-
Notifications
You must be signed in to change notification settings - Fork 42
/
nsfw.py
146 lines (118 loc) · 5.61 KB
/
nsfw.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
from __future__ import annotations
from weakref import ref as WeakRef
from pathlib import Path
from tqdm import tqdm
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import Tensor
from transformers import CLIPImageProcessor, CLIPConfig, CLIPVisionModel, PreTrainedModel
from kornia.filters import box_blur
from .nodes import to_bchw, to_bhwc
def cosine_similarity(image_embeds: Tensor, text_embeds: Tensor):
if image_embeds.dim() == 2 and text_embeds.dim() == 2:
image_embeds = image_embeds.unsqueeze(1)
return F.cosine_similarity(image_embeds, text_embeds, dim=-1)
class CLIPSafetyChecker(PreTrainedModel):
# https://huggingface.co/CompVis/stable-diffusion-safety-checker
# Adapted from:
# https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion/safety_checker.py
config_class = CLIPConfig
_no_split_modules = ["CLIPEncoderLayer"]
def __init__(self, config: CLIPConfig):
super().__init__(config)
projdim = config.projection_dim
self.vision_model = CLIPVisionModel(config.vision_config)
self.visual_projection = nn.Linear(config.vision_config.hidden_size, projdim, bias=False)
self.concept_embeds = nn.Parameter(torch.ones(17, projdim), requires_grad=False)
self.special_care_embeds = nn.Parameter(torch.ones(3, projdim), requires_grad=False)
self.concept_embeds_weights = nn.Parameter(torch.ones(17), requires_grad=False)
self.special_care_embeds_weights = nn.Parameter(torch.ones(3), requires_grad=False)
def forward(self, clip_input, images: Tensor, sensitivity: float):
with torch.no_grad():
image_batch = self.vision_model(clip_input)[1]
image_embeds = self.visual_projection(image_batch)
sensitivity = -0.1 + 0.14 * sensitivity
special_cos_dist = cosine_similarity(image_embeds, self.special_care_embeds)
special_scores_threshold = self.special_care_embeds_weights.unsqueeze(0)
special_scores = special_cos_dist - special_scores_threshold + sensitivity
if torch.any(special_scores > 0):
sensitivity = sensitivity + 0.01
cos_dist = cosine_similarity(image_embeds, self.concept_embeds)
concept_threshold = self.concept_embeds_weights.unsqueeze(0)
concept_scores = cos_dist - concept_threshold + sensitivity
is_nsfw = [torch.any(concept_scores[i] > 0) for i in range(concept_scores.shape[0])]
is_nsfw = [x.item() for x in is_nsfw]
return self.filter_images(images, is_nsfw)
def filter_images(self, images: Tensor, is_nsfw: list[bool]):
if not any(is_nsfw):
return images
images = images.clone()
images_to_filter = (i for i, nsfw in enumerate(is_nsfw) if nsfw)
orig_size = images.shape[-2:]
for idx in images_to_filter:
filtered = images[idx].unsqueeze(0)
filtered = F.interpolate(filtered, size=64, mode="nearest")
filtered = box_blur(filtered, 11, separable=True)
filtered = F.interpolate(filtered, size=orig_size, mode="bilinear")
images[idx] = filtered.squeeze(0)
return images
class CachedModels:
_instance: WeakRef | None = None
def __init__(self):
model_dir = Path(__file__).parent / "safetychecker"
model_file = model_dir / "model.safetensors"
if not model_file.exists():
self.download(
"https://huggingface.co/CompVis/stable-diffusion-safety-checker/resolve/refs%2Fpr%2F41/model.safetensors",
target=model_file,
)
self.feature_extractor = CLIPImageProcessor.from_pretrained(model_dir)
self.safety_checker = CLIPSafetyChecker.from_pretrained(model_dir)
@classmethod
def load(cls):
models = cls._instance and cls._instance()
if models is None:
models = cls()
cls._instance = WeakRef(models)
return models
def download(self, url: str, target: Path):
import requests
try:
target_temp = target.with_suffix(".download")
with requests.get(url, stream=True) as response:
text = "NSFWFilter model download"
total = int(response.headers.get("content-length", 0))
pbar = tqdm(None, total=total, unit="b", unit_scale=True, desc=text)
with open(target_temp, "wb") as f:
for chunk in response.iter_content(chunk_size=8192):
f.write(chunk)
pbar.update(len(chunk))
pbar.close()
target_temp.rename(target)
except Exception as e:
raise RuntimeError(
f"NSFWFilter: Failed to download safety-checker model from {url} to target location {target}: {e}"
) from e
class NSFWFilter:
models: CachedModels
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"image": ("IMAGE",),
"sensitivity": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step": 0.10}),
},
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "check"
CATEGORY = "external_tooling"
def __init__(self):
self.models = CachedModels.load()
def check(self, image, sensitivity):
image = to_bchw(image)
input = self.models.feature_extractor(image, do_rescale=False, return_tensors="pt")
filtered = self.models.safety_checker(
images=image, clip_input=input.pixel_values, sensitivity=sensitivity
)
return (to_bhwc(filtered),)