-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathevaluate_mmlu.py
140 lines (118 loc) · 4.72 KB
/
evaluate_mmlu.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import argparse
import os
import torch
import numpy as np
import pandas as pd
from categories import subcategories, categories
from transformers import AutoTokenizer,AutoModelForCausalLM
choices = ["A", "B", "C", "D"]
def format_subject(subject):
l = subject.split("_")
s = ""
for entry in l:
s += " " + entry
return s
def format_example(df, idx, include_answer=True):
prompt = df.iloc[idx, 0]
k = df.shape[1] - 2
for j in range(k):
prompt += "\n{}. {}".format(choices[j], df.iloc[idx, j + 1])
prompt += "\nAnswer:"
if include_answer:
prompt += " {}\n\n".format(df.iloc[idx, k + 1])
return prompt
def gen_prompt(train_df, subject, k=-1):
prompt = "The following are multiple choice questions (with answers) about {}.\n\n".format(
format_subject(subject)
)
if k == -1:
k = train_df.shape[0]
for i in range(k):
prompt += format_example(train_df, i)
return prompt
@torch.no_grad()
def eval(args, subject, model, tokenizer, dev_df, test_df):
cors = []
all_probs = []
for i in range(test_df.shape[0]):
k = args.ntrain
prompt_end = format_example(test_df, i, include_answer=False)
train_prompt = gen_prompt(dev_df, subject, k)
prompt = train_prompt + prompt_end
input_ids = tokenizer(prompt, return_tensors="pt")["input_ids"].to("cuda")
while input_ids.shape[-1] > args.seqlen:
k -= 1
train_prompt = gen_prompt(dev_df, subject, k)
prompt = train_prompt + prompt_end
input_ids = tokenizer(prompt, return_tensors="pt")["input_ids"].to("cuda")
label = test_df.iloc[i, test_df.shape[1] - 1]
logits = model(input_ids=input_ids).logits[:,-1].flatten()
probs = (
torch.nn.functional.softmax(
torch.tensor(
[
logits[tokenizer("A").input_ids[-1]],
logits[tokenizer("B").input_ids[-1]],
logits[tokenizer("C").input_ids[-1]],
logits[tokenizer("D").input_ids[-1]],
]
).float(),
dim=0,
)
.detach()
.cpu()
.to(torch.float32)
.numpy()
)
pred = {0: "A", 1: "B", 2: "C", 3: "D"}[np.argmax(probs)]
cor = pred == label
cors.append(cor)
all_probs.append(probs)
acc = np.mean(cors)
cors = np.array(cors)
all_probs = np.array(all_probs)
print("Average accuracy {:.3f} - {}".format(acc, subject))
return cors, acc, all_probs
def main(args):
# load your model and tokenizer
tokenizer = AutoTokenizer.from_pretrained(args.path, use_fast=False,add_bos_token=False,trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(args.path, device_map="auto",trust_remote_code=True)
subjects = sorted(
[
f.split("_test.csv")[0]
for f in os.listdir(os.path.join(args.data_dir, "test"))
if "_test.csv" in f
]
)
all_cors = []
subcat_cors = {
subcat: [] for subcat_lists in subcategories.values() for subcat in subcat_lists
}
cat_cors = {cat: [] for cat in categories}
for subject in subjects:
dev_df = pd.read_csv(os.path.join(args.data_dir, "dev", subject + "_dev.csv"), header=None)[: args.ntrain]
test_df = pd.read_csv(os.path.join(args.data_dir, "test", subject + "_test.csv"), header=None)
cors, acc, probs = eval(args, subject, model, tokenizer, dev_df, test_df)
subcats = subcategories[subject]
for subcat in subcats:
subcat_cors[subcat].append(cors)
for key in categories.keys():
if subcat in categories[key]:
cat_cors[key].append(cors)
all_cors.append(cors)
for subcat in subcat_cors:
subcat_acc = np.mean(np.concatenate(subcat_cors[subcat]))
print("Average accuracy {:.4f} - {}".format(subcat_acc, subcat))
for cat in cat_cors:
cat_acc = np.mean(np.concatenate(cat_cors[cat]))
print("Average accuracy {:.4f} - {}".format(cat_acc, cat))
weighted_acc = np.mean(np.concatenate(all_cors))
print("Average accuracy: {:.4f}".format(weighted_acc))
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--ntrain", "-k", type=int, default=0, help='number of shots')
parser.add_argument("--data_dir", "-d", type=str, default="data/MMLU", required=True, help='dataset location')
parser.add_argument("--path", type=str, required=True, help='model checkpoint location')
parser.add_argument("--seqlen", type=int, default=2048)
args = parser.parse_args()
main(args)