting order is maintained]

a = [1,2,4]

bisect.bisect(a,3,0,4) # [1,2,4] => 3 coz '3' should be inserted in 3rd index to maintain sorting order

Other variants of this functions are => bisect.bisect_left() | bisect.bisect_right()
they have same arguments. Suppose the element we want to insert is already present
in the sorting list, the bisect_left() will return index left of the existing number
and the bisect_right() or bisect() will return index right to the existing number

H* o * H

** bisect.insort(1list, number, begin,end) ** 0(n) to insert
** bisect.insort_right(list, number,begin,end) **
** bisect.insort_left(list, number,begin,end) **

The above 3 functions are exact same of bisect.bisect(), the only difference
is that they return the sorted list after inserting and not the index. The
left() right() logic is also same as above.

** ord(str) **
returns ascii value of the character , Example ord("a") = 97
** chr(int) **
#return character of given ascii value , Example chr(97) = "a"

Python Cheat Sheet Made by Abdul Malik

