From 872f7d26992e566c6fe75aed1cc14c8ad5f71d3a Mon Sep 17 00:00:00 2001 From: bstabler Date: Mon, 11 May 2020 18:52:26 -0700 Subject: [PATCH 1/5] update package version number as well --- docs/software.rst | 2 ++ setup.py | 2 +- 2 files changed, 3 insertions(+), 1 deletion(-) diff --git a/docs/software.rst b/docs/software.rst index b44fe9b..9895afc 100644 --- a/docs/software.rst +++ b/docs/software.rst @@ -234,3 +234,5 @@ Release Notes * v0.3.4 - add survey weighting use case * v0.3.5 - add Python 3.5+ support * v0.4 - transfer to ActivitySim.org + * v0.4.1 - package updates + * v0.4.2 - validation script in Python diff --git a/setup.py b/setup.py index 066d571..b23b211 100644 --- a/setup.py +++ b/setup.py @@ -5,7 +5,7 @@ setup( name='populationsim', - version='0.4.1', + version='0.4.2', description='Population Synthesis', author='contributing authors', author_email='ben.stabler@rsginc.com', From 319c66941b3a32b07e3b7ee3c6b162a4687c06d6 Mon Sep 17 00:00:00 2001 From: Jamie Cook Date: Sat, 20 Jun 2020 00:23:51 +1000 Subject: [PATCH 2/5] Allow non-binary incidence (#123) * Allow non-binary incidence * style * update tests to pass * add some progress indication * tidy up validation script, use histogram for a histogram * fix render and some typos --- populationsim/balancer.py | 2 +- populationsim/simul_balancer.py | 2 +- populationsim/steps/sub_balancing.py | 7 +++-- populationsim/tests/test_steps.py | 4 +-- scripts/validation.ipynb | 38 ++++++++++++++-------------- 5 files changed, 28 insertions(+), 25 deletions(-) diff --git a/populationsim/balancer.py b/populationsim/balancer.py index 49e0126..59a26b6 100644 --- a/populationsim/balancer.py +++ b/populationsim/balancer.py @@ -208,7 +208,7 @@ def np_balancer( yy + relaxed_constraint / float(importance)) # update HH weights - weights_final[incidence[c] > 0] *= gamma[c] + weights_final *= pow(gamma[c], incidence[c]) # clip weights to upper and lower bounds weights_final = np.clip(weights_final, weights_lower_bound, weights_upper_bound) diff --git a/populationsim/simul_balancer.py b/populationsim/simul_balancer.py index c745871..ad976a2 100644 --- a/populationsim/simul_balancer.py +++ b/populationsim/simul_balancer.py @@ -238,7 +238,7 @@ def np_simul_balancer( yy + (relaxed_constraint / float(importance))) # update HH weights - sub_weights[z][incidence[c] > 0] *= gamma[z, c] + sub_weights[z] *= pow(gamma[z, c], incidence[c]) # clip weights to upper and lower bounds sub_weights[z] = np.clip(sub_weights[z], weights_lower_bound, weights_upper_bound) diff --git a/populationsim/steps/sub_balancing.py b/populationsim/steps/sub_balancing.py index cc29c6c..3efbea2 100644 --- a/populationsim/steps/sub_balancing.py +++ b/populationsim/steps/sub_balancing.py @@ -252,9 +252,12 @@ def sub_balancing(settings, crosswalk, control_spec, incidence_table): # only want ones for which there are (non-zero) controls parent_ids = parent_controls_df.index.intersection(parent_ids) - for parent_id in parent_ids: + num_parent_ids = len(parent_ids) + for idx, parent_id in enumerate(parent_ids, start=1): - logger.info("balancing seed %s, %s %s" % (seed_id, parent_geography, parent_id)) + log_msg = "balancing {}/{} seed {}, {} {}" + log_msg = log_msg.format(idx, num_parent_ids, seed_id, parent_geography, parent_id) + logger.info(log_msg) initial_weights = weights_df[weights_df[parent_geography] == parent_id] initial_weights = initial_weights.set_index(settings.get('household_id_col')) diff --git a/populationsim/tests/test_steps.py b/populationsim/tests/test_steps.py index 214decc..cbf7c53 100644 --- a/populationsim/tests/test_steps.py +++ b/populationsim/tests/test_steps.py @@ -38,7 +38,7 @@ def teardown_function(func): TAZ_COUNT = 36 -TAZ_100_HH_COUNT = 25 +TAZ_100_HH_COUNT = 33 TAZ_100_HH_REPOP_COUNT = 26 @@ -51,7 +51,7 @@ def test_full_run1(): 'meta_control_factoring', 'final_seed_balancing', 'integerize_final_seed_weights', - 'sub_balancing.geography = TRACT', + 'sub_balancing.geography=TRACT', 'sub_balancing.geography=TAZ', 'expand_households', 'summarize', diff --git a/scripts/validation.ipynb b/scripts/validation.ipynb index 10ba5e2..024cc43 100644 --- a/scripts/validation.ipynb +++ b/scripts/validation.ipynb @@ -93,7 +93,7 @@ " packages = 'pyyaml pandas numpy matplotlib'\n", " ret = os.system(f'conda install {packages}')\n", " if ret != 0:\n", - " os.system(f'pip install {packages}')" + " os.system(f'{sys.executable} -m pip install {packages}')" ] }, { @@ -290,7 +290,7 @@ " geography: REGION\n", " name: Occupation Type 8\n", " result: persons_occ_8_result\n", - "expanded_hhid: output/expanded_household_ids.csv\n", + "expanded_hhid: output/final_expanded_household_ids.csv\n", "expanded_hhid_col: hh_id\n", "geographies: data/geo_cross_walk.csv\n", "group_geographies:\n", @@ -307,9 +307,9 @@ " hh_id: hhnum\n", "seed_households: data/seed_households.csv\n", "summaries:\n", - "- output/summary_TAZ_PUMA.csv\n", - "- output/summary_TRACT.csv\n", - "- output/summary_TAZ.csv\n", + "- output/final_summary_TAZ_PUMA.csv\n", + "- output/final_summary_TRACT.csv\n", + "- output/final_summary_TAZ.csv\n", "validation_dir: calm_validation_results\n", "\n" ] @@ -840,7 +840,7 @@ } ], "source": [ - "def meta_geog_df(meta_geog):\n", + "def meta_geog_df(summary_df, meta_geog):\n", " geography_df = pd.read_csv(os.path.join(popsim_dir, geography_file))\n", " geog = use_geographies[use_geographies.index(meta_geog) + 1] # next geography in list\n", " meta_df = geography_df[[meta_geog, geog]].drop_duplicates(ignore_index=True)\n", @@ -852,7 +852,7 @@ " \n", "for geog in use_geographies:\n", " if not geog in summary_df.geography.unique():\n", - " summary_df = summary_df.append(meta_geog_df(geog))\n", + " summary_df = summary_df.append(meta_geog_df(summary_df, geog))\n", "\n", "summary_df.tail()" ] @@ -870,7 +870,7 @@ "metadata": {}, "outputs": [], "source": [ - "def process_control(name, geography, control, result):\n", + "def process_control(summary_df, name, geography, control, result):\n", " \"\"\"\n", " Global\n", " ------\n", @@ -914,7 +914,7 @@ " 'std': pc_difference.std(),\n", " })\n", "\n", - " return stats, frequencies" + " return stats, frequencies, difference" ] }, { @@ -931,7 +931,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABD8AAA8+CAYAAADaksARAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOzdeVyU1f4H8M/AMOAwgDADGCougJaIK5ZLASFaNy3JrEwsl8yURNFcs2vliprhRdBcCitNrVQq226IorkUJORa6tVcUq7CIAJqLHN+f3h5fo4DOg4zDDN83q8Xr5fPmfM853sG/TJ+ec55ZEIIASIiIiIiIiIiO+Vg7QCIiIiIiIiIiCyJxQ8iIiIiIiIismssfhARERERERGRXWPxg4iIiIiIiIjsGosfRERERERERGTXWPwgIiIiIiIiIrvG4gfRHUyePBmdOnWydhhmFxoaivj4+Dq5jr2+h0QEvPnmm7j//vvr5Drp6emQyWTIy8uz+FhERPaG+ZqIxY8GRyaT3fGrZcuWev33798PR0dHPPjggwbXevPNN+94rT59+tQq1mbNmt3x+nK53Kjr3LhxAzKZDF988UWt4qlJTQWAw4cPQyaTITc31yLjEtGd2VK+qxqjpg95zZo1Q0JCQq3HsHelpaWYOXMmgoKC0KhRI6jVajz44INISUmR+kyfPh0//fRTnce2c+dOPPXUU/D394dMJmvQ38+KigrIZDJs3LjR4LU1a9bAxcVFOr7Tf6KGDh2Kxx9/3KKxUt1gvm546nO+TkhIQPfu3dG4cWN4enoiLCwM//73v+s8jvrA3vI1ix8NzMWLF6WvL7/8EgDwyy+/SG1ZWVl6/VetWoXXXnsNx48fN/hP/PTp0/WuV/WVkJAABwcHjBs3rlax5uTkSNf85ZdfAABffvml1PbXX3/V6vpEZN9sKd+Rebz66qv49NNP8e677+LYsWPIyMjA2LFjceXKFamPSqWCRqOp89hKSkrQvn17vPvuu/D29q7z8W9XVlZm7RCIJMzXDU99ztcZGRkYNWoUMjMzsX//fnTp0gX9+vXD/v376zwWgPnanFj8aGCaNGkifXl5eQEAvL29pbZbP5AVFRVh06ZNGDNmDJ577jmsWrVK71oqlUrvek2aNMF//vMfzJo1CwsWLMCAAQNqFWt1cXl5eUltvr6+AG7e2TFx4kTcd999cHZ2RocOHbBlyxbpOs2aNQMAPPvss5DJZFCpVACA//73vxg8eDCaN2+ORo0a4YEHHtCrNlvCoUOH0LdvX7i6usLd3R0DBw7E2bNnpdeTk5PRuHFjvXN+//13yGQyZGdnS/MdN24c/Pz84OzsjKZNm2LkyJF656xduxYhISFwcXFB69atMWPGDNy4cUOvj06nw5tvvgkfHx9oNBq8+uqren10Oh3mzp2LFi1aQKFQICgoCO+///4d51daWoqRI0fC3d0darUa8fHxqKio0OuTk5ODyMhIeHh4QKVSITg4GJ9//rnxbyKRkWwp392roqIivPLKK/D29oaLiwsefPBBbN++XXr95MmTkMlkBh/UWrZsiblz50rHK1euxP333w8XFxeo1WpERETgwoUL0utZWVno06cPVCoVfHx8MGjQIJw7d84gni1btqBt27ZQqVSIjIzE6dOn9V7/+uuv0aVLFzg7O8PX1xfjxo3DtWvX7jjHpUuXolmzZlAqlfjHP/6B8+fP3/V9+fLLLzFt2jQMGDAALVu2RMeOHTFixAjMnDlT6nPrb2yrfqNV3VfVeMXFxYiLi4Ofnx+USiW6du0q/efsXvTv3x/z58/Hc889B4VCYdQ5VfEtW7YMTz/9NJRKJZo2bYp//etfev3uFmPV34cNGzbg8ccfh1KpxKxZs1BWVob4+Hg0bdoUzs7OuO+++xATEyOdJ4TAwoUL0apVKygUCgQEBGDZsmV6Yzdr1gyzZ89GXFwcPD094evri6lTp0Kn093ze0QNF/M183V9ytf//ve/MWrUKHTs2BFt27bF0qVLERgYiK1bt9Z4DvO1bWDxg2r0ySefIDg4GO3atcPw4cOxfv16lJaW1tj/zJkzePrppzFkyBBMnTq1zuKcOHEiPv30U6xYsQIHDx5EdHQ0Bg0aJP0QycnJAQCsXr0aFy9exKlTpwAA169fR7du3fDVV1/h6NGjmDJlCl5//XWL/Uf86tWr6NOnD5ycnLBnzx6kp6fj4sWL6NevHyorK42+zqJFi/Ddd99h06ZNOHHiBLZs2YIuXbpIrycnJ2Pq1KmYOXMmjh49ijVr1mDr1q2YOHGi3nU+/vhj6HQ67N69G6mpqVi3bp1ekly8eDESEhIwe/ZsHDlyBHFxcYiLi8OmTZtqjC0+Ph4//PADNm7ciJ9++gnl5eX48MMP9fo888wzaNWqFX7++Wf89ttvWLhwIdzd3Y2eP5El2Eq+qzJ8+HBs374d69evR05ODh588EE88cQTOHHihNHX+PnnnzFu3Dj885//xB9//IGdO3diyJAh0uuHDh1CREQEHnnkEWRnZyM9PR1CCPTp00fvt1Dnz5/H6tWrsWHDBuzevRsFBQUYNWqU9HpOTg6io6MRGRmJ3377DampqUhLS8Nrr71WY2ybN2/GlClTMGXKFOTm5mLgwIFGvc9NmjTBd999h8LCQqPeA7lcrveb4QsXLuDRRx9F+/btodFoIIRAv379cOTIEXz++ec4fPgwXnnlFTz77LPIzMyUrvPwww8jKirKqDFN8fbbbyMqKgq5ubmYPHkyJk2ahK+++goAjI4RAKZOnYqXXnoJR44cwZgxY7B06VJs2bIFn376KU6cOIEvv/xSbxlBUlIS3nnnHcycORNHjhzB66+/jsmTJ+Ojjz7Su25iYiL8/f3xyy+/IDExEe+99x7Wr19vsfeDGjbma+brus7XlZWVKCkpMeouFObrek5Qg7V7924BQJw+fbra10NCQkRycrJ03KZNG/HBBx9U2/fq1asiJCREPPzww+Lvv/82e6ynT58WAMTu3bv12vPz84Wjo6P46KOP9NqjoqLEk08+KYQQ4vr16wKA+Pzzz+86zsiRI0V0dLR0/Prrr4uOHTve8ZyuXbsKJycn4erqqvfVqFEjAUDk5OQIIYRYunSp8PDwEEVFRdK5Z86cEY6OjmLz5s1CCCGWLVsmPDw89K5/7NgxAUBkZWVJMfbv37/aWCorK4W3t7f45JNP9Nq/+eYb4ejoKG7cuCHF3KNHD70+MTExIioqSjr29PQU77zzjl6fUaNGiZCQEL25T5gwQQjx/9+LTz/9VHpdp9OJBx54QHoPKyoqhJOTk1HfCyJzsoV8N3PmTCGTyQxyiaurq5DJZGLBggVCCCF+//13AUD88MMP0rk6nU506NBBvPLKK0IIIU6cOCEAiH379umN0aJFCzFnzhwhhBCfffaZaNy4sbh69Wq18cTExIiYmBi9tmvXrgmFQiG+/vprKWa5XC7y8/OlPp988olwcHAQZWVlQgghBg8ebJBvvvjiCyGTycT58+el67Rt21Z6/aGHHhIvvfSS3jkTJkwQAMTFixdrfA8zMzNF8+bNhaOjo+jQoYN49dVXxVdffaXX5/axbjV16lTh6+sr/vzzTyGEED/++KNwcXExeI9efPFF8cwzz0jHQ4YMESNGjKgxrts1bdpU+n7eSXl5uQAghg8frtf+7LPPivDwcKNjrPr7MH/+fL0+sbGxIioqSuh0umrHb9KkiZgxY4Ze27hx40RQUJDeXJ5++mm9Pr179xZDhw6967ycnZ0N/q47OzsLZ2dnqe+PP/4oAAilUmnQVy6Xi8cee6zGccg2MV/fxHxdP/K1EEK89dZbwtPTU/z111819mG+to18bdyOkSRJTEyUbjG7du0alEolFi9ebNBv27ZtyMjIgEwmQ/PmzREbGwuFQoHvv/8e33zzDf773/9izZo1d/2N98GDB7F+/XpUVFRALpfjxRdfRPv27S0yt1vt3bsXf/zxBwYPHiy1DRs2DKtWrTJYYqHT6RATE4OSkhJkZGTc9XbeyspKeHh4SMePPvoovv76a5Pi/OOPP1BZWYmwsDC99vDwcKSmpt7x3IqKCsyfPx9ffPEF/vrrL/z9998oKysz6f2NiYnRu00PAE6cOIEnnnhCOj5y5Ag6deqk9z339/dHy5YtceTIEQwcONCosV555RX84x//QJs2bdCnTx/06dMH/fv3h1wux5kzZ3D58mWMHj0aY8aMkc7R6XSorKzEqVOn8MADDwCAwRNYmjZtioMHDwIALly4gMLCwmrf148//hiVlZVwdHTUe63qe9GzZ0+pTSaToWfPntKSHUdHR0yaNAkvvPACVqxYgYiICERHRyMkJMSouRNZQn3Kd61atcIPP/xg0P7II49Ifz5y5IhBm0wmwyOPPCLd6WaMxx57DP7+/mjVqhX69OmDyMhIDBw4EGq1GsDNW6j//PNPpKWl6Z1XXl6u9xvL5s2bS+cAN3OJTqfD5cuX4efnhyNHjujlQuBmLhFC4OjRo2jatKlBbEePHsWIESP02h5++GGD24dvFxYWhlOnTuHnn3/Gvn37sGvXLkRHR+PJJ5/E1q1bIZPJajw3NTUVy5Ytw86dO9GiRQvpPfj7779x33336fUtKyuTcikAi//WrEePHnrHvXr1wrx58+4pRgAGm0OOHDkSjz32GIKCgvR+nigUChQWFiIvL6/anwPLly/H33//DWdnZwDV/zy5ePHiXee1cOFC9OvXT6/t888/xzvvvGPQd/v27Qa/dZ08ebLBkk6yb8zXzNdA3ebrZcuWYfHixdi2bRv8/Pzu2p/5un7naxY/7uDIkSPYuXOn3q1ety4d+Pjjj6FUKg3O02q1+O6775CYmAiFQoH33nsPe/fuRUREBNq2bYsuXbpU+xelOm5ubpg2bRq8vLxw9uxZzJs3DytXrqz95O5i1apVKCsrk/bVAG7eqqXT6XDw4EF06NBBap82bRoyMzOxb98+o24Hc3R01Nucqrr38F7dniCFEHdMmgAwZ84cJCcnIzExER06dIBKpcLcuXOl/6jfCw8PDwQGBuq1VfcPvLqYbo3VwcEBQgi918vLy/WOu3fvjjNnzuDf//43duzYgbFjx2L27NnYs2ePtGZv9erVeOihhwzG8vf3l/58+4cAmUxmsOavuve1JlWv3e19T0hIwMsvv4zvv/8e27dvx+zZszF79mzMmDHjjucRWUp9yndOTk4GuaTqOrcyJpdUtd3q1nzi7u6OX3/9FT/99BO2b9+OlJQUTJ06FTt27ECnTp2g0+kwfPhwTJkyxWCsW+deXS4BoJdPasold8oXd8slNZHL5ejVqxd69eqFyZMnY+3atRgxYgT27t2LXr16VXtOZmYmxo4di/Xr1+t94NTpdFCr1di3b5/BOcbu22EJt35f7yVGV1dXveOuXbvi9OnT+PHHH7Fjxw7ExcXhrbfewr59+2r8HlX3c8CYnyfV8fX1Nfj7XtNmsC1btkSTJk302lQqVb34ME11h/ma+bou83VCQgLmzp2Lbdu24dFHHzXpGszXN9WXfM09P0wkhMC+fftq/Iep0+lQVlaGyspKlJWVwdPTE8DNKrGPj49B/xs3bmD58uWYMWMGpk6dKu1q3apVK2njp+bNm6O8vNzgP8PmduXKFXz22Wd4//33kZubK3399ttvCAsL09tYau3atUhMTMTGjRvRrl07o8cIDAyUvoypotakbdu2cHR0NFgnt2vXLgQHBwO4mVhlMpnBvhpVFeaXXnoJnTp1QmBg4D2tv7xXwcHByMnJwdWrV6W2s2fP4syZM1KsPj4+KC4uRklJidTnwIEDBtdyd3fHoEGDkJKSgt27dyMnJwf79+9Hy5YtoVarceLECb33uOrL2OTv5+cHT0/Pat/X+++/3+AHO/D/34s9e/ZIbVX/Tm4XFBSEuLg4pKWlYdq0aXfdSJXIUmwp31UJDg6GEAK7d++W2oQQ+Omnn/RyCQC9zfDy8vIMfrsjl8sRERGBOXPmICcnB97e3tiwYQOAm4/xPnjwIAICAgxyye0bM98t3upyiUwmM/hNV5V27drp5RIABsfGqhrj0qVL1b5+8uRJDBw4EO+88w6eeeYZvddCQ0ORn5+PiooKg/fg1mKypd2+EeK+ffukedU2Rjc3NwwcOBDLli3Dzz//jMOHD2P37t3SBuPVfe8CAwOl3yIS1RXma+bruszXb7zxBubPn4/vv//+ngofzNf1G+/8MNGxY8fg4eFhcNsScPOJJE8++STGjh0LhUKBjh07omPHjne83pYtW9C+fXvExsaitLQUb7zxhvS0jio///wzWrVqBScnJ7PP51Yff/wxnJycMHz4cIN/LDExMZg6dSoWLVqEAwcO4NVXX8W0adPQuXNng2c6y2Qyvcq8JajVaowePRpTpkyBh4cHHnjgAaxbtw7bt2/H3r17Adz8YdG8eXNs374dYWFhUCgUUKvVaNu2Lb755hv89NNP0Gg0WL16NQ4fPozmzZtbJNaRI0diwYIFGDJkCObOnSvt2vzAAw/gqaeeAnDz1jhnZ2dMnToVkyZNwu+//46FCxfqXWfevHkIDAxEhw4doFAosHbtWigUCgQGBsLR0RFz5szBpEmToFQq0b9/fzg4OEh3Md2+6/OdTJ8+HbNnz0aLFi3Qs2dPfPfdd1i7di3WrVtXbX+NRoNhw4ZhypQpaNy4MVq1aoWUlBScO3cOrVu3BgBcvnwZ8+bNQ3R0NFq2bIn8/Hykp6ff0wcTInOypXxXpW3btnj66acxZswYrFy5Es2aNUNKSgp+//13fPHFFwBu/obloYcewsKFCxEUFISysjK88cYbej9TtmzZgnPnzuGRRx6BRqNBVlYW/vrrL+nf48yZM9G9e3cMGzYMcXFx0Gg0OH36NLZu3YrJkydLtxrfzdSpUxEaGorJkydj1KhROHXqFCZMmIBhw4ZVews1ALz++usYMmQIQkND8fjjj2PXrl349NNP7zrWI488gqFDh6Jr167w9vbGiRMnMGPGDHh5eSE8PNygf2lpKfr164ewsDAMGzZM7/vq4+ODvn37IiIiAgMGDMDChQvRsWNHaLVa7NmzByqVSrrNPiYmBs7OzgYbPN+qpKQEJ0+eBHDzN7oXL15Ebm4u3NzcEBAQcMd5ffnll1ixYgWioqLw7bffYvPmzdL32tgYq7Nw4UI0b94cnTp1gouLC9atWwe5XI6goCAAwIwZMzB9+nQEBAQgLCwM6enpWLVqlcHTNYjqAvM183Vd5etx48bhww8/xKZNmxAYGCiNpVQq77plAfN1PVc3W4vYlhkzZojJkyeLcePGieHDh4vJkyeLyZMnSxtXCiHEqlWrDDblqVJcXCzefvttUVRUJMrLy8XChQtFZmamXp/Y2Fi9jS+nTZsmJk2aJI01ZswYce7cOen1s2fPinHjxt1x46B7VdOGUsHBwTVufJOfny/kcrlITU0VQ4cOFQBq/HJ0dDRbrDVteCrEzQ1N4+Pjha+vr3BychIhISHSBqJVtm7dKoKCgqSNSYUQ4vLly2LAgAFCpVIJjUYjJk6cKF5//XURHBwsnWfshqdVm37e6tChQ3obngohxMGDB0VUVJRQKpVCpVKJ6OhocebMGb3zvvjiCxEUFCRcXFxEeHi4+Oqrr/Q2PF26dKno2LGjUKlUQqVSie7du4vvvvtO7xobN24UoaGhwsXFRbi7u4suXbqIhQsX3jHmadOm6c29srJSzJkzR/j7+wsnJycRGBgoVqxYcce5FxcXi2HDhgmVSiU8PT3FuHHjxIQJE6T3sKioSDz33HPC399fKBQK4ePjI2JiYkReXt4d32Oi2rKFfHenjd1u3yDzypUrYtSoUUKtVguFQiG6desm0tPT9c45duyYePjhh4VSqRRBQUEiLS1NbwO9HTt2iIiICKFWq4Wzs7MICgrSyxNCCJGbmyuefPJJ4eHhIVxcXERAQIAYPXq0KCwsrDHmHTt2CAB6P8O++uor0blzZ6FQKIS3t7eIjY0VpaWld5z7kiVLxH333SdcXFxEnz59xIcffnjXDfTmzp0revXqJTQajVAoFMLf318MHTpUHDt2rNqxqjaWq+6rKv7S0lIxZcoU0aJFC+Hk5CR8fX3F448/Lnbs2CFds1evXqJ37941xiXE/28Ed/vXnc6r2mguKSlJPPnkk6JRo0bivvvuE0uWLNHrd7cYa9pQMSUlRXTu3Fn6edKtWzdpc0Qhbm7MmJCQIFq2bCnkcrlo3bq1+Ne//qV3jeo2bx02bJhR89qwYYPBa6tXr652A73qvu8xMTH1YgM9Mi/ma+br6saqq3xdlZ+q+3r55Zfveh7zdf3O1zIh7rCIv4Grbs8P4OaGSGPGjEFCQoLepkFV9u3bh9zcXIwdOxbAzbVpJ06c0HuU1GuvvYYFCxZI1cNp06ZhwoQJ1d5iV1BQgNmzZ2Ps2LHSs66JiIjIvlVUVMDJyQkbNmzQ2+CRiIjqF+Zr28A9P0xw6NAh+Pn5VVv4AG7e/n/ixAn8/fffEELg0KFDNd4qVqVjx4747rvvpI1pTp8+DeDmLV4JCQl44YUXWPggIiIiIiIiMgGLHybYs2ePwUanWq0WCxYsAHBzM8fu3btj2rRpmDx5MoQQiIqKAgB8++23GDNmDAoKCjBlyhRpo8dBgwahsrISkydPxuuvv45NmzYBAL7//nvk5eVh8+bNmDJlCqZMmYKioqI6nC0RERERERGRbeOyFyIiIiIiIiKya7zzg4iIiIiIiIjsGosfRERERERERGTXWPwgIiIiIiIiIrsmt3YA9dGFCxesHYJEo9EgPz/f2mGYDedT/9nbnOrbfKp7nDXdnSl52Zrfe2v/vePcOfeGNHZtxmdONi9TP0Pz7y7n3pDGtvb4tjp3c+Rr3vlBRERERERERHaNxQ8iIiIiIiIismssfhARERERERGRXeOeH0REREREduzChQtITEyUji9duoTnnnsO4eHhSExMxOXLl+Ht7Y2JEydCpVJBCIHU1FTk5OTA2dkZsbGxaN26tRVnQERUe7zzg4iIiIjIjvn5+WHx4sVYvHgxFi5cCIVCgQcffBBpaWkICQlBUlISQkJCkJaWBgDIyclBXl4ekpKSMHr0aKxZs8bKMyAiqj0WP4iIiMjmnT3riHHjGqNvXznGjWuMs2cdrR0SUb106NAhNGnSBN7e3sjKykJ4eDgAIDw8HFlZWQCA7OxshIWFQSaToU2bNigtLUVhYaE1wyY7wnxN1sJlL0RERGTTzp51xODBXjhzxul/LUocOOCEjRu18PevtGpsRPXNnj170KtXLwBAUVERPD09AQCenp64evUqAECr1UKj0UjnqNVqaLVaqW+V9PR0pKenAwASEhL0zrkXcrnc5HNry5pjW3t8a4x9+jQQE+OEU6dk/2tR4rffGuHbb8vRqlXdxcHvewOdu1VGJSIiIjKTRYvcbil83HTmjBMWLXJDcvIVK0VFVP9UVFTg119/xZAhQ+7YTwhh0CaTyQzaoqKiEBUVJR3n5+ebFJdGozH53Nqy5tjWHt8aY8+Y0RinTin02k6dkmHGjIo6zdf8vtve3P38/Go9Npe9EBERkU3Ly6v+lun//pe3UhPdKicnB61atULjxo0BAB4eHtJylsLCQri7uwO4eafHrf85KSgoMLjrg8gUzNdkTSx+EBERkU1r0qT6pS2+vlzyQnSrW5e8AEBoaCgyMzMBAJmZmejWrZvUvmvXLgghcPz4cSiVShY/yCyYr8maWPwgIiIimzZ1ajFatCjXa2vRohxTpxZbKSKi+ufvv//GwYMH8dBDD0lt0dHROHjwIMaPH4+DBw8iOjoaANC5c2f4+Phg/PjxWLlyJUaNGmWtsMnOMF+TNXHPDyIiIrJp/v6V2LhRi0WL3KDVusDL6wamTi3mZqdEt3B2dsaHH36o1+bm5oZZs2YZ9JXJZCx4kEUwX5M1sfhBRERENs/fvxLJyVf+t5EaNzklIqqvmK/JWrjshYiIiIiIiIjsGosfRERERERERGTXWPwgIiIiIiIiIrvG4gcRERERERER2TUWP4iIiIiIiIjIrrH4QURERERERER2jcUPIiIiIiIiIrJrLH4QERERERERkV1j8YOIiIiIiIiI7BqLH0RERERERERk11j8ICIiIiIiIiK7xuIHEREREREREdk1ubUDICIi21ZaWor3338f586dg0wmw9ixY+Hn54fExERcvnwZ3t7emDhxIlQqFYQQSE1NRU5ODpydnREbG4vWrVtbewpEREREZOd45wcREdVKamoqOnXqhKVLl2Lx4sVo2rQp0tLSEBISgqSkJISEhCAtLQ0AkJOTg7y8PCQlJWH06NFYs2aNlaMnIiIiooaAxQ8iIjLZtWvXcOzYMURGRgIA5HI5XF1dkZWVhfDwcABAeHg4srKyAADZ2dkICwuDTCZDmzZtUFpaisLCQqvFT0REREQNA5e9EBGRyS5dugR3d3csX74cZ86cQevWrTF8+HAUFRXB09MTAODp6YmrV68CALRaLTQajXS+Wq2GVquV+hIRERERWUK9KX7k5uYiNTUVOp0OvXv3RnR0tN7r5eXlSE5OxqlTp+Dm5ob4+Hj4+PiguLgY7733Hk6ePImIiAi8/PLL0jmnTp1CSkoKysrK0LlzZ4wYMQIymayup0ZEZLcqKytx+vRpjBw5EkFBQUhNTZWWuFRHCGHQVl1eTk9PR3p6OgAgISFBr2BiLLlcbtJ55mDNsa09PufOuTfE8YmIqP6rF8UPnU6HDz74AG+++SbUajVmzJiB0NBQNGvWTOqTkZEBV1dXLFu2DHv27MH69esxceJEODk54fnnn8fZs2dx7tw5veuuXr0ar776KoKCgrBgwQLk5uaic+fOdT09IiK7pVaroVarERQUBADo3r070tLS4OHhgcLCQnh6eqKwsBDu7u5S//z8fOn8goKCau/6iIqKQlRUlHR86znG0mg0Jp1nDtYc29rjc+6cuy2N7+fnZ4FoiIioPqoXe36cPHkSTZo0ga+vL+RyOXr27CmtD6+SnZ2NiIgIADc/XB8+fBhCCLi4uOD++++HQqHQ619YWIjr16+jTetH0CIAACAASURBVJs2kMlkCAsLM7gmERHVTuPGjaFWq3HhwgUAwKFDh9CsWTOEhoYiMzMTAJCZmYlu3boBAEJDQ7Fr1y4IIXD8+HEolUoueSEiIiIii6sXd35otVqo1WrpWK1W48SJEzX2cXR0hFKpRHFxsfTbRGOuqdVqLRA9EVHDNnLkSCQlJaGiogI+Pj6IjY2FEAKJiYnIyMiARqPBpEmTAACdO3fGgQMHMH78eCgUCsTGxlo5eiIiIiJqCOpF8cOYNeDGrhO/U/+amGNtuaXY2xpWzqf+s7c52dt86qOWLVsiISHBoH3WrFkGbTKZDKNGjaqLsIiIiIiIJPWi+KFWq1FQUCAdV7cGvKqPWq1GZWUlrl27BpVKdU/X9PLyqravOdaWW4q119CaG+dT/9nbnOrbfLi+nIiIrKG0tBTvv/8+zp07B5lMhrFjx8LPzw+JiYm4fPkyvL29MXHiRKhUKgghkJqaipycHDg7OyM2NhatW7e29hSIiGqlXuz5ERAQgIsXL+LSpUuoqKjA3r17ERoaqtena9eu2LlzJwBg//79CA4OvuOdH56enmjUqBGOHz8OIQR27dplcE0iIiIiooYgNTUVnTp1wtKlS7F48WI0bdoUaWlpCAkJQVJSEkJCQqSndeXk5CAvLw9JSUkYPXo01qxZY+XoiYhqr14UPxwdHTFy5EjMmzcPEydORI8ePdC8eXNs2rQJ2dnZAIDIyEiUlJQgLi4O27ZtQ0xMjHT+a6+9ho8++gg7d+7EmDFjcP78eQDAqFGjsHLlSowfPx6+vr580gsRERERNTjXrl3DsWPHEBkZCeDmklBXV1dkZWUhPDwcABAeHi49HCA7OxthYWGQyWRo06YNSktLUVhYaLX4iYjMoV4sewGALl26oEuXLnptzz//vPRnhUIhbZh3u5SUlGrbAwICsGTJEvMFSURERERkYy5dugR3d3csX74cZ86cQevWrTF8+HAUFRVJS809PT1x9epVADcfHHDrfllVDw7g07mIyJbVm+IHERERERGZX2VlJU6fPo2RI0ciKCgIqamp0hKX6hj7oAFzPTTAmpuTW3tjdM6dc29IY1t7fBY/iIiIiIjsmFqthlqtRlBQEACge/fuSEtLg4eHBwoLC+Hp6YnCwkK4u7tL/W/dLLy6hxEA5ntogDU3J7f2xuicO+fekMauzfjmeGhAvdjzg4iIiIiILKNx48ZQq9W4cOECAODQoUNo1qwZQkNDkZmZCQDIzMxEt27dAAChoaHYtWsXhBA4fvw4lEoll7wQkc3jnR9ERERERHZu5MiRSEpKQkVFBXx8fBAbGwshBBITE5GRkQGNRiPtr9e5c2ccOHAA48ePh0KhQGxsrJWjJyKqPRY/iIiIiIjsXMuWLZGQkGDQPmvWLIM2mUyGUaNG1UVYRER1hsteiIiIiIiIiMiusfhBRERERERERHaNxQ8iIiIiIiIismssfhARERERERGRXWPxg4iIiIiIiIjsGosfRERERERERGTXWPwgIiIiIiIiIrvG4gcRERERERER2TUWP4iIiIiIiIjIrrH4QURERERERER2jcUPIiIiIiIiIrJrLH4QERERERERkV1j8YOIiIiIiIiI7BqLH0RERERERERk11j8ICIiIiIiIiK7Jrd2AEREZNtee+01uLi4wMHBAY6OjkhISEBJSQkSExNx+fJleHt7Y+LEiVCpVBBCIDU1FTk5OXB2dkZsbCxat25t7SkQERERkZ1j8YOIiGrtrbfegru7u3SclpaGkJAQREdHIy0tDWlpaRg6dChycnKQl5eHpKQknDhxAmvWrMH8+fOtGDkRERERNQRc9kJERGaXlZWF8PBwAEB4eDiysrIAANnZ2QgLC4NMJkObNm1QWlqKwsJCa4ZKRERERA0A7/wgIqJamzdvHgCgT58+iIqKQlFRETw9PQEAnp6euHr1KgBAq9VCo9FI56nVami1WqlvlfT0dKSnpwMAEhIS9M4xllwuN+k8c7Dm2NYen3Pn3Bvi+EREVP+x+EFERLUyZ84ceHl5oaioCHPnzoWfn1+NfYUQBm0ymcygLSoqClFRUdJxfn7+Pcel0WhMOs8crDm2tcfn3Dl3Wxr/TvmKiIjsC5e9EBFRrXh5eQEAPDw80K1bN5w8eRIeHh7ScpbCwkJpPxC1Wq33H5SCggKDuz6IiIiIiMyNxQ8iIjLZjRs3cP36denPBw8ehL+/P0JDQ5GZmQkAyMzMRLdu3QAAoaGh2LVrF4QQOH78OJRKJYsfRERERGRxXPZCREQmKyoqwrvvvgsAqKysxMMPP4xOnTohICAAiYmJyMjIgEajwaRJkwAAnTt3xoEDBzB+/HgoFArExsZaM3wiogaDjyUnooaOxQ8iIjKZr68vFi9ebNDu5uaGWbNmGbTLZDKMGjWqLkIjIqLb8LHkRNSQcdkLEREREVEDxMeSE1FDwjs/iIiIiIgaAHM/lpyIyJbUm+JHbm4uUlNTodPp0Lt3b0RHR+u9Xl5ejuTkZJw6dQpubm6Ij4+Hj48PAGDr1q3IyMiAg4MDRowYgU6dOgGofm0jEREREVFDY4nHkqenpyM9PR0AkJCQoFcwuRdyudzkc2vLmmNbe3zOnXNvaOPXi+KHTqfDBx98gDfffBNqtRozZsxAaGgomjVrJvXJyMiAq6srli1bhj179mD9+vWYOHEizp8/j7179+K9995DYWEh5syZg3/9619wcLi5ouf2tY1ERERERA3NnR5L7unpadJjyaOiohAVFSUd33rOvdBoNCafW1vWHNva43PunLstjX+ngq2x6sWeHydPnkSTJk3g6+sLuVyOnj17SmsOq2RnZyMiIgIA0L17dxw+fBhCCGRlZaFnz55wcnKCj48PmjRpgpMnT1phFkRERERE9Q8fS05EVE/u/NBqtVCr1dKxWq3GiRMnauzj6OgIpVKJ4uJiaLVaBAUFSf28vLyg1Wql49vXNhIRERERNSR8LDkRUT0pfhizrrCmPtW1V6lubWO7du0M+plrvaIlWHtNlrlxPvWfvc3J3uZDRER0r/hYciKielL8UKvVKCgokI6rW1dY1UetVqOyshLXrl2DSqUyOFer1UprGqtb21hd8cNc6xUtwdprssyN86n/7G1O9W0+5livSERERERE96Ze7PkREBCAixcv4tKlS6ioqMDevXsRGhqq16dr167YuXMnAGD//v0IDg6GTCZDaGgo9u7di/Lycly6dAkXL15EYGBgjWsbiYiIiIiIiKhhqRd3fjg6OmLkyJGYN28edDodHn30UTRv3hybNm1CQEAAQkNDERkZieTkZMTFxUGlUiE+Ph4A0Lx5c/To0QOTJk2Cg4MDXn75ZTg4ONS4tpGIiIiIiIiIGpZ6UfwAgC5duqBLly56bc8//7z0Z4VCIW3CdLuBAwdi4MCBem01rW0kIiIiIiIiooalXix7ISIiIiIiIiKyFBY/iIiIiIiIiMiusfhBRERERERERHaNxQ8iIiIiIiIismssfhARERERERGRXWPxg4iIiIiIiIjsGosfRERERERERGTXjC5+fPvtt7h69aolYyEiIitgficisg3M10REppMb2/HQoUPYsGEDgoODERYWhm7dusHJycmSsRERUR1gficisg3M10REpjO6+DFt2jQUFxdjz549+Oabb7B69Wo89NBDCAsLQ7t27SwZIxERWRDzOxGRbWC+JiIyndHFDwBwc3PD448/jscffxxnzpxBcnIyduzYAY1Gg969e+OJJ56Ai4uLpWIlIiILYX4nIrINzNdERKa5p+IHcPN2u927dyMrKwsBAQEYN24cNBoNvv32W8yfPx+zZ8+2RJxERGRhzO9ERLaB+ZqI6N4ZXfz4+OOPsXfvXiiVSoSFhWHJkiXw8vKSXg8KCsKIESMsEiQREVlObfO7TqfD9OnT4eXlhenTp+PSpUtYunQpSkpK0KpVK8TFxUEul6O8vBzJyck4deoU3NzcEB8fDx8fn7qYIhGRXeDncSIi0xld/CgvL8fkyZMRGBhY/YXkciQkJJgtMCIiqhu1ze/ffvstmjZtiuvXrwMA1q1bh379+qFXr15YtWoVMjIy0LdvX2RkZMDV1RXLli3Dnj17sH79ekycONEicyIiskf8PE5EZDqjH3X79NNPo0mTJnptJSUl0Gq10nHTpk3NFxkREdWJ2uT3goICHDhwAL179wYACCFw5MgRdO/eHQAQERGBrKwsAEB2djYiIiIAAN27d8fhw4chhDD3dIiI7BY/jxMRmc7o4sfixYv1EisAaLVavPvuu2YPioiI6k5t8vvatWsxdOhQyGQyAEBxcTGUSiUcHR0BAF5eXtK1tVot1Go1AMDR0RFKpRLFxcXmnAoRkV3j53EiItMZvezlwoUL8Pf312vz9/fHX3/9ZfagiIio7pia33/99Vd4eHigdevWOHLkyF3Hqe4uj6qiye3S09ORnp4OAEhISIBGo7nr9W8nl8tNOs8crDm2tcfn3Dn3hjh+XeHncSIi0xld/HB3d0deXp7erXZ5eXlwc3OzSGBERFQ3TM3vf/zxB7Kzs5GTk4OysjJcv34da9euxbVr11BZWQlHR0dotVppMz61Wo2CggKo1WpUVlbi2rVrUKlU1V47KioKUVFR0nF+fv49z0uj0Zh0njlYc2xrj8+5c+62NL6fn58ForEcfh4nIjKd0cWPRx99FEuWLMHgwYPh6+uLvLw8bNq0CZGRkZaMj4iILMzU/D5kyBAMGTIEAHDkyBF8/fXXGD9+PN577z3s378fvXr1ws6dOxEaGgoA6Nq1K3bu3Ik2bdpg//79CA4OrvHODyIiMlTbz+N8OhcRNWRGFz+io6Mhl8vxySefSL+5i4yMRP/+/S0ZHxERWZi583tMTAyWLl2KjRs3olWrVtKH8sjISCQnJyMuLg4qlQrx8fHmnAYRkd2rbb7m07mIqCEzuvjh4OCAp556Ck899ZQl4yEiojpmjvweHByM4OBgAICvry8WLFhg0EehUGDSpEkmj0FE1NDVJl9XPZ1r4MCB2LZtm/R0rgkTJgC4+XSuzz//HH379kV2djaeffZZADefzvXhhx9CCMG79YjIphld/ABubrL0559/4saNG3rtXPpCRGTbmN+JiGyDqfm66ulcVXd9mPJ0Lnd3d3NPh4iozhhd/NiyZQs2b96MFi1awNnZWe81fjgmIrJdzO9ERLbB1HxtqadzmePJXACfVMS5N6yxrT1+g567sR2//fZbzJ8/Hy1atLBkPEREVMeY34mIbIOp+dpST+cyx5O5AD6piHNvWGNbe3xbnbs5ns7lYGxHhUKBpk2b1npAIiKqX5jfiYhsg6n5esiQIXj//feRkpKC+Ph4tG/fHuPHj0dwcDD2798PANU+nQsAn85FRHbD6OLH888/jw8//BCFhYXQ6XR6X0REZLuY34mIbIO583VMTAy2bduGuLg4lJSU6D2dq6SkBHFxcdi2bRtiYmLMOQ0iIqswetnL8uXLAQDbt283eG3Tpk3mi4iIiOoU8zsRkW0wR77m07mIqKEyuviRnJxsyTiIiMhKmN+JiGwD8zURkemMLn54e3sDAHQ6HYqKiuDp6WmxoIiIqO4wvxMR2QbmayIi0xld/CgtLcWaNWuwf/9+yOVyfPLJJ8jOzsbJkycxePBgS8ZIREQWxPxORGQbmK+JiExn9Ianq1evhlKpxPLlyyGX36yZtGnTBnv37rVYcEREZHnM70REtoH5mojIdEbf+XHo0CGsXLlSSrQA4O7ujqKiIrMEkpubi9TUVOh0OvTu3RvR0dF6r5eXlyM5ORmnTp2Cm5sb4uPj4ePjAwDYunUrMjIy4ODggBEjRqBTp05GXZOIiCyf34mIyDyYr4mITGf0nR9KpRLFxcV6bfn5+WZZa6jT6fDBBx/gjTfeQGJiIvbs2YPz58/r9cnIyICrqyuWLVuGfv36Yf369QCA8+fPY+/evXjvvfcwc+ZMfPDBB9Ijv+52TSJTnT3riHHjGqNvXznGjWuMs2cdrR0Skcksmd+JiMh8mK+JiExndPGjd+/eWLJkCQ4fPgwhBI4fP46UlBT06dOn1kGcPHkSTZo0ga+vL+RyOXr27ImsrCy9PtnZ2YiIiAAAdO/eXYojKysLPXv2hJOTE3x8fNCkSROcPHnSqGsSmeLsWUcMHuyFrVuVyMx0wNatSgwe7MUCCNksS+Z3IiIyH+ZrIiLTGV38GDBgAHr06IEPPvgAlZWVWLFiBUJDQ/HEE0/UOgitVgu1Wi0dq9VqaLXaGvs4OjpKle/bz/Xy8oJWqzXqmkSmWLTIDWfOOOm1nTnjhEWL3KwUEVHtWDK/ExGR+TBfExGZzug9P2QyGfr164d+/fqZPQghRLXjGdOnunZjr1klPT0d6enpAICEhARoNJq7xlxX5HJ5vYqntuxhPlpt9f9stFoXm58bYB/fo1vZ23wswZL5nYiIzIf5mojIdEYXPw4fPlzja+3bt69VEGq1GgUFBdJxQUGBwdrFqj5qtRqVlZW4du0aVCqVwblarRZeXl7Sde50zSpRUVGIioqSjvPz82s1H3PSaDT1Kp7asof5eHk1BqCspv0G8vOv1H1AZmYP36Nb1bf5+Pn5WTsEA5bM70REZD7M10REpjO6+LFixQq946tXr6KiogJqtRrJycm1CiIgIAAXL17EpUuX4OXlhb1792L8+PF6fbp27YqdO3eiTZs22L9/P4KDgyGTyRAaGoqkpCT0798fhYWFuHjxIgIDAyGEuOs1iUwxdWoxDhxw0lv60qJFOaZOLb7DWUT1lyXzOxERmQ/zNRGR6YwufqSkpOgd63Q6bN68GY0aNap1EI6Ojhg5ciTmzZsHnU6HRx99FM2bN8emTZsQEBCA0NBQREZGIjk5GXFxcVCpVIiPjwcANG/eHD169MCkSZPg4OCAl19+GQ4ON7cyqe6aRLXl71+JjRu1WLTIDVqtC7y8bmDq1GL4+1daOzQik1gyvxMRkfkwXxMRmc7o4sftHBwcMHDgQIwZMwb9+/evdSBdunRBly5d9Nqef/556c8KhQKTJk2q9tyBAwdi4MCBRl2TyBz8/SuRnHzlf0sqbH+pC9GtzJ3fiYjIMpiviYiMZ/TTXqpz8OBB6S4LIiKyH8zvRES2gfmaiMg4Rt/5MXbsWL3jsrIylJWVYdSoUWYPioiI6g7zOxGRbWC+JiIyndHFj7i4OL1jZ2dn3HfffVAqDZ96QUREtoP5nYjINjBfExGZzujiR7t27SwZBxERWQnzOxGRbWC+JiIyndHFj2XLlkEmk92137hx42oVEBER1S3mdyIi28B8TURkOqOLH66ursjMzETXrl3/94SLfPz6668IDw+Hm5ubJWMkIiILqk1+Lysrw1tvvYWKigpUVlaie/fueO6553Dp0iUsXboUJSUlaNWqFeLi4iCXy1FeXo7k5GScOnUKbm5uiI+Ph4+PTx3NlIjItvHzOBGR6Ywufly8eBHTp0/HAw88ILX9/vvv2Lx5M0aOHGmR4IiIyPJqk9+dnJzw1ltvwcXFBRUVFZg1axY6deqEbdu2oV+/fujVqxdWrVqFjIwM9O3bFxkZGXB1dcWyZcuwZ88erF+/HhMnTrT0FImI7AI/jxMRmc7o52IdP34cQUFBem2BgYE4fvy42YMiIqK6U5v8LpPJ4OLiAgCorKxEZWUlZDIZjhw5gu7duwMAIiIikJWVBQDIzs5GREQEAKB79+44fPgwhBBmnA0Rkf3i53EiItMZfedHq1atsGHDBjz//PNQKBQoKyvDZ599hpYtW1owPCIisrTa5nedTodp06YhLy8Pjz32GHx9faFUKuHo6AgA8PLyglarBQBotVqo1WoAgKOjI5RKJYqLi+Hu7q53zfT0dKSnpwMAEhISoNFo7nlecrncpPPMwZpjW3t8zp1zb4jj1xV+HiciMp3RxY/Y2FgkJSVh2LBhUKlUKCkpQUBAAMaPH2/J+IiIyMJqm98dHBywePFilJaW4t1338Vff/1VY9/q7vKobvO+qKgoREVFScf5+flGxXKrqvXw1mDNsa09PufOudvS+H5+fhaIxnL4eZyIyHRGFz98fHwwd+5c5Ofno7CwEJ6eng2iwk5EZO/Mld9dXV3Rrl07nDhxAteuXUNlZSUcHR2h1Wrh5eUFAFCr1SgoKIBarUZlZSWuXbsGlUpl7ikREdklU/M1N6cmIrqHPT8AoLi4GEePHsXRo0eh0Wig1WpRUFBgqdiIiKiOmJrfr169itLSUgA3P1wfOnQITZs2RXBwMPbv3w8A2LlzJ0JDQwEAXbt2xc6dOwEA+/fvR3BwsFGPbSQioptMyddVm1MvXrwYixYtQm5uLo4fP45169ahX79+SEpKgqurKzIyMgBAb3Pqfv36Yf369XUxNSIiizK6+HH06FHEx8dj9+7d2Lx5MwAgLy8Pq1evtlhwRERkebXJ74WFhXjnnXcwefJkzJgxAx06dEDXrl0RExODbdu2IS4uDiUlJYiMjAQAREZGoqSkBHFxcdi2bRtiYmIsOjciIntiar7m5tRERPew7GXt2rWIj49HSEgIRowYAeDm7tL/+c9/LBYcERFZXm3ye4sWLbBo0SKDdl9fXyxYsMCgXaFQYNKkSbUPmoioAapNvq6vm1MD3KyXc29YY1t7/AY9d2M7Xr58GSEhIfony+WorKw0e1BERFR3mN+JiGxDbfJ1fd2cGuBmvZx7wxrb2uPb6tzNsUG10ctemjVrhtzcXL22Q4cOwd/fv9ZBEBGR9TC/ExHZBnPk6+o2pwZQ7ebUALg5NRHZDaPv/HjxxRexcOFCdO7cGWVlZVi1ahV+/fVXTJkyxZLxERGRhTG/ExHZBlPz9dWrV+Ho6AhXV1dpc+oBAwZIm1P36tWr2s2p27Rpw82pichuGF38aNOmDRYvXozdu3fDxcUFGo0G8+fPl9YDEhGRbWJ+JyKyDabm68LCQqSkpECn00EIgR49eqBr165o1qwZli5dio0bN6JVq1Z6m1MnJycjLi4OKpUK8fHxdTE9IiKLMqr4odPpMHv2bMycORMDBgywdExERFRHmN+JiGxDbfI1N6cmIjJyzw8HBwdcunSJj7giIrIzzO9ERLaB+ZqIqHaM3vB00KBBWL16NS5fvgydTqf3RUREtov5nYjINjBfExGZzug9P1auXAkA2LVrl8FrmzZtMl9ERERUp5jfiYhsA/M1EZHp7lr8uHLlCho3bozk5OS6iIeIiOoI8zsRkW1gviYiqr27LnuZMGECAMDb2xve3t746KOPpD9XfRERke1hficisg3M10REtXfX4sftmyodOXLEYsEQEVHdYX4nIrINzNdERLV31+KHTCariziIiKiOMb8TEdkG5msiotq7654flZWVOHz4sHSs0+n0jgGgffv25o+MiIgsivmdiMg2MF8TEdXeXYsfHh4eWLFihXSsUqn0jmUyGTdfIiKyQczvRES2gfmaiKj27lr8SElJqYs4iIiojjG/ExHZBuZrIqLau+ueH0REREREREREtozFDyIiIiIiIiKyayx+EBEREREREZFdu+ueH5ZWUlKCxMREXL58Gd7e3pg4cSJUKpVBv507d2LLli0AgIEDByIiIgIAcOrUKaSkpKCsrAydO3fGiBEjIJPJ8Nlnn2H79u1wd3cHALzwwgvo0qVLnc2LiIiIiIiIiOoHqxc/0tLSEBISgujoaKSlpSEtLQ1Dhw7V61NSUoIvvvgCCQkJAIDp06cjNDQUKpUKq1evxquvvoqgoCAsWLAAubm56Ny5MwCgX79+eOqpp+p8TkRERERERERUf1h92UtWVhbCw8MBAOHh4cjKyjLok5ubiw4dOkClUkGlUqFDhw7Izc1FYWEhrl+/jjZt2kAmkyEsLKza84mIiIiIiIio4bL6nR9FRUXw9PQEAHh6euLq1asGfbRaLdRqtXTs5eUFrVZr0K5Wq6HVaqXjH374Abt27ULr1q3x0ksvVbucBgDS09ORnp4OAEhISIBGozHL3MxBLpfXq3hqi/Op/+xtTvY2HyIiIiIiund1UvyYM2cOrly5YtA+ePBgk68pk8kghKjx9b59+2LQoEEAgE2bNuHjjz9GbGxstX2joqIQFRUlHefn55scl7lpNJp6FU9tcT71n73Nqb7Nx8/Pz9ohEBERERE1OHVS/PjnP/9Z42seHh4oLCyEp6cnCgsLpQ1Kb+Xl5YWjR49Kx1qtFu3atYNarUZBQYHUXlBQAC8vLwBA48aNpfbevXtj4cKF5pgKERHdIj8/HykpKbhy5QpkMhmioqLwxBNP1LiZtRACqampyMnJgbOzM2JjY9G6dWtrT4OIiIiI7JzV9/wIDQ1FZmYmACAzMxPdunUz6NOpUyf89ttvKCkpQUlJCX777Td06tQJnp6eaNSoEY4fPw4hBHbt2oXQ0FAAQGFhoXT+L7/8gubNm9fNhIiIGhBHR0e8+OKLSExMxLx58/DDDz/g/Pnz0mbWSUlJCAkJQVpaGgAgJycHeXl5SEpKwujRo7FmzRorz4CIiIiIGgKr7/kRHR2NxMREZGRkQKPRYNKkSQCA//znP/jxxx8xZswYqFQqPPPMM5gxYwYAYNCgQdL+HaNGjcLy5ctRVlaGTp06SU96WbduHf7880/IZDJ4e3tj9OjR1pkgEZEd8/T0lPZtatSoEZo2bQqtVousrCy8/fbbAG5uZv32229j6NChyM7ORlhYGGQyGdq0aYPS0lLp7j8iIiIiIkuxevHDzc0Ns2bNMmgPCAhAQECAdBwZGYnIyMhq+y1ZssSgPS4uzryBEhHRHV26dAmnT59GYGBgjZtZa7VavQ1oqzaqZvGDiIiIiCzJ6sUPIiKyfTdu3MCSJUswfPhwKJXKGvtVt1G1TCYzaDPHU7is+aQfaz9liHPn3BvS2PVh/PqO+zMREbH4QUREBPtCUQAAIABJREFUtVRRUYElS5bgkUcewUMPPQSg5s2s1Wq13tN3CgoKqr3rwxxP4bLmk36s/ZQhzp1zb0hj12b8hvIErqr9mVq3bo3r169j+vTp6NChA3bu3ImQkBBER0cjLS0NaWlpGDp0qN7+TCdOnMCaNWswf/58a0+DiKhWrL7hKRER2S4hBN5//300bdoU/fv3l9pr2sw6NDQUu3btghACx48fh1Kp5JIXIiIL8/T0lO7cuH1/pvDwcAA392fKysoCgBr3ZyIismW884OIiEz2xx9/YNeuXfD398eUKVMAAC+88EKNm1l37twZBw4cwPjx46FQKBAbG2vN8ImIGhxz7s9kjiWKAJdsce4Na2xrj9+g526VUYmIyC7cf//9+Oyzz6p9rbrNrGUyGUaNGmXpsIiIqBrm3p/JHEsUAS7Z4twb1tjWHt9W526OZYpc9kJEREREZOfutD8TAJP2ZyIisiUsfhARERER2THuz0RExGUvRERERER2jfszERGx+EFEREREZNe4PxMREZe9EBEREREREZGdY/GDiIiIiIiIiOwaix9E/8fencfZXPf/H3+e2RvDmM0wJlmyZItMwtiNUupKistlJ0mWkmRJSlcl/MpOhRAhJRRXV7LLlnVakCWKipg5lhmD2d6/P3znXHPMdoaZOePM4367udX5nM/n83q/PudzXufM67McAAAAAIBLo/kBAAAAAABcGs0PAAAAAADg0mh+AAAAAAAAl0bzAwAAAAAAuDSaHwAAAAAAwKXR/AAAAAAAAC6N5gcAAAAAAHBpND8AAAAAAIBLo/kBAAAAAABcGs0PAAAAAADg0mh+AAAAAAAAl0bzAwAAAAAAuDSaHwAAAAAAwKXR/AAAAAAAAC6N5gcAAAAAAHBpND8AAAAAAIBLo/kBAAAAAABcmoezBwAAuH3NnDlT+/btk7+/v9577z1JUnx8vCZNmqRz584pJCREL774ovz8/GSM0bx587R//355e3urf//+qlixopMzAAAAQFHAmR8AgJvWvHlzvfLKK3bTVq5cqVq1amnq1KmqVauWVq5cKUnav3+/zpw5o6lTp6pv376aM2eOM4YMAACAIsjpZ35kdYTwRps2bdLy5cslSe3bt1fz5s0lSUuWLNGWLVsUHx+vhQsX2uZPSkrS9OnTdfz4cRUvXlyDBw9WqVKlCiQnACgqqlevrrNnz9pN2717t8aMGSNJatasmcaMGaOuXbtqz549atq0qSwWi6pUqaLLly/r/PnzCggIcMLIAaBo4Uw9AEWd05sfaUcI27Vrp5UrV2rlypXq2rWr3Tzx8fFatmyZxo0bJ0kaMWKEIiIi5Ofnp3r16qlNmzZ6/vnn7ZbZsGGDihUrpmnTpmnbtm1atGiRXnzxxQLLCwCKqosXL9oaGgEBAbp06ZIkyWq1Kjg42DZfUFCQrFZrps2PdevWad26dZKkcePG2S3nKA8Pj5taLi84M7az45M7uRfF+LeD5s2bq02bNpoxY4ZtWlbfw9OfqXf06FHNmTNHY8eOdeLoAeDWOb35kdURwvSio6NVu3Zt2xkhtWvXVnR0tBo3bqwqVapkut49e/aoQ4cOkqQGDRpo7ty5MsbIYrHkXzIAgCwZYzJMy6omR0VFKSoqyvY4JiYm1/GCg4Nvarm84MzYzo5P7uR+O8UPCwvLh9EUTpypB6Coc3rzI6sjhOlZrVYFBQXZHgcGBspqtWa73vTLuLu7y9fXV3FxcSpRokSGefPiCGN+cbUjGeRT+LlaTq6Wz+3A39/f9iX5/PnztrobFBRk98dJbGwsX6QBwIlu9Uy9vPoOzVlL5F6UYjs7fpHOvSCCvPnmm7pw4UKG6Z06dbrpdeZ0BkdBH2HML84+kpLXyKfwc7WcCls+ReEoY0REhDZv3qx27dpp8+bNuv/++23Tv/nmG0VGRuro0aPy9fWl+QEAhZCj36Pz6js0Zy2Re1GK7ez4t2vuefEdukCaH6NHj87yuayOEKYXGBiogwcP2h5brVZVr14925hBQUGKjY1VUFCQUlJSlJCQkOmNVAEAN2/y5Mk6ePCg4uLi1K9fP3Xs2FHt2rXTpEmTtGHDBgUHB2vIkCGSpLp162rfvn16/vnn5eXlpf79+zt59ABQtHGmHoCixOmXvWR1hDC9OnXqaMmSJYqPj5ck/fDDD+rcuXO2661Xr542bdqkKlWqaOfOnapRowb3+wCAPDZ48OBMp7/22msZplksFvXp0ye/hwQAcBBn6gEoSpze/MjqCOGvv/6qtWvXql+/fvLz89OTTz6pkSNHSpKeeuop21kcn3zyibZu3arExET169dPLVu2VMeOHdWyZUtNnz5dgwYNkp+fX5Zf0AEAAABXx5l6AIo6pzc/ihcvnukRwkqVKqlSpUq2xy1btlTLli0zzNe1a9cMvw4jSV5eXrYCDgAAABRlnKkHoKhzc/YAAAAAAAAA8hPNDwAAAAAA4NJofgAAAAAAAJdG8wMAAAAAALg0mh8AAAAAAMCl0fwAAAAAAAAujeYHAAAAAABwaTQ/AAAAAACAS6P5AQAAAAAAXBrNDwAAAAAA4NJofgAAAAAAAJdG8wMAAAAAALg0mh8AAAAAAMCleTh7AAAAAAAAwHWdPOmuCROKy2r1UGBgSQ0bFqdy5VIKdAw0PwAAAAAAQL44edJdnToF6vffPf9viq/27fPUp59aC7QBwmUvAAAAuC2dPOmugQNL6sEHPTRwYEmdPOnu7CEBAG4wYULxdI2P637/3VMTJhQv0HFw5gcAwKUUhtMqAeS/wnIkETePeg0UDWfOZN6Y/vvvgm1Y0/wAALgM/hgCio7sjiROn37BSaOCo6jXQNFRunTm7+nQ0IJ9r3PZCwDAZRSW0yoB5L/CciQRN4d6DRQdw4bF6a67kuym3XVXkoYNiyvQcXDmBwDAZfDHEFB0FJYjibg51Gug6ChXLkWffmr9v8vcfBQYeJVfewEA4FbwxxBQdAwbFqd9+zztzh5wxpFE3BzqNVC0lCuXounTLyg4OFgxMc65NJHmBwCgQEVHR2vevHlKTU1Vq1at1K5duzxbN38MAUVHYTmSiJtDvQZQ0Gh+AAAKTGpqqj766CO9+uqrCgoK0siRIxUREaHw8PA8WT9/DAFFS2E4kujK8rNZTb0GUNBofgAACsyxY8dUunRphYaGSpIaNWqk3bt351nzQ+KPIQDIC/ndrJao1wAKFr/2AgAoMFarVUFBQbbHQUFBslqtThwRACAz6ZvVHh4etmY1ANyuOPMDAFBgjDEZplkslgzT1q1bp3Xr1kmSxo0bp+Dg4FzH8vDwuKnl8oIzYzs7PrmTe1GM74oya1YfPXrUiSMCgFtD8wMAUGCCgoIUGxtrexwbG6uAgIAM80VFRSkqKsr2OCYmJtexrp9Gnfvl8oIzYzs7PrmT++0UPywsLB9G4xocaVbnRaNaonFH7kUrtrPjF+ncnRIVAFAkVapUSadPn9bZs2cVGBio7du36/nnn3f2sAAAN3CkWZ0XjWqJxh25F63Yzo5/u+aeF81qmh8AgALj7u6u3r176+2331ZqaqpatGihO++809nDAgDcgGY1AFdjMZmd0wYAAACgSNu3b58+/vhjW7O6ffv2zh4SANw0fu2lkBsxYoSzh5CnyKfwc7WcXC0fOM6Zr72z9ztyL3qxnR2/KOfuyu677z5NmTJF06ZNy9fGB/tu0Yvt7Pjk7jzOjE/zAwAAAAAAuDSaHwAAAAAAwKW5jxkzZoyzB4HsVaxY0dlDyFPkU/i5Wk6ulg8c58zX3tn7HbkXvdjOjl+Uc8etY98terGdHZ/cncdZ8bnhKQAAAAAAcGlc9gIAAAAAAFwazQ8AAAAAAODSPJw9gKIoPj5ekyZN0rlz5xQSEqIXX3xRfn5+GebbtGmTli9fLklq3769mjdvLklasmSJtmzZovj4eC1cuNA2f1JSkqZPn67jx4+rePHiGjx4sEqVKnVb5HT8+HHNmDFDiYmJqlu3rnr16iWLxaLPPvtM69evV4kSJSRJ//rXv3TfffflWx7R0dGaN2+eUlNT1apVK7Vr187u+ey28YoVK7Rhwwa5ubmpV69eqlOnjkPrzE/5kc+AAQPk4+MjNzc3ubu7a9y4cYU+n7i4OE2cOFHHjh1T8+bN9fTTT9uWyWrfw+1hx44d+vzzz/Xnn39q7NixqlSpUqbzZbXvnD17VpMnT1Z8fLwqVKigQYMGycPDsY9GR+rezz//rI8//tj2+K+//tILL7yg+vXra8aMGTp48KB8fX0lXX9vlS9f3uHcHa27//znP1WuXDlJUnBwsIYPH14guf/222+aPXu2rly5Ijc3N7Vv316NGjWSpJvOPT9qmqNyir169WqtX79e7u7uKlGihJ577jmFhIRIyvo1yMv4mzZt0sKFCxUYGChJatOmjVq1amV7LrPP3ryKPX/+fB04cECSlJiYqIsXL2r+/PmSbj33mTNnat++ffL399d7772X4XljjObNm6f9+/fL29tb/fv3t11Lfqt5I+84s1ZLzq3XzqzVjsbP63rtzFrtSPz8rNfOrNWOxC/y9dqgwC1cuNCsWLHCGGPMihUrzMKFCzPMExcXZwYMGGDi4uLs/t8YYw4fPmysVqvp2rWr3TLffPON+fDDD40xxmzdutVMnDgxnzP5n1vNacSIEebw4cMmNTXVvP3222bfvn3GGGOWLl1qvvzyywLJISUlxQwcONCcOXPGJCUlmaFDh5pTp07ZzZPVNj516pQZOnSoSUxMNH///bcZOHCgSUlJcWidt1M+xhjTv39/c/HixQLJIb1byefKlSvm0KFDZs2aNWbOnDl2y2S17+H2cOrUKfPnn3+a119/3Rw7dizTebLbd9577z2zdetWY4wxH374oVmzZo3DsR2pe+nFxcWZnj17mqtXrxpjjJk+fbrZsWOHw/FuNv6NnxVp8jv3P//80/z111/GGGNiY2PNM888Y+Lj440xN5d7ftW0vIr9008/2V7bNWvW2H0GZ/Ua5GX8jRs3ZqhvxmT/2ZtXsdP7+uuvzYwZM2yPbzX3AwcOmF9//dUMGTIk0+f37t1r3n77bZOammoOHz5sRo4caYy59byRt5xZq41xbr12Zq12NH5e1mtn1mpH4+dXvXZmrXY0fnpFsV5z2YsT7N69W82aNZMkNWvWTLt3784wT3R0tGrXri0/Pz/5+fmpdu3aio6OliRVqVJFAQEBGZbZs2ePrUvWoEED/fzzzzIFdD/bW8np/PnzunLliqpUqSKLxaKmTZtmunx+O3bsmEqXLq3Q0FB5eHioUaNGGcaR1TbevXu3GjVqJE9PT5UqVUqlS5fWsWPHHFrn7ZSPM91KPj4+PqpWrZq8vLzs5i8s+x5uXnh4uMLCwrKdJ6t9xxijAwcOqEGDBpKk5s2b5+r1d6Tupbdz507VrVtX3t7eDsfIy/jpFUTuYWFhKlOmjCQpMDBQ/v7+unTpksMxbuTMmuZI7Jo1a9pe28qVK8tqtd50rjcTPyvZfZ/Ij9jbtm1T48aNHV5/TqpXr57pUfI0e/bsUdOmTWWxWFSlShVdvnxZ58+fv+W8kbecWasl59ZrZ9ZqR+PnZb129vdPZ9ZrZ9bqm4lfFOs1l704wcWLF23Ni4CAgEyLi9VqVVBQkO1xYGBgjm/M9Mu4u7vL19dXcXFxtktG8tOt5HTj9KCgILtc16xZoy1btqhixYrq3r17tm+qW5HZOI4ePZrlPOm3sdVqVeXKlTPklrae7NaZX/IrH0l6++23JUmtW7dWVFRUfqaR6Vil3OWT1Xsgp30PriGrfScuLk6+vr5yd3eX5FidTc+Rupfetm3b9Oijj9pNW7JkiZYtW6aaNWuqS5cu8vT0zPP4SUlJGjFihNzd3fX444+rfv36BZ77sWPHlJycrNDQUNu03OaenzUtJ47ETm/Dhg12p2pn9hrkhqPxv//+ex06dEhlypRRjx49FBwcfFPfJ24mtiSdO3dOZ8+eVc2aNW3TbjV3R8YXHBxsN77MvlvkNm8UvPyq1ZJz67Uza3Vu4qe51XrtzFrtaPz08rJeO7NW5ya+VHTrNc2PfPLmm2/qwoULGaZ36tTppteZ030IMjvLIy/vXZBfOWV3dsqDDz6op556SpK0dOlSLViwQP3797/peNlxZPtlNU9WOeT3a5Kd/MhHur4fBAYG6uLFi3rrrbcUFham6tWr3/qAc3Ar+eRmnSh8sqs9999/f47L38r7MK/q3vnz53Xy5Ende++9tmmdO3dWyZIllZycrA8//FBffvmlrd7lZfyZM2cqMDBQf//9t/7973+rXLlytmu3s5OXuU+bNk0DBgyQm9v1E04dyf1G+VXTHJGbfWjLli06fvy4xowZY5uW2WtQunTpPI1fr149RUZGytPTU99++61mzJih119/PdP15eZzKDe5b9u2TQ0aNLC9ztKt556X4+N+TvnLmbU6p/i5cTP12pm1Oq/iS3lTr51Zqx2Nnyav67Uza7Wj8dMU1XpN8yOfjB49Osvn/P39df78eQUEBOj8+fOZHpUODAzUwYMHbY+tVmuOf2AGBQUpNjZWQUFBSklJUUJCQp6eJZFfOaWNO01sbKztJkAlS5a0TW/VqpXGjx+fF6lkKrNx3Hh5UVbb+MZlrVarLYec1plf8iuftP/6+/vr/vvv17Fjxwqk+XEr+eRmnWn5ofDIrvY4Iqt9p3jx4kpISFBKSorc3d3t9nNHYjtS99Ls2LFD9evXt7tJXdr+6+npqRYtWmjVqlUZlsuL+Gk5hYaGqnr16vrtt9/0wAMPFEjuCQkJGjdunDp16qQqVarkKvcb5VdNc4QjsSXpxx9/1IoVKzRmzBi7I6OZvQa5+ULpSPzixYvb/j8qKkqLFi2yxc7t94ncxk6zfft2uxtKp8WXbj53R8YXExOTYXy3mjdyz5m1Oqf4+V2vnVmr8yp+XtVrZ9ZqR+NL+VOvnVmrHY2fpqjWa+754QQRERHavHmzJGnz5s2ZdsPr1KmjH374QfHx8YqPj9cPP/yQ492O69Wrp02bNkm6fq1ijRo1Cuwox63kFBAQoDvuuENHjhyRMUZbtmxRRESEpOsd6DS7du3SnXfemW85VKpUSadPn9bZs2eVnJys7du328aRJqttHBERoe3btyspKUlnz57V6dOndffddzu0ztspn6tXr+rKlSuSpKtXr+rHH3+03RW6MOeTlez2PbiOrPYdi8WiGjVqaOfOnZKu32k8N6+/I3UvzbZt2xQZGWk3La2+pV3nnNv65kj8+Ph4JSUlSZIuXbqkw4cPKzw8vEByT05O1rvvvqumTZuqYcOGds/dTO75UdMc5UjsEydOaPbs2Ro2bJj8/f1t07N6DXLDkfjpPy/37Nlji3Ez3ydyG1u6/ssYly9ftvujKS9yz0lERIS2bNkiY4yOHDkiX19fBQQE3HLeKHj5Vasl59ZrZ9ZqR+PnZb12Zq12NH5+1Wtn1mpH40tFu15bDOd9F7i4uDhNmjRJMTExCg4O1pAhQ+Tn56dff/1Va9euVb9+/SRdvwZtxYoVkq7/5E+LFi0kSZ988om2bt1q6+K2bNlSHTt2VGJioqZPn64TJ07Iz89PgwcPtrterzDn9Ouvv2rmzJlKTExUnTp11Lt3b1ksFk2bNk2//fabLBaLQkJC1Ldv33w9c2Lfvn36+OOPlZqaqhYtWqh9+/ZaunSpKlWqpIiIiGy38fLly7Vx40a5ubmpZ8+eqlu3bpbrLCh5nc/ff/+td999V5KUkpKixo0b3zb5DBgwQAkJCUpOTlaxYsX06quvKjw8PMt9D7eHXbt2ae7cubp06ZKKFSum8uXLa9SoUbJarfrwww81cuRISVm/D//+++8MPyHo6HXcjta9s2fPavTo0Xr//fftTi994403bNde33XXXerbt698fHwczt2R+IcPH9asWbPk5uam1NRUtW3bVi1btiyQ3Lds2aL333/f7stT2k8k3mzu+VGjHZVT7DfffFMnT560nbGY9jOB2b0GeRl/8eLF2rNnj9zd3eXn56c+ffqobNmykrL+7M2r2JL02WefKSkpSV26dLEtlxe5T548WQcPHlRcXJz8/f3VsWNHJScnS7p+aawxRh999JF++OEHeXl5qX///rafUb3VvJF3nFmrJefWa2fWakfj53W9dmatdiR+ftZrZ9ZqR+JLRbte0/wAAAAAAAAujcteAAAAAACAS6P5AQAAAAAAXBrNDwAAAAAA4NJofgAAAAAAAJdG8wMAAAAAALg0mh/IYNasWVq2bJnt8bfffqtnnnlG3bp1U1xcnH755Rc9//zz6tatm3bt2uXEkbq+AwcO2H5+zdV89tlnmjp1qrOHARR61OTCg5oMIDvU68KDeo3MeDh7AChYAwYM0IULF+Tu7i43NzeFh4eradOmioqKsv2eed++fW3zJycn6+OPP9bbb7+t8uXLS7r+hmvTpo0eeeQRZ6Rw2zhw4ICmTZumDz74wNlDKfTOnj2rgQMHasmSJXJ3d3f2cIACQ00uONRkx1GTgYyo1wWHeu046nXu0PwogoYPH67atWsrISFBBw8e1Lx583Ts2DH1798/w7wXL15UUlKS7rzzTtu0c+fOKTw8/KZip6Sk8MZMp7Bvj8I+PsAVUJMLj8K+PQr7+ABXR70uPAr79ijs4yuqaH4UYb6+voqIiFDJkiU1atQoPfrooypXrpxmzJihoKAgNW3aVMOHD5ck9ezZU3fffbdiYmJ09uxZjR8/Xm5ubpo7d66SkpL08ccfa//+/bJYLGrRooU6duwoNzc3bdq0SevXr1elSpW0efNmPfTQQ+rUqZM2bNigVatW6cKFC7r77rvVt29fhYSESJI6duyoPn36aPXq1YqLi1NkZKSefvppWSwWSdK6dev0n//8R7GxsQoKCtKgQYNUsWJFWa1WzZ07V4cOHZKPj4/atm3rcGc9MTFRn376qXbu3KnLly+rXLlyGj16tLy8vLRnzx4tXrxYVqtV5cuXV58+fWwfXAMGDNBDDz2kLVu26Ny5c6pTp44GDBig1NRUjR07VsnJyerWrZskacqUKVq3bp1OnTolT09P7d27V927d1fTpk21aNEi7dixQ5LUsGFDdenSRZ6entmOedasWfLx8VH37t1t0yZMmKDq1avr0Ucf1cqVK/Xf//5XV65cUUBAgPr06aNatWrluC0GDBig1q1ba+vWrfrrr7+0cOFCXbx4Mctte+zYMc2ZM0enT5+Wl5eXGjdurB49emTatR8wYICeffZZ1a5d2y7m66+/Lun6fiZJo0ePVpUqVXIcK+BKqMn/Q03+H2oyUPhQr/+Hev0/1OvbgEGR0r9/f/PDDz9kmN6vXz+zZs0aY4wx06dPN0uWLDHGGPP333+bDh06mOTk5CzXMX78ePPhhx+aK1eumAsXLpgRI0aYb7/91hhjzMaNG80///lP8/XXX5vk5GRz7do18/3335uBAweaU6dOmeTkZLNs2TIzatQo2/o6dOhg3nnnHRMfH2/OnTtnevfubfbv32+MMWb79u2mb9++5ujRoyY1NdWcPn3anD171qSkpJhhw4aZzz//3CQlJZkzZ86YAQMG2JY7dOiQ6dGjR5bbZfbs2eb11183sbGxJiUlxfzyyy8mMTHR/Pnnn6Zr167mhx9+MElJSWblypVm4MCBJikpybYtRowYYWJjY01cXJwZPHiwbTv+/PPP5tlnn7WLs3TpUtOpUyfz/fffm5SUFHPt2jXz6aefmldeecVcuHDBXLx40YwaNcq2/TNbR5oDBw6Yfv36mdTUVGOMMXFxcaZz584mNjbW/Pnnn6Zfv34mNjbW9jqePn06y/zT69+/vxk6dKg5d+6cuXbtWo7b9pVXXjGbN282xhhz5coVc/jw4SzHnn7fWbp0qZkyZYptfDfuZ0BRQE3OHDX5f6jJQOFAvc4c9fp/qNeFHzc8hSQpMDBQ8fHxuV7uwoULio6OVs+ePeXj4yN/f3+1bdtW27dvt80TEBCghx9+WO7u7vLy8tK6dev0xBNPKDw8XO7u7nriiSf022+/6dy5c7Zl2rVrp2LFiik4OFg1atTQb7/9JknasGGDHn/8cd19992yWCwqXbq0QkJC9Ouvv+rSpUt66qmn5OHhodDQULVq1co2jmrVqmn+/PmZ5pCamqqNGzeqZ8+eCgwMlJubm6pWrSpPT09t375ddevWVe3ateXh4aHHHntMiYmJOnz4sG35hx9+WIGBgfLz81O9evVsY81KlSpVVL9+fbm5ucnLy0tbt27Vk08+KX9/f5UoUUJPPfWUvvvuuxy3/T333CNJOnTokCRp586dqlKlii2HpKQk/fHHH0pOTlapUqVUunTpHNeZPqfg4GB5eXnluG09PDx05swZXbp0ST4+PnSbgTxATaYmp0dNBgov6jX1Oj3qdeHGZS+QJFmtVvn5+eV6uZiYGKWkpNjd4MkYo6CgINvj4OBgu2XOnTunefPmacGCBXbLWK1W22l7JUuWtD3n7e2tq1ev2uKFhoZmGMe5c+d0/vx52ylf0vWCnFbcshMXF6ekpKRMC9v58+dtY5IkNzc3BQcHy2q12qalH6uXl5fdc5lJv20k2eUtSSEhITmuQ5IsFosiIyO1bds2Va9eXdu2bVOTJk0kSaVLl1bPnj31+eef648//tC9996r7t27KzAwMMf1SvavWU7btl+/flq6dKlefPFFlSpVSk899ZTq1avnUBwAmaMmU5PToyYDhRf1mnqdHvW6cKP5AR07dkxWq1XVqlXL9bJBQUHy8PDQRx995PBNfYKDg9W+fXtbkcmN4OBg/f3335lOL1Wq1E397FPx4sXl6empM2fO2O7GnSYgIEAnT560PTbGKCYmxqECmHZ9ZU4CAwN17tw52w2xHF2/JEVGRuqtt95Su3btdPToUQ0dOtT2XON+Kh3gAAAgAElEQVTGjdW4cWMlJCRo1qxZWrRokQYNGuTQetPLaduWKVNGgwcPVmpqqnbt2qWJEyfqo48+kre3t65du2abLzU1VZcuXcp0HY5uK6AooCZTk7NDTQYKD+o19To71OvCh8teirCEhATt3btXU6ZMUZMmTVSuXLlcryMgIED33nuvFixYoISEBKWmpurMmTM6ePBglsu0bt1aK1eu1KlTp2zjSLtRUU5atmypVatW6fjx4zLG6MyZMzp37pzuvvtu3XHHHVq5cqUSExOVmpqqkydP6tixYzmu083NTS1atNCCBQtktVqVmpqqI0eOKCkpSY0aNdL+/fv1008/KTk5WatWrZKnp6eqVq2a43r9/f0VFxenhISEbOeLjIzU8uXLdenSJV26dEnLli1z+EOtQoUKKlGihD744APde++9KlasmCTpr7/+0s8//6ykpCR5eXnJy8vL9jNsuZXTtt2yZYsuXbokNzc3+fr6Srq+TcPCwpSUlKR9+/YpOTlZX3zxhZKSkjKNUaJECVkslkw/lIGigpp8HTU5e9RkwPmo19dRr7NHvS58OPOjCBo/frzc3d1lsVgUHh6utm3b6sEHH7zp9Q0cOFCLFi3SkCFDdOXKFYWGhurxxx/Pcv769evr6tWrmjx5smJiYuTr66tatWqpYcOGOcZq2LCh4uLiNGXKFFmtVpUqVUoDBw5USEiIhg8frgULFmjAgAFKTk5WWFiY/vnPf0q6fk3f2LFjtXDhwkzX2717dy1evFgjR47U1atXVb58eY0aNUphYWEaNGiQ5s6da7tT9fDhw+XhkfNbp2zZsoqMjNTAgQOVmpqqiRMnZjpf+/btlZCQYOs4N2jQQO3bt89x/WkiIyP12Wef6cUXX7RNS0pK0qJFi/Tnn3/K3d1dVatWtZ1W+d1332nFihVZjudGbm5u2W7b6OhoLViwQNeuXVNISIheeOEF24dFnz599MEHHyg1NVX/+Mc/MpyumMbb21vt27fX6NGjlZKSoldeeYXrHlFkUJMzoiZnjZoMOA/1OiPqddao14WPxRhjnD0IAAAAAACA/MJlLwAAAAAAwKXR/AAAAAAAAC6N5gcAAAAAAHBpND8AAAAAAIBLo/kBAAAAAABcGs0PAAAAAADg0mh+AAAAAAAAl0bzAwAAAAAAuDSaHwAAAAAAwKXR/AAAAAAAAC6N5gcAAAAAAHBpND8AAAAAAIBLo/kBAAAAAABcGs0PAAAAAADg0mh+AAAAAAAAl0bzAwAAAAAAuDSaHwAAAAAAwKXR/AAAAAAAAC6N5gcAAAAAAHBpND8AAAAAAIBLo/kBAAAAAABcGs0PAAAAAADg0mh+AAAAAAAAl0bzAwAAAAAAuDSaHwAAAAAAwKXR/AAAAAAAAC6N5gcAAAAAAHBpND8AAAAAAIBLo/kBAAAAAABcGs0PAAAAAADg0mh+AAAAAAAAl0bzAwAAAAAAuDSaHwAAAAAAwKXR/AAAAAAAAC6N5gcAAAAAAHBpND8AAAAAAIBLo/kBAAAAAABcGs0PAAAAAADg0mh+AAAAAAAAl0bzAwAAAAAAuDSaHwAAAAAAwKXR/AAAAAAAAC6N5gcAAAAAAHBpND8AAAAAAIBLo/kBAAAAAABcGs0PAAAAAADg0mh+AAAAAAAAl0bzAwAAAAAAuDSaHwAAAAAAwKXR/AAAAAAAAC6N5gcAAAAAAHBpND8AAAAAAIBLo/kBAAAAAABcGs0PAAAAAADg0mh+AAAAAAAAl0bzAwAAAAAAuDSaHwAAAAAAwKXR/AAAAAAAAC6N5gcAAAAAAHBpND8AAAAAAIBLo/kBAAAAAABcGs0PAAAAAADg0mh+AAAAAAAAl0bzAwAAAAAAuDSaHwAAAAAAwKXR/AAAAAAAAC6N5gcAAAAAAHBpND8AAAAAAIBLo/kBAAAAAABcGs0PAAAAAADg0mh+AAAAAAAAl0bzAwAAAAAAuDSaHwAAAAAAwKXR/AAAAAAAAC6N5gcAAAAAAHBpND8AAAAAAIBLo/kBAAAAAABcGs0PAAAAAADg0mh+AAAAAAAAl0bzAwAAAAAAuDSaHwAAAAAAwKXR/MBt49VXX1W1atUKZD3r1q2TxWLRmTNn8j0WABR21F8AuH3cjjUbKAg0P/KIxWLJ9l/58uXt5t+5c6fc3d1Vv379DOt69dVXs11X69atb3m82RWz8PBwjRs37pZjuLrLly9r1KhRqly5su644w4FBQWpfv36mjFjhm2eESNGaOvWrQU+tvnz5+u+++5TQECAfH19Vb16dU2aNKnAx1EYJCcny2Kx6NNPP83w3Jw5c+Tj42N7nN0HeNeuXdWmTZt8HStuDvW36CnM9Te9tWvXyt3dnSaMg6jXRQM1Gzfj008/lbu7uzp27OjsoWjTpk36xz/+oXLlyslisWS6D8yZMyfTfXLTpk3ZrvuHH35Q165dddddd8nHx0cVKlTQkCFDdPHixSyX6datW5bjgD2aH3nk9OnTtn9ffvmlJGnXrl22abt377abf9asWRowYICOHDmi6Ohou+dGjBhht760f+PGjZObm5sGDhxYYHkha88++6wWL16sd999V4cOHdKGDRv03HPP6cKFC7Z5/Pz8FBwcXOBjCw0N1euvv67t27fr559/1ssvv6xRo0bZ/WFQkBITE50SF0UD9bfoKcz1N83p06fVq1cvh/74mjNnjqKiogpgVDmjXiO/UbNxo9TUVKWkpGQ7z6xZszRixAitWrVKZ8+eLaCRZS4+Pl41a9bUu+++q5CQkCzn8/b2zrBvNmrUKNt17927V/7+/po7d64OHjyomTNnasWKFeratWum88+ZM0eHDx9WaGjoLeWU3wrLZwvNjzxSunRp27/AwEBJUkhIiG1a+jfGxYsXtXTpUvXr108dO3bUrFmz7Nbl5+dnt77SpUvr119/1WuvvaZ33nlHjz/+eIHmdvHiRT3zzDMKCQmRj4+P6tevr/Xr19ueP3bsmCwWi3bu3Gm3XPny5fXWW2/ZHn/44YeqVq2afHx8FBQUpObNm+uvv/6yPb979261bt1afn5+KlWqlJ566imdOnUqw3iWL1+uqlWrys/PTy1bttSJEyfsnl+1apXuu+8+eXt7KzQ0VAMHDlRCQkK2OU6ePFnh4eHy9fXVww8/rD/++CPH7fLll19q+PDhevzxx1W+fHnde++96tWrl0aNGmWbJ/3RgrQjWpn9S4sXFxenQYMGKSwsTL6+vqpXr57ti0FuPPzww3r88cd1zz33qGLFiurVq5datWqVbbc5bXzTpk3TE088IV9fX5UtW1ZTpkyxmy+nMabtD0uWLFGbNm3k6+ur1157TYmJiRo8eLDKli0rb29vlSlTRl26dLEtZ4zR+PHjVaFCBXl5ealSpUqaNm2aXezw8HD9+9//1qBBgxQQEKDQ0FANGzZMqampud5GcB3UX+pvYaq/kpSSkqJ//etfGjx4sCIiIm5qHdmhXuN2Rs12/Zqd0/jS6vOSJUtUtWpVeXl56ejRo1nGPHLkiHbs2KGhQ4eqSZMmmj9/foZ59u7dqwceeEA+Pj6qWrWqli9fnuHMnLyq848++qjGjh2rjh07ysvLK9t5b9w/c5q/d+/emjFjhlq1aqWKFSvq4Ycf1rhx4/T111/r8uXLdvP+/PPPevXVV/Xpp5/Kw8Mj2/VevHhRxYoV02effWY3/ddff5Wbm5vtTMmkpCSNHj1a5cuX1x133KGaNWtqzpw5dstMmjRJ9957r/z8/FSmTBl17tzZ7iy8tDPz/vvf/yoyMlI+Pj6aO3euLly4oB49eig0NFTe3t4qV66cXn755WzHnddofjjBwoULVaNGDVWvXl09e/bUokWLMuzM6f3+++964okn1LlzZw0bNqwAR3pdz549tX79ei1atEj79+9X/fr19cgjj2RbpG70/fffa+DAgRo9erQOHz6sTZs2qXPnzrbnf/rpJzVv3lxNmjTRnj17tG7dOhlj1Lp1a7tO4R9//KHZs2dryZIl+u677xQbG6s+ffrYnt+/f7/atWunli1b6ocfftC8efO0cuVKDRgwIMuxffHFF3r55Zf18ssvKzo6Wu3bt3doO5cuXVr//e9/df78eYe2gYeHh13n96+//lKLFi1Us2ZNBQcHyxijtm3b6sCBA/r888/1888/65lnnlGHDh20efNm23oaN26cqyOExhjt3LlTO3bsUIsWLXKcf8yYMYqKilJ0dLSGDh2qIUOG6KuvvrKty5ExStKwYcPUvXt3HThwQP369dPkyZO1fPlyLV68WEePHtWXX35pdwrr1KlT9cYbb2jUqFE6cOCAXnrpJQ0dOlQff/yx3XonTZqkcuXKadeuXZo0aZImTpyoRYsWObw9ULRRf6m/BVF/x4wZIx8fH7300ksOje9mUa/h6qjZt1/NdnR8p06d0qxZs7Rw4UIdOHBA4eHhWcadNWuWHnvsMQUEBKhnz56aPXu2jDG25+Pj4/XII4+oTJky2rVrl+bPn68JEyYoNjbWNk9+fc/OTmJioipUqKAyZcqoRYsW+vrrr29qPRcvXpSvr6/uuOMO27TLly+rY8eOmjhxoipWrJjjOvz9/dWpUyfNnj3bbvqcOXNUrVo1NW7cWJLUq1cvrVq1SnPmzNHBgwf16quv6qWXXspQ3ydOnKiffvpJX3zxhY4fP27XIE/z0ksvaeTIkTp06JAee+wxvfLKK/rxxx/11Vdf6ciRI7bmV4EyyHPfffedkWROnDiR6fO1atUy06dPtz2uUqWK+eijjzKd99KlS6ZWrVqmcePG5tq1a3k2xlGjRhmLxWKKFSuW4Z/FYjHvvPOOMcaYX375xUgya9assS2bmppqateubZ555hljjDFHjx41ksyOHTvsYtx1113mzTffNMYY89lnn5mSJUuaS5cuZTqeLl26mC5duthNS0hIMF5eXmbVqlW2MXt4eJiYmBjbPAsXLjRubm4mMTHRGGNMp06dTMOGDe3Ws2zZMmOxWMwff/xhW0/VqlVtzz/wwAOme/fudsu88MILRpI5ffp0lttw8+bN5s477zTu7u6mdu3a5tlnnzVfffWV3Tw3xkpv2LBhJjQ01Pz222/GGGPWrl1rfHx8Mmyjbt26mSeffNL2uHPnzqZXr15ZjitNTEyMKVasmPH09DTu7u7mrbfeynb+pKQkI8n07NnTbnqHDh1Ms2bNHB5j2v4wduxYu3n69+9voqKiTGpqaqbxS5cubUaOHGk3beDAgaZy5cq2x2XLljVPPPGE3TytWrUyXbt2zTEvb2/vDPu6t7e38fb2ts27du1aI8n4+vpmmNfDw8M89NBDWcZB4UD9vY7667z6u3btWhMWFmbOnDmT4zjSzJ4927Rq1SrbedKjXlOvXQU1+zpXqtmOjs/Nzc0WJztXr141wcHBZvXq1bZ1+fv7m/Xr19vmmTlzpilevLi5ePGibdpPP/1kJNlen7z+np2mbNmythjpbd261SxYsMDs37/fbNu2zQwcONBIMvPnz3d43cYY8+eff5oyZcqY4cOHZxh3+nFmNY70vv/+e2OxWMyvv/5qjLlec8uUKWMmTpxojDHmyJEjRpI5cuSI3XKjR4829erVy3K9u3btMpJsn3tp9Xnx4sV28z3yyCPm6aefziHj/JX9+THIc9u3b9fhw4fVqVMn27QePXpo1qxZ6t27t928qamp6tKli+Lj47Vhw4YcT5NKSUmRv7+/7XGLFi20atWqLOevUKGC1qxZk2F6kyZNbP9/4MCBDNMsFouaNGmi/fv3Zzue9B566CGVK1dOFSpUUOvWrdWyZUu1b99eQUFBkq6fHvfbb79p5cqVdsslJSXZdcvvvPNO2zKSVLZsWaWmpurcuXMKCwvTgQMH9Mgjj9ito1mzZjLG6ODBgypbtmyGsR08eFC9evWym9a4ceMMpw/fqGnTpjp+/Li+//577dixQ1u2bFG7du302GOPacWKFbJYLFkuO2/ePE2bNk2bNm3SXXfdZdsG165dU5kyZezmTUxM1D333GN77OhRs4CAAEVHRyshIUHbtm3TyJEjVbZsWfXs2TPb5Ro2bGj3ODIyUm+//Xauxigpw43JevfurYceekiVK1dW69at1bp1az366KPy8vLS+fPndebMGTVt2tRumWbNmmnmzJm6du2avL29JUl16tSxm6ds2bI6ffp09htD0vjx49W2bVu7aZ9//rneeOONDPOuX78+w70Chg4dqqtXr+YYB4UX9Zf6K+Vv/T179qy6deumBQsWZHv99ccff2x3dDU5OVnJycny8/OzTevZs6emT5+ebTzqNfXalVGzb8+a7ej4wsLCMo1xoy+++ELu7u566KGHJEl33HGH7RKoli1b2sZVo0YNlShRwrZczZo1Vbx4cbtx5eX37JxERkYqMjLS9rhRo0aKjY3V+PHj1aNHD4f2wTNnzqh169aKiIiwuyxq/vz52rVrl/bu3ZurMdWvX1916tTRRx99pLffflurV6+W1WpV9+7dJUl79uyRJNWtW9duueTkZFtdl6QNGzZo3LhxOnTokC5cuGC7nPH333+3++y78bNlwIAB6tChg3bt2qWWLVuqTZs2euihh7L9zM5rND8K2KxZs5SYmGi3YxhjlJqaqh9//FG1a9e2TR8+fLg2b96sHTt2OHTTNnd3d7sbQfn6+mY7v6enp+6+++5M15NeZjukMcY23c3NzTYtvaSkJNv/lyhRQnv37tXWrVu1fv16zZgxQ8OGDdPGjRtVp04dpaamqmfPnple95U+9xs/zNLGkP4a4hvHmzau7N5YN/um8/DwsBW3oUOHav78+erVq5e2b99uV/DS27x5s5577jktWrTIriikpqYqKChIO3bsyLBMTh/imXFzc7O9vrVr11ZMTIxeffXVHJsfN0r/uuZmjMWKFbN7XK9ePZ04cUJr167Vxo0bNWjQIL3++uvasWNHlq/RjftUZnEsFotD15CHhoZm2N+zuklV+fLlVbp0abtpfn5+fJm+zVF/qb/5XX9//PFHnTlzRg8//LDduo0x8vDw0OLFi9WxY0c98cQTdmP8/PPPtXr1arvTitN/KXYU9fo66rVroGbfnjXb0fHdWHeyMmvWLJ09e9bu157SampMTIxtnVlt+/Tjysvv2TejUaNGtqZQTvvgqVOnFBUVpXvuuUefffaZ3T091q1bpyNHjth9TqSkpGjUqFF66623FB8fn+UYnn32Wb3xxht64403NGfOHLvGWtq+sXPnTrvtLf1v3z1x4oTatm2rnj176vXXX1dwcLB+//13PfTQQxluanrja/zII4/o5MmTWrNmje1yrrp16+rbb7/N8F7KLzQ/CtCFCxf02Wef6YMPPsjwxWzAgAGaNWuW7SjP/PnzNWnSJK1atUrVq1d3OEZmhflW1KhRQ8YYfffdd3rwwQclXS8kW7duVYMGDSRJpUqVkiS7GzGdOXMmw9EdDw8PNW/eXM2bN9e///1vVa1aVUuWLFGdOnUUERGhH3/8UZUqVbql7l+NGjUyXMu8ZcsWWSyWDEe60lSvXl3btm1T3759bdO2bdt2U/HTYmR1F+pjx46pffv2euONN/Tkk0/aPRcREaGYmBglJyfny88ipqam6tq1aznOt3PnTrttsWPHDltetzrG4sWLq3379mrfvr2GDx+uO++8U999950efvhhlS5dWps3b7Z19qXrr93dd99t120Gbgb1l/pbEPW3YcOG+umnn+ymTZs2TWvXrtVXX32lO++8U9L1P27SH6EMCQnRHXfcket9iHoNV0XNvn1rdl6NT5IOHz6szZs366uvvlKFChXsnnviiSc0f/58DR06VNWrV9eCBQsUFxdnO9vjwIEDdk2A/P6e7Yj9+/fbPgekrPfBo0ePKioqSg0aNNCiRYsy3Mx03LhxGjFihN20qKgo/etf/9IzzzyT7Rg6d+6soUOH6sMPP9Q333yjtWvX2p6rV6+epOv3i8nq58J37dqla9euacqUKbam0ffff59tzPSCgoLUuXNnde7cWd27d1eTJk105MiRLPe5vEbzowAtWLBAnp6e6tmzZ4YvB126dNGwYcM0YcIE7du3T88++6yGDx+uunXrZvgNe4vFUmA/Z1S1alU98cQT6tevnz788EOFh4drxowZ+uWXX7Rs2TJJ14+wPPDAAxo/frwqV66sxMREvfLKK3Ydw+XLl+vUqVNq0qSJgoODtXv3bv3555+2D6lRo0apQYMG6tGjhwYNGqTg4GCdOHFCK1as0NChQ22nJudk2LBhioiI0NChQ9WnTx8dP35cL7zwgnr06JHlqXUvvfSSOnfurIiICLVp00ZbtmzR4sWLc4zVpEkTde3aVfXq1VNISIiOHj2qkSNHKjAwUM2aNcsw/+XLl9W2bVs1bdpUPXr0sHtdS5UqpQcffFDNmzfX448/rvHjx+vee++V1WrVtm3b5OfnZzvFs0uXLvL29tbcuXOzHNvo0aPVvHlzVahQQYmJidq8ebPeffdduw+rrHz55Zd6//33FRUVpa+//lpffPGF7bV2dIyZGT9+vO68807VqVNHPj4++uSTT+Th4aHKlStLkkaOHKkRI0aoUqVKatq0qdatW6dZs2ZluLM7cDOov9Tfgqi/xYoVU82aNe2mhYSEyMvLK8P0vEC9hquiZt++NTuvxidd/9WbKlWq6LHHHsvwXIcOHTR79mwNHTpU3bp105gxY9SjRw+98cYbunz5sl566SX5+PjYGjB5+T07Pj5ex44dk3T9rJ3Tp08rOjpaxYsXV6VKlSRJr732mho2bKjKlSvr2rVrWrp0qebNm6f3338/25x//vlnRUVFqV69epo4caJiYmJsz5UqVUpubm4KDw/PcINYDw8PhYaG5tgALF68uDp37qwhQ4aoYsWKat68ue25atWqqXv37urdu7cmTJighg0bKj4+Xnv27JHVatXLL7+sKlWqyBij9957T506dVJ0dLTdJTnZGTlypB544AHbGBcvXqzixYvbNYTyXQHcV6TIyermTTVq1MjyRl8xMTHGw8PDzJs3z3Tt2tVIyvKfu7v7LY8xuxuw3XjDnAsXLpg+ffqYoKAg4+XlZe6//36zbt06u2UOHTpkGjdubHx9fU3lypXNypUr7W7etHHjRtO8eXMTFBRkvL29TeXKlc348ePt1hEdHW0ee+wx4+/vb3x8fEylSpVM3759zfnz57Mc88aNG40kc+rUKdu0r776ytStW9d4eXmZkJAQ079/f3P58uVsc3/vvfdMmTJljI+Pj2ndurWZO3dujjfce+utt0xkZKQJDg42Xl5eply5cqZr167m0KFDmcZKu8lVZv/Sxn/58mXz8ssvm7vuust4enqa0NBQ06ZNG7Nx40bbOiMjI3O8Md6gQYNMpUqVjI+PjylZsqSpV6+emTlzpklJSclymbQbzU2dOtU89thj5o477jBlypQx7733nt18OY0xq5t5zZgxw9StW9f4+fkZPz8/c//999tufGXM9ZuCjRs3zpQvX954eHiYihUrmilTptitI7ObOfXo0SPb7ZGW15IlSzI8N3v27ExvoJfZ696lSxduoHcboP5SfzOLVZD190b5ecNT6jX1+nZHzXbNmn0z47vR1atXTVBQkHn11VczfT46OtpIstWz3bt3m/vvv994eXmZypUrm+XLl5uAgAAzefJk2zJ5VefT6s+N/9Iv9/zzz5vy5csbb29vExgYaBo1amSWL1+e7XqNub5tcvq8yowjNzxNs2fPHiPJTJgwIcNzSUlJZuzYsaZKlSrG09PTBAcHm2bNmplly5bZ5pkyZYopW7as8fHxMU2aNDH/+c9/jCTz3Xff2W2fG+vz66+/bqpXr258fX1NiRIlTLNmzcy2bdscGnNesRiTyUWaAIqc5ORkeXp6asmSJXY3FwMAFC7UawDI3vHjx1WpUiV9/fXXdvdhgvTVV1+pQ4cOOnXqlO1SrKKCy14AAAAAALetBQsWqFy5cipfvrxOnDihYcOGqUKFCmrVqpWzh1ZoJCQk6Pfff9ebb76pbt26FbnGhyS5OXsAAAAAAADcrJiYGD399NOqVq2aunbtqooVK2rLli0F9ksut4OxY8eqVq1a8vLy0rhx45w9HKfgshcAAAAAAODSuOwFAAAAKAJSU1M1YsQIBQYGasSIETp79qwmT56s+Ph4VahQQYMGDZKHh4eSkpI0ffp0HT9+XMWLF9fgwYOL5CnyAFwLl70AAAAARcDXX39t9zOmn3zyidq2baupU6eqWLFi2rBhgyRpw4YNKlasmKZNm6a2bdtq0aJFzhoyAOQZzvzIxF9//ZXrZYKDg+1+h7mgOTM+uZN7UYt/K7HDwsLyeDRFw+1Wl3l/kHtRi3+75l6UanJsbKz27dun9u3ba/Xq1TLG6MCBA3rhhRckSc2bN9fnn3+uBx98UHv27FGHDh0kSQ0aNNDcuXNljJHFYsk2xs3Uamdx9j6bl8ilcCKXvJUX9ZrmBwAAAODi5s+fr65du+rKlSuSpLi4OPn6+srd3V2SFBgYKKvVKkmyWq0KCgqSJLm7u8vX11dxcXEqUaKE3TrXrVundevWSZLGjRun4ODggkrnlnl4eNxW480OuRRO5FL40PwAAAAAXNjevXvl7++vihUr6sCBAznOn9nvIWR21kdUVJSioqJsj519ZDg3CsOR7LxCLoUTueQtzvwAAAAAkK3Dhw9rz5492r9/vxITE3XlyhXNnz9fCQkJSklJkbu7u6xWqwIDAyVJQUFBio2NVVBQkFJSUpSQkCA/Pz8nZwEAt4YbngIAAAAurHPnzvrggw80Y8YMDR48WDVr1tTzzz+vGjVqaOfOnZKkTZs2KSIiQpJUr149bdq0SZK0c+dO1ahRI8f7fQBAYUfzAwAAACiCunTpotWrV2vQoEGKj49Xy5YtJUktW7ZUfHy8BvmLcbYAACAASURBVA0apNWrV6tLly5OHikA3DouewEAAACKiBo1aqhGjRqSpNDQUL3zzjsZ5vHy8tKQIUMKemgAkK9ofgA34eRJd02YUFxWq4cCA0tq2LA4lSuX4uxhAUCRRV0GABQGfB4VXjQ/gFw6edJdnToF6vffPf9viq/27fPUp59aKWwA4ATUZQBAYcDnUeHGPT+AXJowoXi6gnbd7797asKE4k4aEQAUbdRlAEBhwOdR4UbzA8ilM2fcM53+99+ZTwcA5C/qMgCgMODzqHCj+QHkUunSmZ+yFhrKqWwA4AzUZQBAYcDnUeFG8wPIpWHD4nTXXUl20+66K0nDhsU5aUQAULRRlwEAhQGfR4UbNzwFcqlcuRR9+qn1/+7i7KPAwKvcxRkAnIi6DAAoDPg8KtxofgA3oVy5FE2ffkHBwcGKibng7OEAQJFHXQYAFAZ8HhVeXPYCAAAAAABcGs0PAAAAAADg0m67y14uX76sDz74QKdOnZLFYtFzzz2nsLAwTZo0SefOnVNISIhefPFF+fn5yRijefPmaf/+/fL29lb//v1VsWJFZ6cAAAAAAAAK0G135se8efNUp04dTZ48Wf/v//0/lS1bVitXrlStWrU0depU1apVSytXrpQk7d+/X2fOnNHUqVPVt29fzZkzx8mjBwAAAAAABe22an4kJCTo0KFDatmypSTJw8NDxYoV0+7du9WsWTNJUrNmzbR7925J0p49e9S0aVNZLBZVqVJFly9f1vnz5502fgAAAAAAUPBuq8tezp49qxIlSmjmzJn6/fffVbFiRfXs2VMXL15UQECAJCkgIECXLl2SJFmtVgUHB9uWDwoKktVqtc0LAAAAAABc323V/EhJSdGJEyfUu3dvVa5cWfPmzbNd4pIZY0yGaRaLJcO0devWad26dZKkcePG2TVMHOXh4XFTy+UVZ8Ynd3IvavGdnTsAAACA3Lmtmh9BQUEKCgpS5cqVJUkNGjTQypUr5e/vr/PnzysgIEDnz59XiRIlbPPHxMTYlo+Njc30rI+oqChFRUXZHqdfxlHXf8c598vlFWfGJ3dyL2rxbyV2WFhYHo8GAAAAQE5uq+ZHyZIlFRQUpL/++kthYWH66aefFB4ervDwcG3evFnt2rXT5s2bdf/990uSIiIi9M033ygyMlJHjx6Vr68vl7wAQB7jV7gAAABQ2N1WzQ9J6t27t6ZOnark5GSVKlVK/fv3lzFGkyZN0oYNGxQcHKwhQ4ZIkurWrat9+/bp+eefl5eXl/r37+/k0QOA60n7Fa6XXnpJycnJunbtmlasWKFatWqpXbt2WrlypVauXKmuXbva/QrX0aNHNWfOHI0dO9bZKQAAAMDF3XbNj/Lly2vcuHEZpr/22msZplksFvXp06cghgUARVLar3AN+P/s3Xl0VFW6//9PVSUBQ0JIUiHIEGSQtkEUJCgIMka0hauRi4gKii1N0wFi4CuDehW6FUQGQUxQnFBsWsABXNpe7RsjREHaYEAmZVARRUKGChkYTFJ1fn/wo5qYBJJUpaa8X2uxFnVyztn7qVP1pPLU3vtMnizp7HooQUFBysrK0ty5cyWdvQvX3LlzNXbs2BrvwsWoPABoOGVlZZozZ44qKipkt9vVp08fjR49Wmlpadq3b59CQ0MlSZMnT9Zll13GKD0AAcnvih8AAN/RUHfh8veFqL29KC6xE3tjatsX2vd1wcHBmjNnjpo2baqKigo9/vjj6tGjhyRp3Lhx6tOnT6X9GaUHIBBR/AAA1FtD3YXL3xeiZkFgYm9s7ftr7I1lEWqTyaSmTZtKOpu37XZ7tbn3HEbpAQhEZm93AADgv6q7C9cPP/zgvAuXpHrdhQsA4F4Oh0MzZszQhAkT1L17d2fefvPNN/XQQw/ptddeU3l5uaSaR+kBgD9j5AcAoN64CxcA+Aez2axFixbp5MmTWrx4sY4cOaK7775bLVq0UEVFhVauXKn33ntPo0aNqvUoPXdMUfSWQJoqRSy+iVh8D8UPAIBLuAsXAPiPZs2aqWvXrtq5c6duvfVWSWfXBBk8eLDef/99SbUfpeeOKYre4u2pWu5ELL6JWNzLHdMUKX4AAFzCXbgAwLcVFxfLYrGoWbNmKisr0+7du3Xbbbc51/EwDENZWVlq166dJEbpAQhMFD8AAACAAFZYWKi0tDQ5HA4ZhqG+ffuqV69e+utf/+q8G1f79u01ceJESYzSAxCYKH4AAAAAAax9+/ZauHBhle1z5sypdn9G6QEIRNztBQAAAAAABDSKHwAAAAAAIKBR/AAAAAAAAAGN4gcAAAAAAAhoFD8AAAAAAEBAo/gBAAAAAAACGsUPAAAAAAAQ0Ch+AAAAAACAgEbxAwAAAAAABDSKHwAAAAAAIKBR/AAAAAAAAAGN4gcAAAAAAAhoFD8AAAAAAEBAo/gBAAAAAAACGsUPAAAAAAAQ0Ch+AAAAAACAgEbxAwAAAAAABLQgb3egriZPnqymTZvKbDbLYrFowYIFKi0t1dKlS5WXl6eYmBhNmzZNYWFhMgxDq1at0o4dO9SkSRMlJSWpY8eO3g4BAAAAAAB4kN8VPyRpzpw5at68ufPxxo0b1b17dyUmJmrjxo3auHGjxo4dqx07dignJ0fLly/XwYMH9fLLL2v+/Ple7DkAAADgWWVlZZozZ44qKipkt9vVp08fjR49Wrm5uVq2bJlKS0vVoUMHTZ06VUFBQSovL1dqaqq+//57hYeHKyUlRS1btvR2GADgkoCY9pKVlaWBAwdKkgYOHKisrCxJ0vbt2zVgwACZTCZ16dJFJ0+eVGFhoTe7CgAAAHhUcHCw5syZo0WLFmnhwoXauXOnDhw4oL///e8aPny4li9frmbNmikjI0OSlJGRoWbNmum5557T8OHDtWbNGi9HAACu88vix7x58zRr1iylp6dLkoqKihQZGSlJioyMVHFxsSTJZrPJarU6j4uOjpbNZvN8hwEAAAAvMZlMatq0qSTJbrfLbrfLZDJp79696tOnjyRp0KBBlb5AHDRokCSpT58+2rNnjwzD8ErfAcBd/G7ayxNPPKGoqCgVFRXpySefVOvWrWvct7okbTKZqmxLT093FlIWLFhQqWBSW0FBQfU6zl282T6xE3tja9/bsQMAUFcOh0OzZs1STk6ObrrpJsXGxio0NFQWi0WSFBUV5fyS0GazKTo6WpJksVgUGhqqkpKSStPOAcDf+F3xIyoqSpIUERGh3r1769ChQ4qIiFBhYaEiIyNVWFjoTMzR0dHKz893HltQUOAcIXK+hIQEJSQkOB+ff0xtWa3Weh3nLt5sn9iJvbG170rbFyrY+isWogYA32c2m7Vo0SKdPHlSixcv1tGjR2vc15NfIHpLIH2RQSy+iVh8j18VP86cOSPDMHTJJZfozJkz2rVrl0aNGqX4+Hht3rxZiYmJ2rx5s3r37i1Jio+P10cffaR+/frp4MGDCg0Nrbb4AQBwDQtRA4B/aNasmbp27aqDBw/q1KlTstvtslgsstlszi8Zo6OjVVBQoOjoaNntdp06dUphYWFVzuWOLxC9xdtf4rgTsfgmYnEvd3yB6FdrfhQVFenxxx/XjBkz9Mgjj+iaa65Rjx49lJiYqF27dik5OVm7du1SYmKiJKlnz55q2bKlkpOTtXLlSk2YMMHLEQBA48BC1ADgO4qLi3Xy5ElJZ+/8snv3brVp00bdunXTtm3bJEmbNm1SfHy8JKlXr17atGmTJGnbtm3q1q1btSM/AMCf+NXIj9jYWC1atKjK9vDwcD3++ONVtptMJgoeAOAB8+bNkyTdeOONSkhIqPNC1L8dlefvazF5e3gosRN7Y2rbF9r3dYWFhUpLS5PD4ZBhGOrbt6969eqltm3batmyZVq7dq06dOigIUOGSJKGDBmi1NRUTZ06VWFhYUpJSfFyBADgOr8qfgAAfE9DLETt72sxeXt4KLETe2Nq25X2A3Edpuq0b99eCxcurLI9NjZWTz31VJXtISEhmj59uie6BgAe41fTXgAAvudCC1FLqtdC1AAAAIA7UfwAANTbmTNndPr0aef/d+3apbi4OOdC1JKqLESdmZkpwzB04MABFqIGAACARzDtBQBQb0VFRVq8eLEkyW63q3///urRo4c6deqkpUuXKiMjQ1ar1Tl8umfPnsrOzlZycrJCQkKUlJTkze4DAACgkaD4AQCoNxaiBgAAgD9g2gsAAAAAAAhoFD8AAAAAAEBAo/gBAAAAAAACGsUPAAAAAAAQ0Ch+AAAAAACAgEbxAwAAAAAABDSKHwAAAAAAIKBR/AAAAAAAAAGN4gcAAAAAAAhoFD8AAAAAAEBAo/gBAAAAAAACGsUPAAAAAAAQ0Ch+AAAAAACAgEbxAwAAAAAABDSKHwAAAAAAIKAFebsDAAAAABpOfn6+0tLSdOLECZlMJiUkJOiWW27R+vXr9cknn6h58+aSpLvuukvXXHONJGnDhg3KyMiQ2WzW/fffrx49engzBABwGcUPAAAAIIBZLBaNGzdOHTt21OnTpzV79mxdddVVkqThw4fr1ltvrbT/zz//rK1bt+qZZ55RYWGhnnjiCT377LMymxk0DsB/kcEAAACAABYZGamOHTtKki655BK1adNGNputxv2zsrJ0/fXXKzg4WC1btlSrVq106NAhT3UXABoEIz8AAACARiI3N1c//PCDOnfurG+//VYff/yxMjMz1bFjR917770KCwuTzWbT5Zdf7jwmKiqq2mJJenq60tPTJUkLFiyQ1Wr1WByuCgoK8qv+Xgix+CZi8T0UPwAAAIBG4MyZM1qyZInGjx+v0NBQDRs2TKNGjZIkrVu3TqtXr1ZSUpIMw6jV+RISEpSQkOB8nJ+f3yD9bghWq9Wv+nshxOKbiMW9Wrdu7fI5mPYCAAAABLiKigotWbJEN9xwg6677jpJUosWLWQ2m2U2mzV06FB99913kqTo6GgVFBQ4j7XZbIqKivJKvwHAXfxy5IfD4dDs2bMVFRWl2bNnKzc3V8uWLVNpaak6dOigqVOnKigoSOXl5UpNTdX333+v8PBwpaSkqGXLlt7uPgAAAOAxhmHohRdeUJs2bTRixAjn9sLCQkVGRkqSvvzyS7Vr106SFB8fr+XLl2vEiBEqLCzUsWPH1LlzZ6/0HQDcxePFjw8//FD9+/d33lKrvudo06aNTp8+LUn6+9//ruHDh6tfv3568cUXlZGRoWHDhikjI0PNmjXTc889py1btmjNmjWaNm2au0IBgIDgjrwMAGhYruTq/fv3KzMzU3FxcZoxY4aks7e13bJliw4fPiyTyaSYmBhNnDhRktSuXTv17dtX06dPl9ls1gMPPMCdXgD4PY8XP3bv3q0333xT3bp104ABA9S7d28FBwfX+viCggJlZ2dr5MiR+uCDD2QYhvbu3asHH3xQkjRo0CC99dZbGjZsmLZv36477rhDktSnTx+9+uqrMgxDJpOpQWIDAH/kal4GADQ8V3L1FVdcofXr11fZfs0119R4zMiRIzVy5Mh69xcAfI3Hix+zZs1SSUmJtmzZon/+85966aWXdN1112nAgAHq2rXrRY9/7bXXNHbsWOeoj5KSEoWGhspisUiqvBq1zWZTdHS0pLP3Nw8NDVVJSUmVirk7Vqr29gq43myf2Im9sbXv7djdzdW8zFREAGh4ruZqAGjsvLLmR3h4uG6++WbdfPPN+vHHH5WamqpPP/1UVqtVQ4cO1S233KKmTZtWOe6rr75SRESEOnbsqL179160nepWqq5u1Ic7Vqr29gq43myf2Im9sbXvStvuWKm6IdQ3L0tMRQQAT3ElVwNAY+e1yXu7d+/WihUrNHfuXEVERGjKlCmaMmWKfvjhB82fP7/aY/bv36/t27dr8uTJWrZsmfbs2aPXXntNp06dkt1ul1R5NerzV6q22+06deqUwsLCPBMgAPiZ+uTlc1MRhw4dKknOqYh9+vSRdHYqYlZWliRp+/btGjRokKSzUxH37NlT69spAgDOqk+uBgB4YeTH6tWrtXXrVoWGhmrAgAFasmRJpVtnXX755br//vurPfbuu+/W3XffLUnau3ev3n//fSUnJ+uZZ57Rtm3b1K9fP23atEnx8fGSpF69emnTpk3q0qWLtm3bpm7durHeBwD8hit5uSGmIgIAqnIlVwMAvFD8KC8v10MPPVTj7bKCgoK0YMGCOp3znnvu0bJly7R27Vp16NBBQ4YMkSQNGTJEqampmjp1qsLCwpSSkuJy/wEg0NQ3LzfUVETJ/9di8va6MMRO7I2pbV9o3xMa4jM0ADQmHi9+3H777QoJCam0rbS0VGVlZc7qdZs2bS56nm7duqlbt26SpNjYWD311FNV9gkJCdH06dPd0GsACFz1zcvnpiLu2LFDZWVlOn36dKWpiBaLpdqpiNHR0RediujvazGxJg6xN7b2/TV2X12HqTru+gwNAI2Vx9f8WLRokXMI9Dk2m02LFy/2dFcAAKp/Xr777rv1wgsvKC0tTSkpKbryyiuVnJysbt26adu2bZJU7VRESUxFBIA64jM0ALjG48WPX375RXFxcZW2xcXF6ejRo57uCgBA7s/L99xzjz744ANNnTpVpaWllaYilpaWaurUqfrggw90zz33uNx3AGgs+AwNAK7x+LSX5s2bKycnR61atXJuy8nJUXh4uKe7AgCQe/IyUxEBoGHxGRoAXOPx4sfgwYO1ZMkSjRkzRrGxscrJydG6deuc3wwCADyLvAwAvo9cDQCu8XjxIzExUUFBQXrjjTecC98NGTJEI0aM8HRXAAAiLwOAPyBXA4BrPF78MJvNuvXWW3Xrrbd6umkAQDXIywDg+8jVAOAajxc/pLMLNh0+fFhnzpyptJ1hewDgHeRlAPB95GoAqD+PFz/effddvfPOO2rfvr2aNGlS6WckbgDwPPIyAPg+cjUAuMbjxY8PP/xQ8+fPV/v27T3dNACgGuRlAPB95GoAcI3Z0w2GhISoTZs2nm4WAFAD8jIA+D5yNQC4xuPFjzvvvFOvvvqqCgsL5XA4Kv0DAHgeeRkAfB+5GgBc4/FpLytWrJAkffLJJ1V+tm7dOk93BwAaPfIyAPg+cjUAuMbjxY/U1FRPNwkAuADyMgD4PldydX5+vtLS0nTixAmZTCYlJCTolltuUWlpqZYuXaq8vDzFxMRo2rRpCgsLk2EYWrVqlXbs2KEmTZooKSlJHTt2dGM0AOB5Hi9+xMTESJIcDoeKiooUGRnp6S4AAM5DXgYA3+dKrrZYLBo3bpw6duyo06dPa/bs2brqqqu0adMmde/eXYmJidq4caM2btyosWPHaseOHcrJydHy5ct18OBBvfzyy5o/f35DhQYAHuHxNT9OnjypZ599Vvfcc4+Sk5MlSdu3b9fatWs93RUAgMjLAOAPXMnVkZGRzpEbl1xyidq0aSObzaasrCwNHDhQkjRw4EBlZWU5zztgwACZTCZ16dJFJ0+eVGFhYQNFBgCe4fHix0svvaTQ0FCtWLFCQUFnB5506dJFW7du9XRXAAAiLwOAP3BXrs7NzdUPP/ygzp07VxpBEhkZqeLiYkmSzWaT1Wp1HhMdHS2bzeamSADAOzw+7WX37t1auXKlM2lLUvPmzVVUVOTprgAARF4GAH/gjlx95swZLVmyROPHj1doaGiN+xmGUWWbyWSqsi09PV3p6emSpAULFlQqmPi6oKAgv+rvhRCLbyIW3+Px4kdoaKhKSkoqzVPMz89njjkAeAl5GQB8n6u5uqKiQkuWLNENN9yg6667TpIUERGhwsJCRUZGqrCwUM2bN5d0dqRHfn6+89iCgoJq20lISFBCQkKl/vgLq9XqV/29EGLxTcTiXq1bt3b5HB6f9jJ06FAtWbJEe/bskWEYOnDggNLS0nTjjTd6uisAAJGXAcAfuJKrDcPQCy+8oDZt2mjEiBHO7fHx8dq8ebMkafPmzerdu7dze2ZmprOd0NBQCuIA/J7HR37cdtttCg4O1iuvvCK73a7nn3/eebstAIDnkZcBwPe5kqv379+vzMxMxcXFacaMGZKku+66S4mJiVq6dKkyMjJktVo1ffp0SVLPnj2VnZ2t5ORkhYSEKCkpqUFjAwBP8Hjxw2Qyafjw4Ro+fLinmwYAVIO8DAC+z5VcfcUVV2j9+vXV/uzxxx+vtq0JEybUuR0A8GUeL37s2bOnxp9deeWVHuwJAEAiLwOAPyBXA4BrPF78eP755ys9Li4uVkVFhaKjo5Wamurp7gBAo0deBgDfR64GANd4vPiRlpZW6bHD4dA777yjSy65xNNdAQCIvAwA/oBcDQCu8fjdXqp0wGzWyJEj9d5773m7KwAAkZcBwB+QqwGgbjw+8qM6u3btktl88TpMWVmZ5syZo4qKCtntdvXp00ejR49Wbm6uli1bptLSUnXo0EFTp05VUFCQysvLlZqaqu+//17h4eFKSUlRy5YtPRARAPi32uZlAID3kKsBoPY8Xvz4y1/+UulxWVmZysrKarWidHBwsObMmaOmTZuqoqJCjz/+uHr06KEPPvhAw4cPV79+/fTiiy8qIyNDw4YNU0ZGhpo1a6bnnntOW7Zs0Zo1azRt2rSGCg0A/JIreRkA4BnkagBwjceLH1OnTq30uEmTJrr00ksVGhp60WNNJpOaNm0qSbLb7bLb7TKZTNq7d68efPBBSdKgQYP01ltvadiwYdq+fbvuuOMOSVKfPn306quvyjAMmUwmN0cFAP7LlbzMiDwA8AxXcjUAwAvFj65du7p0vMPh0KxZs5STk6ObbrpJsbGxCg0NlcVikSRFRUXJZrNJkmw2m6KjoyVJFotFoaGhKikpUfPmzSudMz09Xenp6ZKkBQsWyGq11rlfQUFB9TrOXbzZPrETe2Nr39uxu5sreZkReQDgGa5+hgaAxs7jxY/nnnuuViMvpkyZUu12s9msRYsW6eTJk1q8eLGOHj1a4zkMw6iyrbq2ExISlJCQ4Hycn59/0f79ltVqrddx7uLN9omd2Btb+6603bp1azf3xnWu5GVG5AGAZ7j6GRoAGjuPr5DUrFkzZWVlyeFwKCoqSg6HQ1lZWQoNDVVsbKzzX23O07VrVx08eFCnTp2S3W6XdHa0R1RUlCQpOjpaBQUFks5+KD916pTCwsIaLjgA8EOu5mWHw6EZM2ZowoQJ6t69e71G5AEALsxdn6EBoLHy+MiPY8eOafbs2fr973/v3Pbtt9/qnXfe0R//+McLHltcXCyLxaJmzZqprKxMu3fv1m233aZu3bpp27Zt6tevnzZt2qT4+HhJUq9evbRp0yZ16dJF27ZtU7du3fh2EQB+w5W8LDXMiDx/n47o7alRxE7sjaltX2jfE1zN1QDQ2Hm8+HHgwAFdfvnllbZ17txZBw4cuOixhYWFSktLk8PhkGEY6tu3r3r16qW2bdtq2bJlWrt2rTp06KAhQ4ZIkoYMGaLU1FRNnTpVYWFhSklJaZCYAMCfuZKXz1fdiDyLxVLtiLzo6OgLjsjz9+mITAsj9sbWvr/G7otTEWvirlwNAI2Vx4sfHTp00Jtvvqk777xTISEhKisr0/r163XZZZdd9Nj27dtr4cKFVbbHxsbqqaeeqrI9JCRE06dPd0e3ASBguZKXGZEHAJ7hSq4GAHih+JGUlKTly5frvvvuU1hYmEpLS9WpUyclJyd7uisAALmWlxmRBwCewWdoAHCNx4sfLVu21JNPPqn8/HwVFhYqMjIy4OdoAoAvcyUvMyIPADyDz9AA4BqP3+1FkkpKSrRv3z7t27dPVqtVNpvNeVcWAIDnkZcBwPeRqwGg/jxe/Ni3b59SUlL02Wef6Z133pEk5eTk6KWXXvJ0VwAAIi8DgD8gVwOAazxe/HjttdeUkpKiRx99VBaLRdLZlaq/++47T3cFACDyMgD4A3I1ALjG42t+5OXlqXv37pU7ERQku93u6a4AAEReBgB/4EquXrFihbKzsxUREaElS5ZIktavX69PPvlEzZs3lyTddddduuaaayRJGzZsUEZGhsxms+6//3716NHDzdEAgOd5fORH27ZttXPnzkrbdu/erbi4OE93BQAg8jIA+ANXcvWgQYP0yCOPVNk+fPhwLVq0SIsWLXIWPn7++Wdt3bpVzzzzjB599FG98sorcjgc7gkCALzI4yM/xo0bp6efflo9e/ZUWVmZXnzxRX311VeaMWOGp7sCABB5GQD8gSu5umvXrsrNza1VO1lZWbr++usVHBysli1bqlWrVjp06JC6dOniaggA4FUeL3506dJFixYt0meffaamTZvKarVq/vz5io6O9nRXAAAiLwOAP2iIXP3xxx8rMzNTHTt21L333quwsDDZbDZdfvnlzn2ioqJks9ncEQIAeJVHix8Oh0N/+9vf9Oijj+q2227zZNMAgGqQlwHA9zVErh42bJhGjRolSVq3bp1Wr16tpKQkGYZR63Okp6crPT1dkrRgwQJZrVa39M0TgoKC/Kq/F0IsvolYfI9Hix9ms1m5ubl1SqoAgIZDXgYA39cQubpFixbO/w8dOlRPP/20JCk6OloFBQXOn9lsNkVFRVV7joSEBCUkJDgf5+fnu61/Dc1qtfpVfy+EWHwTsbhX69atXT6Hxxc8HTVqlF566SXl5eXJ4XBU+gcA8DzyMgD4Pnfn6sLCQuf/v/zyS7Vr106SFB8fr61bt6q8vFy5ubk6duyYOnfu7JYYAMCbPL7mx8qVKyVJmZmZVX62bt06T3cHABo98jIA+D5XcvWyZcu0b98+lZSUaNKkSRo9erT27t2rw4cPy2QyKSYmRhMnTpQktWvXTn379tX06dNlNpv1wAMPyGz2+PelAOB2Hit+nDhxQi1atFBqaqqnmgQAXAB5GQB8nztydUpKSpVtQ4YMqXH/kSNHauTIkfVuDwB8kcfKuA8++KAkKSYmRjExMXr99ded/z/3iAPv8gAAIABJREFUDwDgOeRlAPB95GoAcA+PFT9+u0DT3r17PdU0AKAa5GUA8H3kagBwD48VP0wmk6eaAgDUAnkZAHwfuRoA3MNja37Y7Xbt2bPH+djhcFR6LElXXnmlp7oDAI0eeRkAfB+5GgDcw2PFj4iICD3//PPOx2FhYZUem0wmFt0DAA8iLwOA7yNXA4B7eKz4kZaW5qmmAAC1QF4GAN9HrgYA9+Cm3QAAAAAAIKBR/AAAAAAAAAGN4gcAAAAAAAhoFD8AAAAAAEBAo/gBAAAAAAACmsfu9uIO+fn5SktL04kTJ2QymZSQkKBbbrlFpaWlWrp0qfLy8hQTE6Np06YpLCxMhmFo1apV2rFjh5o0aaKkpCR17NjR22EAAAAAAAAP8quRHxaLRePGjdPSpUs1b948ffzxx/r555+1ceNGde/eXcuXL1f37t21ceNGSdKOHTuUk5Oj5cuXa+LEiXr55Ze9HAEAAAAAAPA0vxr5ERkZqcjISEnSJZdcojZt2shmsykrK0tz586VJA0cOFBz587V2LFjtX37dg0YMEAmk0ldunTRyZMnVVhY6DwHAMA1jMgDAACAP/CrkR/ny83N1Q8//KDOnTurqKjIWdCIjIxUcXGxJMlms8lqtTqPiY6Ols1m80p/ASAQMSIPAAAA/sCvRn6cc+bMGS1ZskTjx49XaGhojfsZhlFlm8lkqrItPT1d6enpkqQFCxZUKpjUVlBQUL2Ocxdvtk/sxN7Y2vd27L6EEXkAAADwB35X/KioqNCSJUt0ww036LrrrpMkRUREOD88FxYWqnnz5pLOjvTIz893HltQUFDtB+yEhAQlJCQ4H59/TG1ZrdZ6Hecu3myf2Im9sbXvStutW7d2c298hysj8n6bm/29KO3tAhmxE3tjatsX2gcA+D6/Kn4YhqEXXnhBbdq00YgRI5zb4+PjtXnzZiUmJmrz5s3q3bu3c/tHH32kfv366eDBgwoNDeXbRQBoAO4ekefvRWmKg8Te2Nr319gDuSANAKjMr4of+/fvV2ZmpuLi4jRjxgxJ0l133aXExEQtXbpUGRkZslqtmj59uiSpZ8+eys7OVnJyskJCQpSUlOTN7gNAQGqIEXkAAACAO/lV8eOKK67Q+vXrq/3Z448/XmWbyWTShAkTGrpbANBoMSIPAPzDihUrlJ2drYiICC1ZskSSuDMXgEbFb+/2AgDwvnMj8vbs2aMZM2ZoxowZys7OVmJionbt2qXk5GTt2rVLiYmJks6OyGvZsqWSk5O1cuVKCtQA4CGDBg3SI488Umkbd+YC0Jj41cgPAIBvYUQeAPiHrl27Kjc3t9I27swFoDGh+AEAAAA0Qr5wZy5vCaQ7BBGLbyIW30PxAwAAAICTJ+/M5S3evkOROxGLbyIW93LH3blY8wMAAABohM7dmUsSd+YCEPAofgAAAACN0Lk7c0mqcmeuzMxMGYahAwcOcGcuAAGBaS8AAABAgFu2bJn27dunkpISTZo0SaNHj1ZiYqKWLl2qjIwMWa1WTZ8+XdLZO3NlZ2crOTlZISEhSkpK8nLvAcB1FD8AAACAAJeSklLtdu7MBaCxYNoLAAAAAAAIaBQ/AAAAAABAQKP4AQAAAAAAAhrFDwAAAAAAENAofgAAAAAAgIBG8QMAAAAAAAQ0ih8AAAAAACCgUfwAAAAAAAABjeIHAAAAAAAIaBQ/AAAAAABAQKP4AQAAAAAAAhrFDwAAAAAAENAofgAAAAAAgIBG8QMAAAAAAAQ0ih8AAAAAACCgUfwAAAAAAAABjeIHAAAAAAAIaEHe7kBdrFixQtnZ2YqIiNCSJUskSaWlpVq6dKny8vIUExOjadOmKSwsTIZhaNWqVdqxY4eaNGmipKQkdezY0csRAAAAAAAAT/Or4segQYN08803Ky0tzblt48aN6t69uxITE7Vx40Zt3LhRY8eO1Y4dO5STk6Ply5fr4MGDevnllzV//nwv9h4AAg9FaQDwf5MnT1bTpk1lNptlsVi0YMGCGnM5APgrv5r20rVr1ypJNysrSwMHDpQkDRw4UFlZWZKk7du3a8CAATKZTOrSpYtOnjypwsJCj/cZAALZoEGD9Mgjj1Tadq4ovXz5cnXv3l0bN26UpEpF6YkTJ+rll1/2RpcBANWYM2eOFi1apAULFkiqOZcDgL/yq+JHdYqKihQZGSlJioyMVHFxsSTJZrPJarU694uOjpbNZvNKHwEgUFGUBoDAVFMuB+AeR45YNGVKC40aFa0pU1royBGLt7sU8Pxq2ktdGIZRZZvJZKp23/T0dKWnp0uSFixYUKloUltBQUH1Os5dvNk+sRN7Y2vf27H7uroWpc/tez5/z8vefo0QO7E3prZ9of1AMG/ePEnSjTfeqISEhBpzOQDXHTli0ZgxUfrxx2DntuzsYK1da1NcnN2LPQtsfl/8iIiIUGFhoSIjI1VYWKjmzZtLOvuhOj8/37lfQUFBtR+wJSkhIUEJCQnOx+cfV1tWq7Vex7mLN9sndmJvbO270nbr1q3d3Bv/UZeitL/nZd4fxN7Y2vfX2BtzTj7fE088oaioKBUVFenJJ5+s9fPijkK1twRSwYxYfNOFYvl//8+iH3+sPNLjxx+D9eyzVr3+uu8VPwLluvh98SM+Pl6bN29WYmKiNm/erN69ezu3f/TRR+rXr58OHjyo0NDQGosfAAD3cUdRGgDgOVFRUZLO5u/evXvr0KFDNeby87mjUO0t3i7YuROx+KYLxfLjj9GSqk5zOXKkQvn5BQ3cs7rzhevijmK1X635sWzZMv3P//yPfvnlF02aNEkZGRlKTEzUrl27lJycrF27dikxMVGS1LNnT7Vs2VLJyclauXKlJkyY4OXeA0DjcK4oLalKUTozM1OGYejAgQMUpQHAB5w5c0anT592/n/Xrl2Ki4urMZcDcF2rVtWP7oiN9b1RH4HEr0Z+pKSkVLv98ccfr7LNZDJR8ACABrZs2TLt27dPJSUlmjRpkkaPHq3ExEQtXbpUGRkZslqtmj59uqSzRens7GwlJycrJCRESUlJXu49AKCoqEiLFy+WJNntdvXv3189evRQp06dqs3lAFw3c2aJsrODK6350b59uWbOLPFirwKfXxU/AAC+haI0APi32NhYLVq0qMr28PDwanM5ANfFxdm1dq1NCxeG6/hxi2Jj7Zo5s4TFThsYxQ8AAAAAADwoLs6u1NQT3u5Go+JXa34AAAAAAADUFcUPAAAAAAAQ0Ch+AAAAAACAgMaaHwAAAAAAXMCRIxYtXBiunByLWrVigVJ/RPEDAAAAAIAaHDli0ZgxUZVuTZudHay1a20UQPwI014AAAAAAKjBwoXhlQofkvTjj8FauDDcSz1CfVD8AAAAAACgBjk5lmq3Hz9e/Xb4JoofAAAAAADUoFWr6qe2xMYy5cWfUPwAAAAAAKAGM2eWqH378krb2rcv18yZJV7qEeqDBU8BAAAAAKhBXJxda9fatHBhuI4ftyg2lru9+COKHwAAAAAAXEBcnF2pqSe83Q24gGkvAAAAAAAgoFH8AAAAAAAAAY3iBwAAAAAACGis+QEACChHjli0cGG4bLYgRUW1YEEyAADgt859rsnJsahVKxZadQXFDwBAwDhyxKIxY6L044/B//+WUGVnB2vtWhsfFAAAQCW+Xlio+rlGNX6u8fVYfAHFDwBAwFi4MLzSBwRJ+vHHYC1cGM4K7QAA+Lna/oFfm/3qUljwltp+rvGHWHwBxQ8XMbwaaDx4v/u+nBxLtduPH69+OwD/Rl5uWDt37tSqVavkcDg0dOhQJSYmuuW8fEPt3+py/eparLjQe7m2f+DXdj9/+MKktp9r6hJLQ7z/3FmUakgUP1zA8Gqg8eD97h9atar+WsTGco2AQENeblgOh0OvvPKK/ud//kfR0dF6+OGHFR8fr7Zt27p0Xr6h9m91nYZRv2JF9e/l2v6BX9v9/OELk9p+rqltLA3x/nN3UaohcbcXF1zojQUgsPB+9w8zZ5aoffvyStvaty/XzJklXuoRgIZCXm5Yhw4dUqtWrRQbG6ugoCBdf/31ysrKcvm8XDf/VpfrV9t9a7tfbf/Ar+1+/vCFSW0/19Q2loZ4/7n7Ojckih8u8IdqIQD34P3uH+Li7Fq71qbbbz+lgQMduv32U3ybCAQo8nLDstlsio6Odj6Ojo6WzWZz+bxcN/9Wl+vnrWJFbffzhy9Mzv9cc/31v9b4uaa2sTTE+8/d17khMe3FBf5QLQTgHrzf/UdcnF2pqSdktVqVn+8bc3YBuB95uWEZhlFlm8lkqvQ4PT1d6enpkqQFCxbIarVe9Lzt21v0xRdVt8fFBdXqeHcJCvJsew3Jk7HU5frVdt/a7vfUU9LXXxv6/vv/vA47djT01FP1289qlT7+2NDcuXYdO2bSpZcamjvXUIcOkRd8DmrLXdfFapXWrnWeVVLV/tU2lvq+/y4Ui7uvc0Oi+OGCmTNLlJ0dXGn4jq9VCwG4B+93APAt5OWGFR0drYKCAufjgoICRUZW/kMqISFBCQkJzsf5+fkXPe+DD1r0xRdRVa7bgw/alJ/vucLV2QL5xfvrDzwZS12uX233re1+4eHSmjVnF8w8ftyi2NizC2aGh9t1fvi13e/cvkuWVN7mrqfS06+x2sRS3/ffhWJx93WuSevWrS+6z8UEfPGjoVaplv4zDOnsysRNFRV1htWqgQDF+919GjIvA2g8yMsNq1OnTjp27Jhyc3MVFRWlrVu3Kjk52eXznn/dzv/DlOvmH+py/Wq7b13ey+dGd9amn75yxxZf0hDvv/pcZ2+99wO6+NFQq1Sfj+HVQOPB+911nsjLABoP8nLDsVgs+uMf/6h58+bJ4XBo8ODBateunVvOzR+m/q0u16+uxQreyw2vId5//lKUCujix/mrVEtyrlLNh2wA8A7yMgD4j2uuuUbXXHONt7sBAG4R0Hd7aahVqgEA9UNeBgAAgDcE9MiP2qxSLdVvperf8vaK0d5sn9iJvbG17+3Y/Vljycvefo0QO7E3prZ9oX0AgO8L6OJHbVapluq3UvVveXvFaG+2T+zE3tjad6Vtd6xU7c8aS17m/UHsja19f429sedkAGhMAnray/mrVFdUVGjr1q2Kj4/3drcAoNEiLwMAAMAbAnrkR0OuUg0AqDvyMgAAALzBZFQ3ARsAAAAAACBABPS0F0+aPXt2o22f2L2H2Btf26i9xvwaIfbG17a322/MscM/BdJrhlh8E7H4HoofAAAAAAAgoFH8AAAAAAAAAc0yd+7cud7uRKDo2LFjo22f2L2H2Btf26i9xvwaIfbG17a322/MscM/BdJrhlh8E7H4FhY8BQAAAAAAAY1pLwAAAAAAIKAFebsD/uSLL77QW2+9paNHj2r+/Pnq1KlTtfvt3LlTq1atksPh0NChQ5WYmChJys3N1bJly1RaWqoOHTpo6tSpCgqq/SUoLS3V0qVLlZeXp5iYGE2bNk1hYWGV9tmzZ49ef/115+NffvlFDz74oK699lqlpaVp3759Cg0NlSRNnjxZl112mdvalqQ777xTcXFxkiSr1apZs2Z5LPbDhw/rpZde0unTp2U2mzVy5Ehdf/31klSv2Gu6jueUl5crNTVV33//vcLDw5WSkqKWLVtKkjZs2KCMjAyZzWbdf//96tGjR61jrU3bH3zwgT755BNZLBY1b95cf/nLXxQTEyOp5mvgzvY3bdqkN954Q1FRUZKkm2++WUOHDnX+7N1335UkjRw5UoMGDXJr26+99pr27t0rSSorK1NRUZFee+01Sa7HvmLFCmVnZysiIkJLliyp8nPDMLRq1Srt2LFDTZo0UVJSknMIoKtxo368mZe9mZNr277UMHnZGzlZIi+Tl8nLcE1NvzNyc3M1bdo0tW7dWpJ0+eWXa+LEid7s6kVd6Pefq/nOm9avX69PPvlEzZs3lyTddddduuaaa7zcq7q5WM70J5MnT1bTpk1lNptlsVi0YMECb3fJNQZq7aeffjKOHj1qzJkzxzh06FC1+9jtdmPKlClGTk6OUV5ebjz00EPGTz/9ZBiGYSxZssT4/PPPDcMwjJUrVxoff/xxndp/4403jA0bNhiGYRgbNmww3njjjQvuX1JSYowfP944c+aMYRiGkZqaanzxxRd1arOubY8dO7ba7Z6I/ejRo8Yvv/xiGIZhFBQUGH/605+M0tJSwzDqHvuFruM5H330kbFy5UrDMAzj888/N5555hnDMM6+Th566CGjrKzMOH78uDFlyhTDbre7te3du3c7r+vHH3/sbNswar4G7mz/008/NV5++eUqx5aUlBiTJ082SkpKKv3fnW2f78MPPzTS0tKcj12Nfe/evcZ3331nTJ8+vdqff/XVV8a8efMMh8Nh7N+/33j44YcNw3A9btSfN/OyN3NyXdpviLzs6ZxsGORl8jJ5Ga6r6XfG8ePHa3yN+aqaYnE133nbunXrjPfee8/b3ai3uuZMX5eUlGQUFRV5uxtuw7SXOmjbtq2zIlyTQ4cOqVWrVoqNjVVQUJCuv/56ZWVlyTAM7d27V3369JEkDRo0SFlZWXVqPysrSwMHDpQkDRw48KLHb9u2TT179lSTJk3q1I472j6fp2Jv3bq1Lr30UklSVFSUIiIiVFxcXKd2zqnpOp5v+/btzm+R+vTpoz179sgwDGVlZen6669XcHCwWrZsqVatWunQoUNubfvKK690XtfLL79cNputXnHWt/2a7Ny5U1dddZXCwsIUFhamq666Sjt37mywtrds2aL+/fvX+vwX07Vr12q/OT9n+/btGjBggEwmk7p06aKTJ0+qsLDQ5bhRf97My97MyfVp/3yeiN2dOVkiL5OXq0deRl3U5neGv6gpFlfzHVzjSr5Gw2Pai5vZbDZFR0c7H0dHR+vgwYMqKSlRaGioLBaLpLMfBOv6waioqEiRkZGSpMjIyIt+iNyyZYtGjBhRadubb76pt99+W1deeaXuueceBQcHu7Xt8vJyzZ49WxaLRbfddpuuvfZar8R+6NAhVVRUKDY21rmtLrHXdB1r2sdisSg0NFQlJSWy2Wy6/PLLnfvVNd7atH2+jIyMSsMZq7sGdVHb9v/973/rm2++0aWXXqr77rtPVqu1yrENGXteXp5yc3N15ZVXOre5Gntt+me1Wiv1z2azuRw3GlZD5WVv5uS6tN8QednTOVkiL5OXa+4feRnukJubq5kzZ+qSSy7RmDFj9Pvf/97bXaoXV/OdL/j444+VmZmpjh076t57771gAdTX1PX3hT+YN2+eJOnGG29UQkKCl3vjGoofv/HEE0/oxIkTVbaPGTNGvXv3vujxRjU3zzGZTG5pvy4KCwt15MgRXX311c5td999t1q0aKGKigqtXLlS7733nkaNGuXWtlesWKGoqCgdP35cf/vb3xQXF+ec030x7oz9ueee0+TJk2U2nx3cdLHYf6s217GmfarbXhd1eQ1lZmbq+++/1/l3rK7uGrRq1cqt7ffq1Uv9+vVTcHCw/vWvfyktLU1z5syp9nx1ef3XJfYtW7aoT58+zmssuR67O/tXl7hxYd7My97Mye5qv7552ZdyskRevlj75OWL94+83DjU53dGZGSkVqxYofDwcH3//fdatGiRlixZUuvPsA2lPrG4mu884UJxDRs2zPn7YN26dVq9erWSkpI83cV6c/VvQV/zxBNPKCoqSkVFRXryySfVunVrde3a1dvdqjeKH7/x2GOPuXR8dHS0CgoKnI8LCgoUGRmp8PBwnTp1Sna7XRaLRTabzbkoWW3bj4iIUGFhoSIjI1VYWOhcCKg6X3zxha699tpKi9ed+5YuODhYgwcP1vvvv+/2ts/FFBsbq65du+rw4cO67rrrPBb7qVOntGDBAo0ZM0ZdunSpdey/VdN1rG6f6Oho2e12nTp1SmFhYVWOrSleV9qWpF27dmnDhg2aO3dupW9Mq7sGdfmgWZv2w8PDnf9PSEjQmjVrnG3v27fP+TObzVanBFnb2CVp69ateuCBByptczX22vQvPz+/Sv9cjRsX5s287M2c7K7265uXfSknS+Rl8nLN/SMv43z1+Z0RHBzsfM927NhRsbGxOnbsWI2LaHtKfWJxNd95Qm3jGjp0qJ5++ukG7o171SVn+oNzr52IiAj17t1bhw4d8utcypofbtapUycdO3ZMubm5qqio0NatWxUfHy+TyaRu3bpp27Ztks6uQB4fH1+nc8fHx2vz5s2SpM2bN1/wG88tW7aoX79+lbYVFhZKknP+c7t27dzadmlpqcrLyyVJxcXF2r9/v9q2beux2CsqKrR48WINGDBAffv2rfSzusZe03U8X69evbRp0yZJZ+fyd+vWTSaTSfHx8dq6davKy8uVm5urY8eOqXPnzrWOtTZt//DDD3rppZc0c+ZMRUREOLfXdA3qojbtn3s+pbPzrc+10aNHD3399dcqLS1VaWmpvv766zqtMF6btqWzd8w4efJkpT+m3BH7xcTHxyszM1OGYejAgQMKDQ1VZGSky3GjYTVUXvZmTq5t+w2Vlz2dkyXyMnm5euRluENxcbEcDock6fjx4zp27FilaXr+xNV8523n57Ivv/yyzr8bva22OdMfnDlzRqdPn3b+f9euXc67d/krk+EPY6N8xJdffqlXX31VxcXFatasmS677DI9+uijstlsWrlypR5++GFJUnZ2tl5//XU5HA4NHjxYI0eOlHQ2mf72toJ1md9dUlKipUuXKj8/X1arVdOnT1dYWJi+++47/d///Z8mTZok6eycxccee0zPP/98paGnf/3rX53zstu3b6+JEyeqadOmbmt7//79evHFF2U2m+VwODR8+HANGTLEY7FnZmbq+eefr/TB6tztE+sTe3XXcd26derUqZPi4+NVVlam1NRU/fDDDwoLC1NKSorzF+W7776rTz/9VGazWePHj1fPnj1rHWtt2n7iiSd05MgRtWjRQtJ/bh94oWvgzvb/8Y9/aPv27bJYLAoLC9OECRPUpk0bSWfnum/YsEHS2VsLDh482K1tS2dvg1ZeXq577rnHeZw7Yl+2bJn27dunkpISRUREaPTo0aqoqJAkDRs2TIZh6JVXXtHXX3+tkJAQJSUlOb8VcjVu1I8387I3c3Jt22+ovOyNnCyRl8nL5GW4pqbfGdu2bdP69etlsVhkNpt1xx13+PwfrDXFIrme77zpueee0+HDh2UymRQTE6OJEyf63ciJmj5z+Jvjx49r8eLFkiS73a7+/fv7bSznUPwAAAAAAAABjWkvAAAAAAAgoFH8AAAAAAAAAY3iBwAAAAAACGgUPwAAAAAAQECj+AEAAAAAAAIaxQ9U8eKLL+rtt992Pv7Xv/6lP/3pTxo3bpxKSkr07bffKjk5WePGjdOXX37pxZ4Gvr179zpvlxlo1q9fr+XLl3u7G4DPIyf7DnIygAshX/sO8jWqE+TtDsCzJk+erBMnTjjvY962bVsNGDBACQkJMpvP1sImTpzo3L+iokKvv/665s2bp8suu0zS2TfczTffrFtuucUbIfiNvXv36rnnntMLL7zg7a74vNzcXE2ZMkVvvvmmLBaLt7sDeAw52XPIybVHTgaqIl97Dvm69sjXdUPxoxGaNWuWrrrqKp06dUr79u3TqlWrdOjQISUlJVXZt6ioSOXl5WrXrp1zW15entq2bVuvtu12O2/M8/j68+Hr/QMCATnZd/j68+Hr/QMCHfnad/j68+Hr/WusKH40YqGhoYqPj1eLFi306KOPasSIEYqLi1NaWpqio6M1YMAAzZo1S5I0fvx4de7cWfn5+crNzdXTTz8ts9msV199VeXl5Xr99de1Y8cOmUwmDR48WKNHj5bZbNamTZv0ySefqFOnTtq8ebNuuukmjRkzRhkZGXr//fd14sQJde7cWRMnTlRMTIwkafTo0ZowYYI++OADlZSUqF+/fnrggQdkMpkkSenp6frnP/+pgoICRUdHa+rUqerYsaNsNpteffVVffPNN2ratKmGDx9e68p6WVmZ1q5dq23btunkyZOKi4vTY489ppCQEG3fvl3/+Mc/ZLPZdNlll2nChAnOX1yTJ0/WTTfdpMzMTOXl5alHjx6aPHmyHA6H5s+fr4qKCo0bN06S9Oyzzyo9PV0//fSTgoOD9dVXX+nee+/VgAEDtGbNGn3xxReSpL59++qee+5RcHDwBfv84osvqmnTprr33nud2xYuXKiuXbtqxIgR2rhxo/73f/9Xp0+fVmRkpCZMmKDu3btf9LmYPHmybrzxRn3++ef65Zdf9MYbb6ioqKjG5/bQoUN6+eWXdezYMYWEhKh///667777qq3aT548WX/+85911VVXVWpzzpw5ks6+ziTpscceU5cuXS7aVyCQkJP/g5z8H+RkwPeQr/+DfP0f5Gs/YKBRSUpKMr7++usq2ydNmmR8/PHHhmEYRmpqqvHmm28ahmEYx48fN+644w6joqKixnM8/fTTxsqVK43Tp08bJ06cMGbPnm3861//MgzDMD799FPjzjvvND788EOjoqLC+PXXX41///vfxpQpU4yffvrJqKioMN5++23j0UcfdZ7vjjvuMJ566imjtLTUyMvLM/74xz8aO3bsMAzDMLZu3WpMnDjROHjwoOFwOIxjx44Zubm5ht1uN2bOnGm89dZbRnl5uZGTk2NMnjzZedw333xj3HfffTU+Ly+99JIxZ84co6CgwLDb7ca3335rlJWVGUePHjXGjh1rfP3110Z5ebmxceNGY8qUKUZ5ebnzuZg9e7ZRUFBglJSUGCkpKc7ncc+ePcaf//znSu2sW7fOGDNmjPHvf//bsNvtxq+//mqsXbvWeOSRR4wTJ04YRUVFxqOPPup8/qs7xzl79+41Jk2aZDgcDsMwDKOkpMS4++67jYKCAuPo0aPGpEmTjIKCAud1PHbsWI3xny8pKcmBwMJQAAAgAElEQVR46KGHjLy8POPXX3+96HP7yCOPGJs3bzYMwzBOnz5t7N+/v8a+n//aWbdunfHss886+/fb1xnQGJCTq0dO/g9yMuAbyNfVI1//B/na97HgKSRJUVFRKi0trfNxJ06c0M6dOzV+/Hg1bdpUERERGj58uLZu3ercJzIyUn/4wx9ksVgUEhKi9PR03X777Wrbtq0sFotuv/12HT58WHl5ec5jEhMT1axZM1mtVnXr1k2HDx+WJGVkZOi2225T586dZTKZ1KpVK8XExOi7775TcXGxRo0apaCgIMXGxmro0KHOflxxxRV67bXXqo3B4XDo008/1fjx4xUVFSWz2azf/e53Cg4O1tatW9WzZ09dddVVCgoK0n/913+prKxM+/fvdx7/hz/8QVFRUQoLC1OvXr2cfa1Jly5ddO2118psNiskJESff/65/vu//1sRERFq3ry5Ro0apc8+++yiz/3vf/97SdI333wjSdq2bZu6dOnijKG8vFw///yzKioq1LJlS7Vq1eqi5zw/JqvVqpCQkIs+t0FBQcrJyVFxcbGaNm1KtRlwA3IyOfl85GTAd5GvydfnI1/7Nqa9QJJks9kUFhZW5+Py8/Nlt9srLfBkGIaio6Odj61Wa6Vj8vLytGrVKq1evbrSMTabzTlsr0WLFs6fNWnSRGfOnHG2FxsbW6UfeXl5KiwsdA75ks4m5HPJ7UJKSkpUXl5ebWIrLCx09kmSzGazrFarbDabc9v5fQ0JCan0s+qc/9xIqhS3JMXExFz0HJJkMpnUr18/bdmyRV27dtWWLVt0ww03SJJatWql8ePH66233tLPP/+sq6++Wvfee6+ioqIuel6p8jW72HM7adIkrVu3TtOmTVPLli01atQo9erVq1btAKgeOZmcfD5yMuC7yNfk6/ORr30bxQ/o0KFDstlsuuKKK+p8bHR0tIKCgvTKK6/UelEfq9WqkSNHOpNMXVitVh0/frza7S1btqzXbZ/Cw8MVHBysnJwc52rc50RGRurIkSPOx4ZhKD8/v1YJ8Nz8youJiopSXl6ec0Gs2p5fkvr166cnn3xSiYmJOnjwoB566CHnz/r376/+/fvr1KlTevHFF7VmzRpNnTq1Vuc938We20svvVQpKSlyOBz68ssv9cwzz+iVV15RkyZN9Ouvvzr3czgcKi4urvYctX2ugMaAnExOvhByMuA7yNfk6wshX/sepr00YqdOndJXX32lZ599VjfccIPi4uLqfI7IyEhdffXVWr16tU6dOiWHw6GcnBzt27evxmNuvPFGbdy4UT/99JOzH+cWKrqYIUOG6P3339f3338vwzCUk5OjvLw8de7cWZdccok2btyosrIyORwOHTlyRIcOHbroOc1mswYPHqzVq1fLZrPJ4XDowIEDKi8v1/XXX68dO3Zo9+7dqqio0Pvvv6/g4GD97ne/u+h5IyIiVFJSolOnTl1wv379+undd99VcXGxiouL9fbbb9f6l1qHDh3UvHlzvfDCC7r66qvVrFkzSdIvv/yiPXv2qLy8XCEhIQoJCXHehq2uLvbcZmZmqri4WGazWaGhoZLOPqetW7dWeXm5srOzVVFRoXfeeUfl5eXVttG8eXOZTKZqfykDjQU5+Sxy8oWRkwHvI1+fRb6+MPK172HkRyP09NNPy2KxyGQyqW3btho+fLiGDRtW7/NNmTJFa9as0fTp03X69GnFxsbqtttuq3H/a6+9VmfOnNGyZcuUn5+v0NBQde/eXX379r1oW3379lVJSYmeffZZ2Ww2tWzZUlOmTFFMTIxmzZql1atXa/LkyaqoqFDr1q115513Sjo7p2/+/Pl64403qj3vvffeq3/84x96+OGHdebMGV122WV69NFH1bp1a02dOlWvvvqqc6XqWbNmKSjo4m+dNm3aqF+/fpoyZYocDoeeeeaZavcbOXKkTp065aw49+nTRyNHjrzo+c/p16+f1q9fr2nTpjm3lZeXa82aNTp69KgsFot+97vfOYdVfvbZZ9qwYUON/fkts9l8wed2586dWr16tX799VfFxMTowQcfdP6ymDBhgl544QU5HA7deuutVYYrntOkSRONHDlSjz32mOx2ux555BHmPaLRICdXRU6uGTkZ8B7y9f/H3p2HR1Xf7R+/h4QkhCwkMxC2hkUJCo1CAUF2MVgFreCjVBGUWkRlE1SQggoqxRSLQRpUIBWqRREL5OeCSgOySEEChFUlKIprCknYAiKQfH9/5Mk8DEkg68yck/frunJdzJmzfL4zJ585uTnnTHH069LRr/2PwxhjfF0EAAAAAABAdeGyFwAAAAAAYGuEHwAAAAAAwNYIPwAAAAAAgK0RfgAAAAAAAFsj/AAAAAAAALZG+AEAAAAAAGyN8AMAAAAAANga4QcAAAAAALA1wg8AAAAAAGBrhB8AAAAAAMDWCD8AAAAAAICtEX4AAAAAAABbI/wAAAAAAAC2RvgBAAAAAABsjfADAAAAAADYGuEHAAAAAACwNcIPAAAAAABga4QfAAAAAADA1gg/AAAAAACArRF+AAAAAAAAWyP8AAAAAAAAtkb4AQAAAAAAbI3wAwAAAAAA2BrhBwAAAAAAsDXCDwAAAAAAYGuEHwAAAAAAwNYIPwAAAAAAgK0RfgAAAAAAAFsj/AAAAAAAALZG+AEAAAAAAGyN8AMAAAAAANga4QcAAAAAALA1wg8AAAAAAGBrhB8AAAAAAMDWCD8AAAAAAICtEX4AAAAAAABbI/wAAAAAAAC2RvgBAAAAAABsjfADAAAAAADYGuEHAAAAAACwNcIPAAAAAABga4QfAAAAAADA1gg/AAAAAACArRF+AAAAAAAAWyP8AAAAAAAAtkb4AQAAAAAAbI3wAwAAAAAA2BrhBwAAAAAAsDXCDwAAAAAAYGuEHwAAAAAAwNYIPwAAAAAAgK0RfgAAAAAAAFsj/AAAAAAAALZG+AEAAAAAAGyN8AMAAAAAANga4QcAAAAAALA1wg8AAAAAAGBrhB8AAAAAAMDWCD8AAAAAAICtEX4AAAAAAABbI/wAAAAAAAC2RvgBAAAAAABsjfADAAAAAADYGuEHAAAAAACwNcIPAAAAAABga4QfAAAAAADA1gg/AAAAAACArRF+AAAAAAAAWyP8AAAAAAAAtkb4AQAAAAAAbI3wAwAAAAAA2BrhBwAAAAAAsDXCDwAAAAAAYGuEHwAAAAAAwNYIPwAAAAAAgK0RfgAAAAAAAFsj/AAAAAAAALZG+AEAAAAAAGyN8AMAAAAAANga4QcAAAAAALA1wg8AAAAAAGBrhB8AAAAAAMDWCD/gl5544gldccUVXllPWlqaHA6HsrKyKr09ALAr+jIAWBc9HCD8qBCHw3HRn+bNm3vMv3nzZgUEBOiaa64ptq4nnnjiouvq27dvpeu9WJNq2rSpEhMTK70NXNqSJUsUEBCgQYMG+boUJSYmqkuXLqpXr56ioqLUs2dPrVq1ymOelJSUEvfJtWvXXnTd586dK3G5YcOGlbrM0KFD5XA42BdRYfRlVIQ/9eXS9rtvvvnGPU9F+3KRZcuW6ZprrlGdOnUUGRmpnj17Ki8vr8R56cvwJno4KsKfenhFHD58WA888IAaNWqk4OBgtWjRQgsWLHA/X9mej+ICfV2AFf3000/uf2/ZskW33nqrtmzZol/96leSpICAAI/558+fr1GjRum1117Tjh071K5dO/dzkyZN0ujRo4tt4x//+IcmT55c4nPwPwUFBTLGFHvvzzd//nxNmjRJL7zwgg4dOqQGDRp4sUJPa9as0fDhw9WpUyeFhITo5ZdfVv/+/bVhwwZ16dLFPV9wcLDHgbckRUdHl2kbr7zyim699Vb34zp16pQ4X0pKivbt26eYmJjyD8SLzpw5o6CgIF+XgVLQl3Ehq/VlSbr88su1YcMGj2n169f3eFzRvjxv3jxNnDhRM2bM0PXXXy+Hw6GdO3eW+PrQl+Ft9HBcyGo9/Mcff1SDBg0UGFi2P6+PHz+uHj16qHnz5nrrrbcUGxurn376Sfn5+R7zVeZY3Nus0JM586MCGjZs6P4p2vnq16/vnnb+gcqxY8f01ltv6cEHH9SgQYM0f/58j3WFhYV5rK9hw4b66quv9NRTT+m5557z+OPRG44dO6b7779f9evXV0hIiK655hqtXr3a/fyXX34ph8OhzZs3eyzXvHlzTZ8+3f143rx5uuKKKxQSEiKn06nevXvrxx9/dD+fnp6uvn37KiwsTA0aNNDtt9+u7777rlg9y5cvV+vWrRUWFqY+ffro66+/9nj+3Xff1W9+8xsFBwcrJiZGo0eP1qlTpy46xtmzZ6tp06YKDQ3VTTfdpO+//77YPJeqryjxf/PNN9W6dWsFBQVp//79pW4zMzNTmzZt0mOPPaYePXpo0aJFxebZtm2bOnfurJCQELVu3VrLly8v9r8HJ06c0JgxY9S4cWOFhoaqQ4cO+n//7/9ddLwlWbVqlYYPH66rr75arVu31uzZs3X55ZdrxYoVxea9cP8sa1OLjIz0WC4yMrLYPHv27NETTzyhJUuWXPLD4tixY6pbt66WLl3qMf2rr75SrVq19Mknn0iSzp49qyeffFLNmzdXnTp19Otf/1opKSkeyyQlJenqq69WWFiYGjVqpMGDB3ucmll0uuYHH3ygbt26KSQkRK+++qqOHj2qe++9VzExMQoODlZsbKwmTJhQptcD1Yu+TF+2el+WCv/Au3DfK+nAv7x9+ejRo3r00Uf1wgsvaNSoUbriiivUunVrDRo0qFgwTV+GL9DD6eFW7+Evv/yymjRporFjx2rLli2XnP8vf/mLzp49q3feeUc9e/ZU8+bNde2116p79+7F5i1Pz58yZYratm1bbPrQoUOVkJDgfnyp9+Orr77SwIED1ahRI4WGhuqqq67SG2+84bHO7t27a8SIEZo8ebIaNWqkZs2aSSrcx9q1a6fQ0FDVq1dPXbp00a5duy75mngD4Uc1e/3119W2bVu1adNGw4YN0+LFi3Xy5MlS5z948KAGDhyowYMHa+LEiV6stNCwYcO0evVqLV68WBkZGbrmmmvUr1+/izafC3366acaPXq0nnzySe3bt09r167V4MGD3c/v3r1bvXv3Vo8ePbR161alpaXJGKO+ffvqzJkz7vm+//57LViwQG+++aY2bNignJwcDR8+3P18RkaGBgwYoD59+mjnzp1auHChUlNTNWrUqFJrW7ZsmSZMmKAJEyZox44duu2224q9zmWt77vvvtP8+fP1+uuva+/evWratGmp250/f75uueUWRUVFadiwYVqwYIGMMe7n8/Ly1K9fPzVq1EhbtmzRokWLNHPmTOXk5LjnMcaof//+2rt3r95++23t2bNH999/v+644w6tW7fOPV/37t09mltZ5OfnKy8vTy6Xy2P6mTNn1KJFCzVq1EjXXXedVq5cWeZ1Pvroo3K5XGrXrp2mTp1a7IPz5MmTGjRokF544QW1bNnykuuLjIzUnXfe6XE6oFT4P5RXXHGF+8PiD3/4g959912lpKTos88+0xNPPKFHH31U//jHPzyWe+GFF7R7924tW7ZMBw4c0N13313iGP70pz/p888/1y233KLJkydr165deuedd5SZmen+gIa10Jfpy5J/9uWDBw+qadOm+tWvfqV+/foV+2NIqlhf/vDDD3Xy5EkFBwerQ4cOiomJUZ8+fbRx40aP+ejLsAJ6OD1c8r8ePmXKFM2dO1ffffedevToodatW+uZZ57RV199Verr1r17d40ZM0YNGzbUlVdeqccff1w///yzx3zl7fkjRozQF1984dHfjx49qmXLlun++++XVLb3Iy8vTzfccIM++ugj7d69W/fdd5+GDh2q9evXe2zvzTff1LFjx7R69WqtWrVKP/zwg37/+9/rnnvu0d69e7Vp0yaNGTPmomfweJVBpWzYsMFIMl9//XWJz8fHx5vk5GT347i4OPP3v/+9xHmPHz9u4uPjTffu3c0vv/xSZTVOmTLFOBwOU7du3WI/DofDPPfcc8YYY7744gsjyXz00UfuZQsKCsxVV11l7r//fmOMMfv37zeSzKZNmzy20axZM/Pss88aY4xZunSpqVevnjl+/HiJ9dx9993m7rvv9ph26tQpExQUZN599113zYGBgSY7O9s9z+uvv25q1aplzpw5Y4wx5s477zTXXnutx3r+9a9/GYfDYb7//nv3elq3bu1+vnPnzuaee+7xWObhhx82ksxPP/1Urvpq1arl3s7FnD592rhcLvPee++51xUZGWlWr17tnuell14y4eHh5tixY+5pu3fvNpLc78+///1vExISUux1HTp0qPmf//kf9+PBgwebP/zhD5es63xTp041UVFR5ocffnBP++STT8xrr71mMjIyzMaNG83o0aONJLNo0aKLris/P988++yz5pNPPjE7d+40CxYsMA0aNDDXXXddsbrPr7NJkybusZbm008/NQ6Hw3z11VfGGGPOnj1rGjVqZF544QVjjDGZmZlGksnMzPRY7sknnzQdOnQodb1btmwxkkxWVpYxpvC1lmTeeOMNj/n69etn/vjHP160RvgefbkQfbl0/tiX33vvPbN06VKzc+dOs27dOjNo0CATEBDgUVNF+/L06dONJBMbG2uWLl1qtm3bZh566CETFBRkPv/8c4+66cvwNXp4IXp46fyxh5/vyJEjZsGCBaZ3796mVq1a5tprrzVz5841OTk57nlq165tgoODzbBhw8zWrVtNamqqadq0qcdrWdGef9NNN5l7773X/Tg5Odm4XC7370BZ3o+S9OvXzzz44IPux926dTNXXHGFKSgocE8r6t3ffffdxV8kHyH8qKSLNeiNGzeaoKAgjybz5z//2XTu3LnYvPn5+eaWW24xLVq0MIcPH77kds+dO+fRaG+++eZS550yZYpp2bKl2b9/f7Gfhg0buhvAsmXLjCRz6tQpj+VHjRplunbtaowpW4M+duyYueqqq4zT6TR33nmnmT9/vsdrEBcXZ4KCgkr8sCg6WJoyZYpp0aKFxzbWrFljJLn/QI+PjzePP/64xzyHDx82ksyqVavc6zm/QYeHh5tXXnnFY5m3337bo0GXtb6mTZuW+pqfb/HixSYmJsacPXvWPe3+++83v//9792PR48ebbp06VJs2fDwcPf7M2PGjBI/aGvXrm2uuuqqMtVSkjlz5pjQ0FCzZs2aS8571113mSuvvNIYU7598KOPPjKSzKeffmqMMWbhwoWmdevWJi8vzz1PWQ6yjTGmffv2ZvLkycYYY1asWGGCg4Pd+9cbb7xhJBV7jYKDg01ERIR7HatXrzZ9+/Y1TZs2NWFhYSY0NNSjvqKD7C+//NJj2++//74JDQ018fHx5uGHHzYffPCBR8OHf6AvF6Ivl87f+7IxhX8gde3a1dx0000Xna8sffnpp582ksy8efM81n/llVea8ePHG2Poy/Af9PBC9PDSWaGHF9m9e7e56qqrjCT3+2mMMQEBAeZXv/qVOXfunHvam2++aSSZo0ePlrq+83t+aVJTU01oaKh7Pe3atTOPPvqo+/myvB95eXlm4sSJpk2bNiYqKsrUrVvXBAYGenwmdevWzQwZMsRj22fPnjUJCQkmLCzMDBw40Lz44ot+FYRww9NqNH/+fJ05c8bjhmHGGBUUFGjXrl266qqr3NMff/xxrVu3Tps2bSp26UFJAgICtGPHDvfj0NDQi85fu3ZtXX755SWu53wOh6PYPMYY9/RatWq5p53v7Nmz7n9HRERo27Zt+uSTT7R69WrNnTtXEydO1Mcff6x27dqpoKBAw4YNK/Ga3PPHfuH1bEU1FBQUlFpvUV0ljeNiYzxfWeurW7fuRddTZP78+Tp06JBCQkI86gwMDFR2drZ7naW99ufX5XQ6tWnTpmLzVfTmQomJiZo+fbree+89XXfddZecv2vXrkpNTZVUvn2wa9eukqRvvvlG11xzjdLS0pSZmelxH5D8/HxNmTJF06dPL/XbByTpgQce0NNPP62nn35aKSkpuu222+R0OiX9376xefNmj9db+r999+uvv1b//v01bNgwTZ06VS6XSwcPHtRvf/tbj1MvpeLvcb9+/fTtt9/qo48+cp9y2r59e61atcp/TufDRdGX6cuSf/flIg6HQ9dee+0lT3EuS19u3LixJKlNmzYe67/yyit18OBBSaIvwxLo4fRwyf97+M8//6z33ntPb7zxhlauXKnWrVsrMTFR9957r3uehg0bKi4uzmN/KbpXx7fffqv4+PgS131+zy/NzTffrOjoaC1evFjXXHONduzYoSVLlrifL8v78cgjj+iDDz7QrFmzFBcXp7p162rcuHE6ffq0x/wXvmeBgYFatWqVtmzZorS0NC1dulSPP/64li9frptuuumidXsD4Uc1OXr0qJYuXapXXnlF3bp183hu1KhRmj9/vpKTkyVJixYtUlJSkt59912PA5NLKanhVkbbtm1ljNGGDRt0ww03SCpsEJ988on7G0CK7qJ8/g2WsrKyPO7SLRXu+L1791bv3r31zDPPqHXr1nrzzTfVrl07dezYUbt27dJll112yWZ5qXrPvx5PktavX+8+oCtJmzZttHHjRo0YMcI97cJrnquqPknat2+f1q1bp3feeUctWrTweG7gwIFatGiRHnvsMbVp00avvfaaTpw4ofDwcEnS3r17PQ42O3bsqOzsbJ07d65Kvqd98uTJSk5O1ocffljizZVKkpGR4b7zulT2fTAjI0OS3MsmJiZq0qRJHvMkJCTorrvucl+PWJrBgwfrscce07x58/Thhx/q3//+t/u5Dh06SCq8pvXGG28scfktW7bol19+0Ysvvuj+YPv000/LNA5JcjqdGjx4sAYPHqx77rlHPXr0UGZmZqn7HPwHfZm+LPl3X77QhT23LPOUtA/26NFDUuHYz+/3mZmZ7v2Kvgx/Rw+nh0v+28Pz8/OVlpamN954QytWrFBERITuuusubdmyRVdffXWx+Xv06KFNmzapoKDAHYDt27dPktw3Di1JWT4XAgIC9Mc//lELFizQzp071bNnT497IZXl/Vi/fr2GDh2qO+64wz2+zMxMxcbGXvyFUGHo1LlzZ3Xu3FlTpkxRQkKCFi1a5BfhB5e9VFJpp+a9+OKLJiIiwpw+fbrYMvPmzTORkZHm5MmTZsOGDSYoKMhMnjzZ/PTTT8V+iq51rYwLT08734WntA4cONC0aNHCrFq1ynz22Wdm1KhRJigoyONa3c6dO5tOnTqZnTt3mvT0dNO3b19Tp04d96lcy5YtM7Nnzzbbtm0zBw8eNP/6179MaGio+/q03bt3m7p165qhQ4eaLVu2mAMHDpjVq1eb0aNHm2+++abUmj/++GOPa8i2b99uatWqZR599FHz+eefm/fff980adLEDBs2rNSxL1261AQGBpo5c+aYzMxMk5KSYho0aOBxal5F6yvJ+PHjTVxcXInP/elPf3I/d+LECdOgQQMzcOBAs2vXLrNp0ybTtWtXExISYhITE40xhaco9+7d28TFxZkVK1aYAwcOmK1bt5oXX3zR41rXslyXOGrUKFOnTh3zzjvveOxv518X+eSTT5qVK1ea/fv3mz179pgnn3zSOByOYqc2Xig1NdXMmzfP7Ny50xw4cMC8/fbbplmzZqZr164XPRW5rKdXG2PMiBEjTFBQkGnVqlWxdd5zzz2mUaNG5vXXXzdffvml2bFjh0lJSTEzZ840xhTuN5LMjBkzzIEDB8zy5ctNq1atjCSzYcMGY8z/nV5dtE8UmTRpklmxYoXZt2+f2bdvn3nooYdMeHi4OXHiRJnqhnfQl+nLF+OvfXncuHFmzZo15sCBAyYjI8M8+OCDxuFwmJUrV7rnqWhfNsaY2267zTRp0sR88MEHZt++feaxxx4zISEhZt++faUuQ1+GL9DD6eEX4689/KmnnjIRERFm2LBhJi0tzeTn5190/m3btpnatWubUaNGmS+++MKkpaWZFi1amPvuu889T2V6/nfffWcCAgJMUFCQ+ec//+nxXFnej1tvvdW0adPGbNmyxezZs8cMGzbMREREmOuvv969nm7dupkHHnjAY93r168306dPN59++qk5ePCgWbVqlYmJiTHTpk27ZM3eQPhRSaU16LZt2xa7BqpIdna2CQwMNAsXLjRDhgwxkkr9CQgIqHSN5WnQR48eNcOHDzdOp9MEBQWZTp06mbS0NI9lPv/8c9O9e3cTGhpqWrVqZVJTUz2uS/z4449N7969jdPpNMHBwaZVq1bmL3/5i8c6duzYYW655RYTGRlpQkJCzGWXXWZGjBhhjhw5UmrNFzZoY4x55513TPv27U1QUJCpX7++GTlypDl58uRFxz5r1izTqFEjExISYvr27WteffXVYgdUFanvQqdPnzZOp9M88cQTJT6/Y8cOI8l8/PHHxhhj0tPTTadOndwHj8uXLzdRUVFm9uzZ7mVOnjxpJkyYYJo1a2Zq165tYmJizI033uhehzGFjej8xnShs2fPlrq/nX/TuLFjx5rmzZub4OBgEx0dbbp27WqWL19+0TEbU3j99W9+8xsTHh5uQkJCTOvWrc3kyZM9gpWSlOcge+vWrUaS+8D5wvHNmDHDxMXFmdq1axuXy2V69epl/vWvf7nnefHFF02TJk1MSEiI6dGjh3n//ffLdJA9depU06ZNGxMaGmoiIiJMr169zMaNG8tUM7yHvkxfLo2/9mVjjLnjjjtMkyZNTFBQkGnQoIFJSEgwa9eu9Zinon3ZmMLrt0eOHGlcLpcJCwszPXr0MP/5z38uugx9Gb5AD6eHl8afe/iBAwfMzz//fNF5LrRq1SrToUMHExwcbJo3b24ef/xxj/vDVKbnG2PMzTffbKKjo0us61LvxzfffGMSEhJMaGioadSokXn66Yyza1UAACAASURBVKfNvffee8nwY9euXebGG280DRo0MEFBQaZZs2Zm4sSJ7pvq+prDmAsuMAPgFw4cOKDLLrtMK1eu9I/TxPzIO++8ozvuuEPfffed+3RRAKhu9OXS0ZcB+Lua1sM7dOignj17Kikpydel+A3CD8BPvPbaa4qNjVXz5s319ddfa+LEicrJydEXX3xR6Rvn2cWpU6d08OBB3XPPPbr66quVkpLi65IA2Bh9+dLoywD8VU3t4YcOHdLy5cs1ZswYZWZmFrs3Sk1Wy9cFACiUnZ2tP/7xj7riiis0ZMgQtWzZUuvXr7d1cy6vGTNmKD4+XkFBQUpMTPR1OQBsjr58afRlAP6qJvbwc+fOKSYmRlOmTFFycjLBxwU48wMAAAAAANgaZ34AAAAAAABbI/wAAAAAAAC2FujrAvzRjz/+WK75XS6XsrOzq6ka/2D3Mdp9fJL9x2iV8TVu3NjXJViSlfqyr/dFts/22ffLjp5ctazUqyvLqrVTt3dZtW7J/2qvin7NmR8AAAAAAMDWCD8AAAAAAICtEX4AAAAAAABbI/wAAAAAAAC2RvgBAAAAAABsjfADAAAAAADYGl91ixrt228DNHNmuHJzAxUdXU8TJ55QbGy+r8sCgHKjnwEASsNnBED4gRrs228DdOed0Tp4sPb/TgnV9u21tWRJLh8GACyFfgYAKA2fEUAhLntBjTVzZvh5HwKFDh6srZkzw31UEQBUDP0MAFAaPiOAQoQfqLGysgJKnP7f/5Y8HQD8Ff0MAFAaPiOAQoQfqLEaNiz5NL+YGE7/A2At9DMAQGn4jAAKEX6gxpo48YSaNTvrMa1Zs7OaOPGEjyoCgIqhnwEASsNnBFDIcjc8PXnypF555RV99913cjgceuihh9S4cWMlJSXp8OHDql+/vsaPH6+wsDAZY7Rw4UJlZGQoODhYI0eOVMuWLX09BPiJ2Nh8LVmS+793vg5RdPRp7nwNwJLoZwCA0vAZARSyXPixcOFCtWvXTo8++qjOnTunX375RStWrFB8fLwGDBig1NRUpaamasiQIcrIyFBWVpbmzJmj/fv3KyUlRTNmzPD1EOBHYmPzlZx8VC6XS9nZR31dDmBJhNL+gX4GACgNnxGAxS57OXXqlD7//HP16dNHkhQYGKi6desqPT1dvXr1kiT16tVL6enpkqStW7eqZ8+ecjgciouL08mTJ3XkyBGf1Q8AdlQUSs+ePVvPP/+8mjRpotTUVMXHx2vOnDmKj49XamqqJHmE0iNGjFBKSoqPqwcAAEBNYKkzPw4dOqSIiAi99NJLOnjwoFq2bKlhw4bp2LFjioqKkiRFRUXp+PHjkqTc3Fy5XC738k6nU7m5ue55i6SlpSktLU2SlJiY6LFMWQQGBpZ7Gaux+xjtPj7J/mO0+/j8VVEoPWrUKEmF70NgYKDS09M1bdo0SYWh9LRp0zRkyJBSQ+kL+zIAAABQlSwVfuTn5+vrr7/Wfffdp1atWmnhwoXu/00siTGm2DSHw1FsWkJCghISEtyPs7Ozy1VX4elj5VvGauw+RruPT7L/GK0yvsaNG/u6hCpVXaE0AKBqcYkigJrOUuGH0+mU0+lUq1atJEldunRRamqqIiMj3f9zeOTIEUVERLjnP/+PoZycHA6wAaAKVVcobeUz8nx9FhLbZ/vs+ygJ980DUNNZKvyoV6+enE6nfvzxRzVu3Fi7d+9W06ZN1bRpU61bt04DBgzQunXr1KlTJ0lSx44d9eGHH6pbt27av3+/QkNDCT8AoApVVyht5TPyfH0WEttn++z7ZWe3s/FKwyWKAGCx8EOS7rvvPs2ZM0fnzp1TgwYNNHLkSBljlJSUpDVr1sjlcumRRx6RJLVv317bt2/X2LFjFRQUpJEjR/q4egCwF0JpAPB/XKIIABYMP5o3b67ExMRi05966qli0xwOh4YPH+6NsgCgxiKUBgD/xiWKVc+qtVO3d1m1bsnatZfGcuEHAMC/EEoDgH/jEsWqZ9Xaqdu7rFq35H+1V8VlirWqoA4AAAAAfur8SxQluS9R7Nixo9atWydJxS5RXL9+vYwxyszM5BJFALbAmR8AAACAzXGJIoCajvADAAAAsDkuUQRQ03HZCwAAAAAAsDXCDwAAAAAAYGuEHwAAAAAAwNYIPwAAAAAAgK0RfgAAAAAAAFsj/AAAAAAAALZG+AEAAAAAAGyN8AMAAAAAANga4QcAAAAAALA1wg8AAAAAAGBrhB8AAAAAAMDWCD8AAAAAAICtEX4AAAAAAABbI/wAAAAAAAC2RvgBAAAAAABsjfADAAAAAADYGuEHAAAAAACwNcIPAAAAAABga4QfAAAAAADA1gg/AAAAAACArRF+AAAAAAAAWwv0dQHlNWrUKIWEhKhWrVoKCAhQYmKi8vLylJSUpMOHD6t+/foaP368wsLCZIzRwoULlZGRoeDgYI0cOVItW7b09RAAAAAAAIAXWS78kKSpU6cqIiLC/Tg1NVXx8fEaMGCAUlNTlZqaqiFDhigjI0NZWVmaM2eO9u/fr5SUFM2YMcOHlQOA/RBKAwAAwN/Z4rKX9PR09erVS5LUq1cvpaenS5K2bt2qnj17yuFwKC4uTidPntSRI0d8WSoA2NLUqVP1/PPPKzExUdL/hdJz5sxRfHy8UlNTJckjlB4xYoRSUlJ8WTYAAABqCEue+fHnP/9ZktS3b18lJCTo2LFjioqKkiRFRUXp+PHjkqTc3Fy5XC73ck6nU7m5ue55i6SlpSktLU2SlJiY6LFMWQQGBpZ7Gaux+xjtPj7J/mO0+/isJj09XdOmTZNUGEpPmzZNQ4YMKTWUvrAvAwCqFmfpAajpLBd+PPvss4qOjtaxY8c0ffp0NW7cuNR5jTHFpjkcjmLTEhISlJCQ4H6cnZ1drppcLle5l7Eau4/R7uOT7D9Gq4zvYj3Lyqo6lAYAVD0uHQdQk1ku/IiOjpYkRUZGqlOnTvryyy8VGRnp/p/DI0eOuJu60+n0+GMoJyeHA2wAqGLVEUpb+Yw8X5+FxPbZPvs+yoqz9ADUJJYKP06fPi1jjOrUqaPTp09r165duv3229WxY0etW7dOAwYM0Lp169SpUydJUseOHfXhhx+qW7du2r9/v0JDQ2naAFDFqiOUtvIZeb4+C4nts332/bKz69l4peEsPQA1maXCj2PHjumvf/2rJCk/P1/du3dXu3btdNlllykpKUlr1qyRy+XSI488Iklq3769tm/frrFjxyooKEgjR470ZfkAYDuE0gBgDZylV7WsWjt1e5dV65asXXtpLBV+xMTE6Pnnny82PTw8XE899VSx6Q6HQ8OHD/dGaQBQIxFKA4A1cJZe1bJq7dTtXVatW/K/2qviTD1LhR8AAP9CKA0A/o+z9ACA8AMAAACwNc7SAwDCDwAAAMDWOEsPAKRavi4AAAAAAACgOhF+AAAAAAAAWyP8AAAAAAAAtkb4AQAAAAAAbI3wAwAAAAAA2BrhBwAAAAAAsDXCDwAAAAAAYGuEHwAAAAAAwNYIPwAAAAAAgK0RfgAAAAAAAFsj/AAAAAAAALZG+AEAAAAAAGyN8AMAAAAAANga4QcAAAAAALA1wg8AAAAAAGBrhB8AAAAAAMDWCD8AAAAAAICtEX4AAAAAAABbI/wAAAAAAAC2RvgBAAAAAABsjfADAAAAAADYGuEHAAAAAACwtUBfF1ARBQUFmjRpkqKjozVp0iQdOnRIs2fPVl5enlq0aKExY8YoMDBQZ8+eVXJysg4cOKDw8HCNGzdODRo08HX5AAAAAADAiyx55sfKlSvVpEkT9+N//vOf6t+/v+bMmaO6detqzZo1kqQ1a9aobt26+tvf/qb+/ftr8eLFvioZAGyroKBAEydOVGJioiTp0KFDmjx5ssaOHaukpCSdO3dOknT27FklJSVpzJgxmjx5sg4dOuTLsgEAAFCDWC78yMnJ0fbt23X99ddLkowx2rt3r7p06SJJ6t27t9LT0yVJW7duVe/evSVJXbp00Z49e2SM8UndAGBXBNIAYA2E1QBqMstd9rJo0SINGTJEP//8syTpxIkTCg0NVUBAgCQpOjpaubm5kqTc3Fw5nU5JUkBAgEJDQ3XixAlFRER4rDMtLU1paWmSpMTERLlcrnLVFBgYWO5lrMbuY7T7+CT7j9Hu4/NXRYH0bbfdpvfee88dSD/88MOSCgPpt99+WzfccIO2bt2qO+64Q1JhIP3qq6/KGCOHw+HLIQBAjVEUVhcdRxeF1d26ddP8+fO1Zs0a3XDDDR5h9caNG7V48WKNHz/ex9UDQOVYKvzYtm2bIiMj1bJlS+3du/eS85d0lkdJB9kJCQlKSEhwP87Ozi5XXS6Xq9zLWI3dx2j38Un2H6NVxte4cWNfl1ClqiOQlqwdSvs6iGP7bJ99HyUhrAZQ03k9/Fi5cqW6d+9e4sHupezbt09bt25VRkaGzpw5o59//lmLFi3SqVOnlJ+fr4CAAOXm5io6OlqS5HQ6lZOTI6fTqfz8fJ06dUphYWFVPSQAsLSK9uXqCqQla4fSvg7i2D7bZ98vO6sF0pU5jq6usBoArMLr4cfu3bv15ptvqm3bturZs6c6deqk2rVrl2nZwYMHa/DgwZKkvXv36t1339XYsWP1wgsvaPPmzerWrZvWrl2rjh07SpI6dOigtWvXKi4uTps3b1bbtm1JrAHgAhXtywTSAOBdFe3X1RVWW/ksvcqyau3U7V1WrVuydu2l8Xr48fjjj+vEiRPauHGj3n//fS1YsECdO3dWz5491aZNmwqt8+6779bs2bO1ZMkStWjRQn369JEk9enTR8nJyRozZozCwsI0bty4qhwKANhCRfsygTQAeFdF+3V1hdVWPkuvsqxaO3V7l1Xrlvyv9qo4U88n9/wIDw/XjTfeqBtvvFEHDx5UcnKyPv74Y7lcLl1//fXq16+fQkJCLrqOtm3bqm3btpKkmJgYPffcc8XmCQoK0iOPPFItYwAAO6mKvlyEQBoAqk9F+jVhNQD48Ianu3fv1oYNG5Senq7LLrtMo0ePlsvl0sqVKzVjxgw988wzvioNAGqkyvRlAmkA8J6qOo4mrAZQk3g9/Hjttdf0n//8R6GhoerZs6dmzZrlPsVOklq1aqU//OEP3i4LAGos+jIAWENV9GvCagA1ldfDj7Nnz+qxxx7T5ZdfXuLzgYGBSkxM9HJVAFBz0ZcBwBro1wBQcV4PPwYOHKigoCCPaXl5eTpz5ow7uW7SpIm3ywKAGou+DADWQL8GgIqr5e0NPv/88+7vEC+Sm5urv/71r94uBQAg+jIAWAX9GgAqzuvhx48//qjY2FiPabGxsfrhhx+8XQoAQPRlALAK+jUAVJzXw4+IiAhlZWV5TMvKylJ4eLi3SwEAiL4MAFZBvwaAivP6PT+uu+46zZo1S3feeadiYmKUlZWlt956y/3VWgAA76IvA4A10K8BoOK8Hn4MGDBAgYGBev3115WTkyOn06k+ffro5ptv9nYpAADRlwHAKujXAFBxXg8/atWqpd/97nf63e9+5+1NAwBKQF8GAGugXwNAxXk9/JAKb9b0zTff6PTp0x7TOWUPAHyDvgwA1kC/BoCK8Xr4sXz5ci1btkzNmjVTcHCwx3M0bQDwPvoyAFgD/RoAKs7r4cfKlSs1Y8YMNWvWzNubBgCUgL4MANZAvwaAivP6V90GBQWpSZMm3t4sAKAU9GUAsAb6NQBUnNfDj9///vd69dVXdeTIERUUFHj8AAC8j74MANZAvwaAivP6ZS8vvfSSJGn16tXFnnvrrbe8XQ4A1Hj0ZQCwBvo1AFSc18OP5ORkb28SAHAR9GUAsAb6NQBUnNfDj/r160uSCgoKdOzYMUVFRXm7BADAeejLAGAN9GsAqDivhx8nT55USkqKNm/erMDAQL3++uvaunWrvvzyS915553eLgcAajz6MgBYA/0aACrO6zc8XbBggUJDQ/XSSy8pMLAwe4mLi9N//vMfb5cCABB9GQCsgn4NABXn9TM/du/erXnz5rkbtiRFRETo2LFj3i4FACD6MgBYBf0aACrO62d+hIaG6sSJEx7TsrOzuWYRAHyEvgwA1kC/BoCK83r4cf3112vWrFnas2ePjDHKzMzU3Llz1bdvX2+XAgAQfRkArIJ+DQAV5/XLXm699VbVrl1bf//735Wfn6+XX35ZCQkJ6tevn7dLAQCIvgwAVkG/BoCK83r44XA41L9/f/Xv37/cy545c0ZTp07VuXPnlJ+fry5dumjQoEE6dOiQZs+erby8PLVo0UJjxoxRYGCgzp49q+TkZB04cEDh4eEaN26cGjRoUA2jAgDrqkxfBgB4D/0aACrO6+HHnj17Sn3u17/+9UWXrV27tqZOnaqQkBCdO3dOTz31lNq1a6f33ntP/fv3V7du3TR//nytWbNGN9xwg9asWaO6devqb3/7mzZu3KjFixdr/PjxVT0kALC0yvRlQmkA8J7K9GsAqOm8Hn68/PLLHo+PHz+uc+fOyel0Kjk5+aLLOhwOhYSESJLy8/OVn58vh8OhvXv36uGHH5Yk9e7dW2+//bZuuOEGbd26VXfccYckqUuXLnr11VdljJHD4aiGkQGANVWmLxNKA4D3VLRfE1QDgA/Cj7lz53o8Ligo0LJly1SnTp0yLV9QUKDHH39cWVlZ+u1vf6uYmBiFhoYqICBAkhQdHa3c3FxJUm5urpxOpyQpICDAfYfsiIiIKhwRAFhbZfoyoTQAeE9F+zVBNQD4IPy4UK1atXTbbbfpwQcf1M0331ym+Z9//nmdPHlSf/3rX/XDDz+UOq8xpti0kg6w09LSlJaWJklKTEyUy+UqxwikwMDAci9jNXYfo93HJ9l/jHYfnzeVty8TSgOAb5S1XxNUA4AfhB+StGvXLtWqVb5v3a1bt67atGmj/fv369SpU8rPz1dAQIByc3MVHR0tSXI6ncrJyZHT6VR+fr5OnTqlsLCwYutKSEhQQkKC+3F2dna5anG5XOVexmrsPka7j0+y/xitMr7GjRv7uoQyKU9fJpT2n22zfbbPvl/zQvCy9muCagA1ndfDj4ceesjj8ZkzZ3TmzBkNHz78ksseP35cAQEBqlu3rs6cOaPdu3fr1ltvVdu2bbV582Z169ZNa9euVceOHSVJHTp00Nq1axUXF6fNmzerbdu2JNYAcIHK9OXzEUr7fttsn+2z75dv+1YJpItUpl8TVFctq9ZO3d5l1bola9deGq+HH2PGjPF4HBwcrEaNGik0NPSSyx45ckRz585VQUGBjDG69tpr1aFDBzVt2lSzZ8/WkiVL1KJFC/Xp00eS1KdPHyUnJ2vMmDEKCwvTuHHjqmVMAGBllenLhNIA4D2V6ddFCKqrhlVrp27vsmrdkv/VXhVhtdfDjzZt2lR42WbNmmnmzJnFpsfExOi5554rNj0oKEiPPPJIhbcHADVBZfoyoTQAeE9F+zVBNQD4IPz429/+VqbmOXr0aC9UAwCoTF8mlAYA76lovyaoBgAfhB9169bVunXr1KFDB/epNNu2bVOvXr0UHh7u7XIAoMajLwOANVS0XxNUA4APwo+ffvpJkyZN0pVXXume9sUXX2jZsmW67777vF0OANR49GUAsAb6NQBUXPm+X7YKZGZmqlWrVh7TLr/8cmVmZnq7FACA6MsAYBX0awCoOK+HHy1atNCbb76pM2fOSCr8iq4lS5aoefPm3i4FACD6MgBYBf0aACrO65e9jBw5UnPmzNG9996rsLAw5eXl6bLLLtPYsWO9XQoAQPRlALAK+jUAVJzXw48GDRpo+vTpys7O1pEjRxQVFSWXy+XtMgAA/4u+DADWQL8GgIrz+mUvknTixAl99tln+uyzz+RyuZSbm6ucnBxflAIAEH0ZAKyCfg0AFeP18OOzzz7TuHHjtGHDBi1btkySlJWVpQULFni7FACA6MsAYBX0awCoOK+HH4sWLdK4ceM0ZcoUBQQESCq8S/VXX33l7VIAAKIvA4BV0K8BoOK8Hn4cPnxY8fHxHtMCAwOVn5/v7VIAAKIvA4BV0K8BoOK8Hn40bdpUO3bs8Ji2e/duxcbGersUAIDoywBgFfRrAKg4r3/by9ChQ/WXv/xF7du315kzZzR//nxt27ZNEyZM8HYpAADRlwHAKujXAFBxXg8/4uLi9Pzzz2vDhg0KCQmRy+XSjBkz5HQ6vV0KAED0ZQCwCvo1AFScV8OPgoICPfPMM5oyZYpuvfVWb24aAFAC+jIAWAP9GgAqx6v3/KhVq5YOHTokY4w3NwsAKAV9GQCsgX4NAJXj9Rue3n777VqwYIEOHz6sgoICjx8AgPfRlwHAGujXAFBxXr/nx7x58yRJ69evL/bcW2+95e1yAKDGoy8DgDXQrwGg4rwWfhw9elT16tVTcnKytzYJALgI+jIAWAP9GgAqz2uXvTz88MOSpPr166t+/fr6xz/+4f530Q8AwHvoywBgDfRrAKg8r4UfF96cae/evd7aNACgBPRlALAG+jUAVJ7Xwg+Hw+GtTQEAyoC+DADWQL8GgMrz2j0/8vPztWfPHvfjgoICj8eS9Otf/9pb5QBAjUdfBgBroF8DQOV5LfyIjIzUyy+/7H4cFhbm8djhcHATJwDwIvoyAFgD/RoAKs9r4cfcuXO9tSkAQBnQlwHAGujXAFB5Xgs/qkJ2drbmzp2ro0ePyuFwKCEhQf369VNeXp6SkpJ0+PBh1a9fX+PHj1dYWJiMMVq4cKEyMjIUHByskSNHqmXLlr4eBgAAAAAA8CJLhR8BAQEaOnSoWrZsqZ9//lmTJk3SVVddpbVr1yo+Pl4DBgxQamqqUlNTNWTIEGVkZCgrK0tz5szR/v37lZKSohkzZvh6GABgG4TSAAAAsAJLhR9RUVGKioqSJNWpU0dNmjRRbm6u0tPTNW3aNElSr169NG3aNA0ZMkRbt25Vz5495XA4FBcXp5MnT+rIkSPudQAAKodQGgD8H0E1AHjxq26r2qFDh/T111/r8ssv17Fjx9yBRlRUlI4fPy5Jys3Nlcvlci/jdDqVm5vrk3oBwI6ioqLcB8QXhtK9evWSVBhKp6enS1KpoTQAoPoUBdVJSUn685//rI8++kjff/+9UlNTFR8frzlz5ig+Pl6pqamS5BFUjxgxQikpKT4eAQBUnqXO/Chy+vRpzZo1S8OGDVNoaGip8xljik0r6XvS09LSlJaWJklKTEz0CEzKIjAwsNzLWI3dx2j38Un2H6Pdx2cFlQmlLzwjz8p92df7Ittn++z7uBBnTwOABcOPc+fOadasWerRo4c6d+4sqfDrv4oa8pEjRxQRESGp8KA6OzvbvWxOTk6JTTshIUEJCQnux+cvUxYul6vcy1iN3cdo9/FJ9h+jVcbXuHFjX5dQLao6lLZyX/b1vsj22T77ftnZtSdfDEF11bBq7dTtXVatW7J27aWxVPhhjNErr7yiJk2a6Oabb3ZP79ixo9atW6cBAwZo3bp16tSpk3v6hx9+qG7dumn//v0KDQ0lsQaAKlYdoTQAoOoRVFcdq9ZO3d5l1bol/6u9KsJqS93zY9++fVq/fr327NmjCRMmaMKECdq+fbsGDBigXbt2aezYsdq1a5cGDBggSWrfvr0aNGigsWPHat68eRo+fLiPRwAA9nKpUFpSsVB6/fr1MsYoMzOTUBoAvORiQbUkgmoAtmepMz+uuOIKLV26tMTnnnrqqWLTHA4HgQcAVKOiUDo2NlYTJkyQJN11110aMGCAkpKStGbNGrlcLj3yyCOSCkPp7du3a+zYsQoKCtLIkSN9WT4A1AicPQ0AFgs/AAD+hVAaAPwfQTUAEH4AAAAAtkZQDQAWu+cHAAAAAABAeRF+AAAAAAAAWyP8AAAAAAAAtkb4AQAAAAAAbI3wAwAAAAAA2BrhBwAAAAAAsDXCDwAAAAAAYGuEHwAAAAAAwNYIPwAAAAAAgK0RfgAAAAAAAFsj/AAAAAAAALZG+AEAAAAAAGyN8AMAAAAAANga4QcAAAAAALA1wg8AAAAAAGBrhB8AAAAAAMDWCD8AAAAAAICtEX4AAAAAAABbI/wAAAAAAAC2RvgBAAAAAABsjfADAAAAAADYGuEHAAAAAACwNcIPAAAAAABga4G+LqA8XnrpJW3fvl2RkZGaNWuWJCkvL09JSUk6fPiw6tevr/HjxyssLEzGGC1cuFAZGRkKDg7WyJEj1bJlSx+PAADshb4MAAAAK7DUmR+9e/fW5MmTPaalpqYqPj5ec+bMUXx8vFJTUyVJGRkZysrK0pw5czRixAilpKT4omQAsDX6MgBYw0svvaThw4fr0UcfdU/Ly8vTs88+q7Fjx+rZZ59VXl6eJMkYo1dffVVjxozRY489pgMHDviqbACoMpYKP9q0aaOwsDCPaenp6erVq5ckqVevXkpPT5ckbd26VT179pTD4VBcXJxOnjypI0eOeL1mALAz+jIAWANhNYCazlLhR0mOHTumqKgoSVJUVJSOHz8uScrNzZXL5XLP53Q6lZub65MaAaAmoS8DgP8hrAZQ01nqnh/lYYwpNs3hcJQ4b1pamtLS0iRJiYmJHgfnZREYGFjuZazG7mO0+/gk+4/R7uOzg5rSl329L7J9ts++j7Iqb1hdNG8RK/fqyrJq7dTtXVatW7J27aWxfPgRGRmpI0eOKCoqSkeOHFFERISkwiadnZ3tni8nJ6dYwy6SkJCghIQE9+PzlysLl8tV7mWsxu5jtPv4JPuP0Srja9y4sa9LqHY1vS/7el9k+2yffb/sakJProiyhtVW7tWVZdXaqdu7rFq35H+1V0W/tvxlLx07dtS6deskSevWrVOnTp3c09evXy9jjDIzMxUaGlrqQTYAoOrQlwHAGorCakkVDqsBwCosdebH7Nmz9dlnn+nEiRN68MEHNWjQIA0YMEBJSUlas2aNXC6XHnnkEUlS+/btrbnSLgAAIABJREFUtX37do0dO1ZBQUEaOXKkj6sHAPuhLwOAdRWF1QMGDCgWVn/44Yfq1q2b9u/fT1gNwBYsFX6MGzeuxOlPPfVUsWkOh0PDhw+v7pIAoEajLwOANRBWA6jpLBV+AAAAACg/wmoANZ3l7/kBAAAAAABwMYQfAAAAAADA1gg/AAAAAACArRF+AAAAAAAAWyP8AAAAAAAAtkb4AQAAAAAAbI3wAwAAAAAA2FqgrwsAzvfttwGaOTNcWVkBatgwXxMnnlBsbL6vywIAAAAAWBjhB/zGt98G6M47o3XwYG33tO3ba2vJklwCEAAAAABAhXHZC/zGzJnhHsGHJB08WFszZ4b7qCIAAAAAgB1w5gf8RlZWQInT//vfkqdbEZf1AAAAAID3EX7AbzRsWHIIEBNjj3CAy3oAXAzhKAAAQPXhshf4jYkTT6hZs7Me05o1O6uJE0/4qKKqxWU9AEpTFI6uWBGqTZuCtWJFqO68M1rffmufM98AAAB8ifADfiM2Nl9LluRq4MBT6tr1Fw0ceMpWZ0XUhMt6AFSMP4Sj334boNGj6+n2250aPboewQsAALAVLnuBX4mNzVdy8lFfl1Et7H5ZD4CK83U4ymV5AICK4rJNWAXhB+AlEyee0PbttT3+uLDTZT0AKs7X4ejFzjyxayANAP7GiiEC4TmshPAD8JKiy3pmzgzXf/8boJgYa3yoAah+vg5HfX3mCQDUdFYNEQjPYSWEH4AX2fmyHgAV5+tw1NdnngBATWfVEIHwHFZC+AEAgB/wZTjq6zNPAKCms2qIQHgOK+HbXgAAqOHs/m1bAODvrBoiTJx4Qs2anfWYRngOf8WZHwAAgMvyAMCHrHoGnq8v2wTKg/ADAAAAAHzIyiEC4TmsgvADsLmir03LzQ1UdHQ9y3yQAlbD7xoAoDIIEYDqRfiBi+Jg3tqKf21aaLV/bZoVv6MeqCxf/K4BALyPY2PAumwffuzYsUMLFy5UQUGBrr/+eg0YMKDK1u3t5uftPyo5mLc+b39tmi++o97uv4d2ZKe+XMSqX1FYlXz9B4Gvtw/f4b2vPtXVr6v7Pauuz2qOjb3Pqr/fVq27uvn6ONrW4UdBQYH+/ve/64knnpDT6dSf/vQndezYUU2bNq30ur3d/HzxRyUH89bn7a9N833YYr/fQ7uxU18+n1W/orCq+PoPAl9vH77De199qqtfV/d7Vp2f1Rwbe5dVf7+tWnd184fjaFt/1e2XX36phg0bKiYmRoGBgeratavS09OrZN0Xa37VwdvbkziYtwNvf22aP4UtdtieHdmpL5/Pql9RWFV8/bvh6+3Dd3jvq0919evqfs+qc/0cG3uXVX+/rVp3dfOH18XWZ37k5ubK6XS6HzudTu3fv79K1u3t5ueLZlvTD+btwNtfm2b3sIWDnsora19OS0tTWlqaJCkxMVEul6sM6y75Iy03N6RMy1fGc89JO3caHTjgcE9r2dLouecCq33bFwoM9P42ffna+8P2z+eL199ftl8T9z07K0u/9sdeXZ3rb9YsQJs2FZ8eG+vb3/vy8HWPKg+r/n5bte4LVfW+4g+vi63DD2NMsWkOh6PYtIo0bm83P180W386mK9uVvogKA+XS/roI6Np0/KVlVVLDRsWaNo0oxYtoqple97eZ2rC76HdlLUvJyQkKCEhwf04Ozv7kuuOjq4nKbSE6aeVnV29pyOHh0uLFxdd3xui6OjTmjjxhMLD81WG0quUy+Uq0+tVlXz52vvD9s/ni9ffX7ZvxX2vcePG1VCVPZSlX/tjr67O9T/8cIA2bYou9p9KDz+cq+xsa/znoK97VHn4U28vD6vWfaGq3lf8oV/bOvxwOp3KyclxP87JyVFUVPE/+irSuL3d/HzRbP3pYL66WemDoLzCw6VZszzHWF1DPX+fOf876qtrn7Hi72FNP9Aua1+uCG+f6XShoq8oLPxds87BTVXw9Wvv6+3Dd3jvq0919evqfs+qc/2xsflasiS32LFxTb6PQ3Wy6u+3Veuubv7wugRMmzZtmte25mX16tXT22+/rY4dOyo4OFiLFi3SwIEDFRkZedHlTpy49BsQGWnUt+8vys2tpZiYAP3mNz8rKelYtTW/87cXHV2gjh3PVOv2zt9uv36n9cADIerdO1eRkcX/F8AOQkNDderUKV+XUa28NcaifWbQoP/P3r3HRVXnfxx/DyAgoggDqGBmeGs1vIV5QUULN8ut6GKZWblGVmC2mqllqbt20aws1srUZLttZpbsWm4XItE0CxNXU0vbXDOVREBQVOTy/f3hj1lGLnJRZhhez8eDx8M58z3n+zlnznzO8TPnnO9JXXvtqQu6zzTE72Hz5o37fk9XysuVcXQ+cUT/jt72ju6/rMb4+Tuy77p+9o09J1elNvnaGXL1hT5nbujnxo7OUTXhTLm9Jhpq3Gc73/tKXb+b5yNfW0xF17S5kC1btuiNN95QSUmJhg4dqptuuumc8xw8eLBGfbjyVQOlXH0dXX39JNdfx4ayfo39yg/J9fOyo/dF+qd/9v3qIydXrab5uiHl6rpqqLETd/1qqHFLzhc7t71UQ+/evdW7d29HhwEA+H/kZQBoGMjXAFyJSw91CwAAAAAAQPEDAAAAAAC4NIofAAAAAADApVH8AAAAAAAALo3iBwAAAAAAcGkuP9QtAAAAAABo3Ljy4zyYPn26o0O44Fx9HV19/STXX0dXXz/UjCP3B0fvi/RP/42xb2foHzXXkD+zhho7cdevhhq31LBjrwzFDwAAAAAA4NIofgAAAAAAAJfmPnv27NmODsIVhIWFOTqEC87V19HV109y/XV09fVDzThyf3D0vkj/9N8Y+3aG/lFzDfkza6ixE3f9aqhxSw079orwwFMAAAAAAODSuO0FAAAAAAC4NA9HB+Bq/vnPf+rtt9/W0qVL1aJFC0eHc9689dZb+u677+Th4aFWrVopLi5OzZo1c3RY58XWrVuVmJiokpISXXXVVYqJiXF0SOfNkSNH9PLLL+vo0aOyWCyKjo7Wtdde6+iwLoiSkhJNnz5dAQEBLvl0atSOo3Kyo3KmI/OZM+QbR+aB/Px8LVq0SPv375fFYtEDDzygzp0711v/H330kVJSUmSxWHTRRRcpLi5Onp6eF6y/V155RVu2bJGfn5+ef/55SdLx48e1YMECZWZmKigoSJMmTZKvr2+99e/K5yqNQUM7h25o+1tDPd91hmNLXTTE81NHH88uJIof59GRI0e0fft2BQYGOjqU86579+4aPXq03N3d9fbbb2vVqlUaM2aMo8Oqs5KSEr3++ut6/PHHZbVa9eijjyoiIkJt27Z1dGjnhbu7u+68806FhYXp5MmTmj59urp37+4y61fWmjVrFBoaqpMnTzo6FDgJR+ZkR+RMR+czZ8g3jswDiYmJ6tmzpx5++GEVFRWpoKCg3vrOzs7Wv/71Ly1YsECenp564YUXtHHjRg0ZMuSC9TlkyBANHz5cL7/8sm1aUlKSwsPDFRMTo6SkJCUlJV2w/b6i/l31XKUxaIjn0A1pf3P08aEunOHYUhcN8fzUkcezC43bXs6jN954Q3fccYcsFoujQznvevToIXd3d0lS586dlZ2d7eCIzo+ffvpJrVu3VqtWreTh4aEBAwYoLS3N0WGdN/7+/rYHFTVt2lShoaEu89mVlZWVpS1btuiqq65ydChwIo7MyY7ImY7OZ47ON47MAydOnNCuXbt05ZVXSpI8PDzq/RfgkpISnT59WsXFxTp9+rT8/f0vaH9du3Ytd1VHWlqaoqKiJElRUVEXdP+rqH9XPVdpDBriOXRD2t8cfXyoC0cfW+qiIZ6fOsPx7ELiyo/zZPPmzQoICFD79u0dHcoFl5KSogEDBjg6jPMiOztbVqvV9tpqtWrPnj0OjOjCOXz4sPbu3auOHTs6OpTz7m9/+5vGjBnToKrquLCcKSfXV850pnzmiHzjyDxw+PBhtWjRQq+88or27dunsLAwjR07Vt7e3vXSf0BAgK677jo98MAD8vT0VI8ePdSjR4966bus3NxcW9HF399feXl59R5DKVc6V3F1zpSva8vZ9zdnOj7URUM7l22I56eOPp5daBQ/amDOnDk6evRouemjRo3SqlWr9PjjjzsgqvOnqvXr06ePJOnDDz+Uu7u7Bg0aVN/hXRAVDXbUkH51qK5Tp07p+eef19ixY+Xj4+PocM6r7777Tn5+fgoLC9OOHTscHQ7qkaNzsrPlTGfJZ47IN47OA8XFxdq7d6/GjRunTp06KTExUUlJSRo1alS99H/8+HGlpaXp5Zdflo+Pj1544QWtW7dOgwcPrpf+nY2rnau4Akfn69pytjxfW85yfKiLhnYu6+jjUm05+nh2oVH8qIEnnniiwum//PKLDh8+rEceeUTSmUucpk2bpmeeeUYtW7aszxDrpLL1K7V27Vp99913mjlzZoNLmJWxWq3Kysqyvc7KyrrglwrXt6KiIj3//PMaNGiQ+vbt6+hwzrsff/xRmzdvVnp6uk6fPq2TJ08qISFBEydOdHRouMAcnZOdLWc6Qz5zVL5xdB6wWq2yWq3q1KmTJKlfv35KSkqql74lafv27QoODrY9JLJv377avXt3vRc//Pz8lJOTI39/f+Xk5DjkoZWueK7iChydr2vL2fJ8bTnD8aEuGuK5rKOPS7Xl6OPZhUbx4zxo166dli5dansdHx+vZ555pkE8qbq6tm7dqn/84x/685//LC8vL0eHc9506NBBhw4d0uHDhxUQEKCNGzc6fVKqCWOMFi1apNDQUP3hD39wdDgXxOjRozV69GhJ0o4dO7R69WqX+gxRc86Qkx2RMx2dzxyZbxydB1q2bCmr1aqDBw8qJCRE27dvr9eH8QUGBmrPnj0qKCiQp6entm/frg4dOtRb/6UiIiKUmpqqmJgYpaam2n4Zry+ueq7iypwhX9dWQ9rfHH18qIuGei7r6ONSbTn6eHahUfxAtbz++usqKirSnDlzJEmdOnXS+PHjHRxV3bm7u2vcuHF66qmnVFJSoqFDh+qiiy5ydFjnzY8//qh169apXbt2tl9Vbr/9dvXu3dvBkQGuzRE509H5rLHnm3HjxikhIUFFRUUKDg5WXFxcvfXdqVMn9evXT9OmTZO7u7vat2+v6OjoC9rniy++qJ07d+rYsWO6//77deuttyomJkYLFixQSkqKAgMDNXny5Hrtf9WqVS55rgLn1JDOjR19fKiLxn5scQRHHs8uNIup6CYwAAAAAAAAF8FQtwAAAAAAwKVR/AAAAAAAAC6N4gcAAAAAAHBpFD8AAAAAAIBLo/gBAAAAAABcGsUPlLN48WKtXLnS9vqzzz7TvffeqzvvvFPHjh3TDz/8oIkTJ+rOO+/Ut99+68BIXd+OHTt0//33OzqMC2LFihVKSEhwdBiA0yMnOw9yMoCqkK+dB/kaFfFwdACoX/Hx8Tp69Kjc3d3l5uamtm3bavDgwYqOjpab25laWNkxyouKivTGG2/oqaeeUvv27SWd+cINHz5c1157rSNWocHYsWOH/vrXv2rRokWODsXpHT58WBMmTNC7774rd3d3R4cD1Btycv0hJ1cfORkoj3xdf8jX1Ue+rhmKH43QtGnT1L17d504cUI7d+5UYmKifvrpJ8XFxZVrm5ubq8LCQl100UW2aZmZmWrbtm2t+i4uLuaLWYazbw9njw9wBeRk5+Hs28PZ4wNcHfnaeTj79nD2+Borih+NmI+PjyIiItSyZUvNmDFDf/jDH9SuXTu9/PLLslqtGjx4sKZNmyZJGjt2rDp27KgjR47o8OHDmjdvntzc3LRs2TIVFhbqjTfeUHp6uiwWi4YOHapbb71Vbm5uWrt2rb744gt16NBBqampuvrqqzVq1CilpKRo9erVOnr0qDp27Kjx48crKChIknTrrbcqNjZWH330kY4dO6bIyEjdc889slgskqTk5GR9/PHHysrKktVq1YMPPqiwsDBlZ2dr2bJl2rVrl7y9vTVixIhqV9ZPnz6t5cuXa9OmTcrPz1e7du30xBNPyNPTU5s3b9bf//53ZWdnq3379oqNjbUduOLj43X11Vdr3bp1yszMVM+ePRUfH6+SkhI9/fTTKioq0p133ilJeumll5ScnKz9+/erSZMm+u6773TXXXdp8ODBeuedd/T1119Lkvr376877rhDTZo0qTLmxYsXy9vbW3fddZdt2rPPPquuXbvqD3/4g5KSkvSvf/1LJ0+elL+/v2JjYxUeHn7ObREfH69hw4bpq6++0sGDB/XWW28pNze30m37008/aenSpTp06JA8PT01cOBA3X333RVW7ePj43Xfffepe/fudn3OmjVL0pn9TJKeeOIJde7c+ZyxAq6EnPw/5OT/IScDzod8/T/k6/8hXzcABo1KXFyc+fe//11u+v33328+/fRTY4wxCxcuNO+++64xxpjffvvNjBw50hQVFVW6jHnz5pnXXnvNnDx50hw9etRMnz7dfPbZZ8YYY7788ktz2223mTVr1piioiJTUFBgvvnmGzNhwgSzf/9+U1RUZFauXGlmzJhhW97IkSPNM888Y44fP24yMzPNuHHjTHp6ujHGmI0bN5rx48ebPXv2mJKSEnPo0CFz+PBhU1xcbKZOnWref/99U1hYaDIyMkx8fLxtvl27dpm777670u2yZMkSM2vWLJOVlWWKi4vNDz/8YE6fPm0OHDhgxowZY/7973+bwsJCk5SUZCZMmGAKCwtt22L69OkmKyvLHDt2zPzpT3+ybcfvv//e3HfffXb9vPfee2bUqFHmm2++McXFxaagoMAsX77cPPbYY+bo0aMmNzfXzJgxw7b9K1pGqR07dpj777/flJSUGGOMOXbsmBk9erTJysoyBw4cMPfff7/JysqyfY6HDh2qdP3LiouLM1OmTDGZmZmmoKDgnNv2scceM6mpqcYYY06ePGl+/PHHSmMvu++899575qWXXrLFd/Z+BjQG5OSKkZP/h5wMOAfydcXI1/9DvnZ+PPAUkqSAgAAdP368xvMdPXpUW7du1dixY+Xt7S0/Pz+NGDFCGzdutLXx9/fXNddcI3d3d3l6eio5OVk33nij2rZtK3d3d914443673//q8zMTNs8MTExatasmQIDA9WtWzf997//lSSlpKTohhtuUMeOHWWxWNS6dWsFBQXpP//5j/Ly8nTLLbfIw8NDrVq10lVXXWWL49JLL9Xf/va3CtehpKREX375pcaOHauAgAC5ubmpS5cuatKkiTZu3KhevXqpe/fu8vDw0HXXXafTp0/rxx9/tM1/zTXXKCAgQL6+vrr88sttsVamc+fOuuKKK+Tm5iZPT0999dVXuvnmm+Xn56cWLVrolltu0fr168+57X/3u99Jknbt2iVJ2rRpkzp37mxbh8LCQv36668qKipScHCwWrdufc5lll2nwMBAeXp6nnPbenh4KCMjQ3l5efL29qbaDJwH5GRyclnkZMB5ka/J12WRr50bt71AkpSdnS1fX98az3fkyBEVFxfbPeDJGCOr1Wp7HRgYaDdPZmamEhMT9eabb9rNk52dbbtsr2XLlrb3vLy8dOrUKVt/rVq1KhdHZmamcnJybJd8SWcScmlyq8qxY8dUWFhYYWLLycmxxSRJbm5uCgwMVHZ2tm1a2Vg9PT3t3qtI2W0jyW69JSkoKOicy5Aki8WiyMhIbdiwQV27dtWGDRs0aNAgSVLr1q01duxYvf/++/r111/Vo0cP3XXXXQoICDjnciX7z+xc2/b+++/Xe++9p0mTJik4OFi33HKLLr/88mr1A6Bi5GRyclnkZMB5ka/J12WRr50bxQ/op59+UnZ2ti699NIaz2u1WuXh4aHXX3+92g/1CQwM1E033WRLMjURGBio3377rcLpwcHBtRr2qXnz5mrSpIkyMjJsT+Mu5e/vr19++cX22hijI0eOVCsBlt5feS4BAQHKzMy0PRCrusuXpMjISD355JOKiYnRnj17NGXKFNt7AwcO1MCBA3XixAktXrxY77zzjh588MFqLbesc23bNm3a6E9/+pNKSkr07bff6oUXXtDrr78uLy8vFRQU2NqVlJQoLy+vwmVUd1sBjQE5mZxcFXIy4DzI1+TrqpCvnQ+3vTRiJ06c0HfffaeXXnpJgwYNUrt27Wq8DH9/f/Xo0UNvvvmmTpw4oZKSEmVkZGjnzp2VzjNs2DAlJSVp//79tjhKH1R0LldeeaVWr16tn3/+WcYYZWRkKDMzUx07dlTTpk2VlJSk06dPq6SkRL/88ot++umncy7Tzc1NQ4cO1Ztvvqns7GyVlJRo9+7dKiws1IABA5Senq7t27erqKhIq1evVpMmTdSlS5dzLtfPz0/Hjh3TiRMnqmwXGRmpDz/8UHl5ecrLy9PKlSurfVC75JJL1KJFCy1atEg9evRQs2bNJEkHDx7U999/r8LCQnl6esrT09M2DFtNnWvbrlu3Tnl5eXJzc5OPj4+kM9s0JCREhYWF2rJli4qKivTBBx+osLCwwj5atGghi8VS4UEZaCzIyWeQk6tGTgYcj3x9Bvm6auRr58OVH43QvHnz5O7uLovForZt22rEiBH6/e9/X+vlTZgwQe+8844mT56skydPqlWrVrrhhhsqbX/FFVfo1KlTevHFF3XkyBH5+PgoPDxc/fv3P2df/fv317Fjx/TSSy8pOztbwcHBmjBhgoKCgjRt2jS9+eabio+PV1FRkUJCQnTbbbdJOnNP39NPP6233nqrwuXedddd+vvf/65HH31Up06dUvv27TVjxgyFhITowQcf1LJly2xPqp42bZo8PM791QkNDVVkZKQmTJigkpISvfDCCxW2u+mmm3TixAlbxblfv3666aabzrn8UpGRkVqxYoUmTZpkm1ZYWKh33nlHBw4ckLu7u7p06WK7rHL9+vVatWpVpfGczc3Nrcptu3XrVr355psqKChQUFCQHnroIdvBIjY2VosWLVJJSYmuv/76cpcrlvLy8tJNN92kJ554QsXFxXrssce47xGNBjm5PHJy5cjJgOOQr8sjX1eOfO18LMYY4+ggAAAAAAAALhRuewEAAAAAAC6N4gcAAAAAAHBpFD8AAAAAAIBLo/gBAAAAAABcGsUPAAAAAADg0ih+AAAAAAAAl0bxAwAAAAAAuDSKHwAAAAAAwKVR/AAAAAAAAC6N4gcAAAAAAHBpFD8AAAAAAIBLo/gBAAAAAABcGsUPAAAAAADg0ih+AAAAAAAAl0bxAwAAAAAAuDSKHwAAAAAAwKVR/AAAAAAAAC6N4gcAAAAAAHBpFD8AAAAAAIBLo/gBAAAAAABcGsUPAAAAAADg0ih+AAAAAAAAl0bxAwAAAAAAuDSKHwAAAAAAwKVR/AAAAAAAAC6N4gcAAAAAAHBpFD8AAAAAAIBLo/gBAAAAAABcGsUPAAAAAADg0ih+AAAAAAAAl0bxAwAAAAAAuDSKHwAAAAAAwKVR/AAAAAAAAC6N4gcAAAAAAHBpFD8AAAAAAIBLo/gBAAAAAABcGsUPAAAAAADg0ih+AAAAAAAAl0bxAwAAAAAAuDSKHwAAAAAAwKVR/AAAAAAAAC6N4gcAAAAAAHBpFD8AAAAAAIBLo/gBAAAAAABcGsUPAAAAAADg0ih+AAAAAAAAl0bxAwAAAAAAuDSKHwAAAAAAwKVR/AAAAAAAAC6N4gcAAAAAAHBpFD8AAAAAAIBLo/gBAAAAAABcGsUPAAAAAADg0ih+AAAAAAAAl0bxAwAAAAAAuDSKHwAAAAAAwKVR/AAAAAAAAC6N4gcAAAAAAHBpFD8AAAAAAIBLo/gBAAAAAABcGsUPAAAAAADg0ih+AAAAAAAAl0bxAwAAAAAAuDSKHwAAAAAAwKVR/AAAAAAAAC6N4gcAAAAAAHBpFD8AAAAAAIBLo/gBAAAAAABcGsUPAAAAAADg0ih+AAAAAAAAl0bxAwAAAAAAuDSKHwAAAAAAwKVR/AAAAAAAAC6N4gcAAAAAAHBpFD8AAAAAAIBLo/gBAAAAAABcGsUPAAAAAADg0ih+AAAAAAAAl0bxAwAAAAAAuDSKHwAAAAAAwKVR/AAAAAAAAC6N4gecwuOPP65LL720XpaTnJwsi8WijIyMOvfnivLy8tSmTRulp6dfkOW/+OKLCg0NlZubm5588skL0ocjrF+/Xu3bt9epU6ccHQpQIfKscxg4cKAsFossFos++eQTR4cDST///LMCAwP122+/OToUQBL52lmQr51PXfM1xY9qKN3pK/tr3769XftNmzbJ3d1dV1xxRbllPf7441Uua9iwYXWOt6pE17ZtW82dO7fOfbi6MWPGaPjw4Y4OwyGeeeYZDRgwQL169aqy3cCBA3X//ffXaNn79+/X5MmT9cQTT+jAgQOaNGlSuTbZ2dl66KGH1LVrV/n4+KhNmzYaOXKkdu/ebddu5cqVGj58uFq3bi2LxaLly5eXW9bcuXPVr18/tWzZUv7+/ho8eLA+++wzuzaFhYV65pln1LlzZ3l7e6tz585atGiRXZsxY8ZU+H11c3NTVlaWJGnQoEHq3LmzXnzxxRptE5xBnm18GnOeveuuu3To0CFdeeWVkhpu3juXpUuXymKxlPucqxNj6bxn/61du9au3eLFixUeHi4fHx9dfPHFmjNnjowxtvf37dunYcOGKSQkRF5eXgoNDdXdd9+tgwcP2tqEhYXppptu0qxZs6q1Xo0d+brxIV//L1+frXQfLntOXFhYqEcffVS9evVS8+bNFRQUpOHDhystLa3Cec/+++9//2u3rHPl682bNysqKkrBwcHy8vLSxRdfrIkTJyovL6/KdcvPz9dDDz2kdu3aqWnTpurQoYP+8pe/qKSkpEYxbt++XSNHjlTHjh3l5uZW6f8P3nvvPfXu3VvNmjVTcHCwbr75Zv3888+293/66acK+5o9e7ZmFCQQAAAgAElEQVStTV3zNcWPajh06JDt7x//+Ick6dtvv7VNO3tHXrx4seLj47V7925t3brV7r3p06fbLa/0b+7cuXJzc9OECRPqbb2As508eVKvvfaa7rvvvguy/P/85z8yxuiGG25QmzZt1KxZs3JtDh48qH379umpp57S1q1btXr1ah09elRXXXWVcnNzbe2OHz+ufv366ZVXXqm0v5SUFMXGxio1NVWbNm1S7969NWLECG3atMnW5vHHH9eCBQv07LPPaufOnXriiSc0efJkJSYm2tq8/PLL5b6zl19+uYYNGyar1WprFxsbq4ULF6qoqKium6rRIc+iMWnatKlat24tT09PSQ0771Vm+/btmjlzpgYOHFirGCXJy8urXAwDBgywvf/qq6/qT3/6kx555BF9//33SkhI0F//+le7E2V3d3eNHDlSq1ev1p49e7R8+XLt2rVLN9xwg11fsbGxevPNN5WTk3POdWvsyNdoTM7O12V9/vnnevfdd3XZZZfZTT9x4oS+/fZbPfLII/rmm2+UkpKigIAAXXXVVdq7d69d244dO5bb/y+66CLb+9XJ197e3ho3bpw+//xz7d69W4sXL9aaNWt0zz33VLlukydP1qpVq7Rs2TL98MMPeuaZZzRv3jw9//zzNYoxPz9fF198sWbPnl1uW5TauHGjbr/9dt12223avn27Pv74Y/3222+67rrryrX9+OOP7fqaMmWK3ft1ytcGNbJ+/Xojyezdu7fC948ePWp8fHzMjh07zL333mseeOCBcy7zq6++Mp6enmbevHnnJcYZM2aYLl26VPheaGioeeaZZ+zijY2NNYGBgcbLy8v06dPHJCcn297fs2ePkWS+/vpru+VcfPHFZs6cObbXixYtMl26dDFeXl4mICDAREVFmQMHDtje//bbb010dLRp1qyZCQoKMjfffLP55ZdfysX8wQcfmM6dO5tmzZqZoUOHmp9//tmu33/+85+mV69extPT0wQHB5v4+HiTn59f5bovWLDAhIaGmqZNm5rhw4ebxMREI8kcOnSo0m14xx13mKuvvrrc61dffdW0a9fOtGjRwsTExJjMzEy7+T799FMTGRlpmjZtavz8/ExUVJRtHUpKSszcuXNN+/btTZMmTUxYWJhJSEiwmz80NNTMmjXLjB8/3rRo0cIEBwebV155xZw6dcrExcUZPz8/Exoaal555RW7+fLy8syECRNMmzZtTNOmTU3v3r1NUlJSpetXmffff9/4+vqaoqKic7aNjIw09913n93r8ePHm9mzZ5vg4GATEBBgxo0bZ/t8ZsyYYSTZ/e3fv79acWVkZBhJZs2aNeXeKywsNJLMu+++W61lXXrppWbq1Km2161atTLz58+3axMXF2fCwsIqXcbOnTuNJPPhhx/aTc/PzzceHh7m888/r1YsqBh59gzyrGvm2bNzZ2UaSt6ryPHjx82ll15qVqxYUe5zrm6MS5YsMV5eXlXO07dvXxMfH2837dlnnzW+vr7mxIkTlc63cuVKI8kcP37cbnpISIhZsmTJOWPF/5CvzyBfN758ffDgQRMSEmI2btxYrbxeWFhofH197WKtat8sVZt8bYwxzz33nAkMDKyyTbdu3ezyrjHGXH/99eaWW26pUYxlVbYt5s+fb4KDg+2mffjhh3a5uLLvV0Vqm6+58uM8e+utt9StWzd17dpVY8eO1TvvvKP8/PxK2+/bt0833nijRo8eralTp9ZjpGeMHTtWX3zxhd555x2lp6friiuu0LXXXqs9e/ZUexnffPONJkyYoCeeeEI//vij1q5dq9GjR9ve3759u4YMGaJBgwZp8+bNSk5OljFGw4YN0+nTp23tfv31Vy1ZskTvvvuu1q9fr6ysLMXGxtreT09PV0xMjK688kr9+9//VmJiopKSkhQfH19pbB988IEeeeQRPfLII9q6datuuummWm/nTZs26auvvtKaNWv08ccfa/PmzZo2bZrt/U8//VTXXHONrrjiCn399df6+uuvdccdd9iuAkhISNCf//xnzZgxQzt27NDDDz+sKVOm6I033rDr56WXXlLXrl313Xff6YEHHlB8fLxuvPFGderUSWlpabrvvvs0YcIE/fjjj5IkY4xGjBihHTt26P3339f333+ve++9VyNHjlRqaqptuQMHDlR0dHSV65iamqrLL79c7u7utdpG7733no4dO6Z169bp7bff1vvvv2+rHk+fPl0rVqyQJG3btk2HDh1SSEhItZZb+stnYGBgreIqVVxcrOPHj9stp6CgQN7e3nbtmjZtqp9//lkHDhyocDmLFi1SmzZtylWrfXx8FB4eri+//LJOcaJq5FnybEPOs9XVUPJeRR544AENHjxYI0eOrHWMknT69GldcsklatOmjYYOHao1a9bYvX/q1KkK1+P48ePasmVLhX0dPnxYb7/9tvr06VPu6sO+ffuSv88z8jX52hXzdXFxsUaPHq0JEyaof//+1ZrnxIkTKioqKpfn9u3bp7Zt2+qiiy7StddeW+4KuNrk619++UUffPCBhg4dWmVMAwcO1Jo1a2y3sGzZskUbN27UiBEjahRjdURGRiorK0sffPCBSkpKlJOTo7fffltRUVHlcvGtt96qwMBA9enTRy+99FKFV1TXOl/XuFzSyJ2rwh0eHm4WLlxoe925c2fz+uuvV9g2Ly/PhIeHm4EDB5qCgoLzFuOMGTOMxWIxzZo1K/dnsVhsFe4ffvjBSDKffvqpbd6SkhLTvXt3c++99xpjqlfhXrFihWnZsqXJy8urMJ477rjD3HHHHXbTTpw4YTw9Pc3q1attMXt4eJgjR47Y2rz11lvGzc3NnD592hhjzKhRo0z//v3tlrNy5UpjsVjMr7/+altO2epk3759zV133WU3z0MPPVSrCnerVq3sPqc5c+aYtm3b2l7369fP3HDDDZUus3Xr1ubRRx+1mzZhwgTTqVMn2+vQ0FBz8803214XFRUZHx8fExMTY5tWXFxsmjdvbl599VVjjDGff/658fb2Lrf977zzTrtljR492vzxj3+sND5jjBkxYoQZPXp0lW1KVXTlR69eveza3HPPPWbgwIG2159//vk5t/3ZCgsLTXR0tOnfv78pKSmp8H1V8xfQWbNmGX9/f7tfX0aNGmU6duxovv/+e1NSUmI2btxorFarkWS+/fbbcss4ceKE8ff3N48//niFfVx33XVm1KhR1V4/lEeePYM865p5trq/EDakvFfW0qVLTdeuXW1XXlTnyo+KYvzqq6/Mm2++adLT082GDRvMhAkTjCTzt7/9zdZm+vTpxmq1mo0bN5qSkhLz/fffm44dOxpJZsWKFXZ93HLLLaZp06ZGkomMjLT7HpR68MEHTb9+/c65jvgf8vUZ5OvGla8ff/xxc9VVV5ni4uIq25U1duxYc8kll9hdmfPRRx+ZFStWmH//+98mNTXV3Hrrrcbd3d188cUXtjY1ydd9+vQx3t7eRpKJiYkxJ0+erDKmgoICc9999xlJxsPDw7i5uZmnnnrKrk11YqzONjPGmKSkJNOyZUvj4eFhJJn+/fub7Oxs2/u//fabef75582mTZvMli1bzAsvvGB8fX3N2LFjyy2rtvmaKz/Oo40bN+rHH3/UqFGjbNPuvvtuLV68uFzbkpIS3XHHHTp+/LhWrVpV4X1kZRUXF8vX19f2d65fXi655BJt3bq13F+rVq1sbXbs2CHpzIMaS1ksFg0aNMj2XnVcffXVateunS655BLdfvvtWrJkid3D0NLS0vT+++/bxR8UFKTCwkK7SvpFF11kdx9xaGioSkpKlJmZaYt38ODBdn1HRUXJGKOdO3dWGNvOnTvt7g+WVOH9x9XRtWtXu88pNDTU7knDW7Zs0e9///sK583JyVFGRkaF8f/nP/9RQUGBbVqPHj1s/3Z3d1dgYKC6d+9um+bm5qagoCAdPnxY0pntW1BQoDZt2tht4+XLl9tt33feeUfLli2rch1PnjxZrrocGxtrt9yyD4k7W8+ePe1en72NaqqoqEhjxozR3r17tXLlSlksllov669//avmz5+vDz74wO6Kk4ULF6p79+7q3r27mjRpolGjRtl+WanoCpgVK1YoNzfX7teXsry9vXXy5Mlax4mqkWfJsw09z55LQ8x7pXbt2qWpU6fqvffeU9OmTesUY2RkpO6880717NlTAwYM0F//+lfdfvvtmjdvnq3NrFmzdOONNyoqKkpNmjTRkCFDdOedd1a4HgkJCUpPT9fHH3+soqIi3X777XYP9ZPI3+cb+Zp87Yr5OiUlRUuWLNFbb70lN7fq/Vd6ypQp+uijj7R69Wr5+PjYpo8YMUIjR45U9+7dNXjwYC1fvlx9+/bVc889Z2tTk3z9wQcfaMuWLVq5cqV27dpV5VVA0pn8m5ycrFWrVmnLli1aunSpnn32Wb3++us1irE6du7cqbi4OE2ZMkWbN29WSkqKLBaLbrrpJlsuDg4O1uTJk9W3b1/16tVLkyZN0vPPP6833nij3P8napuvPWo8Byq1ePFinT592i6RGmNUUlKibdu22X1Rp02bptTUVH399dfVuqTV3d3d7iFRZb84FWnSpIk6duxY4XLKquikyhhjm176pTZlnpwunXnycKkWLVrou+++01dffaUvvvhCL7/8sqZOnaovv/xSPXv2VElJicaOHatHHnmkXF9l1/3sA11pDGVPTs6OtzSuqk4O63LiWFZF8ZWNrex2O1tlcZ69XaUzn93Z/VQ0rbTvkpISWa1Wff311+eM+VyCgoKUnZ1tN+2pp57S9OnTba/L7t/n6u/sbVQTBQUFuu2227Rz506tXbu22rfIVGTu3Ll68skn9dFHH5W7BNBqteqDDz5QQUGBMjMzFRISooULF8piseiSSy4pt6xFixbpmmuu0cUXX1xhX9nZ2RXOh/ODPEuebeh5tioNNe+V2rBhg7Kzs+0K4aXb0MPDQxs2bFDfvn2rFWNFBgwYoKSkJNtrb29vLVmyRK+++qoyMjLUunVr260xHTp0sJu3TZs2atOmjbp06aLw8HC1a9dOKSkpdpe9Z2dnKygo6JxxoHrI1+RrV8zXKSkpOnz4sN0DP4uLi7Vx40YtXbpUBw4csO3zxhhNmDBBK1euVEpKirp161blsi0Wi/r37293i19N8nVpTL/73e8UHByswYMH69FHH61w38/Pz9f06dO1fPlyxcTESJLCw8P13//+V3PmzKn0YakVxVgdTz75pHr37q0ZM2bYpr399tsKCwvTunXrNGTIkArnGzBggIwx2rdvn10uqW2+pvhxnhw9elQrVqzQokWLFBkZafdefHy8Fi9erIULF0qS/va3v2nBggVavXq1unbtWu0+Ktpx66Jbt24yxmj9+vW2yqwxRl999ZX69esn6UwFTpLdr/0ZGRk6dOiQ3bI8PDw0ZMgQDRkyRH/5y1/UpUsXvfvuu+rZs6ciIiK0bds2dejQoU4Jt1u3bnb36knSunXrZLFY9Lvf/a7Cebp27aoNGzZo/PjxtmkbNmyodQxVufzyy/Xpp5/qgQceKPdeQECAWrdurdTUVF199dW26evWrVPHjh3l5eVV634jIiJ05MgRFRUV1XlM+N69e2vp0qV201q1alVlweNCyM/PV0xMjA4ePKjU1FS1adOm1st67LHHtHDhQn3yySdV/rrh5eWltm3byhijd999V0OHDpW/v79dm23btmnTpk365z//Welyvv/++2rf546aIc+SZ10hz1amIee9UjfffLNtvy716KOPKicnR4sWLbIrSFQ3xrLS09Pt/sNRysPDQ23btpUk/f3vf1fHjh0VHh5e6XJK/5NU9tdl6cyzGCobzhI1Q74mX7tqvp44caLd1UzSmeFwO3XqpCeeeMJ2tU5xcbH++Mc/6osvvtDatWsr/UzOVlmeq06+LquyPFfq9OnTKioqKnf1iru7e4VFqOrEWJX8/PwK+5IqLnqV7UuSLceXqm2+pvhxnrz55ptq0qSJxo4dW+4Le8cdd2jq1Kl69tlntWXLFt13332aNm2aevXqpYyMDLu2Foul3v6j2aVLF9144426//779dprr6lt27Z6+eWX9cMPP2jlypWSJF9fX/Xt21fz5s1Tp06ddPr0aT322GN2t0Z8+OGH2r9/vwYNGqTAwEClpaXpwIEDtgPYjBkz1K9fP91999168MEHFRgYqL1792rVqlWaMmXKOX9JKjV16lRFRERoypQpio2N1c8//6yHHnpId999t0JDQyuc5+GHH9bo0aMVERGh4cOHa926dfr73/9exy1XsZkzZ2rEiBGaPHmybT/YsGGDBg0apE6dOunRRx/V9OnT1aFDBw0ePFjJyclavHhxhZd/1sTvf/97DRkyRDfccIPmzZunHj16KDs7Wxs2bJCvr6/GjRsn6cx+6OXlVeUlftdee62mT5+ugwcP1ukXx7rIy8vTNddco4yMDP3jH/+QxWKxfU9atmxp2/eys7P1yy+/qLi4WNKZhzFt3bpVVqvVlpAnTJigZcuW6b333lPHjh1ty/Hx8VGLFi0knXkw2a+//qqePXvqt99+0/z587Vjx44KTwZKvyfXXntthbHv2rVLmZmZGj58+PndKJBEniXPukaerUhDzntl+fv7lzsZ9/PzU2Fhod3wh9WJcebMmerfv786deqkgoICvffee0pMTNSrr75qW87u3bu1adMm9evXT3l5eVqyZIk+/PBDrVmzxnaS/f777+vUqVPq1auXmjdvrt27d2vmzJlq166d3S+Nubm5Sk9PLzfEI2qHfE2+dtV8HRwcbCuClfLx8ZG/v78tzxUWFuq2227T+vXrlZSUJH9/f9u+3bx5c9sDPidNmqTrr79e7du3V25url577TV9+eWX+vjjj23Lrk6+Xrx4saxWq7p16yYvLy9t27ZN06ZNU0RERKUFRX9/f9uVIc2bN1fHjh2VlpamF198UXfffbetXXViPH36tO1Wq/z8fGVlZWnr1q3y8vKyFX1iYmIUGxurhIQEjRgxQtnZ2Zo+fbratm2rPn36SJKWLVsmLy8v9ezZU15eXlq/fr2mTJmiUaNG2f2/pE75usZPCWnkKnuwU7du3cyYMWMqnOfIkSPGw8PDJCYmmjFjxpQb7rPsn7u7e51jrM2QXlar1Xh6epYb0ssYY3bt2mUGDhxofHx8TKdOnUxSUpLdg52+/PJLM2TIEGO1Wo2Xl5fp1KlTueHJtm7daq677jrj5+dnvL29TYcOHcz48eNNTk5OpTF/+eWX5YZDLTukV1BQkImLizvnkF7PP/+8adOmjfH29jbDhg0zy5Ytq/WQXmUlJiaW+7w+/vhj07dvX+Pl5WX8/PzM0KFDbftK2SG9PDw8TFhYmHnppZfs5j/78zGm/PBpxhjToUMHM2vWLNvr/Px888gjj5iLL77YNGnSxLRq1coMHz7cfPnll7Y2kZGR5qqrrqp0nUsNHDiwWsPLVfTA07MfcDRr1izToUMH2+uKHnha+vCwt956y65NRX+lbYw5MwxiRW3uueceY8z/HghYVRtjjFm7dq3p2rWr7TO7/vrrzfbt28ut7/Hjx02LFi3M7NmzK90mjz32mLn22mvPue1QNfIsebaUK+bZinJlQ817pf2dve3KOvtzrW6MEydONO3bt7cNFTpgwIByw+zu3LnT9O7d2/j4+JhmzZqZK6+80qxfv96uzT/+8Q9zxRVXGD8/P+Pl5WXCwsJMXFxcuaHWFy9ebLp27VrpeqBi5GvydanGkq+r06703Laiv7Kxjxw50oSGhtqGKo6OjjZr1661W3Z18vWSJUtMjx49jK+vr/Hx8TFdunQx06dPt3uYaEX5OiMjw9xzzz2mbdu2tvz42GOP2T0otToxVra+Zf8PYIwxr7zyirnsssuMj4+PCQoKMtdff73ZsWOH7f1ly5aZbt262R5IfNlll5n58+ebU6dO2S2nLvnaYsw5rmsB0KisXbtWd955p/bs2VPu4acXwmeffaaYmBjt2rWr2r92OKNjx46pQ4cO+vjjj20VbAA428CBA3XZZZdp0aJFjg6lznbv3q1LL71UX3/9td2zPBqa4uJihYeHa86cObr55psdHQ4AJ0G+dj51zdeM9gLAzpAhQzRjxgzt3bu3Xvr76KOP9NhjjzXowock/fzzz5o7dy6FDwDn9Prrr8vX11fJycmODqVOPvroI40bN65Bn0hL0q+//qrY2FgKHwDKIV87l7rma678AAAAqCcHDhywDc8XEhJyzlEqAACOQb52PRQ/AAAAAACAS+O2FwAAAAAA4NIofgAAAAAAAJdG8QMAAAAAALg0D0cH4IwOHjxYblpgYKCOHDnigGjon/4bd/+utu4hISHnbVmNSUV5uSqutt80lL7pv3H33xDXnZx8ftU0V0uO32/ORjxVc7Z4JOeLiXjOzVH5muIHAAAA4MIOHjyoBQsW2F4fPnxYt956q6KiorRgwQJlZmYqKChIkyZNkq+vr4wxSkxMVHp6ury8vBQXF6ewsDAHrgEA1B23vQAAAAAuLCQkRPPnz9f8+fM1b948eXp66oorrlBSUpLCw8OVkJCg8PBwJSUlSZLS09OVkZGhhIQEjR8/XkuXLnXwGgBA3VH8AAAAABqJ7du3q3Xr1goKClJaWpqioqIkSVFRUUpLS5Mkbd68WYMHD5bFYlHnzp2Vn5+vnJwcR4YNAHVG8QMAAABoJDZs2KDIyEhJUm5urvz9/SVJ/v7+ysvLkyRlZ2crMDDQNo/ValV2dnb9BwsA5xHP/AAAAAAagaKiIn333XcaPXp0le2MMeWmWSyWctOSk5OVnJwsSZo7d65dwaS6PDw8ajXfhUI8VXO2eCTni4l4zs1RMVH8gFP75Rd3Pftsc2VneyggoKWmTj2mdu2KHR0WAABOheMlqiM9PV2XXHKJWrZsKUny8/NTTk6O/P39lZOToxYtWkg6c6VH2ZEYsrKybFeIlBUdHa3o6Gjb69qMKOFsI1EQT9WcKR77vFfkNHnPmbaR5HzxSIz2ApTzyy/uGjUqQPv2Nfn/KT7asqWJli/PdorEBgCAM+B4ieoqe8uLJEVERCg1NVUxMTFKTU1Vnz59bNM/+eQTRUZGas+ePfLx8amw+AE4CnkPtcEzP+C0nn22eZmEdsa+fU307LPNHRQRAADOh+MlqqOgoEDbtm1T3759bdNiYmK0bds2TZw4Udu2bVNMTIwkqVevXgoODtbEiRP12muvKTY21lFhAxUi76E2uPIDTisjw73C6b/9VvF0AAAaI46XqA4vLy8tW7bMblrz5s01c+bMcm0tFgsFDzg18h5qgys/4LRat674krVWrbiUDQCAUhwvATQ25D3UBsUPOK2pU4/p4osL7aZdfHGhpk495qCIAABwPhwvATQ25D3URoO77SU/P1+LFi3S/v37ZbFY9MADDygkJEQLFixQZmamgoKCNGnSJPn6+soYo8TERKWnp8vLy0txcXEKCwtz9Cqgmtq1K9by5dn//xRnbwUEnHKapzgDAOAsOF4CaGzIe6iNBlf8SExMVM+ePfXwww+rqKhIBQUFWrVqlcLDwxUTE6OkpCQlJSVpzJgxSk9PV0ZGhhISErRnzx4tXbpUTz/9tKNXATXQrl2xFi48+v/DIR11dDgAADgljpcAGhvyHmqqQd32cuLECe3atUtXXnmlJMnDw0PNmjVTWlqaoqKiJElRUVFKS0uTJG3evFmDBw+WxWJR586dlZ+fr5ycHIfFDwAAAAAA6l+DuvLj8OHDatGihV555RXt27dPYWFhGjt2rHJzc21jj/v7+ysvL0+SlJ2drcDAQNv8VqtV2dnZjFMOAAAAAEAj0qCKH8XFxdq7d6/GjRunTp06KTExUUlJSZW2N8aUm2axWMpNS05OVnJysiRp7ty5dgWTUh4eHhVOry/0T/+Ntf/GvO4AAAAAzo8GVfywWq2yWq3q1KmTJKlfv35KSkqSn5+fcnJy5O/vr5ycHLVo0cLW/siRI7b5s7KyKrzqIzo6WtHR0bbXZecpdeZesvLT6wv9039j7d/V1j0kJOS8LQsAAABA9TSoZ360bNlSVqtVBw8elCRt375dbdu2VUREhFJTUyVJqamp6tOnjyQpIiJC69atkzFGu3fvlo+PD7e8AAAAAADQyDSoKz8kady4cUpISFBRUZGCg4MVFxcnY4wWLFiglJQUBQYGavLkyZKkXr16acuWLZo4caI8PT0VFxfn4OgBAAAAAEB9a3DFj/bt22vu3Lnlps+cObPcNIvFotjY2PoICwAAAAAAOKkGddsLAAAAAABATVH8AAAAAAAALo3iBwAAAAAAcGkUPwAAAAAAgEuj+AEAAAAAAFxagxvtBQDgXPLz87Vo0SLt379fFotFDzzwgEJCQrRgwQJlZmYqKChIkyZNkq+vr4wxSkxMVHp6ury8vBQXF6ewsDBHrwIAAABcHFd+AADqJDExUT179tSLL76o+fPnKzQ0VElJSQoPD1dCQoLCw8OVlJQkSUpPT1dGRoYSEhI0fvx4LV261MHRAwAAoDGg+AEAqLUTJ05o165duvLKKyVJHh4eatasmdLS0hQVFSVJioqKUlpamiRp8+bNGjx4sCwWizp37qz8/Hzl5OQ4LH4AAAA0Dtz2AgCotcOHD6tFixZ65ZVXtG/fPoWFhWns2LHKzc2Vv7+/JMnf3195eXmSpOzsbAUGBtrmt1qtys7OtrUtlZycrOTkZEnS3Llz7eapDg8PjxrPcz45sv/GvO70z77nyP4BAM6N4gcAoNaKi4u1d+9ejRs3Tp06dVJiYqLtFpeKGGPKTbNYLOWmRUdHKzo62vb6yJEjNYorMDCwxvOcT47svzGvO/2z79W0/5CQkAsUDQDA2XDbCwCg1qxWq6xWqzp16iRJ6tevn/bu3Ss/Pz/b7Sw5OTlq0aKFrRmcOygAACAASURBVH3Z/5xkZWWVu+oDAAAAON+48gMAUGstW7aU1WrVwYMHFRISou3bt6tt27Zq27atUlNTFRMTo9TUVPXp00eSFBERoU8++USRkZHas2ePfHx8KH4AQD1gZC4AjR3FDwBAnYwbN04JCQkqKipScHCw4uLiZIzRggULlJKSosDAQE2ePFmS1KtXL23ZskUTJ06Up6en4uLiHBw9ADQOpSNzPfzwwyoqKlJBQYFWrVql8PBwxcTEKCkpSUlJSRozZozdyFx79uzR0qVL9fTTTzt6FQCgTih+AADqpH379po7d2656TNnziw3zWKxKDY2tj7CAgD8v9KRueLj4yWdeTish4eH0tLSNHv2bElnRuaaPXu2xowZU+nIXFypB6Aho/gBAAAAuLALNTIXADQkFD8AAAAAF3ahRuaq67DkkvMNUUw8VXO2eCTni4l4zs1RMVH8AAAAAFxYRSNzJSUl2Ubm8vf3r9XIXHUdllxy/BDJZyOeqjlbPJLzxUQ85+aoockZ6hYAAABwYWVH5pJkG5krIiJCqampklRuZK5169bJGKPdu3czMhcAl8CVHwAAAICLY2QuAI0dxQ8AAADAxTEyF4DGjtteAAAAAACAS6P4AQAAAAAAXBrFDwAAAAAA4NIofgAAAAAAAJdG8QMAAAAAALi0BjfaS3x8vLy9veXm5iZ3d3fNnTtXx48f14IFC5SZmamgoCBNmjRJvr6+MsYoMTFR6enp8vLyUlxcnMLCwhy9CgAAAAAAoB41uOKHJM2aNUstWrSwvU5KSlJ4eLhiYmKUlJSkpKQkjRkzRunp6crIyFBCQoL27NmjpUuX6umnn3Zg5AAAAAAAoL65xG0vaWlpioqKkiRFRUUpLS1NkrR582YNHjxYFotFnTt3Vn5+vnJychwZKgAAAAAAqGcN8sqPp556SpI0bNgwRUdHKzc3V/7+/pIkf39/5eXlSZKys7MVGBhom89qtSo7O9vWFgAAAAAAuL4GV/yYM2eOAgIClJubqyeffFIhISGVtjXGlJtmsVjKTUtOTlZycrIkae7cuXYFk1IeHh4VTq8v9E//jbX/xrzuAAAAAM6PBlf8CAgIkCT5+fmpT58++umnn+Tn56ecnBz5+/srJyfH9jwQq9WqI0eO2ObNysqq8KqP6OhoRUdH216XnadUYGBghdPrC/3Tf2Pt39XWvaqCLQAAAIALo0E98+PUqVM6efKk7d/btm1Tu3btFBERodTUVElSamqq+vTpI0mKiIjQunXrZIzR7t275ePjwy0vAAAAAAA0Mg3qyo/c3Fw999xzkqTi4mINHDhQPXv2VIcOHbRgwQKlpKQoMDBQkydPliT16tVLW7Zs0cSJE+Xp6am4uDhHhg8AAAAAABygQRU/WrVqpfnz55eb3rx5c82cObPcdIvFotjY2PoIDQAAAAAAOKkGddsLAAAAAABATVH8AAAAAAAALq1B3fYCAHA+8fHx8vb2lpubm9zd3TV37lwdP35cCxYsUGZmpoKCgjRp0iT5+vrKGKPExESlp6fLy8tLcXFxCgsLc/QqAAAAwMVR/AAA1NmsWbNsw4xLUlJSksLDwxUTE6OkpCQlJSVpzJgxSk9PV0ZGhhISErRnzx4tXbpUTz/9tAMjBwAAQGPAbS8AgPMuLS1NUVFRkqSoqCilpaVJkjZv3qzBgwfLYrGoc+fOys/PV05OjiNDBQAAQCPAlR8AgDp76qmnJEnDhg1TdHS0cnNz5e/vL0ny9/dXXl6eJCk7O1uBgYG2+axWq7Kzs21tAQAAgAuB4gcAoE7mzJmjgIAA5ebm6sknn1RISEilbY0x5aZZLJZy05KTk5WcnCxJmjt3rl3BpDo8PDxqPM/55Mj+G/O60z/7niP7BwA4N4ofAIA6CQgIkCT5+fmpT58++umnn+Tn56ecnBz5+/srJyfH9jwQq9WqI0eO2ObNysqq8KqP6OhoRUdH216Xnac6AgMDazzP+eTI/hvzutM/+15N+6+qWAsAcC0UPwAAtXbq1CkZY9S0aVOdOnVK27Zt0y233KKIiAilpqYqJiZGqamp6tOnjyQpIiJCn3zyiSIjI7Vnzx75+PhwywsA1ANG5gLQ2FH8AADUWm5urp577jlJUnFxsQYOHKiePXuqQ4cOWrBggVJSUhQYGKjJkydLknr16qUtW7Zo4sSJ8vT0VFxcnCPDB4BGhZG5ADRmFD8AALXWqlUrzZ8/v9z05s2ba+bMmeWmWywWxcbG1kdoAIBzSEtL0+zZsyWdGZlr9uzZGjNmTKUjc3GlHoCGjOIHAAAA0Aic75G56vpwasn5HlRLPFVztngk54uJeM7NUTFR/AAAAABc3IUYmauuD6eWHP+g3LMRT9WcLR7J+WIinnNz1AOq3eq8BAAAAABOraqRuSTVamQuAGhIKH4AAAAALuzUqVM6efKk7d/btm1Tu3btbCNzSSo3Mte6detkjNHu3bsZmQuAS+C2FwAAAMCFMTIXAFD8AAAAAFwaI3MBALe9AAAAAAAAF0fxAwAAAAAAuDSKHwAAAAAAwKVR/AAAAAAAAC6N4gcAAAAAAHBpFD8AAAAAAIBLo/gBAAAAAABcGsUPAAAAAADg0jwcHUBtlJSUaPr06QoICND06dN1+PBhvfjiizp+/LguueQSPfjgg/Lw8FBhYaEWLlyon3/+Wc2bN9ef/vQnBQcHOzp8AAAAAABQjxrklR9r1qxRaGio7fXbb7+tESNGKCEhQc2aNVNKSookKSUlRf/H3p1HR1Fm/x//dBICJIGYDRD4sonoEMEFUDTKGtERf4qMO6CMgwwGgoAoKCqMC4uKIAZEQFyQEdzAcRl1IgMoysgqm8riOkgkSQNJCJCln98fnPSQpLOQdKq7q9+vcziHrq6ue59K963OTdVTkZGRev7559W/f38tXbrUVykDAAAAAAAfCbjmR3Z2tjZv3qy+fftKkowx2rlzp7p37y5J6tWrlzZs2CBJ2rhxo3r16iVJ6t69u3bs2CFjjE/yBgAAAAAAvhFwzY9XXnlFgwcPlsPhkCTl5uYqIiJCoaGhkqTY2Fg5nU5JktPpVFxcnCQpNDRUERERys3N9U3iAAAAAADAJwJqzo9NmzYpOjpa7dq1086dO6tc39NZHiVNk1Olp6crPT1dkjR9+nTFx8eXWycsLMzjcqsQn/jBGj+Yxw4AAADAOwKq+fH9999r48aN2rJliwoKCnTs2DG98sorys/PV3FxsUJDQ+V0OhUbGytJiouLU3Z2tuLi4lRcXKz8/HxFRUWV225ycrKSk5Pdj7OyssqtEx8f73G5VYhP/GCNb7exN2/e3GvbAgAAAFA9ll/28tFHHyknJ6dGr7399ts1f/58zZ07V2PGjNF5552n0aNHKzExUevXr5ckrV69Wl27dpUkdenSRatXr5YkrV+/XomJiR7P/ACAYFabugwAsA71GgBqzvIzP7Zv36433nhDiYmJ6tGjh7p166Z69erVapuDBg3S7NmztWzZMrVt21Z9+vSRJPXp00dpaWlKTU1VVFSUxowZ440hAICt1EVdBgB4H/UaAGrO8ubHhAkTlJubq3Xr1unDDz/UwoULdckll6hHjx7q2LFjtbeTmJioxMRESVLTpk01bdq0cuuEh4dr3LhxXssdAOzIW3UZAFC3qNcAUHM+mfOjUaNGuvrqq3X11Vfr559/Vlpamv79738rPj5effv21TXXXKMGDRr4IjUACEq1qcsul0sTJ05UbGysJk6cqIMHD2r27NnKy8tT27ZtlZqaqrCwMBUWFiotLU0//PCDGjVqpDFjxqhJkyYWjxQAAhvfowGgZnx2q9vt27dr3rx5mjJliqKjozVq1CiNGjVKP/74o6ZOneqrtAAgaNW0Ln/00Udq0aKF+/Hrr7+u/v37a86cOYqMjNSqVaskSatWrVJkZKSef/559e/fX0uXLq3zMQGAHfE9GgBOn+Vnfrz22mv68ssvFRERoR49emjmzJnuu7NI0tlnn60///nPVqcFAEGrNnU5Oztbmzdv1sCBA/XBBx/IGKOdO3fq3nvvlST16tVLb731lvr166eNGzfqpptukiR1795dixcvljGGiagBoJr4Hg0ANWd586OwsFDjx49X+/btPT4fFham6dOnW5wVAASv2tTlV155RYMHD9axY8ckSbm5uYqIiFBoaKgkKTY2Vk6nU5LkdDoVFxcnSQoNDVVERIRyc3PVuHFjbw8JAGyJ79EAUHOWNz9uuOEGhYeHl1qWl5engoICd+f61NOnAQB1q6Z1edOmTYqOjla7du20c+fOKuMYY8otq+isj/T0dKWnp0uSpk+frvj4+Cq3f6qwsLDTfo03+TJ+MI+d+Lz3fBnfCrX9Hs0cTQCCmeXNj6efflr33HOPoqKi3MucTqfmz5/PNYoA4AM1rcvff/+9Nm7cqC1btqigoEDHjh3TK6+8ovz8fBUXFys0NFROp9P9hTwuLk7Z2dmKi4tTcXGx8vPzS8U8VXJyspKTk92Ps7KyTmtM8fHxp/0ab/Jl/GAeO/F5751u/ObNm9dRNnWjtt+jS+ZoKjlbr2SOpqSkJC1YsECrVq1Sv379Ss3RtG7dOi1dulRjx46ts3EBgBUsn/D0t99+U6tWrUota9Wqlfbv3291KgAA1bwu33777Zo/f77mzp2rMWPG6LzzztPo0aOVmJio9evXS5JWr16trl27SpK6dOmi1atXS5LWr1+vxMRE5vsAgNNQm+/RJXM09e3bV5LcczR1795d0sk5mjZs2CBJ2rhxo3r16iXp5BxNO3bs8Hj2HgAEEsubH40bN1ZGRkapZRkZGWrUqJHVqQAA5P26PGjQIH3wwQdKTU1VXl6e+vTpI0nq06eP8vLylJqaqg8++ECDBg2qde4AEExqU69L5mgqaTrXZI4mAAhkll/20rt3b82cOVO33nqrmjZtqoyMDC1fvtz95RgAYC1v1OXExEQlJiZKkpo2bapp06aVWyc8PFzjxo3zWt4AEGxqWq/rao6m2s7PJPnfXC3kUzl/y0fyv5zIp2q+ysny5seAAQMUFhamJUuWuK/97tOnj6699lqrUwEAiLoMAIGipvW6ruZoqu38TJLv54opi3wq52/5SP6XE/lUzVdzNFne/AgJCdF1112n6667zurQAAAPqMsAEBhqWq9vv/123X777ZKknTt36v3339fo0aP17LPPav369UpKSvI4R1OHDh2YowmAbVje/JBOTtb0008/6fjx46WWc+kLAPgGdRkAAoM36/WgQYM0e/ZsLVu2TG3bti01R1NaWppSU1MVFRWlMWPGeCV3APAly5sf7777rt555x21bt1a9evXL/UcX7IBwHrUZQAIDN6o18zRBCBYWd78+OijjzR16lS1bt3a6tAAAA+oywAQGKjXAFBzlt/qNjw8XC1atLA6LACgAtRlAAgM1GsAqDnLmx+33HKLFi9erEOHDsnlcpX6BwCwHnUZAAID9RoAas7yy17mzZsnSfrss8/KPbd8+XKr0wGAoEddBoDAQL0GgJqzvPmRlpZmdUgAQCWoywAQGKjXAFBzljc/EhISJEkul0tHjhxRTEyM1SkAAE5BXQaAwEC9BoCas7z5cfToUS1atEjr169XWFiYlixZoo0bN2rv3r269dZbrU4HAIIedRkAAgP1GgBqzvIJTxcuXKiIiAjNmzdPYWEney8dOnTQl19+aXUqAABRlwEgUFCvAaDmLD/zY/v27XrxxRfdBVuSGjdurCNHjlidCgBA1GUACBTUawCoOcvP/IiIiFBubm6pZVlZWVyzCAA+Ql0GgMBAvQaAmrO8+dG3b1/NnDlTO3bskDFGu3fv1ty5c3XllVdanQoAQNRlAAgU1GsAqDnLL3u5/vrrVa9ePb300ksqLi7WCy+8oOTkZF1zzTVWpwIAEHUZAAIF9RoAas7y5ofD4VD//v3Vv3//035tQUGBJk+erKKiIhUXF6t79+66+eabdfDgQc2ePVt5eXlq27atUlNTFRYWpsLCQqWlpemHH35Qo0aNNGbMGDVp0qQORgUAgas2dRkAYB3qNQDUnOXNjx07dlT43HnnnVfpa+vVq6fJkyerQYMGKioq0qOPPqoLLrhAH3zwgfr376+kpCQtWLBAq1atUr9+/bRq1SpFRkbq+eef17p167R06VKNHTvW20MCgIBWm7oMALAO9RoAas7y5scLL7xQ6nFOTo6KiooUFxentLS0Sl/rcDjUoEEDSVJxcbGKi4vlcDi0c+dO3XvvvZKkXr166a233lK/fv20ceNG3XTTTZKk7t27a/HixTLGyOFw1MHIACAw1aYuAwCsQ70GgJqzvPkxd+7cUo9dLpfeeecdNWzYsFqvd7lcmjBhgjIyMnTVVVepadOmioiIUGhoqCQpNjZWTqdTkuR0OhUXFydJCg0Ndc+Q3bhxYy+OCAACW23rMgDAGtRrAKg5y5sfZYWEhGjgwIEaMWKErr322mqt//TTT+vo0aN65plntH///grXNcaUW+bprI/09HSlp6dLkqZPn674+Phy64SFhXlcbhXiEz9Y4wfz2H3ldOsyAMA3qNcAUH0+b35I0rZt2xQScnp33Y2MjFTHjh21Z88e5efnq7i4WKGhoXI6nYqNjZUkxcXFKTs7W3FxcSouLlZ+fr6ioqLKbSs5OVnJycnux1lZWeXWiY+P97jcKsQnfrDGt9vYmzdv7rVt1aWa1GUAgPWo1wBQPZY3P+65555SjwsKClRQUKBhw4ZV+dqcnByFhoYqMjJSBQUF2r59u66//nolJiZq/fr1SkpK0urVq9W1a1dJUpcuXbR69Wp16NBB69evV2JiIvN9AEAZtanLAADrUK8BoOYsb36kpqaWely/fn2deeaZioiIqPK1hw4d0ty5c+VyuWSM0aWXXqouXbqoZcuWmj17tpYtW6a2bduqT58+kqQ+ffooLS1NqampioqK0pgxY+pkTAAQyGpTl7kFOQBYpzb1GgCCneXNj44dO9b4ta1bt9ZTTz1VbnnTpk01bdq0csvDw8M1bty4GscDgGBQm7rMLcgBwDq1qdcAEOwsb348//zz1br0ZNSoURZkAwCoTV3mFuQAYB2+RwNAzVne/IiMjNSaNWvUpUsX90SCmzZtUs+ePdWoUSOr0wGAoFfbulwXtyCvzl24KuPru/RwhyTiB2P8YB67VWpar7lEEQB80Pw4cOCAJk6cqD/84Q/uZd99953eeecd3XXXXVanAwBBr7Z1uS5uQV6du3BVxm53CQqU2MQP7viBOPZAuQNXiZrWay5RBADJ8vti7d69W2effXapZe3bt9fu3butTgUAIO/VZU+3IJfk8Rbkkiq9BTkAoLya1uvKLlHs3r27pJOXKG7YsEGStHHjRvXq1UvSyUsUd+zY4bF5DQCBxPIzP9q2bas33nhDt9xyi8LDw1VQUKA333xTbdq0sToVAIBqV5e5BTkAWKc29dofL1GU/O9yJfKpnL/lI/lfTuRTNV/lZHnzIyUlRXPmzNGdd96pqKgo5eXl6ayzztLo0aOtTgUAoNrVZW5BDgDWqU299sdLFCXfXy5VFvlUzt/ykfwvJ/Kpmq8uU7S8+dGkSRM98cQTysrK0qFDhxQTE+N3nSgACCa1qcvcghwArOON79GeLlEMDQ31eIliXFwclygCsA3L5/yQpNzcXO3atUu7du1SfHy8nE6n+xpwAID1qMsAEBhqUq9zcnJ09OhRSXJfotiiRQv3JYqSPF6iKIlLFAHYhuXNj127dmnMmDH6/PPP9c4770iSMjIytHDhQqtTAQCIugwAgaKm9frQoUP629/+pvHjx+vBBx9U586d1aVLFw0aNEgffPCBUlNTlZeXV+oSxby8PKWmpuqDDz7QoEGD6nxsAFDXLL/s5ZVXXtGYMWPUqVMn/fnPf5Z0cpbqffv2WZ0KAEDUZQAIFDWt11yiCAA+OPMjMzNTnTp1KrUsLCzMfUtEAIC1qMsAEBio1wBQc5Y3P1q2bKmtW7eWWrZ9+3a1atXK6lQAAKIuA0CgoF4DQM1ZftnLkCFDNGPGDF144YUqKCjQggULtGnTJt1///1WpwIAEHUZAAIF9RoAas7y5keHDh309NNP6/PPP1eDBg0UHx+vqVOnKi4uzupUAACiLgNAoKBeA0DNWdr8cLlceuyxxzRp0iRdf/31VoYGAHhAXQaAwEC9BoDasXTOj5CQEB08eFDGGCvDAgAqQF0GgMBAvQaA2rF8wtMbb7xRCxcuVGZmplwuV6l/AADrUZcBIDBQrwGg5iyf8+PFF1+UJK1du7bcc8uXL7c6HQAIetRlAAgM1GsAqDnLmh+HDx/WGWecobS0NKtCAgAqQV0GgMBAvQaA2rPsspd7771XkpSQkKCEhAS9+uqr7v+X/AMAWIe6DACBgXoNALVnWfOj7ORMO3futCo0AMAD6jIABAbqNQDUnmXND4fDYVUoAEA1UJcBIDBQrwGg9iyb86O4uFg7duxwP3a5XKUeS9J5551nVToAEPSoywAQGKjXAFB7ljU/oqOj9cILL7gfR0VFlXrscDiYxAkALERdBoDAQL0GgNqzrPkxd+5cq0IBAKqBugwAgYF6DQC1Z1nzwxuysrI0d+5cHT58WA6HQ8nJybrmmmuUl5enWbNmKTMzUwkJCRo7dqyioqJkjNHLL7+sLVu2qH79+kpJSVG7du18PQwAAAAAAGAhyyY89YbQ0FANGTJEs2bN0pNPPqlPPvlE//3vf7Vy5Up16tRJc+bMUadOnbRy5UpJ0pYtW5SRkaE5c+Zo+PDhWrRokY9HAAAAAAAArBZQzY+YmBj3mRsNGzZUixYt5HQ6tWHDBvXs2VOS1LNnT23YsEGStHHjRvXo0UMOh0MdOnTQ0aNHdejQIZ/lDwAAAAAArBdQl72c6uDBg/rxxx/Vvn17HTlyRDExMZJONkhycnIkSU6nU/Hx8e7XxMXFyel0utctkZ6ervT0dEnS9OnTS72mRFhYmMflViE+8YM1fjCPHQAAAIB3BGTz4/jx45o5c6aGDh2qiIiICtczxpRb5uk+6cnJyUpOTnY/zsrKKrdOfHy8x+VWIT7xgzW+3cbevHlzr23LHzAXEwAAAAJBQF32IklFRUWaOXOmrrjiCl1yySWSTt7+q+RylkOHDqlx48aSTp7pceovLdnZ2eXO+gAA1BxzMQEAACAQBFTzwxij+fPnq0WLFrr22mvdy7t27ao1a9ZIktasWaNu3bq5l69du1bGGO3evVsRERE0PwDAi5iLCQD8X1ZWlv72t79p7NixGjdunD766CNJUl5enh5//HGNHj1ajz/+uPLy8iSd/M69ePFipaamavz48frhhx98mT4AeEVAXfby/fffa+3atWrVqpXuv/9+SdJtt92mAQMGaNasWVq1apXi4+M1btw4SdKFF16ozZs3a/To0QoPD1dKSoov0wcAW/PmXEwAAO8pOUuvXbt2OnbsmCZOnKjOnTtr9erV6tSpkwYMGKCVK1dq5cqVGjx4cKmz9Pbs2aNFixZp6tSpvh4GANRKQDU/zj33XL355psen3v00UfLLXM4HBo2bFhdpwUAQc/bczFVZyLqyvh6olomCSZ+MMYP5rH7u5iYGHeTuexZelOmTJF08iy9KVOmaPDgwRWepUejGkAgC6jmBwDA/1Q2F1NMTEyN5mKqzkTUlbHbRLmBEpv4wR0/EMdut0moq4Oz9AAEK5ofAIAaq2oupgEDBpSbi+njjz9WUlKS9uzZw1xMAGAhfztLT/K/M3bIp3L+lo/kfzmRT9V8lRPNDwBAjTEXEwAEBn88S0/y/RlDZZFP5fwtH8n/ciKfqvnqTD2aHwCAGmMuJgDwf5ylBwA0PwAAAABb4yw9AKD5AQAAANgaZ+kBgBTi6wQAAAAAAADqEs0PAAAAAABgazQ/AAAAAACArdH8AAAAAAAAtkbzAwAAAAAA2BrNDwAAAAAAYGs0PwAAAAAAgK3R/AAAAAAAALZG8wMAAAAAANgazQ8AAAAAAGBrND8AAAAAAICt0fwAAAAAAAC2RvMDAAAAAADYGs0PAAAAAABgazQ/AAAAAACArdH8AAAAAAAAtkbzAwAAAAAA2BrNDwAAAAAAYGs0PwAAAAAAgK2F+TqB0zFv3jxt3rxZ0dHRmjlzpiQpLy9Ps2bNUmZmphISEjR27FhFRUXJGKOXX35ZW7ZsUf369ZWSkqJ27dr5eAQAAAAAAMBqAXXmR69evfTQQw+VWrZy5Up16tRJc+bMUadOnbRy5UpJ0pYtW5SRkaE5c+Zo+PDhWrRokS9SBgAAAAAAPhZQzY+OHTsqKiqq1LINGzaoZ8+ekqSePXtqw4YNkqSNGzeqR48ecjgc6tChg44ePapDhw5ZnjMA2Nm8efM0bNgw3Xfffe5leXl5evzxxzV69Gg9/vjjysvLkyQZY7R48WKlpqZq/Pjx+uGHH3yVNgAAAIJMQF324smRI0cUExMjSYqJiVFOTo4kyel0Kj4+3r1eXFycnE6ne91TpaenKz09XZI0ffr0Uq8rERYW5nG5VYhP/GCNH8xjDwS9evXS1Vdfrblz57qXlZyRN2DAAK1cuVIrV67U4MGDS52Rt2fPHi1atEhTp071YfYAEDy4fBxAsAv45kdFjDHlljkcDo/rJicnKzk52f04Kyur3Drx8fEel1uF+MQP1vh2G3vz5s29ti1/0LFjRx08eLDUsg0bNmjKlCmSTp6RN2XKFA0ePLjCM/I8NaUBAN5FsxpAsAv45kd0dLT7y/OhQ4fUuHFjSSfP9Dj1F5bs7Gy+YAOABaw6I68yvj5jh7OliB+M8YN57IGAZjWAYBfwzY+uXbtqzZo1GjBggNasWaNu3bq5l3/88cdKSkrSnj17FBERQcEGAB/y9hl5lbHbGUOBEpv4wR0/EMdut7PxTldtm9W1bVRL/te0Ip/KYQtK+QAAIABJREFU+Vs+kv/lRD5V81VOAdX8mD17tnbt2qXc3FyNGDFCN998swYMGKBZs2Zp1apVio+P17hx4yRJF154oTZv3qzRo0crPDxcKSkpPs4eAIIDZ+QBQGCrbrO6to1qyfdNs7LIp3L+lo/kfzmRT9V81awOqObHmDFjPC5/9NFHyy1zOBwaNmxYXacEACiDM/IAIDDQrAYQTALqVrcAAP8ye/ZsPfzww/rtt980YsQIrVq1SgMGDNC2bds0evRobdu2TQMGDJB08oy8Jk2aaPTo0XrxxRdpUAOAj5U0qyWVa1avXbtWxhjt3r2bZjUAWwioMz8AAP6FM/IAIDBw+TiAYEfzAwAAALA5mtUAgh2XvQAAAAAAAFuj+QEAAAAAAGyN5gcAAAAAALA1mh8AAAAAAMDWaH4AAAAAAABbo/kBAAAAAABsjeYHAAAAAACwNZofAAAAAADA1mh+AAAAAAAAW6P5AQAAAAAAbI3mBwAAAAAAsDWaHwAAAAAAwNbCfJ0A4G2//BKqp55qpIyMUDVrVqwHHshVq1bFvk4LAGBjJccepzNMsbFncOwBAMDP0PyArfzyS6huvTVWP/9cz71s8+Z6WrbMyZdQAECdKH/sieDYA8BWaPBWjX3k/2h+wFaeeqpRqcaHJP38cz099VQjpaUd9lFWAAA749gDwM5o8FaNfRQYmPMDtpKREepx+e+/e14OAEBtBfux55dfQjVq1Bnq1y9Mo0adoV9+CY5xA8GisgYvTmIfBQbO/IBlrJiLo1kzz9tr2pSOKwCgbgTzsYe/dgL2F+wN3upgHwUGzvyAJUq+HK1YEaGvvqqvFSsidOutsV7/69ADD+SqdevCUstaty7UAw/kejUOAAAlgvnYw187AfsL5gZvdbGPAgPND1jCqi9HrVoVa9kyp264IV+XXXZCN9yQz1+fAAB16tRjT8+erqA69vDXTsD+grnBW13so8DAZS+whJVfjlq1KmaCOQCApUqOPfHx8crKCp5jEH/tBOyvpMF78k4mDRQbe5w7mZTBPgoMND9QY6czhwdfjgAAsJ8HHsjV5s31Sp3dyV87AfsJ1gbv6WAf+T/bNz+2bt2ql19+WS6XS3379tWAAQN8nVKds2Ji0fITnKnSCc7s9uXIin0M2FUw1mXArvzhr50lx2SnM0yxsWdwTPYi6jUQuKiN5dm6+eFyufTSSy/p4YcfVlxcnB588EF17dpVLVu29Mr2/fEX4NNtSpz6utMZS2VzeHi65OTUL0e//x6qpk39Y3/VhFX7GKfPqn3Mz7LmrKrLHOit5+t97+v4wcyXf+3kbjN1J9jqNfnATvy1Nvr6fW3r5sfevXvVrFkzNW3aVJJ02WWXacOGDV4p2jX9BbiunW5TQqrZWGoyh4dd5uKwah/j9Fi1j/lZ1o61ddk/DvTBwNf73tfx4Ts1OSajeoKpXpMP7MYfa6M/vK9tfbcXp9OpuLg49+O4uDg5nU6vbNtfb+1Wk6ZETcYSzHN4WLWPcXqs2sf8LGsnGOtyMPD1vvd1fPgOd5upO8FUr8kHduOPtdEf3te2PvPDGFNumcPhKLcsPT1d6enpkqTp06crPj6+3DphYWGlljudnned09nA4+trq2z8irRuHaqvviq/vFWril9fnbGUjT9tmvTNN0Y//PC//dmundG0adXL83RVd/x15dT4dbWPqxvfF3wZv7qx6+oz6evPvt14sy6X5U8/m0D4zHiTr/e9r+OfinptbeyaHJNRPdWp1zWp1ZJ/fWZPxiWf6vJ1jfPE33Lyh3z8sTb6w/va1s2PuLg4ZWdnux9nZ2crJiam3HrJyclKTk52P87Kyiq3zsnrWP+3PDb2DEkR5daLjT1eJ9e7lo1fkXvvDdVXX5U+Jb9160Lde69TWVmez8qozljKxm/USFq6NLTcHB6NGhWrGmmetuqOv66cGr+u9nF14/uCL+NXN3ZdfSa9/dlv3rx5jXOxA2/W5bKsrsuVCYTPjDf5et/7Ov6pqNfWxq7JMflUwV6TK1Odel2TWi3512eWfE6Pr2ucJ/6Wkz/kU9vaWBf84Tu0rS97Oeuss3TgwAEdPHhQRUVF+vLLL9W1a1evbPuBB3LVunVhqWX+cPeSkolFb7ghX5dddkI33JBf5XVUNR1LyRweb72VrbS0w0FzDaKV+xjVZ9U+5mdZO8FYl4OBr/e9r+PDd049Jvfs6arWMRnVE0z1mnxgN/5YG/3hfe0wns5ps5HNmzfr1VdflcvlUu/evTVw4MAqX/Pbb7+VW+apg1cyW60Vdy+p6w5iVWPxdQfTDvFr836xw/itiF0Xn0lvf/b5K6P36rIn/5tF3De33CwRKJ8Zb/L1vvd1/BLU68AaOzW5cqdbr6tbqyX/+cySz+nx9efcE3/LiXwqVpv3tTfqte2bHzVR3eaHlYhP/GCNb7ex80W7Zk7nC7Vkv/dNoMQmfnDHD8SxU5O963RrteT7901Z5FM5f8tH8r+cyKdqvqrXtr7sBQAAAAAAgOYHAAAAAACwNZofAAAAAADA1mh+AAAAAAAAW6P5AQAAAAAAbI27vQAAAAAAAFvjzI9qmjhxIvGJT/wgi+0P8VEzvv658ZkhfjDGD+axo+b87edGPpXzt3wk/8uJfKrmq5xofgAAAAAAAFuj+QEAAAAAAGwtdMqUKVN8nUSgaNeuHfGJT/wgi+0P8VEzvv658ZkhfjDGD+axo+b87edGPpXzt3wk/8uJfKrmi5yY8BQAAAAAANgal70AAAAAAABbo/kBAAAAAABsLczXCfirWbNm6bfffpMk5efnKyIiQk8//XS59UaOHKkGDRooJCREoaGhmj59ulfiv/nmm/rss8/UuHFjSdJtt92miy66qNx6W7du1csvvyyXy6W+fftqwIABXom/ZMkSbdq0SWFhYWratKlSUlIUGRlZbj1vj7+q8RQWFiotLU0//PCDGjVqpDFjxqhJkya1ilkiKytLc+fO1eHDh+VwOJScnKxrrrmm1Do7d+7UU0895Y55ySWX6MYbb/RKfKnq/WmM0csvv6wtW7aofv36SklJ8cr1cr/99ptmzZrlfnzw4EHdfPPN6t+/v3uZt8c+b948bd68WdHR0Zo5c6YkKS8vT7NmzVJmZqYSEhI0duxYRUVFlXvt6tWr9e6770qSBg4cqF69enklvq/e96g7//znP/Xxxx8rNDRUF110kQYPHmxJ3OrW8Lr2j3/8Q6+//roWLVrkzsUKy5Yt08aNG+VwOBQdHa2UlBTFxsZaFr+6n+W68NVXX+mtt97S/v37NXXqVJ111lmWxK2r7wPV4ameWqk6x2/4P1/VK098XcPK8mVN88RXda4sX9Y9T3xdC8vyt9pYUFCgyZMnq6ioSMXFxerevbtuvvlma5MwqNKrr75q3nrrLY/PpaSkmCNHjng95vLly817771X6TrFxcVm1KhRJiMjwxQWFprx48ebX3/91Svxt27daoqKiowxxixZssQsWbLE43reHH91xvPxxx+bF1980RhjzBdffGGeffZZr8Q2xhin02n27dtnjDEmPz/fjB49ulz8HTt2mGnTpnktZllV7c9NmzaZJ5980rhcLvP999+bBx980Os5FBcXm2HDhpmDBw+WWu7tse/cudPs27fPjBs3zr1syZIlZsWKFcYYY1asWOHxfZebm2tGjhxpcnNzS/3fG/F98b5H3dm+fbt57LHHTEFBgTHGmMOHD1sWuzo1vK5lZmaaJ554wtxzzz2Wv1+PHj3q/v+HH37orttWqe5nuS78+uuvZv/+/Wby5Mlm7969lsSsy+8D1eGpnlqpOsdv+Ddf1itPfF3DyvJlTfPEF3WuLF/XPU98XQvL8rfa6HK5zLFjx4wxxhQWFpoHH3zQfP/995bmwGUvVTDG6KuvvlJSUpKvUyln7969atasmZo2baqwsDBddtll2rBhg1e2ff755ys0NFSS1KFDBzmdTq9stzLVGc/GjRvdf+Xv3r27duzYIeOlOXtjYmLcZ1E0bNhQLVq0sGTcp2Pjxo3q0aOHHA6HOnTooKNHj+rQoUNejbF9+3Y1a9ZMCQkJXt1uWR07dix3VseGDRvUs2dPSVLPnj09vp+3bt2qzp07KyoqSlFRUercubO2bt3qlfi+eN+j7nz66ae6/vrrVa9ePUlSdHS0jzOy1quvvqpBgwbJ4XBYHjsiIsL9/xMnTliegy8/yy1btlTz5s0tiyfV7feB6vBUT60UCMdvVM6X9coTX9ewsvzt+4kv6lxZvq57nvi6Fpblb7XR4XCoQYMGkqTi4mIVFxdb/tnispcqfPvtt4qOjtaZZ55Z4TpPPvmkJOnKK69UcnKy12J/8sknWrt2rdq1a6c77rij3IfJ6XQqLi7O/TguLk579uzxWvwSq1at0mWXXVbh894af3XGc+o6oaGhioiIUG5urtdPjzx48KB+/PFHtW/fvtxzu3fv1v3336+YmBgNGTJE//d//+fV2JXtT6fTqfj4ePfjuLg4OZ1OxcTEeC3+unXrKmz21fXYjxw54h5LTEyMcnJyyq1T9n0SGxtbJ4Xcqvc96s6BAwf03XffadmyZapXr56GDBni8TNdV6qq4XVp48aNio2NVZs2bSyLWdYbb7yhtWvXKiIiQpMnT/ZZHlV9lu3Aqu8DgaCy4zf8kz/UK0/8pYaVFQw1rTqoe6fHX2qjy+XShAkTlJGRoauuukpnn322pfGDuvnx+OOP6/Dhw+WW33rrrerWrZukyn8RLNlGbGysjhw5oieeeELNmzdXx44dax2/X79+7vkUli9frtdee00pKSml1vN0xsPpdM+qM/53331XoaGhuuKKKyrcRk3HX1Z1xlPbMVfH8ePHNXPmTA0dOrRU51+S2rZtq3nz5qlBgwbavHmznn76ac2ZM8drsavan3U9/qKiIm3atEm33357uefqeuy14e33gJXve9ROZXXM5XIpLy9PTz75pPbt26dZs2YpLS3Na++X2tbwuoy/YsUKPfzww16Ndzrxu3Xrpttuu0233XabVqxYoY8//tjr1/V64xhWl7GtZMWxMRBUdvyGb/m6Xp1uTlbUsNPNR6q7mlbTfHyJuld9/lQbQ0JC9PTTT+vo0aN65pln9Msvv6hVq1aWxQ/q5scjjzxS6fPFxcX6+uuvK53MsGTyo+joaHXr1k179+6t9i9BVcUv0bdvX82YMaPc8ri4OGVnZ7sfZ2dnn9YZAFXFX716tTZt2qRHH320wmJSm/GXVZ3xlKwTFxen4uJi5efne/WvqUVFRZo5c6auuOIKXXLJJeWeP7VgXHTRRXrppZeUk5PjtTNPqtqfcXFxysrKcj8+3Z95VbZs2aK2bdvqjDPOKPdcXY9dOjnuQ4cOKSYmRocOHfK47djYWO3atcv92Ol0erXxYPX7HrVTWR379NNPdckll8jhcKh9+/YKCQnx6plita3hdRX/l19+0cGDB3X//fdLOlknJkyYoGnTpnn8bHs7flmXX365pk+f7vVfHLxxDKur2Far7fcBO6jq+A3f8nW9Op2cyqqrGna6+dRlTatJPr5G3asef62NkZGR6tixo7Zu3Wpp84M5Pyqxfft2NW/evNQpVac6fvy4jh075v7/tm3bvPbDO3Ueh6+//trj5QVnnXWWDhw4oIMHD6qoqEhffvmlunbt6pX4W7du1XvvvacJEyaofv36Htfx9virM54uXbpo9erVkqT169crMTHRawcAY4zmz5+vFi1a6Nprr/W4zuHDh92d5r1798rlcqlRo0ZeiV+d/dm1a1etXbtWxhjt3r1bERERll3yUpdjL9G1a1etWbNGkrRmzRqPf1m44IIL9M033ygvL095eXn65ptvdMEFF3glvi/e96g73bp1044dOySdvKNRUVGR19+zFalODa8rrVq10qJFizR37lzNnTtXcXFxmjFjRp3/InGqAwcOuP+/ceNGy68Nr85n2U7q8vtAIKjO8Rv+yR/qlSe+rmFlBVtNq45gr3vV4W+1MScnR0ePHpV08s4v27dvV4sWLSzNwWG8NVukDc2dO1dnn322+vXr517mdDr14osv6sEHH9Tvv/+uZ555RtLJs0Quv/xyDRw40Cuxn3/+ef30009yOBxKSEjQ8OHDFRMTUyq+JG3evFmvvvqqXC6Xevfu7bX4qampKioqcp9VcfbZZ2v48OF1Pn5P41m+fLnOOussde3aVQUFBUpLS9OPP/6oqKgojRkzRk2bNq31eCXpu+++06OPPqpWrVq5Gyq33Xab+0yLfv366eOPP9ann36q0NBQhYeH64477tA555zjlfgV7c9PP/3UHd8Yo5deeknffPONwsPDlZKS4rXbi504cUL33HOP0tLS3Gd5nBrb22OfPXu2du3apdzcXEVHR+vmm29Wt27dNGvWLGVlZSk+Pl7jxo1TVFSU9u3bp3/9618aMWKEpJPXu65YsULSyVvd9u7d2yvxV6xY4ZP3PepGUVGR5s2bp59//llhYWEaMmSIzjvvPEtiV1TDfWHkyJGaNm2apbeOfOaZZ3TgwAE5HA7Fx8dr+PDhlt4msqJjmBW+/vprLV68WDk5OYqMjFSbNm00adKkOo9bV98HqsNTPe3Tp49l8Ss6fvvi9tKoHV/UK098XcPK8mVN88RXda4sX9Y9T3xdC8vyt9r4888/a+7cuXK5XDLG6NJLL3VfImwVmh8AAAAAAMDWuOwFAAAAAADYGs0PAAAAAABgazQ/AAAAAACArdH8AAAAAAAAtkbzAwAAAAAA2BrND5SzYMECvf322+7Hn376qe6++24NGTJEubm5+u677zR69GgNGTJEX3/9tQ8ztb+dO3e6b+9qN2+++abmzJnj6zQAv0dN9h/UZACVoV77D+o1PAnzdQKw1siRI3X48GGFhoYqJCRELVu2VI8ePZScnKyQkJO9sFPvG15UVKRXX31VTz75pNq0aSPp5Afu6quv1jXXXOOLIQSMnTt36vnnn9f8+fN9nYrfO3jwoEaNGqU33nhDoaGhvk4HsAw12TrU5OqjJgPlUa+tQ72uPur16aH5EYQmTJigzp07Kz8/X7t27dLLL7+svXv3KiUlpdy6R44cUWFhof7v//7PvSwzM1MtW7asUezi4mI+mKfw9/3h7/kBdkBN9h/+vj/8PT/A7qjX/sPf94e/5xesaH4EsYiICHXt2lVnnHGGJk2apGuvvVatWrXS3LlzFRcXpx49emjChAmSpKFDh6p9+/bKysrSwYMHNWPGDIWEhGjx4sUqLCzUq6++qi1btsjhcKh37966+eabFRISotWrV+uzzz7TWWedpTVr1uiqq67SrbfeqlWrVun999/X4cOH1b59ew0fPlwJCQmSpJtvvlnDhg3TBx98oNzcXCUlJekvf/mLHA6HJCk9PV0ffvihsrOzFRcXp9TUVLVr105Op1OLFy/Wt99+qwYNGqh///7V7qwXFBRo2bJlWr9+vY4ePapWrVrpkUceUXh4uDZu3Ki///3vcjqdatOmjYYNG+Y+cI0cOVJXXXWV1q5dq8zMTF1wwQUaOXKkXC6Xpk6dqqKiIg0ZMkSS9Nxzzyk9PV2//vqr6tWrp02bNumOO+5Qjx49tHTpUn311VeSpEsvvVSDBg1SvXr1Ks15wYIFatCgge644w73sqeeekodO3bUtddeq5UrV+qf//ynjh07ppiYGA0bNkydOnWqcl+MHDlSV155pb744gv99ttvWrJkiY4cOVLhvt27d68WLVqkAwcOKDw8XJdffrnuvPNOj137kSNH6q9//as6d+5cKubkyZMlnXyfSdIjjzyiDh06VJkrYCfU5P+hJv8PNRnwP9Tr/6Fe/w/1OgAYBJWUlBTzzTfflFs+YsQI88knnxhjjElLSzNvvPGGMcaY33//3dx0002mqKiowm3MmDHDvPjii+bYsWPm8OHDZuLEiebTTz81xhjz73//29xyyy3mo48+MkVFRebEiRPmP//5jxk1apT59ddfTVFRkXn77bfNpEmT3Nu76aabzLRp00xeXp7JzMw0d911l9myZYsxxpgvv/zSDB8+3OzZs8e4XC5z4MABc/DgQVNcXGweeOAB89Zbb5nCwkKTkZFhRo4c6X7dt99+a+68884K98vChQvN5MmTTXZ2tikuLjbfffedKSgoMPv37zeDBw8233zzjSksLDQrV640o0aNMoWFhe59MXHiRJOdnW1yc3PNmDFj3Ptxx44d5q9//WupOMuXLze33nqr+c9//mOKi4vNiRMnzLJly8xDDz1kDh8+bI4cOWImTZrk3v+etlFi586dZsSIEcblchljjMnNzTW33367yc7ONvv37zcjRoww2dnZ7p/jgQMHKhz/qVJSUsz48eNNZmamOXHiRJX79qGHHjJr1qwxxhhz7Ngx8/3331eY+6nvneXLl5vnnnvOnV/Z9xkQDKjJnlGT/4eaDPgH6rVn1Ov/oV77PyY8hSQpNjZWeXl5p/26w4cPa+vWrRo6dKgaNGig6Oho9e/fX19++aV7nZiYGP3xj39UaGiowsPDlZ6erhtuuEEtW7ZUaGiobrjhBv3000/KzMx0v2bAgAGKjIxUfHy8EhMT9dNPP0mSVq1apeuvv17t27eXw+FQs2bNlJCQoH379iknJ0c33nijwsLC1LRpU/Xt29edx7nnnqtXXnnF4xhcLpf+/e9/a+jQoYqNjVVISIjOOecc1atXT19++aUuvPBCde7cWWFhYfp//+//qaCgQN9//7379X/84x8VGxurqKgodenSxZ1rRTp06KCLL75YISEhCg8P1xdffKE//elPio6OVuPGjXXjjTfq888/r3Lf/+EPf5Akffvtt5Kk9evXq0OHDu4xFBYW6r///a+KiorUpEkTNWvWrMptnjqm+Ph4hYeHV7lvw8LClJGRoZycHDVo0IBuM+AF1GRq8qmoyYD/ol5Tr09FvfZvXPYCSZLT6VRUVNRpvy4rK0vFxcWlJngyxiguLs79OD4+vtRrMjMz9fLLL+u1114r9Rqn0+k+be+MM85wP1e/fn0dP37cHa9p06bl8sjMzNShQ4fcp3xJJwtySXGrTG5urgoLCz0WtkOHDrlzkqSQkBDFx8fL6XS6l52aa3h4eKnnPDl130gqNW5JSkhIqHIbkuRwOJSUlKR169apY8eOWrduna644gpJUrNmzTR06FC99dZb+u9//6vzzz9fd9xxh2JjY6vcrlT6Z1bVvh0xYoSWL1+usWPHqkmTJrrxxhvVpUuXasUB4Bk1mZp8Kmoy4L+o19TrU1Gv/RvND2jv3r1yOp0699xzT/u1cXFxCgsL00svvVTtSX3i4+M1cOBAd5E5HfHx8fr99989Lm/SpEmNbvvUqFEj1atXTxkZGe7ZuEvExMTol19+cT82xigrK6taBbDk+sqqxMbGKjMz0z0hVnW3L0lJSUl64oknNGDAAO3Zs0fjx493P3f55Zfr8ssvV35+vhYsWKClS5cqNTW1Wts9VVX79swzz9SYMWPkcrn09ddf69lnn9VLL72k+vXr68SJE+71XC6XcnJyPG6juvsKCAbUZGpyZajJgP+gXlOvK0O99j9c9hLE8vPztWnTJj333HO64oor1KpVq9PeRkxMjM4//3y99tprys/Pl8vlUkZGhnbt2lXha6688kqtXLlSv/76qzuPkomKqtKnTx+9//77+uGHH2SMUUZGhjIzM9W+fXs1bNhQK1euVEFBgVwul3755Rft3bu3ym2GhISod+/eeu211+R0OuVyubR7924VFhbqsssu05YtW7R9+3YVFRXp/fffV7169XTOOedUud3o6Gjl5uYqPz+/0vWSkpL07rvvKicnRzk5OXr77berfVBr27atGjdurPnz5+v8889XZGSkJOm3337Tjh07VFhYqPDwcIWHh7tvw3a6qtq3a9euVU5OjkJCQhQRESHp5D5t3ry5CgsLtXnzZhUVFemdd95RYWGhxxiNGzeWw+HweFAGggU1+SRqcuWoyYDvUa9Pol5XjnrtfzjzIwjNmDFDoaGhcjgcatmypfr3769+/frVeHujRo3S0qVLNW7cOB07dkxNmzbV9ddfX+H6F198sY4fP67Zs2crKytLERER6tSpky699NIqY1166aXKzc3Vc889J6fTqSZNmmjUqFFKSEjQhAkT9Nprr2nkyJEqKipS8+bNdcstt0g6eU3f1KlTtWTJEo/bveOOO/T3v/9dDz74oI4fP642bdpo0qRJat68uVJTU7V48WL3TNUTJkxQWFjVH50WLVooKSlJo0aNksvl0rPPPutxvYEDByo/P9/dce7evbsGDhxY5fZLJCUl6c0339TYsWPdywoLC7V06VLt379foaGhOuecc9ynVX7++edasWJFhfmUFRISUum+3bp1q1577TWdOHFCCQkJuvfee90Hi2HDhmn+/PlyuVy67rrryp2uWKJ+/foaOHCgHnnkERUXF+uhhx7iukcEDWpyedTkilGTAd+hXpdHva4Y9dr/OIwxxtdJAAAAAAAA1BUuewEAAAAAALZG8wMAAAAAANgazQ8AAAAAAGBrND8AAAAAAICt0fwAAAAAAAC2RvMDAAAAAADYGs0PAAAAAABgazQ/AAAAAACArdH8AAAAAAAAtkbzAwAAAAAA2BrNDwAAAAAAYGs0PwAAAAAAgK3R/AAAAAAAALZG8wMAAAAAANgazQ8AAAAAAGBrND8AAAAAAICt0fwAAAAAAAC2RvMDAAAAAADYGs0PAAAAAABgazQ/AAAAAACArdH8AAAAAAAAtkbzAwAAAAAA2BrNDwAAAAAAYGs0PwAAAAAAgK3R/AAAAAAAALZG8wMAAAAAANgazQ8AAAAAAGBrND8AAAAAAICt0fwAAAAAAAC2RvMDAAAAAADYGs0PAAAAAABgazQ/AAAAAACArdH8AAAAAAAAtkbzAwAAAAAA2BrCCJqtAAAgAElEQVTNDwAAAAAAYGs0PwAAAAAAgK3R/AAAAAAAALZG8wMAAAAAANgazQ8AAAAAAGBrND8AAAAAAICt0fwAAAAAAAC2RvMDAAAAAADYGs0PAAAAAABgazQ/AAAAAACArdH8AAAAAAAAtkbzAwAAAAAA2BrNDwAAAAAAYGs0PwAAAAAAgK3R/AAAAAAAALZG8wMAAAAAANgazQ8AAAAAAGBrND8AAAAAAICt0fwAAAAAAAC2RvMDAAAAAADYGs0PAAAAAABgazQ/AAAAAACArdH8AAAAAAAAtkbzAwAAAAAA2BrNDwAAAAAAYGs0PwAAAAAAgK3R/AAAAAAAALZG8wMAAAAAANgazQ8AAAAAAGBrND8AAAAAAICt0fwAAAAAAAC2RvMDAAAAAADYGs0PAAAAAABgazQ/AAAAAACArdH8AAAAAAAAtkbzAwAAAAAA2BrNDwAAAAAAYGs0PwAAAAAAgK3R/AAAAAAAALZG8wMAAAAAANgazQ8AAAAAAGBrND8AAAAAAICt0fwAAAAAAAC2RvMDAAAAAADYGs0PAAAAAABgazQ/AAAAAACArdH8AAAAAAAAtkbzAz7x8MMP69xzz7VkO+np6XI4HMrIyKh1PLu5/PLL5XA45HA49PHHH/s6nYA1e/ZstWjRQiEhIXriiSe0ZMkSXXrppTLG+Do1IOB46/hQVy6//HKNGDGiTrZdtpbUpbLjGDx4sK6++uo6jQnAfwRzrfW1zz77TImJiapXr56Sk5PrNFbZn/OiRYvUoEGDOo3pz2h+eFDyy2BF/9q0aVNq/fXr1ys0NFQXX3xxuW09/PDDlW7ryiuvrHW+lRWvli1bavr06bWOYXfB/KXvjjvu0IEDB9SnTx/3soMHD2ro0KFq3ry5IiIi1LFjR82bN6/U6wYPHuzxPX2q1atX67rrrlOrVq3kcDgqfC+mpaWpY8eOioiIUPPmzfXnP/9ZmZmZ7udLGlhl/73yyive2xGq2YH2119/1bhx4/TII49o//79Gjt2rAYNGqRDhw5p+fLlXs0PgS/Qji/FxcV66qmnlJiYqIiICJ1xxhm64IILNHnyZPc6U6ZMUfv27Wsdq64NHTq0zr9k1oanWlKX/vGPf+ipp56q0xiAr1Brfcffa60/GDFihC655BL9+OOPeuutt+o01sSJE/XFF1/UaYxAQvPDgwMHDrj/vffee5Kkr7/+2r1sw4YNpdZfsGCBRo4cqd27d2vr1q2lnps4cWKp7ZX8mz59ukJCQjRq1CjLxgV40rBhQzVr1kzh4eHuZUOGDNGWLVv09ttva+fOnUpNTVVqamq5At27d+9y7+1T5eXl6bzzztMzzzyjhIQEj/HfeOMNjR07VuPHj9euXbu0bNkyrV+/XkOHDi237rZt20rFuuWWW05rrIMHD/b6X1P37dsnY4yuv/56nXnmmYqMjFRISIjuuusuzZ4926uxEPgC7fgyefJkzZgxQ5MmTdL27du1bt06TZw4UUePHq31tlGap1pSl2JjY9W4ceM6jQH4CrUW/srlcmnfvn268sor1bJlS8XExNRpvKioKMXHx9dpjIBiUKnPP//cSDI//vijx+cPHz5sIiIizM6dO83dd99t7rnnniq3+cUXX5jw8HAzY8YMr+Q4adIkc84553h8rkWLFmbatGml8h02bJiJj4839evXN926dTPp6enu5/fs2WMkma+++qrUdlq3bm0ef/xx9+P58+ebc845x9SvX9/Exsaanj17mv3797uf//rrr01ycrKJjIw0CQkJ5k9/+pP55ZdfyuX8zjvvmA4dOpjIyEjTu3dv88MPP5SK+49//MNceOGFJjw83DRp0sSMHDnSHD16tNKxz5o1y7Ro0cI0bNjQXH311ebll182ksyBAwcq3IeDBg0yV111VbnHL7zwgmnVqpVp3LixGTBggMnMzCz1uk8++cQkJSWZhg0bmujoaNOzZ0/3GFwul5k+fbpp06aNqVevnmnXrp2ZM2dOqde3aNHCTJ482QwfPtw0btzYNGnSxMybN88cP37cpKSkmOjoaNOiRQszb968Uq/Lyckxo0aNMmeeeaZp2LChueiii8zKlSsrHF9FkpKSzF//+tdyyyMjI8vF7Ny5sxk/fnyF+6wqZd+LJUaOHGkuvvjiUsueffZZEx8f7378r3/9q8qfYXUMGjSo1Pu4rLL7IykpyQwfPtxMmTLFNGnSxMTGxpq77rrL/R6cNGmSkVTq36+//mqMMWb37t1GktmzZ0+tcoZ9BcLxJTEx0UyYMKHC5xcuXFjuM1DyGfP0mb/zzjtN37593Y/z8/PN3XffbRo3bmxiYmJMSkqKuf/++8vV9ddff9107tzZ1K9f37Rp08bcd999pY4FNfmsLlmyxBhT9fGsrKSkJHP33Xeb8ePHm9jYWNOoUSNz9913m2PHjhljjFmwYIGJjY11Py7x8MMPm/bt2xuXy1VumxXVkr1795oBAwaYZs2amYYNG5pOnTqZpUuXlstn+PDh5sEHHzTx8fEmOjraPPLII6a4uNg8+uijpkmTJiYhIcE88sgj5V53ar07taZ/+umnJiwsrNx+WLRokWncuLHJy8urcP8A/oZaS609VXW/4y9evNicc845pl69eqZly5bmkUceMUVFRdXeF56UfJ8tu3+KiorMX/7yF9OuXTvToEED065dOzNp0iRz4sQJ92tLfuf5+9//btq1a2caNmxobrjhBpObm2vefPNNc/bZZ5tGjRqZm266yeTk5JR7XYmFCxea+vXrG2P+995fvnx5qTz37t1rHA6H+fzzzyscS6Ci+VGFqgrm888/b7p162aMMWbdunVVfin46aefTEJCghk6dKjXcjyd5seAAQNM27ZtzSeffGJ27dplRo4cacLDw83u3buNMdVrfqxfv96EhYWZ119/3fz0009m27Zt5sUXX3QXsG3btpmIiAjzt7/9zXz77bfmm2++MQMHDjTnnHOO+0M8adIkExkZaa6++mqzadMms3nzZtO5c2fTp08fd8zNmzebkJAQc99995lvv/3WfPjhh6ZFixal9l3Zsb/99tsmLCzMzJ4923z//fdmwYIFJiEhoUbNj+joaDNo0CCzY8cO8/nnn5uWLVuau+66y73Oxx9/bEJCQszYsWPN1q1bza5du8yCBQvc+3L27NmmYcOGZuHChWb37t1m7ty5Jjw83Lzyyiulfj5nnHGGmT17ttmzZ4+ZPHmycTgc5o9//KOZNWuW2b17t3nsscdMSEiI+e6774wxJ5sqV1xxhendu7f54osvzL59+8wLL7xg6tWrZ1avXu3edlJSUqkDnycVNT+uuuoq06dPH/P7778bl8tl/vWvf5mIiIhSjbJBgwaZxo0bm6ZNm5q2bduaG2+80ezatavCWBU1P9544w0TGRlp1qxZY1wul/ntt99MUlKSufPOO93rlBwsWrdubRISEsyll15qXnvttQoPbBWpSfMjOjra3Hfffea7774zH330kWnUqJF57LHHjDHGfcCRZLZt22YOHDhgiouL3a+PjY01CxYsOK0cETwC4fiSnJxsLrnkkgq/oObn55v77rvPtGnTxhw4cMAcOHDAnWN1vpCPGjXKNGnSxLz33nvm22+/NWPGjDGNGjUq90UtNjbWLFmyxOzbt8+sXr3aJCYmlhpndT6rN998s7ni/7N35/FRVff/x9+TSVhCFjKZkBAglLCoLBYkFJQlFCJSsRBwKauiRcUoCKlG1AooAiEQY2lABBS/LhVpLamirf4ikljUGgxWhJalIrgFCBNCwmJIcn9/UKaMSUgmy2x5PR8PHg/m5N45n5PlM3c+c865Q4fa4zxz5kytr2fVGTx4sBEcHGzcfffdxp49e4y//OUvhtVqNebOnWsYhmGUlpYaISEhxssvv2w/p7y83OjYsaORmppa7XPWlEs+++wzY/Xq1cY///lP48CBA0ZGRobh5+dn5OTkOMQTEhJiPPzww/bXPUnGL37xC2PevHnG3r17jeeee86QZLz77rsO59VU/KisrDS6du1qPPnkkw5xDho0yJg5c2aN3xvAE5FrybUXq8s1flZWluHn52csW7bM2Lt3r/GHP/zBCA0NNRYuXFjn70V1fvjhB+Obb74xJBlr1qyxf3/KysqMxx57zPjHP/5hHDx40Ni8ebPRrl07h+e68N7pl7/8pfH5558b77//vmGxWIxRo0YZY8aMMf75z38a27ZtM6xWq/HII484nFdT8cMwDOOOO+4wEhISHOKcN2+eccUVV9Q4Dm9G8aMWtSXMPn36GJmZmfbHPXr0MJ577rlqjz158qTRp08fY8iQIQ6VvIZ69NFHDZPJZLRp06bKP5PJZE+I//73vw1JxjvvvGM/t7Ky0rjyyiuNO++80zCMuhU/Nm3aZLRt29ahqnixKVOmGFOmTHFoO336tNGiRQvjzTfftMfs7+9vFBYW2o956aWXDD8/P6OsrMwwDMOYOHGicfXVVzs8z5/+9CfDZDIZ33zzjf15Lv6DHjhwoHHrrbc6nHP//ffXq/gRGRnp8HNatGiR0bFjR/vjQYMGGePGjavxOaOiooyHH37Yoe2+++4zunfvbn/coUMH48Ybb7Q/Li8vNwIDA43ExER7W0VFhREcHGw888wzhmGcLwS0atWqyvd/2rRpDs81efJk4/bbb68xPsOoufhRXFxsjB071pBk+Pv7Gy1btnQo2hiGYbzyyivGG2+8Yezatct49913jZEjR9o/OalOTcUPwzj/aUCrVq0Mf39/Q5IxduxYh+/9nj17jDVr1hh5eXlGXl6eMX/+fMPf39/hRagu6lP86Nevn8Mxv/71r40hQ4bYH19qVkqfPn2MefPmORUjmg9veH354osvjJ49exomk8m47LLLjNtuu834wx/+YJw7d85+zIIFC4yuXbtWObe2C/Li4mKjRYsWxvPPP+9wTN++fR3yeocOHYx169Y5HPPee+8ZJpPJngfr8rf64zcDhlH761l1Bg8ebMTGxjoUOletWmW0atXKOH36tGEYhnHPPfcY8fHx9q9v2bLFCAgIMAoKCmp83rrOcLv++usdChCDBw82+vfv73BMjx49jL59+zq09ezZ0+GT5UsVPwzDMJYtW2Z06dLFXmT+4osvDElGfn7+JeMDPA25llx7sbpe40+aNMnhvBUrVhiBgYH2n0ldvhfVOXfunCHJePXVVy95XFpamnH55ZfbHz/66KNGQECAcfz4cXvbXXfdZZjNZof3U0lJScbAgQMdzrtU8eMf//iHYTKZjP/85z/2+Nq3b2889dRTl4zPW7HnRwN8+OGH2rt3ryZOnGhvu+2227R27doqx1ZWVmrKlCkqLS3V5s2bHfZXqE5FRYWCgoLs/375y19e8vguXbros88+q/IvMjLSfszu3bslSUOHDrW3mUwmDR061P61urjuuusUExOjLl26aNKkSVq3bp2OHz9u/3peXp7++Mc/OsQfERGhc+fOaf/+/fbjOnXqpPDwcPvjDh06qLKy0r7R5e7duzVs2DCHvuPj42UYhvbs2VNtbHv27NE111zj0DZkyJA6j+1iPXv2dPg5dejQQUeOHLE/zs/P16hRo6o9t6ioSAUFBdXG/5///Ec//PCDve2nP/2p/f9ms1lWq1VXXnmlvc3Pz08RERE6evSopPPf3x9++EHt27d3+B5v3LjR4fv7yiuv6Pnnn6/X2B977DF9/fXXeuedd/Tpp59q6dKlSkpKcrgjzOTJk/XLX/5SvXv31rXXXqu33npLkZGRyszMdKqvbdu2af78+XrqqaeUn5+vLVu2aP/+/brzzjvtx1xxxRW6++67FRcXp7i4OD3++ON68MEHlZ6ervLy8hqfe8aMGQ7fo9dee02LFi2q0nYpffv2dXj849+DS2nVqpXOnDlTp2OBi3nK60uvXr30xRdfaMeOHUpKStLZs2d1++23a/DgwTp79mz9ByjpwIEDKisrq5KzBw8ebP//999/r2+//VazZ8+uErNhGDpw4ID92Pr8rdb2elaTgQMHys/vf5dQF74fBw8elHR+M7ucnBzt27dPkrRu3TqNHTvW4TW5Lk6dOqWHHnpIvXr1ksViUVBQkN59910dOnTI4biLX0ckKSoqyuF15ELbhdeRurj99tv17bffKjs72z6G/v37q1+/fk6NAfBk5Nrzmluure0af8+ePdVew58+fdret3Tp78WXX37p8L2sbW+YNWvWaMCAAWrXrp2CgoL02GOPVcn1nTp1ksVisT+OiopShw4dHN5POZvrf/azn6lv37567rnnJElbtmyRzWbTrbfeWufn8Cb+7g7Am61du1ZlZWUOf2CGYaiyslKff/65w4XHQw89pJycHH300Ud12nTGbDY7bLgUGBh4yeMDAgKq3QHabDY7PP7x3TguxHyh/UKCMX50i85z587Z/x8SEqJPP/1Uf//73/Xee+9p1apVSklJ0fvvv6++ffuqsrJS06dP14MPPlilr4vH/uMXjQsxVFZW1hjvhbiqG8elxlgf1cV3cWwXf99+rKY4f/x9lc7/7H7cT3VtF/qurKxUeHi4Pvroo1pjro99+/Zp5cqV2rFjh/r37y9JuvLKK/XZZ58pNTW1xrvitGzZUldddZW++uorp/p75JFHdMstt+iee+6RJPXp00eBgYEaMWKEHn/88So7sl9wzTXXaOnSpbLZbGrXrl21xyxevFjz5s2zP37ggQcUGxurpKQke1tUVNQl46vt9+BSbDZbjRu9ApfiSa8vJpNJV111la666irNnj1b27Zt089//nO9/vrrmjJlSo3n+fn5XfK1pC75/MLfWmZmZpULUen8heAF9flbre31rK5+PM4rr7xSgwYN0vr165WcnKy33npLb731Vp2f74Lk5GT99a9/VXp6unr06KE2bdpozpw5Vd4MOfs6UhcRERGaMGGC1q1bp2HDhunll1/WkiVLnB4D4MnItec1t1xblzHU5T3IpZ6nU6dODj//0NDQGuN59dVXdf/992vZsmUaOnSoQkJCtHHjRj3++OMOxzVFrpeku+++W48//rgef/xxrV+/XhMmTHAoqPgSih/1dOLECW3atElr1qxxqJxK0r333qu1a9faPwF/4YUXlJGRoTfffFM9e/ascx+NfTurXr16yTAMffDBB/YZC4Zh6O9//7sGDRokSfY3kd999539vIKCgip38fD399fw4cM1fPhwPfHEE7rsssv06quvqm/fvoqLi9Pnn3+url27NqgQ0atXL+Xk5Di05ebmymQy6Yorrqj2nJ49e2r79u2666677G3bt2+vdwyX0r9/f73zzjv2N+0Xs1gsioqKUk5Ojq677jp7e25urrp166aWLVvWu9+4uDgVFhaqvLy8Se7PfmFn8Ysr7dL5F/HqijcXlJeXa9euXRo+fLjT/VXXl1R9seiCnTt3qk2bNpfcJTsyMtLhgiYoKEgWi8Ult4orLS3VV199pbi4uCbvC77F019fLuTfC58stWjRQhUVFVWOa9euncNriWEY+uyzz9S+fXtJUvfu3RUQEKDt27erR48e9uM+/PBD+/+jo6PVvn177du3T3fccUe9Y75UnJd6PavJJ598osrKSnvu+uijj9SyZUt16dLFfszdd9+thx56SEFBQerYsWO9boeZm5uradOm6eabb5Z0/pPkffv2KSYmxunnqo+7775b1113nZ599ln98MMPmjRpkkv6BVyBXEuurUnPnj2Vk5Oju+++296Wm5urwMDAGj+U+7GaPpiuTm5uruLi4jRnzhx728UzTJra5MmT9cADD+jZZ5/V3/72N/2///f/XNa3q1H8qKcXX3xRAQEBmj59epU3slOmTFFKSorS0tKUn59v/6Ps16+fCgoKHI41mUxOT4Otr8suu0zjx4/XzJkz9eyzz6pjx45atWqV/v3vf+tPf/qTpPNvDgcOHKhly5ape/fuKisr0yOPPKJWrVrZn+fPf/6zvv76aw0dOlRWq1V5eXn69ttv7S8Gjz76qAYNGqTbbrtNs2bNktVq1cGDB7V582Y98MAD6ty5c53iTUlJUVxcnB544AHNmDFDX375pe6//37ddttt6tChQ7Xn/OY3v9HkyZMVFxen0aNHKzc3V3/4wx8a+J2r3vz58zVmzBglJyfbfw+2b9+uoUOHqnv37nr44Yc1b948de3aVcOGDVN2drbWrl1b7VRKZ4waNUrDhw/XuHHjtGzZMv30pz+VzWbT9u3bFRQUZH/RmjJlilq2bOn00pdevXqpW7duuvfee7VixQpFRUXpvffe0yuvvKK0tDRJUnFxsRYtWqTx48fbp/ilpaXp8OHDDrMqSktL7VMlz507p++//16fffaZgoOD1bVrV0lSYmKiVqxYobi4OA0ZMkRff/21Zs+erX79+tlfYJ566il16dLF/jv217/+VUuWLNGcOXOqVLw9xQcffKDAwECHZWZAXXjS68v48eM1dOhQXXPNNWrfvr2++eYbLVq0SC1atND1118v6fyyy++++06ffPKJYmNj1aZNG7Vu3VoJCQn2KcidOnXS6tWr9c0339gvyENCQnTnnXfqkUceUUREhLp37661a9fqwIEDio6Oto9h8eLFmjlzpkJCQjRu3Dj5+/trz549evfdd/XMM8/UeSxdunTRX/7yF+3Zs0ft2rVTcHCw3nrrrUu+ntXk6NGj9luA79+/XwsWLNDMmTPVunVr+zG/+tWvNHfuXC1evFjz58+v14cBl112mbKyspSYmKjAwECtWLFCR44ccVnxY/jw4YqNjdWDDz6oW2+9VcHBwS7pF3AFci25tiYPP/ywxo8fr759+2r8+PH69NNPtWjRIqWkpMjfv/HfPl922WV68cUX9eabb+qKK67Qm2++ab9FsysEBwdr8uTJSk5OVmxsrNMfZHoT9vyop7Vr12rs2LHVfoJ/44036tSpU9q0aZOeffZZlZWVacmSJWrfvn2VfzW9iW8qGzZs0MiRIzVp0iT17dtXn3zyid5++211797dfswLL7ygli1b6uqrr9bkyZN17733OiwrsFgsysrK0qhRo9SjRw89/PDDWrBggW677TZJUu/evbV9+3adOHFC1157rXr27Km77rpLZWVll5zy9WP9+vVTVlaWtm7dqp/+9KeaPn26xo0bp1WrVtV4zs0336xly5Zp6dKluvLKK/Xaa68pNTW1Ht+p2v3iF7/Qli1b9OGHH+pnP/uZBg4cqJdfftn+ZnzWrFlasGCBnnzySfXs2VMrVqzQ8uXL7d+n+jKZTHrrrbc0btw4zZkzR5dddpnGjBmjv/71r4qNjbUfd+jQIR0+fNjp52/RooX+9re/qWPHjrrxxhvVu3dvPfXUU1qyZIlmz54t6fzMjF27dunGG29Ujx49NGHCBFVUVOijjz5yWHv+8ccfq1+/furXr5+OHj2qlStXql+/fg6V9Mcee0wPP/yw/fs0ceJE9e7dW2+88Yb9BaysrMx+0fGzn/1ML730kjIzM7V48WL785SXl8tkMunJJ590esxN4eWXX9a0adNqneYK/Jgnvb6MHj1ab7/9thITE9WjRw/dcsstat26tXJzc3XZZZdJkiZMmKDx48dr9OjRioiIUHp6uqTzS9pGjx6tW265RfHx8YqIiND48eMdnn/58uUaM2aMJk+erIEDB+rUqVOaOXOmwzG33367Xn31Vb3xxhuKi4vTgAED9MQTTzg9vjvvvFNXXXWVBg0apIiICP3xj3+s9fWsJhMnTlTLli11zTXXaMqUKRo7dqyWLl3qcEzr1q01depUVVZW1vuT1N/97neKjo7W8OHDde2116pLly5VvodNbcaMGSorK3OYUQn4AnItubYmY8eO1bp16/T888+rV69eeuCBBzR79mz99re/bZTn/7GkpCRNmjRJt912m/r3769PP/1U8+fPb5K+anLhvdqdd97ZaFsIeCKTcal55QB82pAhQ9S7d2+tWbPG3aE02L59+3T55Zfro48+0sCBA90ay1dffaV+/frp888/d1gnC6B5mTBhggzD0ObNm90dSr0lJyfr/fff186dO90dCgBUyxdyrbu98cYbuvnmm/X111/XuJeeL2DZC9DMPffcc3r55ZeVlZWlhIQEd4dTb1u2bNEdd9zh9sKHdH7WzXPPPUfhA2imbDabcnNz9cYbb2jbtm3uDqdeiouL9c9//lPPPffcJWdcAoC7+EKudbfTp0/r0KFDWrRokaZNm+bThQ+JmR9As/btt9/ab8UaHR3NEg0AaAQdO3ZUcXGx5s6dqyeeeMLd4dTLkCFDlJ+fr0mTJmn9+vU+PQ0agHfyhVzrbr/97W+VmpqqgQMH6i9/+Uud7mTkzSh+AAAAAAAAn8aGpwAAAAAAwKdR/AAAAAAAAD6NDU+r8d133zl1vNVqVWFhYRNF4zxPi0fyvJiIp3aeFpOvxBMdHd0E0fg+b8vL7uy/OY+d/vndc7Z/cnLj8rZc3Ri8fQzeHr/k/WPw9vgl14yhMfI1Mz8AAAAAAIBPo/gBAAAAAAB8GsUPAAAAAADg0yh+AAAAAAAAn0bxAwAAAAAA+DSKHwAAAAAAwKdxq1vAjQ4fNistLVg2m78slrZKSSlRTEyFu8MCAK9DPgWAuiNnojmi+AG4yeHDZk2caNGhQwH/bQlUfn6ANm608eIDAE4gnwJA3ZEz0Vyx7AVwk7S04ItedM47dChAaWnBbooIALwT+RQA6o6cieaKmR+AmxQUmKttP3Kk+nYAQPXIp0D9nTp1SmvWrNHXX38tk8mke+65R9HR0crIyNCxY8cUERGhuXPnKigoyN2hopGQM9FcUfwA3CQqqvpphZGRTDcEAGeQT4H627Bhg/r27avf/OY3Ki8v1w8//KDNmzerT58+SkxMVFZWlrKysjR16lR3h4pGQs5Ec8WyF8BNUlJK1LnzOYe2zhIvgyQAACAASURBVJ3PKSWlxE0RAYB3Ip8C9XP69Gn961//0ogRIyRJ/v7+atOmjfLy8hQfHy9Jio+PV15enjvDRCMjZ6K5YuYH4CYxMRXauNH23522W8liOctO2wBQD+RToH6OHj2qkJAQrV69WocOHVJsbKymT5+u4uJihYWFSZLCwsJ08uTJas/Pzs5Wdna2JCk1NVVWq9Wp/v39/Z0+x9N44xisVumddwwtXFihggI/RUVVauFCQ126hLk7tHrxxp/Bxbw9fsl7xkDxA3CjmJgKZWaekNVqVWHhCXeHAwBei3wKOK+iokIHDx7UHXfcoe7du2vDhg3Kysqq8/kJCQlKSEiwPy4sLHSq//N/r86d42m8dQzBwVJ6umP8XjgMSd77M7jA2+OXXDOG6OjoBj8Hy14AAACAZig8PFzh4eHq3r27JGnQoEE6ePCgQkNDVVRUJEkqKipSSEiIO8MEgEZB8QMAAABohtq2bavw8HB99913kqRdu3apY8eOiouLU05OjiQpJydHAwYMcGeYANAoWPYCAAAANFN33HGHVq5cqfLycrVr105JSUkyDEMZGRnaunWrrFarkpOT3R0mADQYxQ8AAACgmfrJT36i1NTUKu3z5893QzQA0HQofgAA6qWwsFCrVq3SiRMnZDKZlJCQoOuvv16bNm3Se++9Z18jPmnSJF111VWSpM2bN2vr1q3y8/PT7bffrr59+7pzCAAAAGgmKH4AAOrFbDZr2rRpio2N1ZkzZzRv3jxdeeWVkqQxY8Zo7NixDsd/8803+vDDD/XUU0+pqKhIixYt0u9+9zv5+bH9FAAAAJoWV5wAgHoJCwtTbGysJKl169bq0KGDbDZbjcfn5eXpmmuuUUBAgNq1a6eoqCgdOHDAVeECAACgGaP4AQBosKNHj+rgwYPq1q2bJOmdd97RAw88oNWrV6u0tFSSZLPZFB4ebj/HYrFcslgCAAAANBaWvQAAGuTs2bNKT0/X9OnTFRgYqFGjRummm26SJL322mt68cUX7XcPqKvs7GxlZ2dLklJTU2W1Wp2Kyd/f3+lzGpM7+2/OY6d/fvfc2T8AwLNR/AAA1Ft5ebnS09M1dOhQDRw4UJLUtm1b+9dHjhypZcuWSZLCw8N1/Phx+9dsNpssFku1z5uQkKCEhAT748LCQqfislqtTp/TmNzZf3MeO/3zu+ds/9HR0U0UDQDA03hd8ePUqVNas2aNvv76a5lMJt1zzz2Kjo5WRkaGjh07poiICM2dO1dBQUEyDEMbNmzQzp071bJlSyUlJdnXpwMAGsYwDK1Zs0YdOnTQDTfcYG8vKipSWFiYJOmTTz5Rp06dJElxcXFauXKlbrjhBhUVFen777+3L5MBAAAAmpLXFT82bNigvn376je/+Y3Ky8v1ww8/aPPmzerTp48SExOVlZWlrKwsTZ06VTt37lRBQYFWrlyp/fv3a/369VqyZIm7hwAAPmHv3r3Kzc1VTEyMHnzwQUnnb2u7fft2ffXVVzKZTIqIiNBdd90lSerUqZOuvvpqJScny8/PT7/+9a+50wsAAABcwquKH6dPn9a//vUv3XvvvZLOr+309/dXXl6eFi5cKEmKj4/XwoULNXXqVO3YsUPDhg2TyWRSjx49dOrUKYdPJAEA9Xf55Zdr06ZNVdqvuuqqGs+ZMGGCJkyY0JRhAQAAAFV4VfHj6NGjCgkJ0erVq3Xo0CHFxsZq+vTpKi4uthc0wsLCdPLkSUnn15NfvPFVeHi4bDZbleKHt2+s92OeFo/keTERT+08LSbiAQAAAFBfXlX8qKio0MGDB3XHHXeoe/fu2rBhg7Kysmo8vro7C5hMpipt3r6x3o95WjyS58VEPLXztJh8JR421wMAAABcz6sWW4eHhys8PFzdu3eXJA0aNEgHDx5UaGioioqKJJ3faC8kJMR+/MVvTo4fP86SFwAAAAAAmhmvKn60bdtW4eHh+u677yRJu3btUseOHRUXF6ecnBxJUk5OjgYMGCDp/J0FcnNzZRiG9u3bp8DAQIofAAAAAAA0M1617EWS7rjjDq1cuVLl5eVq166dkpKSZBiGMjIytHXrVlmtViUnJ0uS+vXrp/z8fM2ePVstWrRQUlKSm6MHAAAAAACu5nXFj5/85CdKTU2t0j5//vwqbSaTSTNmzHBFWAAAAAAAwEN51bIXAAAAAAAAZ1H8AAAAAAAAPo3iBwAAAAAA8GkUPwAAAAAAgE+j+AEAAAAAAHwaxQ8AAAAAAODTKH4AAAAAAACfRvEDAAAAAAD4NIofAAAAAADAp1H8AAAAAAAAPo3iBwAAAAAA8Gn+7g4AAAAAgPvce++9atWqlfz8/GQ2m5WamqrS0lJlZGTo2LFjioiI0Ny5cxUUFOTuUAGg3ih+AAAAAM3cggULFBISYn+clZWlPn36KDExUVlZWcrKytLUqVPdGCEANAzLXgAAAAA4yMvLU3x8vCQpPj5eeXl5bo4IABqGmR8AAABAM7d48WJJ0rXXXquEhAQVFxcrLCxMkhQWFqaTJ09WOSc7O1vZ2dmSpNTUVFmtVqf69Pf3d/ocT+PtY/D2+CXvH4O3xy95zxgofgAAAADN2KJFi2SxWFRcXKwnn3xS0dHRdTovISFBCQkJ9seFhYVO9Wu1Wp0+x9N42xgOHzYrLS1YBQVmRUVVaOlSKTjYe+Kvjrf9DH7M2+OXXDOGuualS6H4AQAAADRjFotFkhQaGqoBAwbowIEDCg0NVVFRkcLCwlRUVOSwHwi80+HDZk2caNGhQwH2tn/+09Arr5gVE1PhxsgA12DPDwAAAKCZOnv2rM6cOWP//+eff66YmBjFxcUpJydHkpSTk6MBAwa4M0w0grS0YIfChyR9+aVJaWnBbooIcC1mfgAAAADNVHFxsVasWCFJqqio0JAhQ9S3b1917dpVGRkZ2rp1q6xWq5KTk90cKRqqoMBcbfuRI9W3A76G4gcAAADQTEVGRmr58uVV2oODgzV//nw3RISmEhVV/dKWyEiWvKB5YNkLAAAAAPi4lJQSde58zqEtNtZQSkqJmyICXIuZHwAAAADg42JiKrRxo01pacE6csSsyMgKLV3qr+BgZn6geaD4AQAAAADNQExMhTIzT9gfn79FqRsDAlzI64of9957r1q1aiU/Pz+ZzWalpqaqtLRUGRkZOnbsmCIiIjR37lwFBQXJMAxt2LBBO3fuVMuWLZWUlKTY2Fh3DwEAAAAAALiQ1xU/JGnBggUO9xrPyspSnz59lJiYqKysLGVlZWnq1KnauXOnCgoKtHLlSu3fv1/r16/XkiVL3Bg5APiWwsJCrVq1SidOnJDJZFJCQoKuv/56itIAAADwKD6x4WleXp7i4+MlSfHx8crLy5Mk7dixQ8OGDZPJZFKPHj106tQpFRUVuTNUAPApZrNZ06ZNU0ZGhhYvXqx33nlH33zzjb0ovXLlSvXp00dZWVmS5FCUvuuuu7R+/Xo3jwAAAADNgVfO/Fi8eLEk6dprr1VCQoKKi4sVFhYmSQoLC9PJkyclSTabTVar1X5eeHi4bDab/dgLsrOzlZ2dLUlKTU11OKcu/P39nT6nKXlaPJLnxUQ8tfO0mIjHM4WFhdlzauvWrdWhQwfZbDbl5eVp4cKFks4XpRcuXKipU6fWWJT+cV4GAAAAGpPXFT8WLVoki8Wi4uJiPfnkk4qOjq7xWMMwqrSZTKYqbQkJCUpISLA/LnRy15/zGwV5zk5BnhaP5HkxEU/tPC0mX4nnUjnL2x09elQHDx5Ut27dGlyUBgAAABqT1xU/LBaLJCk0NFQDBgzQgQMHFBoaav/ksKioyL4fSHh4uMObk+PHj3OBDQBN4OzZs0pPT9f06dMVGBhY43F1LUp7+4w8d/bfnMdO//zuMSMPAFATryp+nD17VoZhqHXr1jp79qw+//xz3XTTTYqLi1NOTo4SExOVk5OjAQMGSJLi4uL0t7/9TYMHD9b+/fsVGBhI8QMAGll5ebnS09M1dOhQDRw4UJIaXJT29hl57uy/OY+d/vndc7Z/X56NBwBw5FXFj+LiYq1YsUKSVFFRoSFDhqhv377q2rWrMjIytHXrVlmtViUnJ0uS+vXrp/z8fM2ePVstWrRQUlKSO8MHAJ9jGIbWrFmjDh066IYbbrC3U5QGAACAJ/Gq4kdkZKSWL19epT04OFjz58+v0m4ymTRjxgxXhAYAzdLevXuVm5urmJgYPfjgg5KkSZMmKTExkaI0AAAAPIZXFT8AAJ7l8ssv16ZNm6r9GkVpAAAAeAo/dwcAAAAAAADQlCh+AAAAAAAAn0bxAwAAAAAA+DSKHwAAAAAAwKdR/AAAAAAAAD6N4gcAAAAAAPBpFD8AAAAAAIBPo/gBAAAAAAB8GsUPAAAAAADg0yh+AAAAAAAAn0bxAwAAAAAA+DSKHwAAAAAAwKdR/AAAAAAAAD7N390BAAAAAHCfyspKzZs3TxaLRfPmzdPRo0f19NNPq7S0VF26dNGsWbPk78/bBgDejZkfAAAAQDP29ttvq0OHDvbHL7/8ssaMGaOVK1eqTZs22rp1qxujA4DGQfEDAAAAaKaOHz+u/Px8jRw5UpJkGIZ2796tQYMGSZKGDx+uvLw8d4YIAI2C+WsAAABAM/XCCy9o6tSpOnPmjCSppKREgYGBMpvNkiSLxSKbzVbtudnZ2crOzpYkpaamymq1OtW3v7+/0+d4Gm8fg7fHL3n/GLw9fsl7xkDxAwAAAGiGPv30U4WGhio2Nla7d+92+vyEhAQlJCTYHxcWFjp1vtVqdfocT+PtY/D2+CXvH4O3xy+5ZgzR0dENfg6KHwAAAEAztHfvXu3YsUM7d+5UWVmZzpw5oxdeeEGnT59WRUWFzGazbDabLBaLu0MFgAaj+AEAAAA0Q5MnT9bkyZMlSbt379abb76p2bNn66mnntLHH3+swYMHa9u2bYqLi3NzpADQcC7f8PTtt9/WyZMnXd0tAKAG5GUA8G6NncenTJmiLVu2aNasWSotLdWIESMa7bkBwF1cPvNj165devXVV9WrVy8NGzZMAwYMUEBAgKvDAAD8F3kZjeHwYbPS0oJls/nLYmmrlJQSxcRUuDssoFlojDzeq1cv9erVS5IUGRmppUuXNkWoAOA2Li9+PPTQQyopKdH27dv11ltvad26dRo4cKCGDRumnj171uk5KisrNW/ePFksFs2bN09Hjx7V008/rdLSUnXp0kWzZs2Sv7+/zp07p8zMTH355ZcKDg7WnDlz1K5duyYeIQB4l8bIy2jeDh82a+JEiw4duvBmK1D5+QHauNFGAQRwAfI4ANTOLXt+BAcHa/To0Ro9erQOHTqkzMxMvf/++7JarRo5cqSuv/56tWrVqsbz3377bXXo0MF+S66XX35ZY8aM0eDBg7V27Vpt3bpVo0aN0tatW9WmTRv9/ve/1/bt2/XKK69o7ty5rhomAHiNhuZlNG9pacEXFT7OO3QoQGlpwcrMPOGmqIDmhTwOAJfm8j0/Lti1a5dWr16thQsXKjQ0VPfdd5/uu+8+HTx4UEuWLKnxvOPHjys/P18jR46UJBmGod27d2vQoEGSpOHDhysvL0+StGPHDg0fPlySNGjQIH3xxRcyDKNpBwYAXqq+eRkoKDBX237kSPXtAJoGeRwAaubymR8vvviiPvzwQwUGBmrYsGFKT093uH1W9+7ddfvtt9d4/gsvvKCpU6faZ32UlJQoMDBQZvP5CyyLxSKbzSZJstlsCg8PlySZzWYFBgaqpKREISEhDs+ZnZ2t7OxsSVJqaqqsVqtTY/L393f6nKbkafFInhcT8dTO02IinqbT0LwMREVVv7QlMpIlL4ArkMcBoHYuL36cO3dODzzwgLp161bt1/39/ZWamlrt1z799FOFhoYqNjZWu3fvrrWv6mZ5mEymKm0JCQlKSEiwPy4sLKz1uS9mtVqdPqcpeVo8kufFRDy187SYfCWe6OjoJoimYRqSlwFJSkkpUX5+gMPSl86dzyklpcSNUQHNB3kcAGrn8uLH+PHj1aJFC4e20tJSlZWV2SvUHTp0qPbcvXv3aseOHdq5c6fKysp05swZvfDCCzp9+rQqKipkNptls9nszxMeHq7jx48rPDxcFRUVOn36tIKCgpp2gADgZRqSlwFJiomp0MaNtv/e7aWVLJaz3O0FcCHyOADUzuV7fixfvty+LOUCm82mFStW1Hru5MmTtWbNGq1atUpz5sxR7969NXv2bPXq1Usff/yxJGnbtm2Ki4uTJPXv31/btm2TJH388cfq1atXtTM/AKA5a0heBi6IialQZuYJvftuuTIzT1D4AFyIPA4AtXN58eO7775TTEyMQ1tMTIy+/fbbej/nlClTtGXLFs2aNUulpaUaMWKEJGnEiBEqLS3VrFmztGXLFk2ZMqVBsQOAL2qKvAwAcB3yOADUzuXLXkJCQlRQUKCoqCh7W0FBgYKDg516nl69eqlXr16SpMjISC1durTKMS1atFBycnLDAgYAH9dYeRkA4B7kcQConcuLHz//+c+Vnp6uiRMnKjIyUgUFBXrttdfsszUAAK7VkLy8evVq5efnKzQ0VOnp6ZKkTZs26b333rPfWWvSpEm66qqrJEmbN2/W1q1b5efnp9tvv119+/ZtuoEBQDPB9TUA1M7lxY/ExET5+/vrpZdesm9GOmLECN1www2uDgUAoIbl5eHDh2v06NFatWqVQ/uYMWM0duxYh7ZvvvlGH374oZ566ikVFRVp0aJF+t3vfic/P5evwAQAn8L1NQDUzuXFDz8/P40dO7bKRTEAwD0akpd79uypo0eP1unYvLw8XXPNNQoICFC7du0UFRWlAwcOqEePHk73CwD4H66vAaB2Li9+SOc3Zfrqq6909uxZh3am5gGAezR2Xn7nnXeUm5ur2NhY3XrrrQoKCpLNZlP37t3tx1gslip3JwAA1A/X1wBwaS4vfvz5z3/W66+/rs6dO6tly5YOXyM5A4DrNXZeHjVqlG666SZJ0muvvaYXX3xRSUlJMgyjzs+RnZ2t7OxsSVJqaqqsVqtTMfj7+zt9TmNyZ//Neez0z++eO/t3J66vAaB2Li9+vP3221qyZIk6d+7s6q4BANVo7Lzctm1b+/9HjhypZcuWSZLCw8N1/Phx+9dsNpssFku1z5GQkKCEhAT748LCQqdisFqtTp/TmNzZf3MeO/3zu+ds/9HR0U0UjWtxfQ0AtXP5LnMtWrRQhw4dXN0tAKAGjZ2Xi4qK7P//5JNP1KlTJ0lSXFycPvzwQ507d05Hjx7V999/r27dujVavwDQXHF9DQC1c/nMj1/96ld6/vnndfPNNys0NNTha+z4DwCu15C8/PTTT2vPnj0qKSnRzJkzdcstt2j37t366quvZDKZFBERobvuukuS1KlTJ1199dVKTk6Wn5+ffv3rX5P3AaARcH0NALVzefFj9erVkqT33nuvytdee+01V4cDAM1eQ/LynDlzqrRdan35hAkTNGHCBCcjBABcCtfXAFA7lxc/MjMzXd0lAOASyMsA4N3I4wBQO5cXPyIiIiRJlZWVKi4uVlhYmKtDAABchLwMAN6NPA4AtXN58ePUqVNav369Pv74Y/n7++ull17Sjh07dODAAU2cONHV4QBAs0deBgDvRh4HgNq5fAekdevWKTAwUKtXr5a///naS48ePfThhx+6OhQAgMjLAODtyOMAUDuXz/zYtWuXnn32WXtilqSQkBAVFxe7OhQAgMjLAODtyOMAUDuXz/wIDAxUSUmJQ1thYSFrEwHATcjLAODdyOMAUDuXFz9Gjhyp9PR0ffHFFzIMQ/v27dOqVat07bXXujoUAIDIywDg7cjjAFA7ly97GTdunAICAvTcc8+poqJCzzzzjBISEnT99de7OhQAgMjLAODtyOMAUDuXFz9MJpPGjBmjMWPGuLprAEA1yMsA4N0aksfLysq0YMEClZeXq6KiQoMGDdItt9yio0eP6umnn1Zpaam6dOmiWbNmOewpAgDexuUZ7Isvvqjxa71793ZhJAAAibwMAN6uIXk8ICBACxYsUKtWrVReXq758+erb9++2rJli8aMGaPBgwdr7dq12rp1q0aNGtXYoQOAy7i8+PHMM884PD558qTKy8sVHh6uzMxMV4cDAM0eeRkAvFtD8rjJZFKrVq0kSRUVFaqoqJDJZNLu3bt1//33S5KGDx+uP/7xjxQ/AHg1lxc/Vq1a5fC4srJSr7/+ulq3bu3qUAAAIi8DgLdraB6vrKzUQw89pIKCAl133XWKjIxUYGCgzGazJMlischms1U5Lzs7W9nZ2ZKk1NRUWa1Wp+L29/d3+hxP4+1j8Pb4Je8fg7fHL3nPGNy+cM/Pz08TJkzQzJkzdcMNN7g7HABo9sjLAODdnM3jfn5+Wr58uU6dOqUVK1bo22+/rVM/CQkJSkhIsD8uLCx0Kk6r1er0OZ7G28fg7fFL3j8Gb49fcs0YoqOjG/wcbi9+SNLnn38uP7/a77rr7IZM586dU2Zmpr788ksFBwdrzpw5ateunQtGBADera55GQDgmeqTx9u0aaOePXtq//79On36tCoqKmQ2m2Wz2WSxWJooUgBwDZcXP+655x6Hx2VlZSorK9OMGTNqPdfZDZm2bt2qNm3a6Pe//722b9+uV155RXPnzm2qoQGAV2pIXgYAuF9D8vjJkydlNpvVpk0blZWVadeuXRo3bpx69eqljz/+WIMHD9a2bdsUFxfXVOEDgEu4vPgxa9Ysh8ctW7ZU+/btFRgYWOu5zm7ItGPHDt18882SpEGDBun555+XYRgymUyNPCoA8F4NycsAAPdrSB4vKirSqlWrVFlZKcMwdPXVV6t///7q2LGjnn76aW3cuFFdunTRiBEjmip8uNnhw2alpQWroMCsqKgKpaSUKCamwt1hAY3O5cWPnj17Nuh8ZzZkstlsCg8PlySZzWYFBgaqpKREISEhDRsEAPiQhuZlAIB7NSSPd+7cWWlpaVXaIyMjtXTp0oaEBS9w8KA0caJFhw4F2Nvy8wO0caONAgh8jsuLH7///e/rNPPivvvuq7bdmQ2ZDMOo0lZd3762U7WnxSN5XkzEUztPi4l4mk5D8zIAwL3I46ivhQvNOnTI7NB26FCA0tKClZl5wk1RAU3D5cWPNm3aKCcnR/3797fvCvvpp58qPj5ewcHBTj1PbRsyhYeH6/jx4woPD1dFRYVOnz6toKCgKs/laztVe1o8kufFRDy187SYfCWextipurE1Vl4GALgHeRz19f331RfNjhwxV9sOeDOXFz++//57zZs3T1dccYW97d///rdef/113XHHHZc819kNmfr3769t27apR48e+vjjj9WrVy/2+wCAH2lIXgYAuB95HPXVvn3VmfKSFBnJkhf4HpcXP/bt26fu3bs7tHXr1k379u2r9VxnN2QaMWKEMjMzNWvWLAUFBWnOnDlNMiYA8GYNycsAAPcjj6O+Fi6s0EcfVTrs+dG58zmlpJS4MSqgabi8+NGlSxe9+uqr+tWvfqUWLVqorKxMmzZt0k9+8pNaz3V2Q6YWLVooOTm5McIGAJ/VkLwMAHA/8jjqq0sXaeNGm9LSgnXkiFmRkdztBb7L5cWPpKQkrVy5UrfddpuCgoJUWlqqrl27avbs2a4OBQAg8jIAeDvyOBoiJqaCzU3RLLi8+NGuXTs9+eSTKiwsVFFRkcLCwnzmjgkA4I3IywDg3cjjAFA7P3d0WlJSoj179mjPnj2yWq2y2Ww6fvy4O0IBAIi8DADejjwOAJfm8uLHnj17NGfOHH3wwQd6/fXXJUkFBQVat26dq0MBAIi8DADejjwOALVzefHjhRde0Jw5c/Too4/KbD5//+hu3brpP//5j6tDAQCIvAwA3o48DgC1c3nx49ixY+rTp49Dm7+/vyoq2FEYANyBvAwA3o08DgC1c3nxo2PHjvrss88c2nbt2qWYmBhXhwIAEHkZALwdeRwAaufyu71MmzZNy5YtU79+/VRWVqa1a9fq008/1YMPPujqUAAAIi8DgLcjjwNA7Vxe/OjRo4eWL1+uDz74QK1atZLVatWSJUsUHh7u6lAAACIvA4C3I48DQO1cWvyorKzUE088oUcffVTjxo1zZdcAgGo0NC+vXr1a+fn5Cg0NVXp6uiSptLRUGRkZOnbsmCIiIjR37lwFBQXJMAxt2LBBO3fuVMuWLZWUlKTY2NjGHhIANCtcXwNA3bh0zw8/Pz8dPXpUhmG4slsAQA0ampeHDx+uRx55xKEtKytLffr00cqVK9WnTx9lZWVJknbu3KmCggKtXLlSd911l9avX9/g+AGgueP6GgDqxuUbnt50001at26djh07psrKSod/AADXa0he7tmzp4KCghza8vLyFB8fL0mKj49XXl6eJGnHjh0aNmyYTCaTevTooVOnTqmoqKjxBwQAzQzX1wBQO5fv+fHss89KknJzc6t87bXXXnN1OADQ7DV2Xi4uLlZYWJgkKSwsTCdPnpQk2Ww2Wa1W+3Hh4eGy2Wz2Yy+WnZ2t7OxsSVJqaqrDeXXh7+/v9DmNyZ39N+ex0z+/e+7s3524vgaA2rms+HHixAm1bdtWmZmZruoSAHAJrs7L1U3JNplM1R6bkJCghIQE++PCwkKn+rJarU6f05jc2X9zHjv987vnbP/R0dFNFI1rcH0NAHXnsmUv999/vyQpIiJCERER+r//+z/7/y/8AwC4TlPl5dDQUPtylqKiIoWEhEg6P9Pj4jcmx48fr3bWBwCgbri+BoC6c1nx48ef+O3evdtVXQMAqtFUeTkuLk45OTmSpJycHA0YMMDenpubK8MwtG/fPgUGBlL8AIAG4PoaAOrOZcteapraDABwj8bIy08//bT27NmjkpISzZw5U7fccosSExOVkZGhrVu3ymq1Kjk5WZLUr18/5efna/bs2WrRooWSRZj1/QAAIABJREFUkpIa3D8ANGdcXwNA3bms+FFRUaEvvvjC/riystLhsST17t3bVeEAQLPXGHl5zpw51bbPnz+/SpvJZNKMGTPqESkAoDpcXwNA3bms+BEaGqpnnnnG/jgoKMjhsclkYrMmAHAh8jLQeA4fNistLVg2m78slrZKSSlRTEyFu8OCjyOPA0Dduaz4sWrVKld1BQCoA/Iy0DgOHzZr4kSLDh0K+G9LoPLzA7Rxo40CCJoUeRwA6s5lxQ8AAABflJYWfFHh47xDhwKUlhaszMwTbooKqF1hYaFWrVqlEydOyGQyKSEhQddff71KS0uVkZGhY8eOKSIiQnPnzlVQUJC7wwWABqH4AQAA0AAFBeZq248cqb4d8BRms1nTpk1TbGyszpw5o3nz5unKK6/Utm3b1KdPHyUmJiorK0tZWVmaOnWqu8MFgAZx2a1uAQAAfFFUVPVLWyIjWfICzxYWFqbY2FhJUuvWrdWhQwfZbDbl5eUpPj5ekhQfH6+8vDx3hgkAjcKrZn44OzXPMAxt2LBBO3fuVMuWLZWUlGRP8AAAAI0hJaVE+fkBDktfOnc+p5SUEjdGBTjn6NGjOnjwoLp166bi4mKFhYVJOl8gOXnypJujA4CG86rih7NT83bu3KmCggKtXLlS+/fv1/r167VkyRJ3DwMAAPiQmJgKbdxo++/dXlrJYjnL3V7gVc6ePav09HRNnz5dgYGBdT4vOztb2dnZkqTU1FRZrVan+vX393f6HE/j7WPw9vgl7x+Dt8cvec8YvKr4ERYWZq9C/3hq3sKFCyWdn5q3cOFCTZ06VTt27NCwYcNkMpnUo0cPnTp1SkVFRfbnAAAAaAwxMRXKzDwhq9WqwkI2OYX3KC8vV3p6uoYOHaqBAwdKOn8L3QvXzEVFRQoJCan23ISEBCUkJNgfFxYWOtX3+b8X587xNN4+Bm+PX/L+MXh7/JJrxhAdHd3g5/DaPT/qMjXPZrM5VKDCw8Nls9ncEi8AAADgSQzD0Jo1a9ShQwfdcMMN9va4uDjl5ORIknJycjRgwAB3hQgAjcarZn5cUNepeYZhVGkzmUxV2nxtyp6nxSN5XkzEUztPi4l4AABoXHv37lVubq5iYmL04IMPSpImTZqkxMREZWRkaOvWrbJarUpOTnZzpADQcF5X/HBmal54eLjD9Jvjx49Xu+TF16bseVo8kufFRDy187SYfCWexpiyBwBAY7j88su1adOmar82f/58F0cDAE3Lq5a9ODs1Ly4uTrm5uTIMQ/v27VNgYCD7fQAAAAAA0Mx41cwPZ6fm9evXT/n5+Zo9e7ZatGihpKQkd4YPAAAAAADcwKuKH85OzTOZTJoxY0ZThwUAAAAAADyYVy17AQAAAAAAcBbFDwAAAAAA4NMofgAAAAAAAJ9G8QMAAAAAAPg0ih8AAAAAAMCnUfwAAAAAAAA+zatudQsAAAAAqLvDh81KSwtWQYFZUVEVSkkpUUxMhbvDAlyO4gcAAAAA+KDDh82aONGiQ4cC7G35+QHauNFGAQTNDsteAAAAAMAHpaUFOxQ+JOnQoQClpQW7KSLAfSh+AAAAAIAPKigwV9t+5Ej17YAvo/gBAAAAAD4oKqr6pS2RkSx5QfND8QMAAAAAfFBKSok6dz7n0Na58zmlpJS4KSLAfdjwFAAAAAB8UExMhTZutCktLVhHjpgVGcndXtB8UfwAAAAAAB8VE1OhzMwT7g4DcDuWvQAAAAAAAJ9G8QMAAAAAAPg0lr0AAJrEvffeq1atWsnPz09ms1mpqakqLS1VRkaGjh07poiICM2dO1dBQUHuDhUAAAA+juIHAKDJLFiwQCEhIfbHWVlZ6tOnjxITE5WVlaWsrCxNnTrVjRECAACgOWDZCwDAZfLy8hQfHy9Jio+PV15enpsjAgAAQHPAzA8AQJNZvHixJOnaa69VQkKCiouLFRYWJkkKCwvTyZMn3RkeAAAAmgmKHwCAJrFo0SJZLBYVFxfrySefVHR0dJ3Pzc7OVnZ2tiQpNTVVVqvVqb79/f2dPqcxubP/5jx2+ud3z539A57i8GGz0tKCVVBgVlRUhVJSShQTU+HusAC3o/gBAGgSFotFkhQaGqoBAwbowIEDCg0NVVFRkcLCwlRUVOSwH8jFEhISlJCQYH9cWFjoVN9Wq9XpcxqTO/tvzmOnf373nO3fmaIs4A0OHzZr4kSLDh0KsLfl5wdo40YbBRA0e+z5AQBodGfPntWZM2fs///8888VExOjuLg45eTkSJJycnI0YMAAd4YJAIBPSUsLdih8SNKhQwFKSwt2U0SA5/CqmR+rV69Wfn6+QkNDlZ6eLkk13jbRMAxt2LBBO3fuVMuWLZWUlKTY2Fg3jwAAmofi4mKtWLFCklRRUaEhQ4aob9++6tq1qzIyMrR161ZZrVYlJye7OVLfcWGas83mL4ulLdOcAdSJM9fX8HwFBeZq248cqb4daE68qvgxfPhwjR49WqtWrbK31XTbxJ07d6qgoEArV67U/v37tX79ei1ZssSN0QNA8xEZGanly5dXaQ8ODtb8+fPdEJFvqzrNOZBpzgDqxJnra3i+qKjqc35kJK8FgFcte+nZs2eVqnNNt03csWOHhg0bJpPJpB49eujUqVMqKipyecwAADQ1pjkDqC9nrq/h+VJSStS58zmHts6dzyklpcRNEQGew6tmflSnptsm2mw2hx2/w8PDZbPZ7McCAOArmOYMoDFxW3LvFRNToY0bbUpLC9aRI2ZFRnK3F+ACry9+1MQwjCptJpOp2mO9/ZaKP+Zp8UieFxPx1M7TYiIeoGZMcwbgDr52DV0fnjgGq1XauFE6eFBauLCl5s1rpfbtDS1cWKEuXRyP9cT4neXtY/D2+CXvGYPXFz9qum1ieHi4w+3Ojh8/XuOsD2+/peKPeVo8kufFRDy187SYfCUebquIppCSUqL8/ACHpS9McwZQX83ltuSNwVPH8L+9oP43A/Cjjyqr7AXlqfE7w9vH4O3xS64ZQ2NcQ3vVnh/Vqem2iXFxccrNzZVhGNq3b58CAwNZ8gIA8EkXpjmPH39a8fGVGj/+NJudAqg3bkvu/dgLCqjKq2Z+PP3009qzZ49KSko0c+ZM3XLLLUpMTKz2ton9+vVTfn6+Zs+erRYtWigpKcnN0QMA0HRiYiqUmXniv5++nHB3OAC8hDPX1/Ae7AUFVOVVxY85c+ZU217dbRNNJpNmzJjR1CEBAAAAXsuZ62t4j4buBXX4sFlpacEqKDArKopNU+EbvKr4AQAAAAC4tIbsBfW//UL+d25+fgDLKeH1vH7PDwAAAADA/1y8F9Q11/zg1F5Q7BcCX8XMDwAAAADwYjUtU8nMdH4PKPYLga+i+AEAAAAAXqqxl6k0dL8QwFOx7AUAAMDLHT5s1n33tdWoUf667762OnyYT2iB5qKxl6mkpJSoc+dzDm113S8E8GTM/AAAAPBiVT/1DWRzQqAZaexlKhf2C0lLC9aRI2ZFRnK3F/gGZn4AAAB4MTYnBJq3plimcmG/kPT083uGJCe3ZVYZvB4zPwAAALwYmxMCzVtDbmt7KdzyFr6GmR8AAABejM0JgeatIbe1vRRmlcHXMPMDAADAizXVp74AvEd9b2t7Kcwqg6+h+AEAAODFLt6c0GZrJYvlLJsTAmgwZpXB11D8AAAA8HIXPvW1Wq0qLGzcT38BNE/MKoOvofgBAAAAAHDALW/hayh+AAAAAICbHD5sVlpasAoKzIqKcl+BoaY4GnsvEcBdKH4AcHDhhc9m85fF0pYKPwAAQBPxlNvJekocQFPiVrcA7C688G3eHKicHD9t3hyoiRMtOnyYXb0BAAAam6fcTtZT4gCaEsUPAHa88AEAALhObbeTPXzYrPvua6ubbgrXffe1bbIPpDwlDqApsewFzQpLOi6N+7kDAAC4zqVuJ+vKpSieEgfQlJj5gWaDJR21437uAAAArpOSUqLOnc85tF24nawrZ+R6ShxAU6L4gWaDxF27S73wAQAAoHFduJ3s+PGndc01P2j8+NP2GRWunJHrKXEATYllL2g2SNy1u/h+7jZbK1ksZ1kaBAAA0ISqu53s4cNmff119Z9TBwVV6r772qqgwKzg4EpJUkmJX4Nvk1vTbW2bcmawp9zmF80DxQ80GyzpqJsLL3xWq1WFhdzXHQAAwJUuLNX+5puAKl+Ljj6n3bsD9O231b+Na4q9OFJSSpSfH+Awg7oxZgazlwhcjWUvaFIXdoYeNcrf7TtDs6QDAAAAnq66pdqS1LHjOfXuXV5j4UNqmiXdl1oS0xAsSYer+fzMj88++0wbNmxQZWWlRo4cqcTExEZ7bu4ccmlVq7mBbq3msqTDO3na35mnxQNH7v75uLt/wB3c/Xvv7v7hPF/4mV0Yw7ff+uu77yLUrt3/Z+/Ow6qs8/+Pvw4HN0SQA4qBorllVGaGZW65kJn6LTUzbdTMyiGXRv3VKC3aTFlaMtqC45JZOubSovNtpsb5kqlTVqKGmZZJk2UusRxkUVHg3L8/HM+IHES2cx9uno/r4ro497nv83l/zvIC3tyLobCwc3O41CEoFx7mUdohK6Udqt20qUu7d9cts7bqOifI+UNizs/h0CG70tP9KjT3Zs2K9NNPnv8U/fjj+po8ubH7H5QXbjN69En95S8Nix0mk5srxcc3rjGHzlz8PLzwgtSokef7fH0u5WX2/Czd/HC5XFq+fLmeeuophYaGKj4+XjExMWrevHmlH9vX/rD3RZfq5no6ntAbOKSjZvG1z5mv1VNTVVdT2uzXx+zxATOY/b43e3yUnxVes5Jz8NMvv5Rc7+J5eTrMw9P6pR2q/d13dXTqVNk77lfnId2e5lDRuTds6LnOnJxzV2X88ss6stlsxfZ0+eCDBiostLlvf/llHdnt/jp8+L9NIV9+P3l6HvbsMbR69bmGlZUPA/KFw5wsfdhLamqqmjVrpvDwcPn7+6tbt25KTk6uksdmN62ycYJRVJavfc58rZ6a6HxT+oknntCCBQv02Wef6RdPvzVVgNmvj9njA2Yw+31v9vgoPyu8ZqUdlnKxi+dV1nbn1/d0qHbDhkWX1fio7kO6q3LuJ0/aFRDgKvUxjh4teW6TCxsf59c5fLj4Ml9+P3l6Hv79b5tefLGRJT4bl+IL87P0nh9Op1OhoaHu26GhoTp48GCVPDZ/2JeNE4yisnztc+Zr9dREFzalJbmb0lWxR57Zr4/Z4wNmMPt9b/b4Vlcde+pZ4TUrbQ6eXDivy9nu11/txQ7V/vVXu8LDzx0isnt3ye0bNy7STTedVV6en8LDq/8wgqqee4cOBWrZskgff1xfOTlV9395X30/Xer9bxiet/HVuZSXL3z2Ld38MDy8g2w2W4llSUlJSkpKkiTNnTtXYWFhZT52y5Z2ff55yeVRUf6XtX118vc3vwZJeuGFc7tx/fvf/33OW7c29MIL5tfnK8/Reb5Wj+QbNfna58zX6qmJLrcpXRNz2ezxzzP7s8v4tWt8s9/3Zo9vZdV1+LgV/jlW2hw8uXBel7Pd+fUvvuzs5MmNPZ7vo0+fM149nLyq596y5bl5Tp7cWBs2BFS6Pk9j+5KKvP99dS7l5QuffUs3P0JDQ5WZmem+nZmZqZCQkBLrxcbGKjY21n07IyOjzMf+3e/s+vzz4scstWxZoN/9zqmMDHPfoOfOZ1H2HKpbo0bS6tXnT2j13xOMNmpUJLPL85Xn6Dxfq0fyjZp87XNWFfVERERUV3k1wuU2pWtiLps9/nlmf3YZv3aNb/b7vrLj1/ZMvpTq2lOvui6b6k2e5uDJxfMqa7tLPQ++8rxV5dwvXMfT/RERBSXO+eHvbxQ79CUiouA/5/yweXxcX+Npnq1bG+56feE1ri6+8B62P/PMM894bTQva9y4sd555x3FxMSoXr16evPNNzV06FAFBwdfcrvc3LJfgOBgQ7fddkZOp5/Cw+3q3Pm0FizI9omT0QQEBOjUqVNmlyHp3PM0cGC+fvvb+urd26ng4FL25/IyX3qOJN+rR/KNmnztc1YV9TRqZI3jNivq9OnT2rlzp3r16iVJ2r17txo0aKCrr776ktvVhFw2e/zzzP7sMn7tGt/s931lx6/tmXwpBw8eVE5OjmJiYiRJ6enpOnLkiDp37lzqNjUhq6vChXMICrLLZitU27ZFuu66s2rTplDh4S7FxJwtMa8Lt3M4XLr66oJLrl/amA5H2etfrvJmxoV1BAS4ZLcbFZr7xet4uv+VV7I1YsTpYsuefTZbBQW2YutMmFBXR46cqdLnpbp4mueKFVLTpier7TX2hst5H1V2flWR1zbD07/hLGT37t1666235HK51KdPHw0bNqzMbY4ePVquMcz+L8/FfK0eyfdqop6y+VpNVqmntv+XsaioSL/73e80a9YsORwOxcfH69FHH1WLFi0uuV1Ny2Uzx6/Nc2d83nvlHb+2Z/KlfP7559qzZ4/i4uIkSdu2bVNqaqrGjx/vXufiQxTPnj1brjH8/f1VWFhYdUWboKbPoabXL9X8OdT0+iXvzKFu3bIv81wWSx/2IkmdO3e+ZIcaAOA9drtd48eP15w5c9xN6bIaHwAA77ucw8crcojihcxumFWFmj6Hml6/VPPnUNPrl7wzh6poVlu++QEA8C00pQHA97Vp00bHjh1TWlqaHA6Htm/frkcffdTssgCgwmh+AAAAACiGPfUAWA3NDwAAAAAlsKceACvxM7sAAAAAAACA6kTzAwAAAAAAWJrlL3ULAAAAAABqN/b8qAIzZ840u4RifK0eyfdqop6y+VpN1IPyMPv1MXP82jx3xue9h5rFCq9ZTZ9DTa9fqvlzqOn1SzVnDjQ/AAAAAACApdH8AAAAAAAAlmZ/5plnnjG7CCto3bq12SUU42v1SL5XE/WUzddqoh6Uh9mvj5nj1+a5Mz7vPdQsVnjNavocanr9Us2fQ02vX6oZc+CEpwAAAAAAwNI47AUAAAAAAFiav9kFWM3//u//6i9/+Ytef/11BQUFmVbH2rVrtXPnTtlsNgUHB2vixIlyOBym1SNJq1at0q5du+Tv76/w8HBNnDhRDRs2NK2ezz//XO+8846OHDmi559/Xm3atDGljpSUFK1YsUIul0v9+vXTkCFDTKnjvEWLFmn37t0KDg5WQkKCqbVIUkZGhhITE3XixAnZbDbFxsZq4MCBptVz9uxZzZ49W4WFhSoqKlLXrl01YsQI0+pB2czIZbMz2Oy8NSNfzc5SM7PT7Jz0hVx0uVyaOXOmHA5HjbnqAErms2EYWrFihb766ivVq1dPEydO9Mld6S+VsRs2bNDmzZvl5+enBx54QJ06dTK52tKZnZvlVVrW5eXlacGCBUpPT1eTJk00bdo0BQYGml3uJV2cWWlpaVq4cKHy8vJ05ZVXasqUKfL3980/1U+ePKnFixfr8OHDstlseuSRRxQREVEzXgMDVSY9Pd147rnnjEceecTIzs42tZaTJ0+6v//73/9uLFmyxMRqzklJSTEKCwsNwzCMVatWGatWrTK1nsOHDxtHjhwxZs+ebaSmpppSQ1FRkTF58mTj+PHjRkFBgfHYY48Zhw8fNqWW8/bt22f88MMPxvTp002t4zyn02n88MMPhmEYxqlTp4xHH33U1OfI5XIZp0+fNgzDMAoKCoz4+HjjwIEDptWDSzMrl83OYLPz1tv56gtZamZ2mp2TvpCLH3zwgbFw4ULjhRde8Oq4qDhP+bxr1y5jzpw5hsvlMg4cOGDEx8ebXKVnpWXs4cOHjccee8w4e/as8euvvxqTJ082ioqKzCy1VL6Qm+VVWtatWrXK2LBhg2EYhrFhwwbT/8a4HBdnVkJCgvHpp58ahmEYS5YsMTZt2mRmeZf06quvGklJSYZhnMv8vLy8GvMacNhLFXrrrbf0m9/8RjabzexSFBAQ4P7+zJkzPlHT9ddfL7vdLklq3769nE6nqfU0b95cERERptaQmpqqZs2aKTw8XP7+/urWrZuSk5NNrSk6OtqnOrUhISHu//o0aNBAkZGRpr53bDab6tevL0kqKipSUVGRT3y+4JlZuWx2Bpudt97OV1/IUjOz0+ycNDsXMzMztXv3bvXr189rY6LyPOXzzp071atXL9lsNrVv314nT55UVlaWiVV6VlrGJicnq1u3bqpTp46aNm2qZs2aKTU11cxSS+ULuVlepWVdcnKybr31VknSrbfe6vPzuDizDMPQvn371LVrV0lS7969fXYOp06d0rfffqu+fftKkvz9/dWwYcMa8xr45r40NdDOnTvlcDjUqlUrs0txW7NmjbZt26aAgADNnj3b7HKK2bx5s7p162Z2GaZzOp0KDQ113w4NDdXBgwdNrMi3paWl6ccff1Tbtm1NrcPlcmnGjBk6fvy4br/9drVr187UeuCZ2bnsKxlcG/KWLP0vs3LSzFx88803NXr0aJ0+fdprY6JySstnp9OpsLAw9+3Q0FA5nU6FhIR4ucLLd2HGOp3OYu99h8Nh+j/7SlPTc/PCrMvOzna/R0JCQpSTk2NydZd2cWbl5uYqICDA3VDz5fdNWlqagoKCtGjRIv30009q3bq1xo0bV2NeA5of5fDss8/qxIkTJZaPHDlSGzZs0FNPPeUz9XTp0kWjRo3SqFGjtGHDBv3jH//wyvG3ZdUkSe+//77sdrt69uzpE/WYyfBwsSX2IvAsPz9fCQkJGjduXLH/qpvBz89PL730kk6ePKn58+fr559/VlRUlKk11VZm5rLZGWx23vpSvpKl55iZk2bl4q5duxQcHKzWrVtr37591T4eLl9F8tmXPssVyVhP9fsqX3quy8uXficsr5qeWUVFRfrxxx81fvx4tWvXTitWrNDGjRvNLuuy0fwoh6efftrj8p9//llpaWl6/PHHJZ3blWnGjBl64YUX1LhxY6/Xc7EePXpo7ty5Xml+lFXTli1btGvXLs2aNcsrAXu5z5FZQkNDlZmZ6b6dmZnp0//dMEthYaESEhLUs2dP3XzzzWaX49awYUNFR0crJSWF5odJzMxlszPY7Lz1pXwlS30nJ72diwcOHNDOnTv11Vdf6ezZszp9+rReeeUVPfroo9U+Ni6tIvkcGhqqjIwM97pmfpYrkrEXZ5HT6TT9ggOlqam56SnrgoODlZWVpZCQEGVlZZl60YmyeMqsN998U6dOnVJRUZHsdrvPv29CQ0Pdezh17dpVGzdurDGvAef8qAJRUVF6/fXXlZiYqMTERIWGhmrevHnV2vgoy7Fjx9zf79y50/RzW0jnzij917/+VTNmzFC9evXMLscntGnTRseOHVNaWpoKCwu1fft2xcTEmF2WTzEMQ4sXL1ZkZKQGDx5sdjnKycnRyZMnJZ27wsHevXsVGRlpclW4mNm5bHYG17a8re1ZanZOmpmL9913nxYvXqzExERNnTpV1157LY0PH3epfI6JidG2bdtkGIa+//57BQQE+OQf5KVlbExMjLZv366CggKlpaXp2LFjph+qW5qamJulZV1MTIy2bt0qSdq6datP7N1dmtIy65prrtEXX3wh6VxjzVdfi8aNGys0NFRHjx6VJO3du1fNmzevMa8Be35Y1OrVq3Xs2DHZbDaFhYVpwoQJZpek5cuXq7CwUM8++6wkqV27dqbWtWPHDr3xxhvKycnR3Llz1apVKz355JNercFut2v8+PGaM2eOXC6X+vTpoxYtWni1hostXLhQ+/fvV25uruLi4jRixAj3SY3McODAAW3btk1RUVHu/xKNGjVKnTt3NqWerKwsJSYmyuVyyTAM3XLLLbrxxhtNqQW+y+wMNjtvvZ2vvpClZman2TlJLqKq3HDDDdq9e7ceffRR1a1bVxMnTjS7JI9Ky9gWLVrolltu0fTp0+Xn56cHH3xQfn6++b9mX8jN8iot64YMGaIFCxZo8+bNCgsL0/Tp002utPx+85vfaOHChVq7dq2uvPJKU3/3Lsv48eP1yiuvqLCwUE2bNtXEiRNlGEaNeA1sRk06OA0AAAAAAKCcfLMVCQAAAAAAUEVofgAAAAAAAEuj+QEAAAAAACyN5gcAAAAAALA0mh8AAAAAAMDSaH6ghKVLl+rdd9913/7nP/+phx9+WGPGjFFubq6+++47PfrooxozZox27NhhYqXWt2/fPsXFxZldRrVYv369XnnlFbPLAHwemew7yGQAl0Je+w7yGp74m10AvGvSpEk6ceKE7Ha7/Pz81Lx5c/Xq1UuxsbHu65BPmDDBvX5hYaHeeustzZkzR61atZJ07gM3YMAADRw40Iwp1Bj79u3Tq6++qsWLF5tdis9LS0vT5MmTtWbNGtntdrPLAbyGTPYeMvnykclASeS195DXl4+8Lh+aH7XQjBkz1LFjR506dUr79+/XihUrlJqaqokTJ5ZYNzs7WwUFBWrRooV7WXp6upo3b16hsYuKivhgXsDXnw9frw+wAjLZd/j68+Hr9QFWR177Dl9/Pny9vtqK5kctFhAQoJiYGDVu3FhPPvmkBg8erKioKCUmJio0NFS9evXSjBkzJEnjxo1T27ZtlZGRobS0NM2bN09+fn564403VFBQoLfeektfffWVbDab+vTpoxEjRsjPz09btmzRxx9/rDZt2mjr1q26/fbbNXLkSG3evFkffPCBTpw4obZt22rChAlq0qSJJGnEiBF66KGH9Le//U25ubnq3r27HnzwQdlsNklSUlKS/v73vyszM1OhoaGaMmWKWrduLafTqTfeeEPffvut6tevr0GDBl12Z/3s2bNau3atvvjiC508eVJRUVF6+umnVbduXe3cuVNvv/22nE6nWrVqpYceesj9g2vSpEm6/fbbtW3bNqWnp6tTp06aNGmSXC6Xnn/+eRUWFmrMmDGSpJdffllJSUk6fPiw6tSpo127dmns2LHq1auXVq9erc8//1ySdMstt+g3v/ljzLUxAAAgAElEQVSN6tSpc8maly5dqvr162vs2LHuZS+++KKio6M1ePBgbdy4UR999JFOnz6tkJAQPfTQQ7ruuuvKfC4mTZqk2267TZ9++qmOHj2qVatWKTs7u9TnNjU1Va+//rqOHTumunXrqkePHrr//vs9du0nTZqk3/72t+rYsWOxMWfPni3p3PtMkp5++mm1b9++zFoBKyGT/4tM/i8yGfA95PV/kdf/RV7XAAZqlYkTJxp79uwpsTwuLs7YtGmTYRiG8dprrxlr1qwxDMMwfv31V+Oee+4xCgsLS32MefPmGUuWLDFOnz5tnDhxwpg5c6bxz3/+0zAMw/jkk0+Me++91/jwww+NwsJC48yZM8aXX35pTJ482Th8+LBRWFhovPvuu8aTTz7pfrx77rnHeOGFF4y8vDwjPT3dGD9+vPHVV18ZhmEY27dvNyZMmGAcPHjQcLlcxrFjx4y0tDSjqKjI+P3vf2+88847RkFBgXH8+HFj0qRJ7u2+/fZb4/777y/1eVm2bJkxe/ZsIzMz0ygqKjK+++474+zZs8aRI0eM0aNHG3v27DEKCgqMjRs3GpMnTzYKCgrcz8XMmTONzMxMIzc315g6dar7efzmm2+M3/72t8XGWbdunTFy5Ejjyy+/NIqKiowzZ84Ya9euNZ544gnjxIkTRnZ2tvHkk0+6n39Pj3Hevn37jLi4OMPlchmGYRi5ubnGfffdZ2RmZhpHjhwx4uLijMzMTPfreOzYsVLnf6GJEycajz32mJGenm6cOXOmzOf2iSeeMLZu3WoYhmGcPn3aOHDgQKm1X/jeWbdunfHyyy+767v4fQbUBmSyZ2Tyf5HJgG8grz0jr/+LvPZ9nPAUkiSHw6G8vLxyb3fixAmlpKRo3Lhxql+/voKDgzVo0CBt377dvU5ISIjuuOMO2e121a1bV0lJSRo6dKiaN28uu92uoUOH6tChQ0pPT3dvM2TIEDVs2FBhYWG65pprdOjQIUnS5s2bddddd6lt27ay2Wxq1qyZmjRpoh9++EE5OTkaPny4/P39FR4ern79+rnr6NChg958802Pc3C5XPrkk080btw4ORwO+fn56aqrrlKdOnW0fft23XDDDerYsaP8/f31P//zPzp79qwOHDjg3v6OO+6Qw+FQYGCgbrzxRnetpWnfvr1uuukm+fn5qW7duvr000919913Kzg4WEFBQRo+fLj+9a9/lfncX3311ZKkb7/9VpL0xRdfqH379u45FBQU6JdfflFhYaGaNm2qZs2alfmYF84pLCxMdevWLfO59ff31/Hjx5WTk6P69evTbQaqAJlMJl+ITAZ8F3lNXl+IvPZtHPYCSZLT6VRgYGC5t8vIyFBRUVGxEzwZhqHQ0FD37bCwsGLbpKena8WKFVq5cmWxbZxOp3u3vcaNG7vvq1evnvLz893jhYeHl6gjPT1dWVlZ7l2+pHOBfD7cLiU3N1cFBQUegy0rK8tdkyT5+fkpLCxMTqfTvezCWuvWrVvsPk8ufG4kFZu3JDVp0qTMx5Akm82m7t2767PPPlN0dLQ+++wz9ezZU5LUrFkzjRs3Tu+8845++eUXXX/99Ro7dqwcDkeZjysVf83Kem7j4uK0bt06TZs2TU2bNtXw4cN14403XtY4ADwjk8nkC5HJgO8ir8nrC5HXvo3mB5Samiqn06kOHTqUe9vQ0FD5+/tr+fLll31Sn7CwMA0bNswdMuURFhamX3/91ePypk2bVuiyT40aNVKdOnV0/Phx99m4zwsJCdHPP//svm0YhjIyMi4rAM8fX1kWh8Oh9PR09wmxLvfxJal79+567rnnNGTIEB08eFCPPfaY+74ePXqoR48eOnXqlJYuXarVq1drypQpl/W4Fyrrub3iiis0depUuVwu7dixQ3/605+0fPly1atXT2fOnHGv53K5lJOT4/ExLve5AmoDMplMvhQyGfAd5DV5fSnkte/hsJda7NSpU9q1a5defvll9ezZU1FRUeV+jJCQEF1//fVauXKlTp06JZfLpePHj2v//v2lbnPbbbdp48aNOnz4sLuO8ycqKkvfvn31wQcf6N///rcMw9Dx48eVnp6utm3bqkGDBtq4caPOnj0rl8uln3/+WampqWU+pp+fn/r06aOVK1fK6XTK5XLp+++/V0FBgbp166avvvpKe/fuVWFhoT744APVqVNHV111VZmPGxwcrNzcXJ06deqS63Xv3l3vv/++cnJylJOTo3ffffeyf6hdeeWVCgoK0uLFi3X99derYcOGkqSjR4/qm2++UUFBgerWrau6deu6L8NWXmU9t9u2bVNOTo78/PwUEBAg6dxzGhERoYKCAu3evVuFhYV67733VFBQ4HGMoKAg2Ww2jz+UgdqCTD6HTL40MhkwH3l9Dnl9aeS172HPj1po3rx5stvtstlsat68uQYNGqT+/ftX+PEmT56s1atXa/r06Tp9+rTCw8N11113lbr+TTfdpPz8fC1cuFAZGRkKCAjQddddp1tuuaXMsW655Rbl5ubq5ZdfltPpVNOmTTV58mQ1adJEM2bM0MqVKzVp0iQVFhYqIiJC9957r6Rzx/Q9//zzWrVqlcfHHTt2rN5++23Fx8crPz9frVq10pNPPqmIiAhNmTJFb7zxhvtM1TNmzJC/f9kfncjISHXv3l2TJ0+Wy+XSn/70J4/rDRs2TKdOnXJ3nLt27aphw4aV+fjnde/eXevXr9e0adPcywoKCrR69WodOXJEdrtdV111lXu3yn/961/asGFDqfVczM/P75LPbUpKilauXKkzZ86oSZMm+t3vfuf+YfHQQw9p8eLFcrlcuvPOO0vsrnhevXr1NGzYMD399NMqKirSE088wXGPqDXI5JLI5NKRyYB5yOuSyOvSkde+x2YYhmF2EQAAAAAAANWFw14AAAAAAICl0fwAAAAAAACWRvMDAAAAAABYGs0PAAAAAABgaTQ/AAAAAACApdH8AAAAAAAAlkbzAwAAAAAAWBrNDwAAAAAAYGk0PwAAAAAAgKXR/AAAAAAAAJZG8wMAAAAAAFgazQ8AAAAAAGBpND8AAAAAAICl0fwAAAAAAACWRvMDAAAAAABYGs0PAAAAAABgaTQ/AAAAAACApdH8AAAAAAAAlkbzAwAAAAAAWBrNDwAAAAAAYGk0PwAAAAAAgKXR/AAAAAAAAJZG8wMAAAAAAFgazQ8AAAAAAGBpND8AAAAAAICl0fwAAAAAAACWRvMDAAAAAABYGs0PAAAAAABgaTQ/AAAAAACApdH8AAAAAAAAlkbzAwAAAAAAWBrNDwAAAAAAYGk0PwAAAAAAgKXR/AAAAAAAAJZG8wMAAAAAAFgazQ8AAAAAAGBpND8AAAAAAICl0fwAAAAAAACWRvMDAAAAAABYGs0PAAAAAABgaTQ/AAAAAACApdH8AAAAAAAAlkbzAwAAAAAAWBrNDwAAAAAAYGk0PwAAAAAAgKXR/AAAAAAAAJZG8wMAAAAAAFgazQ8AAAAAAGBpND8AAAAAAICl0fwAAAAAAACWRvMDAAAAAABYGs0PAAAAAABgaTQ/AAAAAACApdH8AAAAAAAAlkbzAwAAAAAAWBrNDwAAAAAAYGk0PwAAAAAAgKXR/AAAAAAAAJZG8wMAAAAAAFgazQ8AAAAAAGBpND8AAAAAAICl0fwAAAAAAACWRvMDAAAAAABYGs0PAAAAAABgaTQ/AAAAAACApdH8AAAAAAAAlkbzAwAAAAAAWBrNDwAAAAAAYGk0PwAAAAAAgKXR/AAAAAAAAJZG8wMAAAAAAFgazQ8AAAAAAGBpND8AAAAAAICl0fwAAAAAAACWRvMDAAAAAABYGs0PAAAAAABgaTQ/AAAAAACApdH8AAAAAAAAlkbzAwAAAAAAWBrNDwAAAAAAYGk0PwAAAAAAgKXR/AAAAAAAAJZG8wM+z2azXfKrVatWkqTevXu7l9WpU0etWrXSlClTdOLECY+Pu2vXLtntdnXu3LnUsfft26cxY8aoefPmqlevnlq2bKmhQ4fqk08+0ZYtW8qsbdy4cZWau8vl0vz583XttdeqYcOGaty4sa6//no99dRT7nXefPNNj2PHxcVVamwAuFhtzuNnnnlGNptNN954Y4n79uzZ4x7nl19+kSQdOnTIYx0dOnSoVB0AcCnkdPlz+tNPP/X4WG3btq1UPfA9/mYXAJTl2LFj7u937Nihu+66Szt27FCLFi0kSXa73X3/fffdp4SEBBUWFuqbb77Rgw8+qMzMTL399tslHnfJkiV65JFH9Pbbb2vnzp2KiYkpdv+mTZs0ZMgQdevWTcuWLVP79u118uRJffTRR/rtb3+rb775plhtCxcu1OrVq5WcnOxe1qBBg0rN/Y9//KNefvllvfrqq7rllluUn5+vb775Rl988UWx9ex2uzvIzwsICKjU2ABwsdqcx5LUpEkTffvtt9q9e3exPwCWLFmili1b6qeffiqxzV//+lfddNNN7tv+/vzqBaD6kNPlz2nUHvwEhs9r1qyZ+3uHwyHpXLBduPy8Bg0auJc3b95cI0eO1JtvvllivdzcXK1Zs0afffaZXC6Xli5dWizET506pbFjx6p379766KOPim3bsWNHTZgwQXXr1i1WQ2BgoOx2u8e6Kmrjxo168MEHNXr0aPeya665Rvfee2+JdatyXADwpDbnsSQFBQVpwIABWrZsmf785z+763v77bf1//7f/9OsWbNKbONwOMhnAF5DTpc/p1F7cNgLLCs1NVUffvih6tatW+K+1atXq127durYsaPGjRunNWvWKC8vz33/P//5T6WlpenJJ5/0+NghISHVVveFrrjiCm3dulVHjhzxyngAUB2skMfnTZgwQW+//bZOnjwpSVq7dq2uuOIK9ezZ06t1AEBVIqdRG9D8gKW89dZbCgwMVP369dWuXTt99913HoN46dKluv/++yVJN910k6Kioort4vf9999LkqKjo71TeCkWLFig06dPq0WLFrrqqqt0//33a/Xq1SosLCy2XlFRkQIDA4t9nZ8DAJjBanl8Xo8ePdS8eXOtX79e0rn6H3744VLX79+/f7FsXr58ubdKBYBLIqfPuTinAwMD9fzzz3urXHgRzQ9YytChQ5WSkqIvv/xSDz/8sIYNG6aJEycWW2fHjh3au3ev7rvvPvey+++/X0uXLnXfNgyjWuu8MFzvuOOOUtfr0KGD9u7dq127dmny5Mk6e/asHnroIXXt2lWnT592r2e325WSklLs68orr6zWOQDApVgtjy/08MMPa9myZfr666+VkpKisWPHlrruihUrimXzPffcU1WlA0ClkNPnXJzTKSkpXDjAojjnBywlKCjIfWbmJUuWqFu3bnruueeKHd+3dOlSFRYW6oorrnAvMwxDLpfLfXKkq666SpK0f/9+9ejRo8rrTElJcX9f1smdbDabbrjhBt1www2aMmWKPv30U/Xs2VPr1693d+ElcUZqAD7Finl83v3336/4+HhNmzZNQ4cOVVhYWKnrRkZGks8AfBI5fY6nnD5/vhRYC3t+wLJsNpv+8Ic/6IUXXnBfCSUnJ0dr165VYmJise7unj171KdPH3cXu3///mratKnmzJnj8bGzsrIqVVvbtm3dX5GRkeXa9uqrr5YkpaWlVaoGAPAWq+VxSEiIhg8frs2bN19yV2oAqCnIadQGND9gaf3799dVV12lP/zhD5Kkv/zlL7LZbHrggQd07bXXFvsaPXq0++RIAQEBevPNN/XJJ58oNjZWH330kf79739r7969mj9/vrp27eqV+u+++24lJCTo888/108//aTt27drzJgxqlOnjgYNGuSVGgCgKtT0PL7YsmXLlJ6err59+5oyPgBUNXIaVkfzA5b3+OOPa8WKFTpw4ICWLl2qwYMHe9xlbujQocrPz9eaNWskSXfccYeSk5MVHh6uBx98UB06dNCgQYO0fft2LVu2zCu1DxgwQP/4xz80bNgwtW/fXvfcc4/q1q2rrVu3+sxJpQDgctXkPL5Y/fr1L7kbNQDUROQ0rMxmVPcZagAAAAAAAEzEnh8AAAAAAMDSaH4AAAAAAABLo/kBAAAAAAAsjeYHAAAAAACwNJofAAAAAADA0vzNLgAAAACAOc6ePavZs2ersLBQRUVF6tq1q0aMGKG0tDQtXLhQeXl5uvLKKzVlyhT5+/OnA4Cai0vdenD06NFybxMWFqaMjIxqqMb3x2fuzL22jV+ZsSMiIqq4mtqhpuUynw/mXtvGr6lzJ5MlwzB05swZ1a9fX4WFhZo1a5bGjRunv/3tb7r55pvVvXt3LV26VK1atVL//v0v+VgVyerzzH4PVRXm4VusMA8rzEGq/DyqIq857AUAAACopWw2m+rXry9JKioqUlFRkWw2m/bt26euXbtKknr37q3k5GQzywSASmPfNQAAAKAWc7lcmjFjho4fP67bb79d4eHhCggIkN1ulyQ5HA45nc4S2yUlJSkpKUmSNHfuXIWFhVW4Bn9//0pt7yuYh2+xwjysMAfJN+ZB8wMAAACoxfz8/PTSSy/p5MmTmj9/vo4cOXJZ28XGxio2NtZ9uzK7tLNrv29hHr7DCnOQOOwFAAAAgI9o2LChoqOjdfDgQZ06dUpFRUWSJKfTKYfDYXJ1AFA5ND8AAACAWionJ0cnT56UdO7KL3v37lVkZKSuueYaffHFF5KkLVu2KCYmxswyAaDSOOwFAHDZMjIylJiYqBMnTshmsyk2NlYDBw5UXl6eFixYoPT0dDVp0kTTpk1TYGBgie23bNmi999/X5I0bNgw9e7d28szAABcKCsrS4mJiXK5XDIMQ7fccotuvPFGNW/eXAsXLtTatWt15ZVXqm/fvmaXCgCVQvMDqICff7brxRcbyen0l8PRWL//fa6ioorMLguodna7XWPGjFHr1q11+vRpzZw5Ux07dtSWLVt03XXXaciQIdq4caM2btyo0aNHF9s2Ly9P7777rubOnStJmjlzpmJiYjw2SYDyIpeBimnZsqVefPHFEsvDw8P1wgsvmFARACvxpZ/PND+Acvr5Z7tGjnTop5/q/GdJgHbvrqO1a538og3LCwkJUUhIiCSpQYMGioyMlNPpVHJysp555hlJ0q233qpnnnmmRPMjJSVFHTt2dDc7OnbsqJSUFPXo0cOrc4D1kMsAAPgeX/v5zDk/gHJ68cVGF3yAz/nppzp68cVGJlUEmCMtLU0//vij2rZtq+zsbHdTJCQkRDk5OSXWdzqdCg0Ndd8u7dKJQHmRywAA+B5f+/nMnh9AOR0/bve4/NdfPS8HrCg/P18JCQkaN26cAgICKvw4NpvN4/KkpCQlJSVJkubOnVuh68KbeT15s69lX9vm7nR6/nXG6azv1Vp43Wvn3AEAnvna3000P4ByatbM8y5a4eHsWo3aobCwUAkJCerZs6duvvlmSVJwcLCysrIUEhKirKwsBQUFldjO4XBo//797ttOp1PR0dEex4iNjVVsbKz7dkWuC1/Z68lXhpljmz2+GWM7HI0llWzCORz5ysg44bU6eN1r3twjIiKqoRoAgOR7fzdx2AtQTr//fa5atiwotqxlywL9/ve5JlUEeI9hGFq8eLEiIyM1ePBg9/KYmBht3bpVkrR161Z16dKlxLadOnXSnj17lJeXp7y8PO3Zs0edOnXyWu2wLnIZAADf42s/n9nzAyinqKgirV3r/M9Zi+vL4cjnqgKoNQ4cOKBt27YpKipKjz/+uCRp1KhRGjJkiBYsWKDNmzcrLCxM06dPlyT98MMP+r//+z/FxcUpMDBQd999t+Lj4yVJw4cP50ovqBLkMgAAvsfXfj7T/AAqICqqSK+9duI/u9l6b5dqwGwdOnTQ+vXrPd43a9asEsvatGmjNm3auG/37dtXffv2rbb6UHuRywAA+B5f+vnMYS8AAAAAAMDSaH4AAAAAAABLo/kBAAAAAAAszefP+ZGRkaHExESdOHFCNptNsbGxGjhwoPLy8rRgwQKlp6erSZMmmjZtmscT523ZskXvv/++JGnYsGHq3bu3l2cAAAAAAADM5PPND7vdrjFjxqh169Y6ffq0Zs6cqY4dO2rLli267rrrNGTIEG3cuFEbN27U6NGji22bl5end999V3PnzpUkzZw5UzExMVxdAAAAAACAWsTnD3sJCQlR69atJUkNGjRQZGSknE6nkpOTdeutt0qSbr31ViUnJ5fYNiUlRR07dlRgYKACAwPVsWNHpaSkeLV+AAAAAABgLp/f8+NCaWlp+vHHH9W2bVtlZ2crJCRE0rkGSU5OTon1nU6nQkND3bcdDoecTmeJ9ZKSkpSUlCRJmjt3rsLCwspdm7+/f4W2qypmjs/cmXttG9/suQMAAAAonxrT/MjPz1dCQoLGjRungICACj+OzWYrsSw2NlaxsbHu2xkZGeV+3HPXLS7/dlXFzPGZO3OvbeNXZuyIiIgqrgYAAABAWXz+sBdJKiwsVEJCgnr27Kmbb75ZkhQcHKysrCxJUlZWloKCgkps53A4lJmZ6b7tdDrde4sAAAAAAIDaweebH4ZhaPHixYqMjNTgwYPdy2NiYrR161ZJ0tatW9WlS5cS23bq1El79uxRXl6e8vLytGfPHnXq1MlrtQMAAAAAAPP5/GEvBw4c0LZt2xQVFaXHH39ckjRq1CgNGTJECxYs0ObNmxUWFqbp06dLkn744Qf93//9n+Li4hQYGKi7775b8fHxkqThw4dzpRcAAAAAAGoZn29+dOjQQevXr/d436xZs0osa9Omjdq0aeO+3bdvX/Xt27fa6gMAAAAAAL7N5w97AQAAAAAAqAyaHwAAAAAAwNJofgAAAAAAAEuj+QEAAAAAACyN5gcAAAAAALA0mh8AAAAAAMDSaH4AAAAAAABLo/kBAAAAAAAsjeYHAAAAAACwNH+zCwAAAADgfRkZGUpMTNSJEydks9kUGxurgQMHav369fr4448VFBQkSRo1apQ6d+5scrUAUDk0PwAAl23RokXavXu3goODlZCQIElasGCBjh49Kkk6deqUAgIC9NJLL5XYdtKkSapfv778/Pxkt9s1d+5cr9YOACjObrdrzJgxat26tU6fPq2ZM2eqY8eOkqRBgwbpzjvvNLlCAKg6ND8AAJetd+/eGjBggBITE93Lpk2b5v5+5cqVCggIKHX72bNnu/+TCAAwV0hIiEJCQiRJDRo0UGRkpJxOp8lVAUD14JwfAIDLFh0drcDAQI/3GYahzz//XN27d/dyVQCAykpLS9OPP/6otm3bSpI2bdqkxx57TIsWLVJeXp7J1QFA5bHnBwCgSnz77bcKDg7WFVdcUeo6c+bMkSTddtttio2NLXW9pKQkJSUlSZLmzp2rsLCwctfj7+9foe2qgpljmz0+c2futXH8mi4/P18JCQkaN26cAgIC1L9/fw0fPlyStG7dOq1cuVITJ04ssV1VZPV5VnkNmYdvscI8rDAHyTfmQfMDAFAlPvvss0vu9fHss8/K4XAoOztbzz33nCIiIhQdHe1x3djY2GLNkYyMjHLXExYWVqHtqoKZY5s9PnNn7jVp/IiIiGqopmYpLCxUQkKCevbsqZtvvlmS1LhxY/f9/fr107x58zxuWxVZfZ7Z76Gqwjx8ixXmYYU5SJWfR1XkNYe9AAAqraioSDt27FC3bt1KXcfhcEiSgoOD1aVLF6WmpnqrPACAB4ZhaPHixYqMjNTgwYPdy7Oystzf79ixQy1atDCjPACoUuz5AQCotL179yoiIkKhoaEe78/Pz5dhGGrQoIHy8/P19ddfu3epBgCY48CBA9q2bZuioqL0+OOPSzp3WdvPPvtMhw4dks1mU5MmTTRhwgSTKwWAyqP5AQC4bAsXLtT+/fuVm5uruLg4jRgxQn379vV4yIvT6dSSJUsUHx+v7OxszZ8/X9K5vUR69OihTp06mTEFAMB/dOjQQevXry+xvHPnziZUAwDVi+YHAOCyTZ061ePySZMmlVjmcDgUHx8vSQoPD9dLL71UrbUBAAAApeGcHwAAAAAAwNJ8fs+PRYsWaffu3QoODlZCQoIkacGCBTp69Kgk6dSpUwoICPD4H8VJkyapfv368vPzk91u19y5c71aOwAAAAAAMJ/PNz969+6tAQMGKDEx0b1s2rRp7u9XrlypgICAUrefPXu2goKCqrVGAAAAAADgu3z+sJfo6GgFBgZ6vM8wDH3++eclTrIHAAAAAABwns/v+XEp3377rYKDg3XFFVeUus6cOXMkSbfddptiY2M9rpOUlKSkpCRJ0ty5cxUWFlbuWvz9/Su0XVUxc3zmztxr2/hmzx0AAABA+dTo5oenSyte6Nlnn5XD4VB2draee+45RUREKDo6usR6sbGxxRojGRkZ5a4lLCysQttVFTPHZ+7MvbaNX5mxIyIiqrgaAAAAAGXx+cNeSlNUVKQdO3aoW7dupa7jcDgkScHBwerSpYtSU1O9VR4AAAAAAPARNbb5sXfvXkVERCg0NNTj/fn5+Tp9+rT7+6+//lpRUVHeLBEAAAAAAPgAnz/sZeHChdq/f79yc3MVFxenESNGqG/fvh4PeXE6nVqyZIni4+OVnZ2t+fPnSzq3l0iPHj3UqVMnM6YAAAAAAABM5PPNj6lTp3pcPmnSpBLLHA6H4uPjJUnh4eF66aWXqrU2AAAAAADg+2rsYS8AAAAAAACXg+YHAAAAAACwNJofAAAAAADA0mh+AAAAAAAAS6P5AQAAAAAALI3mBwAAAAAAsDSaHwAAAAAAwNJofgAAAAAAAEuj+QEAAAAAACyN5gcAAAAAALA0mh8AAAAAAMDSaH4AAAAAAABL8ze7AABAzbJo0SLt3r1bwcHBSkhIkCStX79eH3/8sYKCgiRJo0aNUufOnUtsm5KSohUrVsjlcqlfv34aMmSIV2sHAABA7UTzAwBQLr1799aAAQOUmJhYbHXIsZwAACAASURBVPmgQYN05513lrqdy+XS8uXL9dRTTyk0NFTx8fGKiYlR8+bNq7tkAAAA1HIc9gIAKJfo6GgFBgaWe7vU1FQ1a9ZM4eHh8vf3V7du3ZScnFwNFQIAAADFsecHAKBKbNq0Sdu2bVPr1q01duzYEg0Sp9Op0NBQ9+3Q0FAdPHjQ42MlJSUpKSlJkjR37lyFhYWVux5/f/8KbVcVzBzb7PGZO3OvjeMDAHwfzQ8AQKX1799fw4cPlyStW7dOK1eu1MSJE4utYxhGie1sNpvHx4uNjVVsbKz7dkZGRrlrCgsLq9B2VcHMsc0en7kz95o0fkRERDVUAwDwRTQ/AACV1rhxY/f3/fr107x580qsExoaqszMTPftzMxMhYSEeKU+AEBJGRkZSkxM1IkTJ2Sz2RQbG6uBAwcqLy9PCxYsUHp6upo0aaJp06ZV6HBHAPAlnPMDAFBpWVlZ7u937NihFi1alFinTZs2OnbsmNLS0lRYWKjt27crJibGm2UCAC5gt9s1ZswYLViwQHPmzNGmTZv0yy+/aOPGjbruuuv0yiuv6LrrrtPGjRvNLhUAKo09PwAA5bJw4ULt379fubm5iouL04gRI7Rv3z4dOnRINptNTZo00YQJEySdO8/HkiVLFB8fL7vdrvHjx2vOnDlyuVzq06ePxyYJAMA7QkJC3HvgNWjQQJGRkXI6nUpOTtYzzzwjSbr11lv1zDPPaPTo0SZWCgCV5/PNj0WLFmn37t0KDg5WQkKCJGn9+vX6+OOPFRQUJEkaNWqUOnfuXGLblJQUrVixQi6XS/369dOQIUO8WjsAWNHUqVNLLOvbt6/HdR0Oh+Lj4923O3fu7DGvAQDmSktL048//qi2bdsqOzvb3RQJCQlRTk6OydUBQOX5fPOjd+/eGjBggBITE4stHzRokO68885St3O5XFq+fLmeeuophYaGKj4+XjExMWrevHl1lwwAAADUGPn5+UpISNC4ceMUEBBw2dtVxZW5zrPKFXuYh2+xwjysMAfJN+bh882P6OhopaWllXu71NRUNWvWTOHh4ZKkbt26KTk5meYHAAAA8B+FhYVKSEhQz549dfPNN0uSgoODlZWVpZCQEGVlZbn3tr5YVVyZ6zyzrxhUVZiHb7HCPKwwB6ny86iKq3P5fPOjNJs2bdK2bdvUunVrjR07tsQZqJ1Op0JDQ923Q0NDdfDgQY+PVRVda7M7WWaOz9yZe20b3+y5AwBQFQzD0OLFixUZGanBgwe7l8fExGjr1q0aMmSItm7dqi5duphYJQBUjRrZ/Ojfv7+GDx8uSVq3bp1WrlypiRMnFlvHMIwS29lsNo+PVxVda7M7cmaOz9yZe20bvzJjV0XXGgCAqnDgwAFt27ZNUVFRevzxxyWdO5fekCFDtGDBAm3evFlhYWGaPn26yZUCQOXVyOZH48aN3d/369dP8+bNK7FOaGioMjMz3bczMzPdJ24CAAAAarsOHTpo/fr1Hu+bNWuWl6sBgOrlZ3YBFZGVleX+fseOHR4vldimTRsdO3ZMaWlpKiws1Pbt2xUTE+PNMgEAAAAAgA/w+T0/Fi5cqP379ys3N1dxcXEaMWKE9u3bp0OHDslms6lJkyaaMGGCpHPn+ViyZIni4+Nlt9s1fvx4zZkzRy6XS3369PHYJAEAAAAAANbm882PqVOnlljWt29fj+s6HA7Fx8e7b3fu3FmdO3euttoAAAAAAIDvq5GHvQAAAAAAAFwurzQ/PvzwQ+Xk5HhjKABAGchkALAWch0AyuaVw1727t2rNWvW6JprrlGvXr3UpUsX1alTxxtDAwAuQiYDgLWQ6wBQNq80P2bMmKHc3Fx99tln+vvf/65ly5bp5ptvVq9evRQdHe2NEgAA/0EmA4C1kOsAUDavnfC0UaNGGjBggAYMGKCffvpJr732mj755BOFhYWpX79+GjhwoOrXr++tcgCgViOTAcBayHUAuDSvXu1l7969+te//qXk5GS1adNGkydPVlhYmD788EM9//zz+uMf/+jNcgCgViOTAcBayHUAKJ1Xmh8rV67U9u3bFRAQoF69eikhIUEOh8N9f7t27fTAAw94oxQAqPXIZACwFnIdAMrmleZHQUGBHnvsMbVt29ZzEf7+mjt3rjdKAYBaj0wGAGsh1wGgbF5pfgwdOlR169YttiwvL09nz551d6UjIyO9UQoA1HpkMgBYC7kOAGXz88YgL730kpxOZ7FlTqdT8+fP98bwAIALkMkAYC3kOgCUzSvNj6NHjyoqKqrYsqioKB05csQbwwMALkAmA4C1kOsAUDavND+CgoJ0/PjxYsuOHz+uRo0aeWN4AMAFyGQAsBZyHQDK5pVzfvTp00cJCQkaOXKkwsPDdfz4ca1bt059+/b1xvAAgAuQyQBgLeQ6AJTNK82PIUOGyN/fX6tWrVJmZqZCQ0PVt29fDR482BvDAwAuUJlMXrRokXbv3q3g4GAlJCRIklatWqVdu3bJ399f4eHhmjhxoho2bFhi20mTJql+/fry8/OT3W7nygMAUEX4XRsAyuaV5oefn5/uvPNO3Xnnnd4YDgBwCZXJ5N69e2vAgAFKTEx0L+vYsaPuu+8+2e12/eUvf9GGDRs0evRoj9vPnj1bQUFBFa4dAFASv2sDQNm80vyQzp2I6dChQ8rPzy+2nN3xAMD7KprJ0dHRSktLK7bs+uuvd3/fvn17ffHFF1VXKADgsvC7NgBcmleaH++//77ee+89tWzZUvXq1St2H4EMAN5VnZm8efNmdevWrdT758yZI0m67bbbFBsbW6mxAADn8Ls2AJTNK82PDz/8UM8//7xatmzpjeEAAJdQXZn8/vvvy263q2fPnh7vf/bZZ+VwOJSdna3nnntOERERio6O9rhuUlKSkpKSJElz585VWFhYuevx9/ev0HZVwcyxzR6fuTP32ji+2fhdGwDK5pXmR926dRUZGemNoQAAZaiOTN6yZYt27dqlWbNmyWazeVzH4XBIkoKDg9WlSxelpqaW2vyIjY0ttmdIRkZGuWsKCwur0HZVwcyxzR6fuTP3mjR+RERENVTjffyuDQBl8/PGIPfee6/eeOMNZWVlyeVyFfsCAHhXVWdySkqK/vrXv2rGjBkldrc+Lz8/X6dPn3Z///XXXysqKqrCcwAA/Be/awNA2byy58eiRYskSR9//HGJ+9atW1fmtlxWEQCqTmUyeeHChdq/f79yc3MVFxenESNGaMOGDSosLNSzzz4rSWrXrp0mTJggp9OpJUuWKD4+XtnZ2Zo/f74kqaioSD169FCnTp2qeGYAUDtVJtcBoLbwSvPjtddeq/C2XFYRAKpWZTJ56tSpJZaVdjI9h8Oh+Ph4SVJ4eLheeumlCo8LAChdZXIdAGoLrzQ/mjRpIklyuVzKzs5WSEjIZW/LZRUBoGpVJpMBAL6HXAeAsnml+XHy5Em9/vrr+uKLL+Tv769Vq1Zp586dSk1N1ciRIyv12FVxWcWaflUBs8dn7sy9to1v9twrqzozGQDgfeQ6AJTNK82PZcuWqWHDhlq0aJGmT58u6dweGytXrqxUIFfVZRVr+lUFzB6fuTP32jZ+Zcb2hSsLVFcmAwDMQa4DQNm8crWXvXv36oEHHii2C15QUJCys7Mr/JjnL6v46KOPluuyigBQ21VHJgMAzEOuA0DZvLLnR0BAgHJzc4sFckZGRoWPRzx/WcU//OEPl7ysomEYatCggfuyisOHD6/QeABgJVWdyQAAc1Um1z1dWXH9+vX6+OOP3RcNGDVqlDp37lw9xQOAl3il+dGvXz8lJCRo5MiRMgxD33//vdasWaPbbrutzG25rCIAVK3KZDIAwPdUJtc9XVlRkgYNGqQ777yzukoGAK/zSvPjrrvuUp06dbR8+XIVFRXpz3/+s2JjYzVw4MAyt+WyigBQtSqTyQAA31OZXPd0ZUUAsCKvND9sNpsGDRqkQYMGeWM4AMAlkMkAYC3VkeubNm3Stm3b1Lp1a40dO1aBgYEl1qmKKyaeV9OvpHYe8/AtVpiHFeYg+cY8vNL8+Oabb0q979prr/VGCQCA/yCTAcBaqjrX+/fv7z5X3rp167Ry5UpNnDixxHpVccXE88y+ilxVYR6+xQrzsMIcpMrPoyqumOiV5sef//znYrdzcnJUWFio0NBQvfbaa94oAQDwH2QyAFhLVed648aN3d/369dP8+bNq3SNAGA2rzQ/Lj6Bksvl0nvvvacGDRp4Y3gAwAXIZACwlqrO9aysLPeVYnbs2KEWLVpUukYAMJtXmh8X8/Pz07BhwxQXF6fBgwebUQIA4D/IZACwlvLkuqcrK+7bt0+HDh2SzWZTkyZNNGHCBC9VDgDVx5TmhyR9/fXX8vPzM2t4AMAFyGQAsJbLzfXyXFkRAGoyrzQ/HnnkkWK3z549q7Nnz+qhhx7yxvAAgAuQyQBgLeQ6AJTNK82PKVOmFLtdr149XXHFFQoICPDG8ACAC5DJAGAt5DoAlM0rzY/o6GhvDAMAuAxkMgBYC7kOAGXzSvPj1Vdflc1mK3O9yZMne6EaAKiYn3+268UXG8np9JfD0Vi//32uoqKKzC6r3MhkALAWch0AyuaVs9s1bNhQycnJcrlccjgccrlcSk5OVkBAgMLDw91fAOCrfv7ZrpEjHdqwIUBbt/ppw4YAjRzp0M8/280urdzIZACwFnIdAMrmlT0/jh07ppkzZ+rqq692L/vuu+/03nvvafz48d4oAQAq5cUXG+mnn+oUW/bTT3X04ouN9NprJ0yqqmLIZACwFnIdAMrmlT0/vv/+e7Vr167YsrZt2+r777/3xvAAUGnHj3vew+PXX2venh9kMgBYC7kOAGXzSvPjyiuv1Jo1a3T27FlJ5y6/tXbtWrVq1cobwwNApTVr5vncHuHhNe+cH/+fvfsOj6Jc/z/+2XQgENLoAgKCgCBoBCFIjYjiORQROShF5SAHULGBiB44FkQsoILSlGIDG/izgiFIlSIhlISuCAIhCaEkFEmyz+8PvoysaRtSdrN5v64r18XOzszz3DO79wz3zjxDTgYAz0JeB4D8lchtL8OHD9dbb72lQYMGKTAwUOnp6apfv74eeeSRkmgeAApt9Og0xcb6Otz6UqdOhkaPTnNhr64MORkAPAt5HQDyVyLFjypVqujFF19USkqKTpw4oeDgYIWFhZVE0wBQJGrXztLChan/97SXAIWEnC+1T3spbE5+5513FBsbq6CgIL3++uuSpPT0dE2ZMkXJyckKDw/XY489psDAwGzL/vTTT/ryyy8lSb1791bHjh2LJCYAKMs41waA/JXIbS+SlJaWpoSEBCUkJCgsLEypqak6fvx4STUPAIVWu3aWpk07qWXLMjVt2slSWfi4pDA5uWPHjnrmmWccpi1ZskTNmjXTW2+9pWbNmmnJkiXZlktPT9fnn3+uiRMnauLEifr888+Vnp5eJPFc7uBBb40cWVldu/po5MjKpfKJPABQUJxrA0DeSqT4kZCQoFGjRmn16tX64osvJEmJiYmaPXt2STQPALhMYXNykyZNsl3VsWnTJnXo0EGS1KFDB23atCnbcnFxcWrevLkCAwMVGBio5s2bKy4urpDROPKkRxIDgLM41waA/JVI8WPevHkaNWqUxo0bJ2/viyegDRo00P79+0uieQDAZYojJ586dUrBwcGSpODgYJ0+fTrbPKmpqQoNDbVeh4SEKDU19YrbzElejyQGAE/FuTYA5K9ExvxITk5Ws2bNHBv28VFWVum9ZBwASit3ysk2my3H6dHR0YqOjpYkTZo0yel711NTcz6spaYGlOj97z4+Pi69396V7RM7sZfF9l3NnfI6ALirEil+1KpVS3FxcWrRooU1bfv27apdu3a+yzKwHgAUrcLk5NwEBQVZg+ydOHFClSpVyjZPSEiIEhISrNepqalq0qRJjuuLiopSVFSU9TolJcWpfoSEVJZUPofp55WSctKpdRSFsLAwp/vsae0TO7GXpvZr1KhRDL0pecWR1wHA05TIbS8DBgzQ22+/rWnTpunChQuaNWuW3nnnHd133335LuvuA+sBQGlTmJycm4iICK1cuVKStHLlSt10003Z5mnRooW2bt2q9PR0paena+vWrQ4n6kVh9Og01amT4TCttD6SGACcVRx5HQA8TYkUPxo2bKhXX31VV111lTp16qQqVapo4sSJatCgQb7LuvPAegBQGhUmJ0vS1KlT9eyzz+rIkSMaNmyYYmJi1LNnT23btk2PPPKItm3bpp49e0qS9u/frxkzZkiSAgMDddddd2ns2LEaO3as+vTpk+NVe4Vx6ZHEvXqdVYcOdvXqdVYLF6aW6ifzAEB+CpvXAaAsKPbbXux2u55//nmNGzdOPXr0KJJ1usvAegBQ2hRFTh41alSO0//73/9mm1a/fn3Vr1/fet25c2d17tz5itp11qVHEl+8DL7kbnUBAFcojnNtAPBExV788PLyUlJSkowxxd1Uvop6YL3LuXqgLQY5I/ay1Lar23d17IXhTjkZAFB45HUAcE6JDHjap08fzZ49W3379nW4GkO6mLALyl0G1rtcaR3oq7S37er2iZ3YC8odBtcr6pwMAHAt8joA5K9Eih8zZ86UJK1atSrbe4sWLSrw+i4NrNezZ888B9b75JNPrEFOt27dqv79+xe4LQDwNEWdkwEArkVeB4D8FWvx4+TJk6pcubKmTZt2xeuYOnWqEhISlJaWpmHDhqlv377q2bOnpkyZopiYGIWFhenxxx+XdHFgvR9//FHDhg1zGFhPUrEMrAcApUlR5GQAgPsgrwOA84q1+PHoo49q/vz5Cg8PlyS99tprevLJJwu0DncfWA8ASouiyMkAAPdBXgcA5xXrTYB/H3gpPj6+OJsDAOSBnAwAnoW8DgDOK9biR25PVwEAlDxyMgB4FvI6ADivWG97ycrK0o4dO6zXdrvd4bUkXXfddcXZBQDA/yEnA4BnIa8DgPOKtfgRFBSkd99913odGBjo8NpmszFAEwCUEHIyAHgW8joAOK9Yix/Tp08vztUDAAqAnAwAnoW8DgDOK9biBwAAAAD39c477yg2NlZBQUF6/fXXJUnp6emaMmWKkpOTFR4erscee0yBgYEu7ikAFE6xDngKAAAAwH117NhRzzzzjMO0JUuWqFmzZnrrrbfUrFkzLVmyxEW9A4CiQ/EDAAAAKKOaNGmS7aqOTZs2qUOHDpKkDh06aNOmTa7oGgAUKYofAAAAACynTp1ScHCwJCk4OFinT592cY8AoPAY8wMAAABAgUVHRys6OlqSNGnSJIWFhV3xunx8fAq1vLsgDvfiCXF4QgySe8RB8QMAAACAJSgoSCdOnFBwcLBOnDihSpUq5ThfVFSUoqKirNcpKSlX3GZYWFihlncXxOFePCEOT4hBKnwcNWrUKHQfuO0FAAAAgCUiIkIrV66UJK1cuVI33XSTi3sEAIXHlR8AAABAGTV16lQlJCQoLS1Nw4YNU9++fdWzZ09NmTJFMTExCgsL0+OPP+7qbgJAoVH8AAAAAMqoUaNG5Tj9v//9bwn3BACKF7e9AAAAAAAAj0bxAwAAAAAAeDSKHwAAAAAAwKMx5gcAoNCOHDmiKVOmWK+TkpLUt29fde/e3ZoWHx+vyZMnq0qVKpKk1q1bq0+fPiXeVwAAAJQ9FD8AAIVWo0YNvfrqq5Iku92uhx56SK1atco2X+PGjfX000+XdPcAAABQxnHbCwCgSG3fvl3VqlVTeHi4q7sCAAAASCrFV35wiTUAuKe1a9cqMjIyx/f27Nmjp556SsHBwRowYICuuuqqEu4dAAAAyqJSW/zgEmsAcD+ZmZnavHmz+vfvn+29q6++Wu+8844CAgIUGxurV199VW+99VaO64mOjlZ0dLQkadKkSQoLCytwX3x8fK5ouaLgyrZd3T6xE3tZbB8A4P5KbfHjclxiDQDuYcuWLbr66qtVuXLlbO+VL1/e+vcNN9yg9957T6dPn1alSpWyzRsVFaWoqCjrdUpKSoH7EhYWdkXLFQVXtu3q9omd2EtT+zVq1CiG3gAA3JFHjPnhzCXWEydO1KFDh0q4ZwBQtuSVj0+ePCljjCRp3759stvtqlixYkl2DwAAAGVUqb/yoygusS7tl1e7un1iJ/ay1r6rY3dXf/75p7Zt26ahQ4da05YtWyZJ6tq1q9avX69ly5bJ29tbfn5+GjVqlGw2m6u6CwAAgDKk1Bc/iuIS69J+ebWr2yd2Yi9r7RembU++xNrf31/vv/++w7SuXbta/+7WrZu6detW0t0CAAAASv9tL1xiDQAAAAAA8lKqr/zgEmsAAAAAAJCfUl384BJrAAAAAACQn1J/2wsAAAAAAEBeKH4AAAAAAACPRvEDAAAAAAB4NIofAAAAAADAo1H8AAAAAAAAHo3iBwAAAAAA8GgUPwAAAAAAgEej+AEAAAAAADwaxQ8AAAAAAODRKH4AAAAAAACPRvEDAAAAAAB4NIofAAAAAADAo1H8AAAAAAAAHs3H1R0AAAAA4H5GjBihgIAAeXl5ydvbW5MmTXJ1lwDgilH8AAAAAJCj8ePHq1KlSq7uBgAUGre9AAAAAAAAj8aVHwAAAABy9NJLL0mSbr31VkVFRbm4NwBw5Sh+AAAAAMjmhRdeUEhIiE6dOqUXX3xRNWrUUJMmTaz3o6OjFR0dLUmaNGmSwsLCrrgtHx+fQi3vLojDvXhCHJ4Qg+QecVD8AAAAAJBNSEiIJCkoKEg33XST9u3b51D8iIqKcrgaJCUl5YrbCgsLK9Ty7oI43IsnxOEJMUiFj6NGjRqF7gPFDwBAkcnvyQDGGM2dO1dbtmyRv7+/hg8frnr16rmotwCA3Jw/f17GGJUrV07nz5/Xtm3b1KdPH1d3CwCuWKkufnCSDQDuJ68nA2zZskWJiYl66623tHfvXs2ZM0cTJ04s4R4CAPJz6tQpvfbaa5KkrKwstWvXTi1atHBxrwDgypXq4ofESTYAlCa//PKL2rdvL5vNpoYNG+rMmTM6ceKEgoODXd01AMBlqlatqldffdXV3QCAIlPqix954SQbAEpeXk8GSE1NdRjsKjQ0VKmpqdnyclEMoufKgbVcPagXsRN7WWrbHdoHALi/Ul/8KIqTbABA0cjvyQDGmGzL2Gy2bNOKYhA9Vw4Q5urByYid2MtS24VpvygG0AMAlA6luvhRVCfZpf0XRle3T+zEXtbad3Xs7iy/JwOEhoY6/Afl+PHjFKQBAABQ7Ep18aOoTrJL+y+Mrm6f2Im9rLVfmLY9+VdGZ54MEBERoR9++EGRkZHau3evypcvT/EDAAAAxa7UFj84yQYA95LbkwGWLVsmSeratatatmyp2NhYPfLII/Lz89Pw4cNd2WUAAACUEaW2+MFJNgC4l9yeDNC1a1fr3zabTUOGDCnJbgEAAAClt/jBSTYAAAAAAHCGl6s7AAAAAAAAUJwofgAAAAAAAI9G8QMAAAAAAHg0ih8AAAAAAMCjUfwAAAAAAAAejeIHAAAAAADwaBQ/AAAAAACAR6P4AQAAAAAAPBrFDwAAAAAA4NEofgAAAAAAAI9G8QMAAAAAAHg0ih8AAAAAAMCjUfwAAAAAAAAejeIHAAAAAADwaBQ/AAAAAACAR/NxdQdKu4MHvTV5ckWlpvooJKSyRo9OU+3aWa7uFgAAgMfjPKz0Yx8CKCkUPwrh4EFv9esXot9/9/2/KeUVG+urhQtTSdoAAADFiPOw0o99CKAkcdtLIUyeXPGyZH3R77/7avLkii7qEQAAQNnAeVjpxz4EUJIofhRCYqJ3jtOPHct5OgAAAIoG52GlH/sQQEmi+FEI1arlfDle1apcpgcAAFCcOA8r/diHAEpSqR3zIyUlRdOnT9fJkydls9kUFRWlO+64w2Ge+Ph4TZ48WVWqVJEktW7dWn369CmyPowenabYWF+Hy/Xq1MnQ6NFpRdYGAJQG7pCTAZQtnIeVfuxDACWp1BY/vL29NWDAANWrV0/nzp3T008/rebNm6tWrVoO8zVu3FhPP/10sfShdu0sLVyY+n8jVAcoJOQ8I1QDKJPcIScDKFs4Dyv92IcASlKpLX4EBwcrODhYklSuXDnVrFlTqamp2U60i1vt2lmaNu2kwsLClJJyskTbBgB34S45GUDZwnlY8YqLi9PcuXNlt9vVpUsX9ezZs8jbYB8CKCmltvhxuaSkJP32229q0KBBtvf27Nmjp556SsHBwRowYICuuuoqF/QQAMoOcjIAlH52u13vvfeenn32WYWGhmrs2LGKiIigqA2g1LIZY4yrO1EY58+f1/jx49W7d2+1bt3a4b2zZ8/Ky8tLAQEBio2N1bx58/TWW29lW0d0dLSio6MlSZMmTdKFCxcK3A8fHx9lZmZeWRBFwJXtEzuxl7X2C9O2n59fEffGvRRFTpZKf17m+0HsZa390hq7p+fkwtizZ48+++wzjRs3TpK0ePFiSVKvXr1yXebIkSNX3N7FKz9Srnh5d0Ec7sUT4vCEGKTCx1GjRo1C96FUX/mRmZmp119/Xbfccku2k2xJKl++vPXvG264Qe+9955Onz6tSpUqOcwXFRWlqKgo6/WV7BRXfyhd2T6xE3tZa78wbRdF4nZXRZWTpdKfl/l+EHtZa7+0xu7JObmwUlNTFRoaar0ODQ3V3r17Heb5e6E6LCzsitvz8fEp1PLugjjciyfE4QkxSO4RR6ktfhhjNGPGDNWsWVN33nlnjvOcPHlSQUFBstls2rdvn+x2uypWrFjCPQUAz0dOBgDPktPF4TabzeF1URSqL3F1Aa2oEId78YQ4PCEGiSs/CmX37t1atWqVateuraeeekqS9K9//cvaoF27dtX69eu1bNkyeXt7y8/PT6NGjcqWtAEAhUdOBgDPEhoaquPHj1uvjx8/bg1sDQClUaktflx77bX69NNP85ynPaJbagAAIABJREFUW7du6tatWwn1CADKLnIyAHiW+vXr6+jRo0pKSlJISIjWrVunRx55xNXdAoArVuoHPAUAAABQ9GJjYzV//nzZ7XZ16tRJvXv3dnWXAOCKebm6A57i6aefLrPtE7vrEHvZaxvOK8ufEWIve227uv2yHLsnu+GGG/Tmm2/q7bffLvbCh6fsQ+JwL54QhyfEILlHHBQ/AAAAAACAR6P4AQAAAAAAPJr3hAkTJri6E56iXr16ZbZ9YncdYi97bcN5ZfkzQuxlr21Xt1+WY0fR8JR9SBzuxRPi8IQYJNfHwYCnAAAAAADAo3HbCwAAAAAA8Gg+ru5AafLzzz/rs88+0+HDhzVx4kTVr18/x/ni4uI0d+5c2e12denSRT179pQkJSUlaerUqUpPT9fVV1+thx9+WD4+zu+C9PR0TZkyRcnJyQoPD9djjz2mwMBAh3l27Nih+fPnW6+PHDmiRx99VK1atdL06dOVkJCg8uXLS5JGjBihunXrFlnbknTPPfeodu3akqSwsDCNGTOmxGI/cOCAZs+erXPnzsnLy0u9e/dW27ZtJemKYs9tP16SkZGhadOm6ddff1XFihU1atQoValSRZK0ePFixcTEyMvLS/fff79atGjhdKzOtP3NN99o+fLl8vb2VqVKlfSf//xH4eHhknLfB0XZ/k8//aQPPvhAISEhkqRu3bqpS5cu1ntffvmlJKl3797q2LFjkbY9b948xcfHS5IuXLigU6dOad68eZIKH/s777yj2NhYBQUF6fXXX8/2vjFGc+fO1ZYtW+Tv76/hw4dbl+8VNm5cGVfmZVfmZGfbl4onL7siJ0vkZfIyedmTFDZ/uwtnc/GHH36o2NhYGWPUrFkz3X///bLZbC7occ6cjSMlJUUzZszQ8ePHJUljx4618qw7cDYOSTp79qwee+wxtWrVSg8++GAJ9zR3hT3GulphjtXFzsBphw4dMocPHzbjx483+/bty3GerKwsM3LkSJOYmGgyMjLMk08+aQ4dOmSMMeb11183a9asMcYYM3PmTLN06dICtf/BBx+YxYsXG2OMWbx4sfnggw/ynD8tLc0MHjzYnD9/3hhjzLRp08zPP/9coDYL2vZ9992X4/SSiP3w4cPmyJEjxhhjjh8/bv7973+b9PR0Y0zBY89rP17yww8/mJkzZxpjjFmzZo154403jDEXPydPPvmkuXDhgjl27JgZOXKkycrKKtK2t2/fbu3XpUuXWm0bk/s+KMr2V6xYYebMmZNt2bS0NDNixAiTlpbm8O+ibPty3333nZk+fbr1urCxx8fHm/3795vHH388x/c3b95sXnrpJWO3283u3bvN2LFjjTGFjxtXzpV52ZU5uSDtF0deLumcbAx5mbxMXvY0hc3f7sKZfLhr1y7z7LPPmqysLJOVlWWeeeYZs2PHjpLuap6cPaaMHz/ebN261RhjzLlz56y85y4Kcmx+//33zdSpU3PMna5U2GOsKxXmWF0SuO2lAGrVqqUaNWrkOc++fftUrVo1Va1aVT4+Pmrbtq02bdokY4zi4+N18803S5I6duyoTZs2Faj9TZs2qUOHDpKkDh065Lv8+vXr1bJlS/n7+xeonaJo+3IlFXuNGjVUvXp1SVJISIiCgoJ0+vTpArVzSW778XK//PKL9SvSzTffrB07dsgYo02bNqlt27by9fVVlSpVVK1aNe3bt69I277uuuus/XrNNdcoNTX1iuK80vZzExcXp+bNmyswMFCBgYFq3ry54uLiiq3ttWvXql27dk6vPz9NmjTJ9dcB6eI+b9++vWw2mxo2bKgzZ87oxIkThY4bV86VedmVOflK2r9cScRelDlZIi+Tl3NGXi69CpO/3Ykz+dBms+nChQvKzMxURkaGsrKyFBQUVNJdzZMzcfzxxx/KyspS8+bNJUkBAQFFdkwrKs4eG3/99VedOnVK119/fUl2zymuOMYWlcIcq0sCt70UsdTUVIWGhlqvQ0NDtXfvXqWlpal8+fLy9vaWdPFDWtATo1OnTik4OFiSFBwcnO8HfO3atbrzzjsdpn3yySf6/PPPdd111+nee++Vr69vkbadkZGhp59+Wt7e3urRo4datWrlktj37dunzMxMVa1a1ZpWkNhz24+5zePt7a3y5csrLS1Nqampuuaaa6z5ChqvM21fLiYmxuHy7Zz2QUE42/6GDRu0c+dOVa9eXYMGDVJYWFi2ZYsz9uTkZCUlJem6666zphU2dmf6FxYW5tC/1NTUQseN4lVcedmVObkg7RdHXi7pnCyRl8nLufePvOy5CvrdcwVn8mHDhg3VtGlTDR06VMYYdevWTbVq1SrprubJmTiOHDmiChUq6LXXXlNSUpKaNWume++9V15e7vN7ujNx2O12LViwQCNHjtSOHTtKuov5KopjrKsU5lhdqVKlYu8fxY+/eeGFF3Ty5Mls0/v166ebbrop3+VzqloV5H6+vNoviBMnTujgwYMO1cz+/furcuXKyszM1MyZM/XVV1+pT58+Rdr2O++8o5CQEB07dkzPP/+8ateubd3TnZ+ijP3tt9/WiBEjrGScX+x/58x+zG2ewlYuC/IZWrVqlX799Vdd/sTqnPZBtWrVirT9G2+8UZGRkfL19dWyZcs0ffp0jR8/Psf1FeTzX5DY165dq5tvvtnhgFvY2Iuyf+50H29p58q87MqcXFTtX2ledqecLJGX82ufvJx//8jLJc/V59VFpbD5MDExUYcPH9aMGTOs9SUkJKhJkyZF2s/8FDYOu92unTt3avLkyQoLC9OUKVP0008/qXPnzkXd1TwVNo5ly5apZcuWDoXTklacx1hXKsyxuiRQ/Pib5557rlDLh4aGWgMASdLx48cVHBysihUr6uzZs8rKypK3t7dSU1OtQcmcbT8oKEgnTpxQcHCwTpw4kWd17Oeff1arVq0cBq+7VEH09fVVp06d9PXXXxd525diqlq1qpo0aaIDBw6odevWJRb72bNnNWnSJPXr108NGzZ0Ova/y20/5jRPaGiosrKydPbsWQUGBmZbNrd4C9O2JG3btk2LFy/WhAkTHH4xzWkfFORE05n2K1asaP07KipKH330kdV2QkKC9V5qamqBDuzOxi5J69atyzY4VWFjd6Z/KSkp2fpX2LiRN1fmZVfm5KJq/0rzsjvlZIm8TF7OvX/kZfdVXPm7pBU2H27cuFHXXHONAgICJEktW7bU3r17S/wzWdg4QkJCdPXVV1tXGLRq1Up79uwp8eJHYePYs2ePdu7cqWXLlun8+fPKzMxUQECA7r333uLstoPiPMa6UmGO1SXB9eUhD1O/fn0dPXpUSUlJyszM1Lp16xQRESGbzaamTZtq/fr1ki6OQB4REVGgdUdERGjlypWSpJUrV+ZZMV+7dq0iIyMdpp04cUKSrPufr7rqqiJtOz09XRkZGZKk06dPa/fu3apVq1aJxZ6ZmanXXntN7du3V5s2bRzeK2jsue3Hy91444366aefJF28l79p06ay2WyKiIjQunXrlJGRoaSkJB09elQNGjRwOlZn2v7tt980e/ZsjR492uGe0dz2QUE40/6l7SldvG/vUhstWrTQ1q1blZ6ervT0dG3durVAT1Rwpm3p4mWXZ86ccUj0RRF7fiIiIrRq1SoZY7Rnzx6VL19ewcHBhY4bxau48rIrc7Kz7RdXXi7pnCyRl8nLOSMvezZnP3+u5Ew+DAsL086dO5WVlaXMzEwlJCSoZs2aJd3VPDkTR4MGDXTmzBnrNowdO3a43e07zsTxyCOP6N1339X06dM1YMAAtW/fvkQLH/kp7DHWlQpzrC4JNlNSo4t4gI0bN+r999/X6dOnVaFCBdWtW1fjxo1TamqqZs6cqbFjx0qSYmNjNX/+fNntdnXq1Em9e/eWJB07dizbYwULcn93WlqapkyZopSUFIWFhenxxx9XYGCg9u/frx9//FHDhg2TdPHxhc8995zeffddh8uf/ve//1nJqk6dOho6dKhVgS6Ktnfv3q1Zs2bJy8tLdrtd3bt3tyrBJRH7qlWr9O677zok4UuPT7yS2HPaj4sWLVL9+vUVERGhCxcuaNq0afrtt98UGBioUaNGWZXwL7/8UitWrJCXl5cGDx6sli1bOh2rM22/8MILOnjwoCpXrizpr8cH5rUPirL9jz/+WL/88ou8vb0VGBioIUOGWAfxmJgYLV68WNLFRwt26tSpSNuWpE8//VQZGRkOB6qiiH3q1KlKSEhQWlqagoKC1LdvX2VmZkqSunbtKmOM3nvvPW3dulV+fn4aPny49Wi+wsaNK+PKvOzKnOxs+8WVl12RkyXyMnmZvOxJCpu/3YUz+dBut2vOnDnauXOnpItFyUGDBrm4546cPaZt27ZNCxYskDFG9erV00MPPeT0Y9JLgrNxXPLTTz9p//79bvWo28IeY12tMMfq4kbxAwAAAAAAeDRuewEAAAAAAB6N4gcAAAAAAPBoFD8AAAAAAIBHo/gBAAAAAAA8GsUPAAAAAADg0Sh+IJtZs2bp888/t14vW7ZM//73vzVgwAClpaVp165deuSRRzRgwABt3LjRhT31fPHx8dkeyeUpPv30U7311luu7gbg9sjJ7oOcDCAv5Gv3Qb5GTtznocwoESNGjNDJkyfl7e0tLy8v1apVS+3bt1dUVJS8vC7WwoYOHWrNn5mZqfnz5+ull16ynhv96aefqlu3brrjjjtcEUKpER8fr7ffflszZsxwdVfcXlJSkkaOHKlPPvlE3t7eru4OUGLIySWHnOw8cjKQHfm65JCvnUe+LhiKH2XQmDFj1Lx5c509e1YJCQmaO3eu9u3bp+HDh2eb99SpU8rIyNBVV11lTUtOTlatWrWuqO2srCy+mJdx9+3h7v0DPAE52X24+/Zw9/4Bno587T7cfXu4e//KKoofZVj58uUVERGhypUra9y4cbrzzjtVu3ZtTZ8+XaGhoWrfvr3GjBkjSRo8eLAaNGiglJQUJSUl6ZVXXpGXl5fef/99ZWRkaP78+dqyZYtsNps6deqkvn37ysvLSz/99JOWL1+u+vXra+XKlbrtttvUr18/xcTE6Ouvv9bJkyfVoEEDDR06VOHh4ZKkvn37asiQIfrmm2+UlpamyMhIPfjgg7LZbJKk6Ohoffvttzp+/LhCQ0P18MMPq169ekpNTdX777+vnTt3KiAgQN27d3e6sn7hwgUtXLhQ69ev15kzZ1S7dm0999xz8vPz0y+//KKPP/5Yqampqlu3roYMGWIduEaMGKHbbrtNq1atUnJyslq0aKERI0bIbrdr4sSJyszM1IABAyRJb775pqKjo3Xo0CH5+vpq8+bNGjhwoNq3b6+PPvpIP//8sySpTZs2uvfee+Xr65tnn2fNmqWAgAANHDjQmjZ58mQ1adJEd955p5YsWaLvv/9e586dU3BwsIYMGaJmzZrluy1GjBihW2+9VWvWrNGRI0f0wQcf6NSpU7lu23379mnOnDk6evSo/Pz81K5dOw0aNCjHqv2IESP00EMPqXnz5g5tjh8/XtLFz5kkPffcc2rYsGG+fQU8CTn5L+Tkv5CTAfdDvv4L+fov5OtSwKBMGT58uNm6dWu26cOGDTNLly41xhgzbdo088knnxhjjDl27Ji5++67TWZmZq7reOWVV8zMmTPNuXPnzMmTJ83TTz9tli1bZowxZsWKFeaee+4x3333ncnMzDR//vmn2bBhgxk5cqQ5dOiQyczMNJ9//rkZN26ctb67777bvPzyyyY9Pd0kJyebBx54wGzZssUYY8y6devM0KFDzd69e43dbjdHjx41SUlJJisry4wePdp89tlnJiMjwyQmJpoRI0ZYy+3cudMMGjQo1+0ye/ZsM378eHP8+HGTlZVldu3aZS5cuGAOHz5s7rvvPrN161aTkZFhlixZYkaOHGkyMjKsbfH000+b48ePm7S0NDNq1ChrO+7YscM89NBDDu0sWrTI9OvXz2zYsMFkZWWZP//80yxcuNA888wz5uTJk+bUqVNm3Lhx1vbPaR2XxMfHm2HDhhm73W6MMSYtLc3079/fHD9+3Bw+fNgMGzbMHD9+3NqPR48ezTX+yw0fPtw8+eSTJjk52fz555/5bttnnnnGrFy50hhjzLlz58zu3btz7fvln51FixaZN9980+rf3z9nQFlATs4ZOfkv5GTAPZCvc0a+/gv52v0x4CkkSSEhIUpPTy/wcidPnlRcXJwGDx6sgIAABQUFqXv37lq3bp01T3BwsG6//XZ5e3vLz89P0dHR6tWrl2rVqiVvb2/16tVLBw4cUHJysrVMz549VaFCBYWFhalp06Y6cOCAJCkmJkY9evRQgwYNZLPZVK1aNYWHh2v//v06ffq0+vTpIx8fH1WtWlVdunSx+nHttddq3rx5OcZgt9u1YsUKDR48WCEhIfLy8lKjRo3k6+urdevWqWXLlmrevLl8fHz0j3/8QxcuXNDu3but5W+//XaFhIQoMDBQN954o9XX3DRs2FCtWrWSl5eX/Pz8tGbNGt11110KCgpSpUqV1KdPH61evTrfbd+4cWNJ0s6dOyVJ69evV8OGDa0YMjIy9McffygzM1NVqlRRtWrV8l3n5TGFhYXJz88v323r4+OjxMREnT59WgEBAVSbgSJATiYnX46cDLgv8jX5+nLka/fGbS+QJKWmpiowMLDAy6WkpCgrK8thgCdjjEJDQ63XYWFhDsskJydr7ty5WrBggcMyqamp1mV7lStXtt7z9/fX+fPnrfaqVq2arR/Jyck6ceKEdcmXdDEhX0pueUlLS1NGRkaOie3EiRNWnyTJy8tLYWFhSk1NtaZd3lc/Pz+H93Jy+baR5BC3JIWHh+e7Dkmy2WyKjIzU2rVr1aRJE61du1a33HKLJKlatWoaPHiwPvvsM/3xxx+6/vrrNXDgQIWEhOS7Xslxn+W3bYcNG6ZFixbpscceU5UqVdSnTx/deOONTrUDIGfkZHLy5cjJgPsiX5OvL0e+dm8UP6B9+/YpNTVV1157bYGXDQ0NlY+Pj9577z2nB/UJCwtT7969rSRTEGFhYTp27FiO06tUqXJFj32qWLGifH19lZiYaI3GfUlwcLAOHjxovTbGKCUlxakEeOn+yvyEhIQoOTnZGhDL2fVLUmRkpF588UX17NlTe/fu1ZNPPmm9165dO7Vr105nz57VrFmz9NFHH+nhhx92ar2Xy2/bVq9eXaNGjZLdbtfGjRv1xhtv6L333pO/v7/+/PNPaz673a7Tp0/nuA5ntxVQFpCTycl5IScD7oN8Tb7OC/na/XDbSxl29uxZbd68WW+++aZuueUW1a5du8DrCA4O1vXXX68FCxbo7NmzstvtSkxMVEJCQq7L3HrrrVqyZIkOHTpk9ePSQEX56dy5s77++mv9+uuvMsYoMTFRycnJatCggcqVK6clS5bowoULstvtOnjwoPbt25fvOr28vNSpUyctWLBAqampstvt2rNnjzIyMtS2bVtt2bJF27dvV2Zmpr7++mv5+vqqUaNG+a43KChIaWlpOnv2bJ7zRUZG6ssvv9Tp06d1+vRpff75504f1K6++mpVqlRJM2bM0PXXX68KFSpIko4cOaIdO3YoIyNDfn5+8vPzsx7DVlD5bdtVq1bp9OnT8vLyUvny5SVd3KY1atRQRkaGYmNjlZmZqS+++EIZGRk5tlGpUiXZbLYcD8pAWUFOvoicnDdyMuB65OuLyNd5I1+7H678KINeeeUVeXt7y2azqVatWurevbu6du16xesbOXKkPvroIz3++OM6d+6cqlatqh49euQ6f6tWrXT+/HlNnTpVKSkpKl++vJo1a6Y2bdrk21abNm2UlpamN998U6mpqapSpYpGjhyp8PBwjRkzRgsWLNCIESOUmZmpGjVq6J577pF08Z6+iRMn6oMPPshxvQMHDtTHH3+ssWPH6vz586pbt67GjRunGjVq6OGHH9b7779vjVQ9ZswY+fjk/9WpWbOmIiMjNXLkSNntdr3xxhs5zte7d2+dPXvWqjjffPPN6t27d77rvyQyMlKffvqpHnvsMWtaRkaGPvroIx0+fFje3t5q1KiRdVnl6tWrtXjx4lz783deXl55btu4uDgtWLBAf/75p8LDw/Xoo49aB4shQ4ZoxowZstvt+uc//5ntcsVL/P391bt3bz333HPKysrSM888w32PKDPIydmRk3NHTgZch3ydHfk6d+Rr92MzxhhXdwIAAAAAAKC4cNsLAAAAAADwaBQ/AAAAAACAR6P4AQAAAAAAPBrFDwAAAAAA4NEofgAAAAAAAI9G8QMAAAAAAHg0ih8AAAAAAMCjUfwAAAAAAAAejeIHAAAAAADwaBQ/AAAAAACAR6P4AQAAAAAAPBrFDwAAAAAA4NEofgAAAAAAAI9G8QMAAAAAAHg0ih8AAAAAAMCjUfwAAAAAAAAejeIHAAAAAADwaBQ/AAAAAACAR6P4AQAAAAAAPBrFDwAAAAAA4NEofgAAAAAAAI9G8QMAAAAAAHg0ih8AAAAAAMCjUfwAAAAAAAAejeIHAAAAAADwaBQ/AAAAAACAR6P4AQAAAAAAPBrFDwAAAAAA4NEofgAAAAAAAI9G8QMAAAAAAHg0ih8AAAAAAMCjUfwAAAAAAAAejeIHAAAAAADwaBQ/AAAAAACAR6P4AQAAAAAAPBrFDwAAAAAA4NEofgAAAAAAAI9G8QMAAAAAAHg0ih8AAAAAAMCjUfwAAAAAAAAejeIHAAAAAADwaBQ/AAAAAACAR6P4AQAAAAAAPBrFDwAAAAAA4NEofgAAAAAAAI9G8QMAAAAAAHg0ih8AAAAAAMCjUfwAAAAAAAAejeIHAAAAAADwaBQ/AAAAAACAR6P4AQAAAAAAPBrFDwAAAAAA4NEofgAAAAAAAI9G8QMAAAAAAHg0ih8AAAAAAMCjUfwAAAAAAAAejeIHAAAAAADwaBQ/AAAAAACAR6P4AQAAAAAAPBrFDwAAAAAA4NEofgAAAAAAAI9G8QMAAAAAAHg0ih8AAAAAAMCjUfwAAAAAAAAejeIHAAAAAADwaBQ/AAAAAACAR6P4AQAAAAAAPBrFDwAAAAAA4NEofgAAAAAAAI9G8QMAAAAAAHg0ih8AAAAAAMCjUfwAAAAAAAAejeIHAAAAAADwaBQ/AAAAAACAR6P4AQAAAAAAPBrFDwAAAAAA4NEofgAAAAAAAI9G8QMAAAAAAHg0ih8AAAAAAMCjUfwAAAAAAAAejeIHAAAAAADwaBQ/AABAniZMmKAGDRqUyHp++ukn2Ww2/fHHH4VuryjVrVtXL774oqu7UWoV1WcIQN7I1+Trwho8eLCioqJc3Y1iQfEDbsNms+X5V7duXUlSx44drWm+vr6qW7euHn74YZ08eTLH9W7evFne3t664YYbcm07Pj5eAwYMUK1ateTv7686deqoV69eWrFihZXY8/obPHhwoWKfMGGCtS5vb29VrlxZN954o0aPHq1Dhw4Vat2AOyrr3/fcTig5Ycvfe++9J19fX6WlpTlMb968ea7TBw0aVJJddJnvvvtOLVq0kL+/v+rWras33njD1V1ymbxO3m02mz788EPrdW7fO3f9j11JI1+Tr68U+Tpnq1atUo8ePVSnTh3ZbLYy/znq2LGjhgwZkm36gQMHZLPZtGbNGmva3/P3JfPmzZOPj0++bVH8gNs4evSo9ffVV19JkjZu3GhN27RpkzVv//79dfToUf3222+aMWOGvvzySw0fPjzH9c6cOVP/+c9/dODAAf3yyy/Z3l+6dKkiIiJ05MgRzZ49WwkJCfr66691880366GHHlLbtm0d+jZmzBjVqlXLYdqbb75Z6Pjr1q2ro0eP6o8//tCGDRv01FNPaeXKlWratKnWrVtX6PUD7qSsf99x5aKiopSZmamVK1da01JSUhQfH6/q1atnm75jxw516dLlitu7cOFCofqbl4yMDBljimRdv/zyi3r06KFu3bopLi5OEyZM0DPPPKMZM2YUyfqvlDFGGRkZxbb+4tw/uIh8jStFvs5Zenq6mjRposmTJ6tatWpFss6iYLfblZWVVSzrLu5jgbMofsBtVKtWzfoLCQmRJIWHh1vTwsPDrXnLlSunatWqqVatWurWrZv69eunpUuXZltnWlqaPvnkEw0dOlT9+vXTrFmzHN4/e/asBg4cqI4dO2r58uW6/fbbVb9+fTVv3lxjxozRhg0b5Ofn59C3wMBAeXt7O0wLCgoqdPyX1lm9enU1atRI/fr105o1a9S0aVMNGjRIdrtdUs6/QqxZs0Y2m00HDhyQ9Ff1Mzo6Wk2bNlVAQIBatWql2NjYQvcTKApl/fvurLS0ND300EMKDw9XQECAIiIitGzZMuv9nH4VkaQGDRpowoQJ1us5c+aocePGCggIUGhoqNq3b+/wa/bmzZvVtWtXBQYGKjw8XL1799bvv/+erT9fffWVrr32WlWoUEGdOnXS/v37Hd7/7rvvdOONN8rf319VqlTR8OHDdebMmTxjfPvtt1WrVi2VL19et912mw4ePJjn/HXq1FH9+vW1fPlya1pMTIyuu+469ejRI9t0Y4zDyfT8+fPVpEkT+fv7q1atWnr22WeVmZlpvd+xY0c9+OCDeu6551S9enXVrFkzx35ER0crKChIr7/+ujXtxx9/VGRkpMqVK6eaNWvq/vvv1/Hjx633L12N8Pbbb6tu3bry9/fXmTNntGbNGkVGRqpixYqqWLGirr/++hw/43l54403dNNNN2nSpElq3LixBg8erIcfflivvPJKrsvMmTNHtWrVsl5f+jzdd9991rS5c+eqatWq1kn/7t271b17dwUGBiowMFD/+Mc/tG/fPmv+S8efFStWqGXLlvL3988xltTUVEVGRqpDhw7WlQHHjh3T4MGDFR4erooVKyoyMlKrVq2ylrn0S/+3336rdu2z28+rAAAgAElEQVTaKSAgINv3HEWPfO0c8nV25Ouc3XHHHXr55Zd1zz33yN/f36llnn32WbVr1856vWLFCtlsNj377LPWtPHjx6tVq1bW6/Xr16t9+/YqV66cgoOD1b9/fyUlJVnvX/o/xaJFi3TttdfKz89PO3fuzNb277//rsaNG6tv3776888/JUn79u3TXXfdpcqVKys4OFhdu3bV9u3brWWcPRaUNIofKPX27dun7777Tn5+ftne++ijj3TNNdeoefPmGjx4sD755BOlp6db7y9btkxJSUkaN25cjusODg4utn47w9fXV0888YT27dtX4MKF3W7X6NGj9c4772jjxo2qUqWKunfvrrNnzxZTb4Hi58nf95w88MADWrp0qT788ENt2bJFkZGRuvPOO7Vr1y6n17F582YNGzZMY8eO1e7du/XTTz9p4MCB1vsJCQnq0KGD2rRpo19++UUxMTHy9vbWrbfeqvPnz1vzHT16VO+++64++ugjrVu3TidPntQDDzxgvb9t2zb985//VPv27RUXF6f58+frm2++0bBhw3Lt21dffaXHHntMjz/+uOLi4tS3b1899dRT+cbUpUuXbCfNnTt3VufOnbNNv/baa60T4m+//VYPPPCABgwYoO3bt+v111/X9OnT9b///c9h/Z9++qmSk5O1fPlyxcTEZGv/o48+Us+ePfXuu+/qiSeesNrq0aOH+vXrp23btmnJkiU6cOCAevXq5fBr4caNGxUTE6MlS5Zo69at8vX11T//+U+1bt1asbGxio2N1YQJE1S+fHlrmY4dO6pjx455bpO1a9eqW7duDtO6deumAwcO5HrbRpcuXXT48GHt3r1bkrR8+XKFh4c7xBwTE6NOnTrJZrPp3Llz6tq1q86fP6+VK1dq5cqVSk9PV7du3Rx+cb10/Hn99de1a9cutW7d2qHdgwcPql27dqpevbqWLVumypUr69y5c+rUqZPS0tL0/fffa8uWLbrjjjt06623ZjsZf+KJJzR69Gjt3LlTPXv2zHO7wHXI1+RriXxdVDp37qwNGzZY35OYmBiFh4fnuG0lKTExUV27dlWtWrW0ceNGff3119qxY4fuuusuh/UeOXJE77zzjubNm6eEhATVqVPH4f2tW7eqTZs2uvXWW7Vw4UL5+/vr2LFjateunapUqaLVq1dr/fr1atSokTp27Kjk5GRr2fyOBS5hADe0evVqI8n89ttv2d7r0KGD8fHxMRUqVDD+/v5GkpFk3n777WzztmzZ0kydOtV63aRJEzNz5kzr9SuvvGIkmePHjzvdtxdeeMHUqVOnQPHkZ/z48aZ+/fo5vrdz504jySxatCjXef++vebOnWskmejoaGue1NRUU6FCBTN79uwi7TtQWGXx+26z2UyFChWy/dlsNvPCCy8YY4zZu3evkWS+/fZbh+Vbtmxp7r//fmOMMb/99puRZFavXu0wT/369c348eONMcZ8+eWXplKlSubUqVM59mfQoEHmnnvucZh2/vx5U65cObN48WKrz97e3iYpKcma55NPPjE2m82cO3fOGGPMfffdZ2666SaH9SxZssTYbDZz4MABaz2X56/IyEjTv39/h2WeeOIJI8kcOnQoly1ozKJFi4zNZjPHjh0zxhhzzTXXmK+++socP37ceHt7O0wfOXKktVy7du3M3Xff7bCuqVOnmoCAAPPnn38aYy5+5q655hqTlZXlMF+dOnXMCy+8YF599VVTqVIls2zZMof3O3ToYMaMGeMw7ffffzeSzJYtW4wxF7d1UFCQSUtLs+ZJTU01ksyKFStyjXfAgAFmwIABub5vjDG+vr4On3djjNmxY4eRZDZu3JjrcnXr1jXTp083xhjTv39/89///tdUrFjRxMfHG2OMqVmzprXeOXPmmHLlypnk5GRr+cTERBMQEGDmz59vjPnr+LNq1SqHdi7t+61bt5oaNWqY4cOHO2zjuXPnmpo1a5qMjAyH5Tp16mQeffRRY4wxK1asMJLMggUL8twWxlzc1t7e3jl+zySZDz74wJq3Tp06xs/PL9t8AQEB+X4WyxryNfn6cuTr7JzJ1zn1NT/nzp0zAQEB1mesbdu25rXXXjM+Pj7m1KlT5syZM8bPz88sXbrUGGPMs88+a2rWrGltK2OMiYuLM5LMypUrjTF/fb5///13h7YGDRpkunTpYmJiYkxQUJCZOHGiw/vjx483rVu3dphmt9tNvXr1zJQpU4wxuR8LcnJ57rj8r3z58tm+M5KMv79/tnn9/f2Nt7d3vm1x5QdKpV69eikuLk4bNmzQv//9b/Xu3TvbPaUbN27U9u3b1b9/f2vaoEGDHC6tNEV0715uLl0WHBgYqNtvv/2K1nGpjzabrcDLtmnTxvp3cHCwGjdurISEhCvqB+Aqnvh9v+qqqxQXF5ftr0aNGtY8l76r7du3d1i2ffv2io+Pd7pft956q+rVq6err77aurw8JSXFen/Tpk1avHixQ/9DQ0N1/vx57d2715qvRo0aDpe316xZU8YY6xLa+Pj4bH3t0KGDjDG55p2EhAS1bdvWYdrll/Xm5tIvW8uXL9cff/yhX3/9VR06dFBISIiaN29uTd+7d6/DoJe59fH8+fMOl4TfeOON8vLKfoo0a9YsPfvss4qJidGtt97q8N6mTZs0depUh+3YpEkTSXLYjo0bN1ZgYKD1Ojg4WEOGDNFtt92m22+/XZMmTbKuxLhkwYIFWrBgQb7bJTd5HT86depk/Vq6YsUK3XbbbbrlllsUExOj3bt36/Dhw9b2jo+PV5MmTRQWFmYtX7VqVTVq1CjbZ/Kmm27K1lZycrLat2+vf/3rX5o+fbrDNt60aZMSExNVuXJlh224evVqh+0nyeGy7ry0bt06x+9ZTkaMGJFtvjlz5jjVDv5CviZf/x35umgEBASoTZs2iomJUXp6ujZt2qR+/fqpYcOGWrVqlVavXi3pr30SHx+vm2++2eHKq+uvv15BQUEOn8mqVauqdu3a2drbvn27unXrphdffFFjx451eG/Tpk3avHmzw/arWLGiDhw4kC1f53QsyMml3HH533fffZfjvC+99FK2eZ9//nmn2sl/SFTADVWqVMka92LmzJlq27atXnzxRf33v/+15pk1a5YyMzNVvXp1a5oxRna7XbGxsbrhhhvUqFEjSRcTujMJvKAuP8kqV67cFa1jx44dkqT69etLkry8vLKdFDg7gFBxn0wAxcETv+++vr45PkHAmZHKjTHWf2YvnfDllRMCAwP1yy+/aO3atYqOjtaMGTM0evRoLV++XDfeeKPsdrsGDBigp59+OltboaGh1r//fun6pT5cGo/o8ml/l9d/vq+ksBsWFqbrr79ey5cv14ULF3TDDTdY9/Z36tTJmu7t7Z3t8uO/t5dTgblChQo5ttumTRutWLFC7733nm644QaHZex2u8aMGaMBAwZkW+7yAe1yWvfs2bP16KOPatmyZfrxxx/13HPPadq0aXrooYfy2RJ/qV69uhITEx2mHTt2LFv7f9e5c2c9+uijio+PV1pamlq1amVdju7t7a2rrrrK4bOa0/66/DMpXRzDKiAgINt8lStXVvPmzfXVV19p1KhRDuON2O12NW7cWIsXL8623OWXlEu575+/K1eunNOP/AwJCck2b1l/ysuVIF87Il+Tr4tS586d9cUXX6hLly6qV6+eatasaeVrPz8/tW7d2iFfOrOPc9t+tWvXVt26dfXhhx9qwIABDuPn2O12denSRdOmTcu23OXz5XYsyMnlueOS3L5jVatWzTZvlSpVnGqHKz9Q6tlsNv3vf//Tyy+/bJ2onD59WgsXLtT06dMdqoJbt25Vp06drF8XunbtqipVquill17Kcd0nTpwoVN8aNGhg/eU2CFNeMjIy9MYbb6hhw4Zq0aKFpItf7qSkJIfRmHMbD2T9+vXWv0+ePKldu3apcePGBe4H4C48+fv+d02bNpUkhwEfJWn16tXWe5d+2Tty5Ij1flJSkg4fPuywjLe3t9q3b6/nn39emzdvVvXq1fXxxx9LkiIiIrRt2zbVr1/fIYYGDRoU6L76pk2bOozcL0krV66UzWazflH7uyZNmmjt2rUO0/7+OjeX7iO//B5n6a+T6ZiYGEVERDiciOXUx1WrVqlcuXKqV69evm02a9ZMK1as0JdffqmhQ4c6/CcmIiJC8fHx2bZhgwYNHH45zM11112nxx9/XN9//70efPDBAg/kGRkZmW0wuR9++EF16tRxKDL8XZcuXZSamqopU6aoffv28vHxUefOnbVy5UpFR0c7bNumTZsqPj7e4ZfoY8eOac+ePdZnMi++vr768ssv1axZM3Xo0MFhkMaIiAj9+uuv1gnw5X+X/8KO0oN8Tb6+hHxdNDp37qytW7fqs88+swaG7dy5s2JiYrJt26ZNm+rnn392GI9p69atOnXqlFP5OigoSD/++KO8vb0VFRXl8J27tP1q1qyZbftdfsWRO6L4AY/QtWtXNWrUyBoE6cMPP5TNZtP999+v6667zuHvvvvu08cff6wzZ86ofPnymjdvnlasWKGoqCh9//33+vXXX7V9+3a99tpruvnmm0sshqysLCUmJioxMVG7d+/WwoUL1a5dOyUkJGj+/PnWLwadOnXS2bNn9dxzz2n//v367LPPNH369Gzrs9lsGj16tFatWqXt27dr4MCBqlChgsNlpkBp5Anfd2fUr19fd999t4YPH66lS5dq165devTRR7Vjxw5rkLly5copMjJSkydP1tatW7V582YNHDjQYfT4r776SlOmTNHmzZt18OBBLVmyRIcOHbJOcJ955hnt3LlT9913nzZu3KjffvtNK1as0KOPPqpff/3V6f4+9dRTio2N1eOPP65du3bphx9+0MMPP6x77703x0tqpYsDVy5atEhvvvmm9u7dq7lz5+qDDz5wqr0uXbrowIEDWrx4scMJX/v27XXo0CEtXrw42yMTx44dqy+++EKTJk3Snj179Omnn2rChAl64oknchyUMSeXTsi/++473X///dYvqc8//7w1IGBcXJz279+vH374QQ8++KDOnTuX6/r27dunMWPGaM2aNfr999/1888/a/Xq1Q7/ARk4cKDDoIc5eeyxx7Rx40aNGzdOu3bt0oIFC/T222/n+Avx5S49YWz+/PnWdmzRooW8vLz0//7f/3PYtv3791d4eLjuuecexcbGavPmzerXr59q1qype+65J99tJ10sgHz66aeKiIhQhw4drM/Yvffeq6uvvlrdu3fXsmXLdODAAW3YsEEvv/yylixZ4tS64X7I1+RriXz9d+np6Vbh78KFC0pMTFRcXJzDk7Ny0qpVK1WoUEEffPCBtR07duyo+Ph4xcbGOmzbkSNH6vTp0xo8eLB27NihNWvWaMCAAWrXrp1uueWWfLeddPFqjKVLl6p8+fLq3Lmz9TSckSNHKisrSz179tTq1at14MABrVmzRuPGjdO6deucWrerUPyAx3jqqac0d+5c7d69W7NmzdKdd96Z46WMvXr10vnz5/XJJ59Ikm6//XZt2rRJVatW1YMPPqhrr71W3bt317p16zR79uwS6/+BAwdUvXp11ahRQ61atdLkyZPVoUMH6569Sxo1aqTZs2dr4cKFuu666/T+++9r4sSJ2dbn5eWliRMn6qGHHlJERISOHj2qb7/91unLhQF3Vtq/786aM2eObrvtNt133326/vrrtXbtWn3zzTe69tprrXnef/99BQYGqm3bturXr5+GDh3qcDl5cHCwvv76a3Xr1k0NGzbU/2fv/sObqu/+j7/SpFBLf9A0CBZthUI3qpbyayBDYCUiF3orIleHDjb15ssqqKtOfk2lToXVlgoy2unEOcXdgiKg9+YUKwPcnBMoxQJOpCp1w4JtCm0RLE3y/QPJTZeCDU1y0vT5uK5da07OSV6ftLw9ffd8zmfu3Ll64IEHPHf+HzBggN599101NjbqmmuuUXp6uv7f//t/On78uLp3797mrBkZGXrttde0ZcsWDRw4UNOnT9e1116rJ5988qzH3HjjjSoqKlJBQYEyMjL0hz/84ZxLs55p9OjRioyM1IkTJ1pcFh8XF6chQ4aooaGhxfxx6dTygr/73e/03HPP6fLLL9c999yjWbNmKS8vr83jlE7V4S1btmjTpk2aPn26nE6n594ZFRUVuuqqq5SRkaF77rlHsbGxioyMPOtrdevWTR9//LFn7vZNN92kkSNHtricuKqq6luXlBw2bJg2bNigP/7xjxo4cKAefPBBLVq06JyrN5w2btw4NTc3e06cTSaTxowZ02KbdOqXt40bN6pr164aPXq0xowZo27duumNN95o8y8j0qlLmf/nf/5Ho0aN0pgxY/Txxx8rKipKW7Zs0dChQ3XbbbcpLS1NkydP1vvvv++1+gA6Fuo19Zp63dL27ds1aNAgDRo0SF988YWKi4s1aNAgzZgx45zHWSwWjR49Wk6n0zNFKCEhQQMHDlTXrl1b/L7Qs2dPbdy4Uf/61780bNgwXXfddbr88sv1yiuvtOFT+z8xMTH685//rMTERP3gBz/Q4cOH1bNnT/3973+XzWbT5MmT9Z3vfEc/+tGPdODAgRY/z6HI5OYmAEDY+f3vf68ZM2a0WAsdAAAAADorrvwAAAAAAABhjeYHAAAAAAAIa0x7AQAAAAAAYY0rPwAAAAAAQFij+QEAAAAAAMIazQ8AAAAAABDWLEYHCEUHDx40OoKHzWZTTU2N0TH8hvGEvnAbU6iNJykpyegIHZKvdTnUvu/n0lGyktO/yOlf55uTmuxf53MOHe4/Y8HWUXJKHScrOf3LyHrNlR8AAAAAACCs0fwAAAAAAABhjeYHAAAAAAAIazQ/AAAAAABAWKP5AQAAAAAAwhqrvQAAAARJVZVZBQWxcjgsslq7a+7cBiUnO42OhTBUU1Oj4uJiHTlyRCaTSXa7XRMnTlRjY6OWLl2qL7/8Uj169NA999yjmJgYr+M3b96sdevWSZImT56ssWPHBnkEgLGo1+GH5gcAAEAQVFWZNXWqVQcORH6zJVplZZFavdrBCTX8zmw2a/r06erbt6+OHz+u+fPnKyMjQ5s3b9YVV1yhSZMmacOGDdqwYYOmTZvW4tjGxkatXbtW+fn5kqT58+dr6NChrTZJgHBEvQ5PTHsBAAAIgoKC2DNOpE85cCBSBQWxBiVCOEtISFDfvn0lSRdccIF69+4th8Ohbdu2acyYMZKkMWPGaNu2bV7HlpeXKyMjQzExMYqJiVFGRobKy8uDmh8wEvU6PHHlBwAAQBBUV5tb3X7oUOvbAX85fPiwPv30U/Xr109Hjx5VQkKCpFMNkvr6eq/9HQ6HEhMTPY+tVqscDofXfqWlpSotLZUk5efny2az+ZzNYrGc13HBRk7/C+WsDkfrvyY7HFEhmzmUP88zGZmT5gcAAEAQ9OrV+qXSPXtyCTUC58SJEyoqKtKtt96q6Ojo834dk8nktc1ut8tut3se19TU+Py6NpvtvI4LNnL6XyhntVq7S/L+92K1nlBNzZHgB2qDUP48z3S+OZOSktr93kx7AQAACIK5cxuUknKyxbaUlJOaO7fBoEQId83NzSoqKtJVV12l4cOHS5Li4+NVV1cnSaqrq1NcXJzXcVarVbW1tZ7HDofDc7UI0BlQr8MTzQ8AAIAgSE52avVqh2688SuNGePSjTd+xc3zEDBut1tPPvmkevfureuuu86zfejQodqyZYskacuWLRo2bJjXsZmZmdq1a5caGxvV2NioXbt2KTMzM2jZAaNRr8MT014AAACCJDnZqRUrjnxz2W9oXjqN8PDRRx9p69atSk5O1pw5cyRJN998syZNmqSlS5dq06ZNstlsuvfeeyVJlZWVeuutt5STk6OYmBjddNNNWrBggSRpypQprPSCTod6HX5ofgAAAABh5rvf/a5eeumlVp9buHCh17bU1FSlpqZ6HmdlZSkrKytg+QAg2Jj2AgAAAAAAwhrNDwAAAAAAENZofgAAAAAAgLBG8wMAAAAAAIQ1mh8AAAAAACCs0fwAAAAAAABhjaVuAQB+V1JSorKyMsXHx6uoqMiz/c9//rPeeOMNmc1mDR48WNOmTTMwJQAAADoLmh8AAL8bO3asJkyYoOLiYs+23bt3a/v27VqyZIkiIyN19OhRAxMCAACgM2HaCwDA79LT0xUTE9Ni28aNG3XDDTcoMjJSkhQfH29ENAAAAHRCXPkBAAiKL774Qv/85z+1evVqRUZGavr06erXr1+r+5aWlqq0tFSSlJ+fL5vN5tN7WSwWn48xSkfJSk7/Iqd/dZScAADj0PwAAASFy+VSY2OjFi1apMrKSi1dulQrVqyQyWTy2tdut8tut3se19TU+PReNpvN52OM0lGyktO/yOlf55szKSkpAGkAAKGIaS8AgKCwWq0aPny4TCaT+vXrp4iICDU0NBgdCwAAAJ0AzQ8AQFAMGzZMu3fvliQdPHhQzc3Nio2NNTgVAAAAOgOmvQAA/G7ZsmXau3evGhoalJOTo+zsbGVlZamkpEQ///nPZbFYNHv27FanvAAAAAD+RvMDAOB3ubm5rW6/++67g5wEAAAACHLzo6mpSXl5eWpubpbT6dSIESOUnZ2t5cuXq7KyUhaLRampqZo5c6YsFu9omzdv1rp16yRJkydP1tixYyVJL774orZu3arGxkatWrXKs//Jkye1YsUKffLJJ4qNjVVubq4uvPDCoIwVAAAAAACEhqDe8yMyMlJ5eXkqLCxUQUGBysvLtW/fPo0aNUrLli3TkiVL1NTUpE2bNnkd29jYqLVr12rx4sVavHix1q5dq8bGRknSkCFDtHjxYq9jNm3apG7duunXv/61rr32Wv3hD38I+BgBAAAAAEBoCWrzw2QyKSoqSpLkdDrldDplMpk0ePBgmUwmzwoAtbW1XseWl5crIyNDMTExiomJUUZGhsrLyyVJaWlpSkhI8Dpm+/btnqtDRowYod27d8vtdgdugAAAAAAAIOQE/Z4fLpdL8+bNU3V1ta655hr179/f81xzc7Peeecd3XrrrV7HORwOJSYmeh5brVY5HI5zvteZx5jNZkVHR6uhoUFxcXH+GQwAAAAQgkpKSlRWVqb4+HgVFRVJkpYuXaqDBw9Kkr766itFR0ersLDQ69jZs2crKipKERERMpvNys/PD2p2AAiEoDc/IiIiVFhYqGPHjmnJkiWqqqpScnKyJGnlypUaMGCABgwY0KbX+rZVAlq7yqO1Y0pLS1VaWipJys/Pl81ma9P7B4PFYgmpPO3FeEJfuI0p3MYDAEBbjB07VhMmTFBxcbFn2z333OP5+vnnn1d0dPRZj8/Ly+MPhgDCimGrvXTr1k3p6ekqLy9XcnKyXn75ZdXX12vmzJmt7m+1WrV3717PY4fDofT09HO+R2Jiompra5WYmCin06mvvvpKMTExXvvZ7XbZ7XbP45qamvMclf/ZbLaQytNejCf0hduYQm08SUlJRkcAAHQC6enpOnz4cKvPud1u/f3vf9fChQuDnAoAjBPUe37U19fr2LFjkk6t/FJRUaHevXvr7bff1q5du5Sbm6uIiNYjZWZmateuXWpsbFRjY6N27dqlzMzMc77fkCFDtHnzZknSe++9p8suu+xbrxYBAAAAwtmHH36o+Ph4XXTRRWfdZ9GiRZo3b57n6mgA6OiCeuVHXV2diouL5XK55Ha7deWVV2rIkCGaOnWqevToofvvv1+SNHz4cE2ZMkWVlZV66623lJOTo5iYGN10001asGCBJGnKlCmeqzheeOEF/fWvf1VTU5NycnKUlZWl7OxsZWVlacWKFbrrrrsUExOj3NzcYA4XAAAACDl/+9vf9P3vf/+szz/yyCOyWq06evSoHn30USUlJbV6xbU/po53lOmp5PS/jpKVnP5lZM6gNj9SUlJUUFDgtX316tWt7p+amqrU1FTP46ysLGVlZXntN23aNE2bNs1re5cuXXTvvfe2IzEAAAAQPpxOp95///1z3sTUarVKkuLj4zVs2DDt37+/1eaHP6aOh9r01LMhp/91lKzk9K/zzemPqeNBnfYCAAAAwDgVFRVKSkpqsYrimU6cOKHjx497vv7ggw88ixMAQEdm2A1PAQAAAATGsmXLtHfvXjU0NCgnJ8czJby1KS8Oh0NPPfWUFixYoKNHj2rJkiWSTl0lMmrUqG+9zx4AdAQ0PwAAAIAwc7Z73c2ePdtrm9Vq9dxXr2fPniosLAxoNgAwAtNeAAAAAABAWKP5AQAAAAAAwhrNDwAAAAAAENZofgAAAAAAgLBG8wMAAAAAAIQ1mh8AAAAAACCs0fwAAAAAAABhjeYHAAAAAAAIazQ/AAAAAABAWKP5AQDwu5KSEs2YMUM///nPvZ577bXXlJ2drfr6egOSAQAAoDOi+QEA8LuxY8fqF7/4hdf2mpoaVVRUyGazGZAKAAAAnRXNDwCA36WnpysmJsZr+3PPPacf/ehHMplMBqQCAABAZ2UxOgAAoHPYvn27rFarLr300m/dt7S0VKWlpZKk/Px8n68UsVgsHebqko6SlZz+RU7/6ig5AQDGofkBAAi4r7/+WuvWrdMDDzzQpv3tdrvsdrvncU1NjU/vZ7PZfD7GKB0lKzn9i5z+db45k5KSApAGABCKmPYCAAi4Q4cO6fDhw5ozZ45mz56t2tpazZs3T0eOHDE6GgAAADoBrvwAAARccnKyVq5c6Xk8e/Zs/epXv1JcXJyBqQAAANBZ0PwAAPjdsmXLtHfvXjU0NCgnJ0fZ2dnKysoyOhYAAAA6KZofAAC/y83NPefzxcXFQUoCAAAAcM8PAAAAAAAQ5rjyAwAAAAgzJSUlKisrU3x8vIqKiiRJL730kt5++23P/ZZuvvlmDR482OvY8vJyPfvss3K5XBo3bpwmTZoU1OwAEAg0PxVrUk0AACAASURBVAAAAIAwM3bsWE2YMMFrmuG1116r66+//qzHuVwuPfPMM3rggQeUmJioBQsWaOjQobr44osDHRkAAoppLwAAAECYSU9PV0xMjM/H7d+/X7169VLPnj1lsVg0cuRIbdu2LQAJASC4uPIDAAAA6CTefPNNbd26VX379tWPf/xjrwaJw+FQYmKi53FiYqI+/vjjVl+rtLRUpaWlkqT8/HzZbDaf81gslvM6LtjI6X8dJSs5/cvInDQ/AAAAgE5g/PjxmjJliiRpzZo1ev755zVr1qwW+7jdbq/jTCZTq69nt9tlt9s9j2tqanzOZLPZzuu4YCOn/3WUrOT0r/PNmZSU1O73ZtoLAAAA0Al0795dERERioiI0Lhx41RZWem1T2Jiompraz2Pa2trlZCQEMyYABAQND8AAACATqCurs7z9fvvv69LLrnEa5/U1FR98cUXOnz4sJqbm/Xuu+9q6NChwYwJAAHBtBcAAAAgzCxbtkx79+5VQ0ODcnJylJ2drT179uizzz6TyWRSjx49NHPmTEmn7vPx1FNPacGCBTKbzbr99tu1aNEiuVwu/eAHP2i1SQIAHQ3NDwAAACDM5Obmem3LyspqdV+r1aoFCxZ4Hg8ePFiDBw8OWDYAMEJQmx9NTU3Ky8tTc3OznE6nRowYoezsbC1fvlyVlZWyWCxKTU3VzJkzZbF4R9u8ebPWrVsnSZo8ebLGjh0rSfrkk09UXFyspqYmDRo0SLfddptMJpNeeuklvf3224qLi5Mk3XzzzRRyAAAAAAA6maA2PyIjI5WXl6eoqCg1Nzdr4cKFyszM1KhRo3TXXXdJkp544glt2rRJ48ePb3FsY2Oj1q5dq/z8fEnS/PnzNXToUMXExOjpp5/WT3/6U/Xv31+/+tWvVF5erkGDBkmSrr32Wl1//fXBHCYAAAAAAAghQb3hqclkUlRUlCTJ6XTK6XTKZDJp8ODBMplMMplM6tevX4s7TJ9WXl6ujIwMxcTEKCYmRhkZGSovL1ddXZ2OHz+utLQ0mUwmjR49Wtu2bQvmsAAAAAAAQAgL+j0/XC6X5s2bp+rqal1zzTXq37+/57nm5ma98847uvXWW72OczgcSkxM9Dy2Wq1yOBxe2xMTE+VwODyP33zzTW3dulV9+/bVj3/8Y8XExARmYAAAAAAAICQFvfkRERGhwsJCHTt2TEuWLFFVVZWSk5MlSStXrtSAAQM0YMCANr2WyWSS2+0+6/Pjx4/XlClTJElr1qzR888/r1mzZnntV1paqtLSUklSfn6+bDabr8MKGIvFElJ52ovxhL5wG1O4jQcAAACA7wxb7aVbt25KT09XeXm5kpOT9fLLL6u+vt6z5NZ/slqt2rt3r+exw+FQenq6EhMTW0yTqa2tldVqlSR1797ds33cuHF67LHHWn1tu90uu93ueVxTU9OusfmTzWYLqTztxXhCX7iNKdTGk5SUZHQEAAAAoNMJ6j0/6uvrdezYMUmnVn6pqKhQ79699fbbb2vXrl3Kzc1VRETrkTIzM7Vr1y41NjaqsbFRu3btUmZmphISEnTBBRdo3759crvd2rp1q4YOHSpJqqur8xz//vvvs0Y5AAAAAACdUFCv/Kirq1NxcbFcLpfcbreuvPJKDRkyRFOnTlWPHj10//33S5KGDx+uKVOmqLKyUm+99ZZycnIUExOjm266ybMG+ZQpUzz375gxY4ZKSkrU1NSkzMxMz0ovL7zwgj777DOZTCb16NHjrFeVAAAAAACA8BXU5kdKSooKCgq8tq9evbrV/VNTU5Wamup5nJWVpaysrFb3Kyoq8tp+evlcAAAAAADQeQV12gsAAAAAAECwGXbDUwBA+CopKVFZWZni4+M9V+atWrVKO3bskMViUc+ePTVr1ix169bN4KQAAADoDLjyAwDgd2PHjtUvfvGLFtsyMjJUVFSkJUuW6KKLLtL69esNSgcAAIDOhuYHAMDv0tPTPTelPm3gwIEym82SpLS0NDkcDiOiAQAAoBOi+QEACLpNmzYpMzPT6BgAAADoJLjnBwAgqNatWyez2ayrrrrqrPuUlpaqtLRUkpSfny+bzebTe1gsFp+PMUpHyUpO/yKnf3WUnAAA49D8AAAEzebNm7Vjxw4tXLhQJpPprPvZ7XbZ7XbP45qaGp/ex2az+XyMUTpKVnL6Fzn963xzJiUlBSANACAU+Tzt5fXXX1d9fX0gsgAAQoi/6315ebleffVVzZs3T127dvXb6wJAuOK8GwD8x+crPyoqKvTiiy/qsssu0+jRozVs2DBFRkYGIhsAwEDtqffLli3T3r171dDQoJycHGVnZ2v9+vVqbm7WI488Iknq37+/Zs6cGcghAECHxnk3APiPz82PefPmqaGhQX/729/0pz/9SU8//bSGDx+u0aNHKz09PRAZAQAGaE+9z83N9dqWlZUVqKgAEJbaU4dLSkpUVlam+Ph4FRUVSZJWrVqlHTt2yGKxqGfPnpo1a5a6devmdezs2bMVFRWliIgImc1m5efnB2R8ABBM53XPj9jYWE2YMEETJkzQgQMHtGLFCv3lL3+RzWbTuHHjNHHiREVFRfk7KwAgyKj3AGCs863DY8eO1YQJE1RcXOzZlpGRoVtuuUVms1kvvPCC1q9fr2nTprX6vnl5eYqLiwvYuAAg2M77hqcVFRV65513tG3bNqWmpurOO++UzWbT66+/rsWLF+vhhx/2Z04AgEGo9wBgrPOpw+np6Tp8+HCLbQMHDvR8nZaWpvfeey/g2QEgVPjc/Hj++ef17rvvKjo6WqNHj1ZRUZGsVqvn+f79++u2227za0gAQPBR7wHAWIGsw5s2bdLIkSPP+vyiRYskSVdffXWL1bcAoKPyuflx8uRJ3XffferXr1/rL2ixMC8QAMIA9R4AjBWoOrxu3TqZzWZdddVVrT7/yCOPyGq16ujRo3r00UeVlJTU6j1GSktLVVpaKknKz8+XzWbzOYvFYjmv44KNnP7XUbKS07+MzOlz8+PGG29Uly5dWmxrbGxUU1OTpxPdu3dv/6QDABiGeg8AxgpEHd68ebN27NihhQsXymQytbrP6deOj4/XsGHDtH///labH3a7vcVVITU1NT5lkSSbzXZexwUbOf2vo2Qlp3+db86kpKR2v3eErwcUFhbK4XC02OZwOLRkyZJ2hwEAhA7qPQAYy991uLy8XK+++qrmzZunrl27trrPiRMndPz4cc/XH3zwgZKTk8/r/QAglPh85cfBgwe9CmBycrL+/e9/+y0UAMB41HsAMFZ76vCyZcu0d+9eNTQ0KCcnR9nZ2Vq/fr2am5v1yCOPSDp1z5CZM2fK4XDoqaee0oIFC3T06FFPc8XpdGrUqFHKzMz0/+AAIMh8bn7ExcWpurpavXr18myrrq5WbGysX4MBAIxFvYckVVWZVVAQK4fDIqu1u+bObVBystPoWECn0J46nJub67UtKyur1X2tVqsWLFggSerZs6cKCwvPMzEAhC6fmx8/+MEPVFRUpKlTp6pnz56qrq7WmjVrzlpMAQAdE/UeVVVmTZ1q1YEDkd9siVZZWaRWr3bQAAGCgDoMAP7jc/Nj0qRJslgsWrVqlWpra5WYmKisrCxdd911gcgHADAI9R4FBbFnND5OOXAgUgUFsVqx4ohBqYDOgzoMAP7jc/MjIiJC119/va6//vpA5AEAhAjqPaqrza1uP3So9e0A/Is6DAD+43PzQzp186XPPvtMJ06caLGdS/AAILxQ7zu3Xr1an9rSsydTXoBgoQ4DgH/43PxYt26dXnnlFaWkpHgtkUURBoDwQb3H3LkNKiuLbDH1JSXlpObObTAwFdB5UIcBwH98bn68/vrrWrx4sVJSUgKRBwAQIqj3SE52avVqxzervUTJaj3Bai9AEFGHAcB/fG5+dOnSRb179w5EFgBACKHeQzrVAFmx4ohsNptqarjJKRBM1GEA8J8IXw/44Q9/qN/97neqq6uTy+Vq8T8AQPig3gOAsajDAOA/Pl/5UVJSIkl6++23vZ5bs2ZN+xMBAEIC9R4AjEUdBgD/8bn5sWLFikDkAACEGOo9ABiLOgwA/uNz86NHjx6SJJfLpaNHjyohIcHvoQAAxqPeA4CxqMMA4D8+Nz+OHTumlStX6r333pPFYtGqVau0fft27d+/X1OnTg1ERgCAAaj3AGAs6jAA+I/PNzx9+umnFR0drZKSElksp3onaWlpevfdd/0eDgBgHOo9ABiLOgwA/uPzlR8VFRV66qmnPAVYkuLi4nT06NFvPbapqUl5eXlqbm6W0+nUiBEjlJ2dreXLl6uyslIWi0WpqamaOXNmi9c/bfPmzVq3bp0kafLkyRo7dqwk6ZNPPlFxcbGampo0aNAg3XbbbTKZTGpsbNTSpUv15ZdfqkePHrrnnnsUExPj65ABoFNqT70vKSlRWVmZ4uPjVVRUJEnUZADwUXvqMACgJZ+v/IiOjlZDQ0OLbTU1NW2agxgZGam8vDwVFhaqoKBA5eXl2rdvn0aNGqVly5ZpyZIlampq0qZNm7yObWxs1Nq1a7V48WItXrxYa9euVWNjo6RTXfGf/vSnWr58uaqrq1VeXi5J2rBhg6644gotX75cV1xxhTZs2ODrcIFWVVWZdeed3TV+vEV33tldVVVmoyMBfteeej927Fj94he/aLGNmgwAvmlPHQYAtORz82PcuHEqKirS7t275Xa7tW/fPhUXF+vqq6/+1mNNJpOioqIkSU6nU06nUyaTSYMHD5bJZJLJZFK/fv1UW1vrdWx5ebkyMjIUExOjmJgYZWRkqLy8XHV1dTp+/LjS0tJkMpk0evRobdu2TZK0bds2jRkzRpI0ZswYz3agPaqqzJo61ar166O1ZUuE1q+P1tSpVhogCDvtqffp6eleV3VQkwHAN+2pwwCAlnye9nLDDTcoMjJSzzzzjJxOp37zm9/Ibrdr4sSJbTre5XJp3rx5qq6u1jXXXKP+/ft7nmtubtY777yjW2+91es4h8OhxMREz2Or1SqHw+G1PTExUQ6HQ5Ja3BU7ISFB9fX1vg4X8FJQEKsDByJbbDtwIFIFBbFaseKIQakA/2tvvf9P1GQA8I2/6zAAdGY+Nz9MJpOuvfZaXXvttef1hhERESosLNSxY8e0ZMkSVVVVKTk5WZK0cuVKDRgwQAMGDGhzFrfbfV45zlRaWqrS0lJJUn5+vmw2W7tf018sFktI5WmvcBiPw9H6PxuHI6rDj00Kj+/RmcJtPMHU3nrfHu2tyx3p+95RspLTv8jpXx0lp6+MrMMAEG58bn7s3r37rM9dfvnlbX6dbt26KT09XeXl5UpOTtbLL7+s+vp6zZw5s9X9rVar9u7d63nscDiUnp6uxMTEFtNkamtrZbVaJUnx8fGqq6tTQkKC6urqFBcX1+pr2+122e12z+Oampo2jyPQbDZbSOVpr3AYj9XaXVJ0K9tPqKam41/5EQ7fozOF2niSkpKMjtBm/qr3p7W1Jkvtr8uh9n0/l46SlZz+RU7/Ot+coV6T/V2HAaAz87n58Zvf/KbF4/r6ejU3NysxMVErVqw457H19fUym83q1q2bmpqaVFFRoRtuuEFvv/22du3apYULFyoiovXbkGRmZurFF1/03OR0165duuWWWxQTE6MLLrhA+/btU//+/bV161ZNmDBBkjR06FBt2bJFkyZN0pYtWzRs2DBfhwt4mTu3QWVlkS2mvqSknNTcuQ3nOAroeNpT71tDTQYA37SnDrdn1a2zrbCI0FVVZVZBQawcDous1u6aO7dByclOo2MBIcXn5kdxcXGLxy6XS6+88oouuOCCbz22rq5OxcXFcrlccrvduvLKKzVkyBBNnTpVPXr00P333y9JGj58uKZMmaLKykq99dZbysnJUUxMjG666SYtWLBAkjRlyhRPsZ4xY4ZKSkrU1NSkzMxMDRo0SJI0adIkLV26VJs2bZLNZtO9997r63ABL8nJTq1e7fjmPzBRslpP8B8YhKX21Ptly5Zp7969amhoUE5OjrKzs6nJAOCj9tThsWPHasKECS1e4/SqW5MmTdKGDRu0YcMGTZs2rcVxp1dYzM/PlyTNnz9fQ4cOZWnyEHb6Zvz/94e5aJWVRWr1agfnp8AZTG4/3DTD6XQqJydHTz/9tD8yGe7gwYNGR/DoKJebthXjCX3hNqZQG0+oX2L9bYyq977W5VD7vp9LR8lKTv8ip3+F67SX1vhShw8fPqzHHnvMc+XHz372Mz300EOe6YcPPfSQnnjiiRbH/PWvf9XevXs9U9F/+9vfKj09XaNGjfrW9zufc+hw/xkLhjvv7K71672nZN9441chfTP+UP5Mz0RO/zKyXvt85UdrPvjgg7NOVwEAhA/qPQAYqz11uC2rbp1thcXW+GPRgI5ys9pQztlRb8Yfyp/pmcjpX0bm9Ln5cccdd7R43NTUpKamJs2YMcNvoQAAxqPeA4CxQqUOm0ymVrf7Y9GAcP9rdTB01Jvxh/JneiZy+leHuvLjrrvuavG4a9euuuiiixQd7f0PDgDQcVHvAcBY/q7DbVl162wrLCJ0cTN+oG18bn5Q/ACgc6DeA4Cx/F2H27Lq1tlWWETo4mb8QNv43Pz49a9/fdZL38505513nlcgAEBooN4DgLHaU4d9WXWrrSssInQlJzu1YsWRb6YUhO5UF8BIPjc/unXrpi1btmjIkCGe+To7duzQmDFjFBsbG4iMAAADUO8BwFjtqcO5ubmtbl+4cKHXttTUVKWmpnoeZ2VlKSsrq33hASDE+Nz8+OKLLzR//nwNGDDAs+2f//ynXnnlFd1+++1+DQcAMA71HgCMRR0GAP/xeZ2sffv2qX///i229evXT/v27fNbKACA8aj3AGAs6jAA+I/PzY8+ffroxRdfVFNTk6RTS26tXr1al156qb+zAQAMRL0HAGNRhwHAf3ye9jJr1iwtX75cP/nJTxQTE6PGxkalpqbq7rvvDkQ+AIBBqPcAYCzqMAD4j8/NjwsvvFCPPvqoampqPOuE22y2QGQDABiIeg8AxqIOA4D/+DztRZIaGhq0d+9e7d27VzabTQ6HQ7W1tf7OBgAwGPUeAIxFHQYA//C5+bF3717l5ubqnXfe0SuvvCJJqq6u1tNPP+33cAAA41DvAcBY1GEA8B+fmx+///3vlZubq/vvv19ms1nSqbtOV1ZW+j0cAMA41HsAMBZ1GAD8x+fmx5dffqkrrriixTaLxSKn0+m3UAAA41HvAcBY1GEA8B+fmx8XX3yxysvLW2yrqKhQcnKy30IBAIxHvQcAY1GHAcB/fF7tZfr06Xrsscc0aNAgNTU16be//a127NihOXPmBCIfAMAg1HsAMBZ1GAD8x+fmR1pamgoLC/XOO+8oKipKNptNixcvVmJiYiDyAQAMQr0HAGNRhwHAf3xqfrhcLj388MO6//77dcMNNwQqEwDAYNR7ADAWdRgA/Mune35ERETo8OHDcrvdgcoDAAgB1HsAMBZ1GAD8y+cbnk6ZMkVPP/20vvzyS7lcrhb/AwCED+o9ABiLOgwA/uPzPT+eeuopSdLWrVu9nluzZk37EwEAQkKg6v0f//hHbdq0SSaTSZdccolmzZqlLl26nPfrAUC44rwbAPynzc2PI0eOqHv37lqxYkUg8wAADBbIeu9wOPTnP/9ZS5cuVZcuXfT444/r3Xff1dixY/3+XgDQUXHeDQD+1+ZpLz/72c8kST169FCPHj303HPPeb4+/T8AQMcX6HrvcrnU1NQkp9OppqYmJSQk+CM2AIQNzrsBwP/afOXHf95sac+ePX4PAwAwXiDrvdVq1X/913/pjjvuUJcuXTRw4EANHDjQb68PAOEgkHX44MGDWrp0qefx4cOHlZ2drWuvvbbF+xUUFOjCCy+UJA0fPlxTpkzxWwYAMEKbmx8mkymQOQAAISKQ9b6xsVHbtm1TcXGxoqOj9fjjj2vr1q0aPXp0i/1KS0tVWloqScrPz5fNZvPpfSwWi8/HGKWjZCWnf5HTvzpKzrYKZB1OSkpSYWGhpFNX4v30pz/V9773Pa/9BgwYoPnz5wcsBwAEW5ubH06nU7t37/Y8drlcLR5L0uWXX+6/ZAAAQwSy3ldUVOjCCy9UXFycpFN/Tdy3b59X88Nut8tut3se19TU+PQ+NpvN52OM0lGyktO/yOlf55szKSkpAGnaL1jn3RUVFerVqxfTaAB0Cm1ufsTHx+s3v/mN53FMTEyLxyaTiZsyAUAYCGS9t9ls+vjjj/X111+rS5cuqqioUGpqarszA0A4CdZ599/+9jd9//vfb/W5ffv2ac6cOUpISND06dN1ySWXtPv9AMBIbW5+FBcXBzIHACBEBLLe9+/fXyNGjNC8efNkNpt16aWXtrjCAwAQnPPu5uZm7dixQ7fccovXc3369FFJSYmioqJUVlamwsJCLV++3Gu/9k5RlDrOlCVy+l9HyUpO/zIyZ5ubHwAA+EN2drays7ONjgEAndrOnTvVp08fde/e3eu56Ohoz9eDBw/WM888o/r6es+UxdPaO0VRCv+pVcHWUXJKHScrOf3LyGmKbV7qFgAAAEB4ONeUlyNHjnhWnNm/f79cLpdiY2ODGQ8A/I4rPwAAAIBO5Ouvv9YHH3ygmTNnerZt3LhRkjR+/Hi999572rhxo8xms7p06aLc3FxWfgTQ4QW1+dHU1KS8vDw1NzfL6XRqxIgRys7O1htvvKE//elPOnTokFauXOl1Sd1pL7zwgnbu3ClJuummmzRy5EhJ0u7du7Vq1So1NzerT58+uuOOO2Q2m1mjHAAAAPgPXbt21e9+97sW28aPH+/5esKECZowYUKwYwFAQAW1+REZGam8vDxFRUWpublZCxcuVGZmpr7zne9o8ODB+uUvf3nWY8vKyvTpp5+qoKBAJ0+e1EMPPaTMzExFRUWpuLhYDz74oJKSkrRmzRpt2bJFWVlZklijHAAAAACAzi6o9/wwmUyKioqSdGr9cqfTKZPJpD59+niuzjibf/3rX0pPT5fZbFZUVJRSUlJUXl6uxsZGWSwWzw1QMjIy9I9//CPgYwEAAAAAAB1D0O/54XK5NG/ePFVXV+uaa65R//7923RcSkqK1q5dq+uuu05ff/219uzZo4svvlixsbFyOp2qrKxUamqq3nvvvRZ3j23LGuX+WKYrUDrKkkVtxXhCX7iNKdzGAwAAAMB3QW9+REREqLCwUMeOHdOSJUtUVVWl5OTkbz1u4MCBqqys1AMPPKC4uDilpaXJbDbLZDIpNzdXzz33nE6ePKmBAwfKbDZLavsa5f5YpitQOsqSRW3FeEJfuI0p1Mbjj2W6AAAAAPjGsNVeunXrpvT0dJWXl7ep+SFJkydP1uTJkyVJTzzxhHr16iVJSktL08MPPyxJ2rVrlw4ePCip7WuUAwAAAACA8BXUe37U19fr2LFjkk6t/FJRUaHevXu36ViXy6WGhgZJ0oEDB1RVVaWBAwdKko4ePSpJOnnypF599VXP3apZoxwAAAAAAAT1yo+6ujoVFxfL5XLJ7Xbryiuv1JAhQ/T666/rtdde05EjRzRnzhwNGjRIOTk5qqys1FtvvaWcnBzP6jDSqSs67rrrLs/0ltdee01lZWVyuVwaP368Lr/8cklijXIAAAAAABDc5kdKSooKCgq8tk+cOFETJ0702p6amqrU1FRJUpcuXbR06dJWX3f69OmaPn2613bWKAcAAAAAAEGd9gIAAAAAABBsND8AAAAAAEBYo/kBAAAAAADCGs0PAAAAAAAQ1mh+AAAAAACAsEbzAwAAAAAAhDWaHwAAAAAAIKzR/AAAAAAAAGGN5gcAAAAAAAhrND8AAAAAAEBYsxgdAADQuRw7dkxPPvmkPv/8c5lMJt1xxx1KS0szOhYAAADCGM0PAEBQPfvss8rMzNTPf/5zNTc36+uvvzY6EgB0KrNnz1ZUVJQiIiJkNpuVn5/f4nm3261nn31WO3fuVNeuXTVr1iz17dvXoLQA4B80PwAAQfPVV1/pww8/1OzZsyVJFotFFgv/KQKAYMvLy1NcXFyrz+3cuVPV1dVavny5Pv74Y61cuVKLFy8OckIA8C/OOAEAQXP48GHFxcWppKREBw4cUN++fXXrrbcqKirK6GgAgG9s375do0ePlslkUlpamo4dO6a6ujolJCQYHQ0AzhvNDwBA0DidTn366ae6/fbb1b9/fz377LPasGGDpk6d2mK/0tJSlZaWSpLy8/Nls9l8eh+LxeLzMUbpKFnJ6V/k9K+OkjOULFq0SJJ09dVXy263t3jO4XC0+DwTExPlcDhofgDo0Gh+AACCJjExUYmJierfv78kacSIEdqwYYPXfna7vcXJeE1NjU/vY7PZfD7GKB0lKzn9i5z+db45k5KSApAm9D3yyCOyWq06evSoHn30USUlJSk9Pd3zvNvt9jrGZDJ5bWtvo1rqOI0rcvpfR8lKTv8yMifNDwBA0HTv3l2JiYk6ePCgkpKSVFFRoYsvvtjoWADQqVitVklSfHy8hg0bpv3797dofiQmJrZoJtXW1rZ61Ud7G9VS+DfYgq2j5JQ6TlZy+peRzeqIdr8CAAA+uP3227V8+XLdd999+uyzz3TjjTcaHQkAOo0TJ07o+PHjnq8/+OADJScnt9hn6NCh2rp1q9xut/bt26fo6GimvADo8LjyAwAQVJdeeqnXsooAgOA4evSolixZIunUfZhGjRqlzMxMbdy4UZI0fvx4DRo0SGVlZbr77rvVpUsXzZo1y8jIAOAXND8AAACATqJnz54qLCz02j5+/HjP1yaTSTNmzAhmLAAIOKa9AAAAAACAsEbzAwAAAAAAhDWaHwAAAAAAIKxxzw8AAAAAABAwVVVmFRTEyuGwyGrtrrlzG5Sc7AxqBpofAAAAAAAgIKqqzJo61aoDByK/2RKtsrJIrV7tCGoDM2nj6wAAIABJREFUhGkvAAAAAAAgIAoKYs9ofJxy4ECkCgpig5qD5gcAAAAAAAiI6mpzq9sPHWp9e6DQ/AAAAAAAAAHRq1frU1t69gzuPT9ofgAAAAAAgICYO7dBKSknW2xLSTmpuXMbgpqDG54CAAAAAICASE52avVqxzervUTJaj3Bai8AAAAAACC8JCc7tWLFEdlsNtXUHDEkQ1CbH01NTcrLy1Nzc7OcTqdGjBih7OxsvfHGG/rTn/6kQ4cOaeXKlYqLi2v1+BdeeEE7d+6UJN10000aOXKkJGn37t1atWqVmpub1adPH91xxx0ym81yu9169tlntXPnTnXt2lWzZs1S3759gzZeAAAAAABgvKA2PyIjI5WXl6eoqCg1Nzdr4cKFyszM1He+8x0NHjxYv/zlL896bFlZmT799FMVFBTo5MmTeuihh5SZmamoqCgVFxfrwQcfVFJSktasWaMtW7YoKytLO3fuVHV1tZYvX66PP/5YK1eu1OLFi4M4YgAAAAAAYLSg3vDUZDIpKipKkuR0OuV0OmUymdSnTx9deOGF5zz2X//6l9LT02U2mxUVFaWUlBSVl5ersbFRFotFSUlJkqSMjAz94x//kCRt375do0ePlslkUlpamo4dO6a6urrADhIAAAAAAISUoN/zw+Vyad68eaqurtY111yj/v37t+m4lJQUrV27Vtddd52+/vpr7dmzRxdffLFiY2PldDpVWVmp1NRUvffee6qpqZEkORwO2Ww2z2skJibK4XAoISGhxWuXlpaqtLRUkpSfn9/iGKNZLJaQytNejCf0hduYwm08AAAAAHwX9OZHRESECgsLdezYMS1ZskRVVVVKTk7+1uMGDhyoyspKPfDAA4qLi1NaWprMZrNMJpNyc3P13HPP6eTJkxo4cKDMZrMkye12e72OyWTy2ma322W32z2PTzdPQsGpG8KETp72YjyhL9zGFGrjOX2VGgAAAIDgMWy1l27duik9PV3l5eVtan5I0uTJkzV58mRJ0hNPPKFevXpJktLS0vTwww9Lknbt2qWDBw9KOnWlx5m/9NTW1npd9QEAAAAAAMJbUO/5UV9fr2PHjkk6tfJLRUWFevfu3aZjXS6XGhoaJEkHDhxQVVWVBg4cKEk6evSoJOnkyZN69dVXNX78eEnS0KFDtXXrVrndbu3bt0/R0dE0PwAAAAAA6GSCeuVHXV2diouL5XK55Ha7deWVV2rIkCF6/fXX9dprr+nIkSOaM2eOBg0apJycHFVWVuqtt95STk6OZ3UYSYqOjtZdd93lmd7y2muvqaysTC6XS+PHj9fll18uSRo0aJDKysp09913q0uXLpo1a1YwhwsAAACElJqaGhUXF+vIkSMymUyy2+2aOHFii3327NmjgoICz4IEw4cP15QpU4yICwB+E9TmR0pKigoKCry2T5w40avoSlJqaqpSU1MlSV26dNHSpUtbfd3p06dr+vTpXttNJpNmzJjRztQAAABAeDCbzZo+fbr69u2r48ePa/78+crIyNDFF1/cYr8BAwZo/vz5BqUEAP8L6rQXAACkU1MZ586dq/z8fKOjAECnkpCQoL59+0qSLrjgAvXu3VsOh8PgVAAQeIbd8BQA0Hm9/vrr6t27t44fP250FAAdWFWVWQUFsXI4LLJau2vu3AYlJzuNjtVhHD58WJ9++qn69evn9dy+ffs0Z84cJSQkaPr06brkkksMSAgA/kPzAwAQVLW1tSorK9PkyZP1xz/+0eg4ADqoqiqzpk616sCByG+2RKusLFKrVztogLTBiRMnVFRUpFtvvVXR0dEtnuvTp49KSkoUFRWlsrIyFRYWavny5V6vUVpaqtLSUklSfn6+bDabzzksFst5HRds5PS/jpKVnP5lZE6aHwCAoPr973+vadOmcdUHgHYpKIg9o/FxyoEDkSooiNWKFUcMStUxNDc3q6ioSFdddZWGDx/u9fyZzZDBgwfrmWeeUX19veLi4lrsZ7fbZbfbPY9ramp8zmKz2c7ruGAjp/91lKzk9K/zzZmUlNTu96b5AQAImh07dig+Pl59+/bVnj17zrpfe/+a2FH++iF1nKzk9C9ytp/D0fpprMMRFbKZQ4Hb7daTTz6p3r1767rrrmt1nyNHjig+Pl4mk0n79++Xy+VSbGxskJMCgH/R/AAABM1HH32k7du3a+fOnWpqatLx48e1fPly3X333S32a+9fEzvKXz+kjpOVnP5FzvazWrtLim5l+wnV1LTtyg9//CWxo/noo4+0detWJScna86cOZKkm2++2fN9Hj9+vN577z1t3LhRZrNZXbp0UW5urkwmk5GxAaDdaH4AAILmlltu0S233CJJ2rNnj/73f//Xq/EBAG0xd26DysoiW0x9SUk5qblzGwxMFfq++93v6qWXXjrnPhMmTNCECROClAgAgoPmBwAAADqc5GSnVq92fLPaS5Ss1hOs9gIAOCuaHwAAQ1x22WW67LLLjI4BoANLTnZqxYoj30zP4SanAICzizA6AAAAAAAAQCDR/AAAAAAAAGGN5gcAAAAAAAhrND8AAAAAAEBYo/kBAAAAAADCGs0PAAAAAAAQ1mh+AAAAAACAsGYxOgAAAP5SVWVWQUGsHA6LrNbumju3QcnJTqNjAQD+A/UaQLDR/AAAhIWqKrOmTrXqwIHIb7ZEq6wsUqtXOzihBoAQQr0GYASmvQAAwkJBQewZJ9KnHDgQqYKCWIMSAQBaQ70GYASaHwCAsFBdbW51+6FDrW8HABiDeg3ACDQ/AABhoVev1i+V7tmTS6gBIJRQrwEYgeYHACAszJ3boJSUky22paSc1Ny5DQYlAgC0hnoNwAjc8BQAEBaSk51avdrxzeoBUbJaT7B6AACEIOo1ACPQ/AAAhI3kZKdWrDgim82mmpojRscBAJwF9RpAsDHtBQAAAAAAhDWaHwAAAAAAIKzR/AAAAAAAAGGN5gcAAAAAAAhrND8AAAAAAEBYM7ndbrfRIQAAAAAAAAKFKz9C3Pz5842O4FeMJ/SF25jCbTxom470fe8oWcnpX+T0r46SE946yveOnP7XUbKS07+MzEnzAwAAAAAAhDWaHwAAAAAAIKyZH3rooYeMDoFz69u3r9ER/IrxhL5wG1O4jQdt05G+7x0lKzn9i5z+1VFywltH+d6R0/86SlZy+pdRObnhKQAAAAAACGtMewEAAAAAAGGN5gcAAAAAAAhrFqMDdEaNjY1aunSpvvzyS/Xo0UP33HOPYmJivPbbvHmz1q1bJ0maPHmyxo4dK0l68cUXtXXrVjU2NmrVqlWe/U+ePKkVK1bok08+UWxsrHJzc3XhhRd2iDF98sknKi4uVlNTkwYNGqTbbrtNJpNJL730kt5++23FxcVJkm6++WYNHjw4YOMoLy/Xs88+K5fLpXHjxmnSpEktnj/XZ7x+/Xpt2rRJERERuu2225SZmdmm1wykQIxn9uzZioqKUkREhMxms/Lz80N+PA0NDXr88ce1f/9+jR07Vv/93//tOeZsP3voGNrzMx5KOTdv3qxVq1bJarVKkiZMmKBx48YFPWdJSYnKysoUHx+voqIir+fdbreeffZZ7dy5U127dtWsWbMMmbf7bTn37NmjgoICz/d6+PDhmjJlSrBjqqamRsXFxTpy5IhMJpPsdrsmTpzYYp9Q+EzbkjMUPtOmpibl5eWpublZTqdTI0aMUHZ2dot9QuXfPM5u1apV2rFjhywWi3r27KlZs2apW7duXvsZef4kSX//+9/18ssv69///rcWL16s1NTUVvcz8rzIl5xGf55S239f+OEPf6jk5GRJks1m07x584KSj3MK/wnZ8wk3gm7VqlXu9evXu91ut3v9+vXuVatWee3T0NDgnj17truhoaHF12632/3RRx+5HQ6He9q0aS2OeeONN9xPPfWU2+12u//617+6H3/88QCP5P+0d0zz5893f/TRR26Xy+VetGiRu6yszO12u91r1qxxv/rqq0EZg9PpdN95553u6upq98mTJ9333Xef+/PPP2+xz9k+488//9x93333uZuamtyHDh1y33nnnW6n09mm1+xI43G73e5Zs2a5jx49GpQxnKk94zl+/Lj7ww8/dL/55pvulStXtjjmbD97CH3t+ZkItZx/+ctfvH42jbBnzx53ZWWl+9577231+R07drgXLVrkdrlc7o8++si9YMGCICc85dty7t692/2rX/0qyKm8ORwOd2Vlpdvtdru/+uor99133+31vQ+Fz7QtOUPhM3W5XO7jx4+73W63++TJk+4FCxa4P/rooxb7hMK/eZxbeXm5u7m52e12nzp/bO2c0cjzp9M+//xz97///W93Xl6ee//+/Wfdz6jzotPakjMUPk+3u22/L7jdbq/fcYKBcwr/CtXzCaa9GGDbtm0aM2aMJGnMmDHatm2b1z7l5eXKyMhQTEyMYmJilJGRofLycklSWlqaEhISvI7Zvn2750qKESNGaPfu3XIH6X627RlTXV2djh8/rrS0NJlMJo0ePbrV4wNt//796tWrl3r27CmLxaKRI0d65TjbZ7xt2zaNHDlSkZGRuvDCC9WrVy/t37+/Ta/ZkcZjpPaMJyoqSt/97nfVpUuXFvuHys8ezk97fiZCLWeoSE9Pb/WvcKdt375do0ePlslkUlpamo4dO6a6urogJjzl23KGioSEBM9fsi644AL17t1bDoejxT6h8Jm2JWcoMJlMioqKkiQ5nU45nU6vK/VC4d88zm3gwIEym82STp3TtvazFgp18+KLL1ZSUlJQ3/N8tCVnKHyeUtt+XzAK5xT+FarnE0x7McDRo0c9zYuEhATV19d77eNwOJSYmOh5bLVav/VE5MxjzGazoqOj1dDQ4JkyEkjtGdN/bk9MTGwx1jfffFNbt25V37599eMf/zhgJ7yt5fj444/Pus+Zn7HD4VD//v29xnb6dc71moESqPFI0qJFiyRJV199tex2eyCH0WpWybfxnO3fwLf97CG0BeJnwqickvSPf/xDH374oS666CL95Cc/kc1mC1rGtnI4HC1ynf4301pD3mj79u3TnDlzlJCQoOnTp+uSSy4xNM/hw4f16aefql+/fi22h9pneracUmh8pi6XS/PmzVN1dbWuueaaFv+tkkLj3zzabtOmTRo5cqTX9rbWzVBhxHmRL0Ll82zL7wvSqekl8+fPl9ls1g033KDvfe97Ac/GOUVwGfXfPpofAfLII4/oyJEjXtunTp163q/5bfchaK3z6M97FwRqTOfqmI4fP94zp3jNmjV6/vnnNWvWrPN+v3Npy+d3tn3ONoZAf0/OJRDjkU79HFitVh09elSPPvqokpKSlJ6e3v7A36I94/HlNdFxBOJnIhDakmHIkCH6/ve/r8jISG3cuFHFxcXKy8sLVsQ2C4XPsy369OmjkpISRUVFqaysTIWFhVq+fLlheU6cOKGioiLdeuutio6ObvFcKH2m58oZKp9pRESECgsLdezYMS1ZskRVVVWeewNIofV5dmbnOmccNmyYJGndunUym8266qqrvPYL1vexLTnb8hqBPi9qb85g/rvwx+8LJSUlslqtOnTokB5++GElJyerV69e/ozphXOK4DLqs6T5ESAPPvjgWZ+Lj49XXV2dEhISVFdX12q30Gq1au/evZ7HDofjWwtpYmKiamtrlZiYKKfTqa+++sqvV0kEakync59WW1vruUFP9+7dPdvHjRunxx57zB9DaVVrOf6z+3i2z/g/j3U4HJ4xfNtrBkqgxnP6/+Pj4zVs2DDt378/KM2P9ozHl9c8PT6EvkD8TBiVMzY21vO13W7XH/7wh6Dl80ViYqJqamr+P3t3HlZVufZx/LeZQRRBHHFKMJVOzic1jBBJszwNZuaxHCpTDmpZnZNjczmUpuVwLCvLqSxzOJWVIY6ZOSCkklPlUM6SAo4gz/uHryt2eyM4AS6/n+va1+V+1nQ/y73vtbj3Ws+y3hdlTrsQef9wb9y4sd577z1lZGQUy6//OTk5Gj16tG655RY1a9bMZXpJ2acFxVmS9qkklSpVSpGRkUpJSXEqfpSE7zzOf84onR2Qcd26dXruuefc/sFTmLxZFHEWRlGcF11qnEW1P6VL/3tB+nOfVqxYUZGRkdqxY8cVL35wTlG0iuvYx5gfxaBp06ZaunSpJGnp0qVuK7YNGzZUamqqsrKylJWVpdTUVOtpG/lp0qSJlixZIklatWqVbrjhhiKrRl5Kn4KDg+Xv76+tW7fKGKNly5apadOmkuR079fq1auv6CW24eHh2rt3rw4cOKCcnBytXLnSiuOc/PZx06ZNtXLlSmVnZ+vAgQPau3evIiIiCrXOq6k/J0+e1IkTJySd/YXwxx9/dDrpLKn9yc/5Pnso+a7EZ6K44syb69auXauqVasWaYyF1bRpUy1btkzGGG3dulUBAQElsvhx5MgR61el7du3Kzc31+lksKgYYzRp0iSFhYWpffv2bucpCfu0MHGWhH2akZGhY8eOSTr75JcNGzYoLCzMaZ6S8J3H+aWkpGj+/PkaMGCAfH193c5TnOdPF6I4z4suREnZn4X5eyErK0vZ2dmSzn7nt2zZUiTHRM4pilZxHfschuu+i1xmZqbGjBmjQ4cOKTQ0VE899ZQCAwP1888/69tvv1V8fLyks/dBzp07V9LZx8K2atVKkjR9+nStWLHCqpzGxsaqU6dOOn36tMaPH69ff/1VgYGB6t+/vypWrHhV9Onnn3/WxIkTdfr0aTVs2FCPPPKIHA6Hxo0bpx07dsjhcKh8+fLq1avXFf1iJCcn68MPP1Rubq5atWqlDh06aNasWQoPD1fTpk3Pu4/nzJmjxYsXy8PDQz169FCjRo3yXWdRudz92b9/v0aNGiXp7GBzLVu2vGr606dPHx0/flw5OTkqVaqUhg4dqqpVq+b72cPV4VI+EyUpzpkzZ2rt2rXy9PRUYGCgevbs6fJHXVEYO3as0tLSlJmZqaCgIHXq1Ek5OTmSzt6GaIzRe++9p9TUVPn4+CghISHfxyoWZ5xff/21Fi5cKE9PT/n4+Khbt26qU6dOkce5efNmPffcc6pevbqVV/75z39av3aVlH1amDhLwj7duXOnJkyYoNzcXBlj1KJFC3Xs2LFEfueRv379+iknJ8f6xbx27drq1auX0tPT9fbbb2vQoEGSivf8STr7o9v777+vjIwMlSpVSjVr1tSQIUOc4izu86LCxikV//6UCvf3wpYtW/TOO+/Iw8NDubm5uvPOOxUbG1sk8XFOcfmU1PMJih8AAAAAAMDWuO0FAAAAAADYGsUPAAAAAABgaxQ/AAAAAACArVH8AAAAAAAAtkbxAwAAAAAA2BrFD7h45513NHv2bOv9woUL9dhjj6lr167KzMzU5s2b9fjjj6tr165avXp1MUZqf5s2bbIeE2w3n3zyid56663iDgMo8cjJJQc5GcD5kK9LDvI13PEq7gBQtPr06aMjR47I09NTHh4eqlq1qqKjoxUXFycPj7O1sF69elnz5+Tk6MMPP9Srr76qmjVrSjr7hbv99tt1xx13FEcXrhqbNm3SuHHjNGnSpOIOpcQ7cOCA+vbtq48++kienp7FHQ5QZMjJRYecXHjkZMAV+brokK8Lj3x9YSh+XIMGDBig+vXr6/jx40pLS9OUKVO0fft2JSQkuMx79OhRZWdnq1q1albbwYMHVbVq1Yva9pkzZ/hi5lHS90dJjw+wA3JyyVHS90dJjw+wO/J1yVHS90dJj+9aRfHjGhYQEKCmTZuqbNmyGjJkiNq3b6/q1atrwoQJKleunKKjozVgwABJUo8ePRQREaFDhw7pwIEDGjlypDw8PPT+++8rOztbH374odavXy+Hw6FWrVqpU6dO8vDw0JIlS7Ro0SKFh4dr6dKlatu2rTp37qykpCR9/vnnOnLkiCIiItSrVy+VL19ektSpUyf17NlTX3zxhTIzMxUVFaVHH31UDodDkpSYmKgvv/xShw8fVrly5dSvXz/VqlVL6enpev/99/XTTz/Jz89Pd955Z6Er66dPn9bHH3+sVatW6dixY6pevbqeffZZ+fj4aO3atZo5c6bS09NVs2ZN9ezZ0zpw9enTR23bttWyZct08OBBNWzYUH369FFubq6GDRumnJwcde3aVZL05ptvKjExUbt375a3t7fWrVunbt26KTo6WjNmzND3338vSWrRooUefPBBeXt7nzfmd955R35+furWrZvV9tprrykyMlLt27fXvHnz9NVXX+nEiRMKDg5Wz549deONNxa4L/r06aPbbrtNK1as0J49ezRt2jQdPXo03327fft2vfvuu9q7d698fHzUsmVLde/e3W3Vvk+fPurdu7fq16/vtM3nn39e0tnPmSQ9++yzuv766wuMFbATcvKfyMl/IicDJQ/5+k/k6z+Rr68CBteUhIQEk5qa6tIeHx9vvvnmG2OMMePHjzcfffSRMcaY/fv3m/vvv9/k5OTku46RI0eat99+25w4ccIcOXLEDBw40CxcuNAYY8zixYvNAw88YBYsWGBycnLMqVOnzA8//GD69u1rdu/ebXJycszs2bPNkCFDrPXdf//9Zvjw4SYrK8scPHjQPPLII2b9+vXGGGNWrlxpevXqZbZt22Zyc3PN3r17zYEDB8yZM2fMM888Yz799FOTnZ1t9u3bZ/r06WMt99NPP5nu3bvnu18mT55snn/+eXP48GFz5swZs3nzZnP69Gnz+++/m4ceesikpqaa7OxsM2/ePNO3b1+TnZ1t7YuBAweaw4cPm8zMTNO/f39rP27cuNH07t3baTuzZs0ynTt3Nj/88IM5c+aMOXXqlPn444/N4MGDzZEjR8zRo0fNkCFDrP3vbh3nbNq0ycTHx5vc3FxjjDGZmZmmS5cu5vDhw+b333838fHx5vDhw9b/4969e/Ptf14JCQnm3//+tzl48KA5depUgft28ODBZunSpcYYY06cOGG2bNmSb+x5PzuzZs0yb775phXfXz9nwLWAnOweOflP5GSgZCBfu0e+/hP5uuRjwFNIkkJCQpSVlXXByx05ckQpKSnq0aOH/Pz8FBQUpDvvvFMrV6605gkODla7du3k6ekpHx8fJSYm6t5771XVqlXl6empe++9Vzt27NDBgwetZe655x6VKlVKoaGhuuGGG7Rjxw5JUlJSku6++25FRETI4XCoUqVKKl++vH7++WdlZGSoY8eO8vLyUsWKFdW6dWsrjrp16+qDDz5w24fc3FwtXrxYPXr0UEhIiDw8PFSnTh15e3tr5cqVatSokerXry8vLy/94x//0OnTp7VlyxZr+Xbt2ikkJESBgYFq0qSJFWt+rr/+et10003y8PCQj4+PVqxYofvuu09BQUEqU6aMOnbsqOXLlxe47+vVqydJ+umnnyRJq1at0vXXX2/1ITs7W7/99ptycnJUoUIFVapUqcB15u1TaGiofHx8Cty3Xl5e2rdvnzIyMuTn50e1GbgMyMnk5LzIyUDJRb4mX+dFvi7ZuO0FkqT09HQFBgZe8HKHDh3SmTNnnAZ4MsaoXLly1vvQ0FCnZQ4ePKgpU6Zo6tSpTsukp6dbl+2VLVvWmubr66uTJ09a26tYsaJLHAcPHtQff/xhXfIlnU3I55Lb+WRmZio7O9ttYvvjjz+smCTJw8NDoaGhSk9Pt9ryxurj4+M0zZ28+0aSU78lqXz58gWuQ5IcDoeioqL03XffKTIyUt99951uueUWSVKlSpXUo0cPffrpp/rtt9/UoEEDdevWTSEhIQWuV3L+Pyto38bHx2vWrFl68sknVaFCBXXs2FFNmjQp1HYAuEdOJifnRU4GSi7yNfk6L/J1yUbxA9q+fbvS09NVt27dC162XLly8vLy0nvvvVfoQX1CQ0PVoUMHK8lciNDQUO3fv99te4UKFS7qsU+lS5eWt7e39u3bZ43GfU5wcLB27dplvTfG6NChQ4VKgOfuryxISEiIDh48aA2IVdj1S1JUVJReeeUV3XPPPdq2bZv+/e9/W9Natmypli1b6vjx43rnnXc0Y8YM9evXr1DrzaugfVu5cmX1799fubm5Wr16td544w2999578vX11alTp6z5cnNzlZGR4XYdhd1XwLWAnExOPh9yMlBykK/J1+dDvi55uO3lGnb8+HGtW7dOb775pm655RZVr179gtcRHBysBg0aaOrUqTp+/Lhyc3O1b98+paWl5bvMbbfdpnnz5mn37t1WHOcGKipIbGysPv/8c/3yyy8yxmjfvn06ePCgIiIi5O/vr3nz5un06dPKzc3Vrl27tH379gLX6eHhoVatWmnq1KlKT09Xbm6utm7dquzsbN18881av369NmzYoJycHH3++efy9vZWnTp1ClxvUFCQMjMzdfz48fPOFxUVpTlz5igjI0MZGRmaPXt2oQ9q1113ncqUKaNJkyapQYMGKlWqlCRpz5492rhxo7Kzs+Xj4yMfHx/rMWwXqqB9u2zZMmVkZMjDw0MBAQGSzu7TKlWqKDs7W8nJycrJydFnn32m7Oxst9soU6aMHA6H24MycK0gJ59FTj4/cjJQ/MjXZ5Gvz498XfJw5cc1aOTIkfL09JTD4VDVqlV15513qk2bNhe9vr59+2rGjBl66qmndOLECVWsWFF33313vvPfdNNNOnnypMaOHatDhw4pICBAN954o1q0aFHgtlq0aKHMzEy9+eabSk9PV4UKFdS3b1+VL19eAwYM0NSpU9WnTx/l5OSoSpUqeuCBBySdvadv2LBhmjZtmtv1duvWTTNnztSgQYN08uRJ1axZU0OGDFGVKlXUr18/vf/++9ZI1QMGDJCXV8FfnbCwMEVFRalv377Kzc3VG2+84Xa+Dh066Pjx41bFuXnz5urQoUOB6z8nKipKn3zyiZ588kmrLTs7WzNmzNDvv/8uT09P1alTx7qscvk/rGSKAAAgAElEQVTy5Zo7d26+8fyVh4fHefdtSkqKpk6dqlOnTql8+fJ64oknrINFz549NWnSJOXm5uquu+5yuVzxHF9fX3Xo0EHPPvuszpw5o8GDB3PfI64Z5GRX5OT8kZOB4kO+dkW+zh/5uuRxGGNMcQcBAAAAAABwpXDbCwAAAAAAsDWKHwAAAAAAwNYofgAAAAAAAFuj+AEAAAAAAGyN4gcAAAAAALA1ih8AAAAAAMDWKH4AAAAAAABbo/gBAAAAAABsjeIHAAAAAACwNYofAAAAAADA1ih+AAAAAAAAW6P4AQAAAAAAbI3iBwAAAAAAsDWKHwAAAAAAwNYofgAAAAAAAFuj+AEAAAAAAGyN4gcAAAAAALA1ih8AAAAAAMDWKH4AAAAAAABbo/gBAAAAAABsjeIHAAAAAACwNYofAAAAAADA1ih+AAAAAAAAW6P4AQAAAAAAbI3iBwAAAAAAsDWKHwAAAAAAwNYofgAAAAAAAFuj+AEAAAAAAGyN4gcAAAAAALA1ih8AAAAAAMDWKH4AAAAAAABbo/gBAAAAAABsjeIHAAAAAACwNYofAAAAAADA1ih+AAAAAAAAW6P4AQAAAAAAbI3iBwAAAAAAsDWKHwAAAAAAwNYofgAAAAAAAFuj+AEAAAAAAGyN4gcAAAAAALA1ih8AAAAAAMDWKH4AAAAAAABbo/gBAAAAAABsjeIHAAAAAACwNYofAAAAAADA1ih+AAAAAAAAW6P4AQAAAAAAbI3iBwAAAAAAsDWKHwAAAAAAwNYofgAAAAAAAFuj+AEAAAAAAGyN4gcAAAAAALA1ih8AAAAAAMDWKH4AAAAAAABbo/gBAAAAAABsjeIHAAAAAACwNYofAAAAAADA1ih+AAAAAAAAW6P4AQAAAAAAbI3iBwAAAAAAsDWKHwAAAAAAwNYofgAAAAAAAFuj+AEAAAAAAGyN4gcAAAAAALA1ih8AAAAAAMDWKH4AAAAAAABbo/gBAAAAAABsjeIHAAAAAACwNYofAAAAAADA1ih+AAAAAAAAW6P4AQAAAAAAbI3iBwAAAAAAsDWKHwAAAAAAwNYofgAAAAAAAFuj+AEAAAAAAGyN4gcAAAAAALA1ih8AAAAAAMDWKH4AAAAAAABbo/gBAAAAAABsjeIHAAAAAACwNYofKJFeeOEFRUREFMl6lixZIofDod9+++2St3c51axZU6+88kpxh3HV6tGjh+Li4oo7DOCqQu4l9xY1cjWAonK5jnG4el0zxQ+Hw3HeV82aNSVJMTExVpu3t7dq1qypfv366ciRI27Xu27dOnl6eqpx48b5bnvTpk3q2rWrqlatKl9fX9WoUUP33nuvFi9ebJ38ne/Vo0ePS+r7+b7onOQV7L333pO3t7cyMzOd2uvXr59ve/fu3YsyxGLx+uuvq0WLFgoODlbZsmXVsmVLff3118UdVrGJiYlRz549Xdp37Nghh8OhFStWWG0Oh0PTp093mfeDDz6Ql5fXFY2zqJF7yb0Xi9zr3rRp09SkSRMFBwfL399f9erV0+jRo2WMKe7Qrgrk6mtTjx49rNzu6empqlWrqlu3bvr999/znS/vKzAw0Gm+9PR0DRo0SJGRkQoICFBwcLAaNmyoIUOGaPfu3U7r+2txLzMzU0OGDFGdOnXk6+ur4OBgtWvXTkuWLHGa79xxqmrVqjp+/LhLnJezaLhkyRK1a9dOwcHB8vX1VZ06dTRkyBCXPHu1WLFihRwOh3bs2OHU/u9//1urVq26otsuivOLy+GFF15QVFSUSpcuLYfDoUOHDhV3SEXimil+7N2713rNnz9fkrR69Wqrbc2aNda8Xbp00d69e/Xrr79q0qRJmjNnjhISEtyu9+2339a//vUv7dixQ2vXrnWZ/s0336hp06bas2ePJk+erLS0NH3++edq3ry5evfurZtvvtkptgEDBqhq1apObW+++eaV2SkolLi4OOXk5Gjp0qVW26FDh7Rp0yZVrlzZpX3jxo1q3br1RW/v9OnTlxTv+WRnZ1+2E+SkpCQ98sgjWrx4sX744Qc1b95c7du313fffXdZ1n+xcnNzdebMmSuybmOMsrOzr8i67Yrci4tF7nWvQoUKevbZZ7Vy5Upt2rRJAwcO1HPPPae33nor32U++OADxcTEXJbtXy7kahS1W265RXv37tWuXbs0c+ZMrV+/Xvfff3++8+V9/fLLL9b03bt3q1GjRvrkk080aNAgrVq1Sj/88IOGDx+uw4cPa9SoUfnGkJGRoaioKM2aNUuvvPKKtm7dqsWLF6t27dpq3bq13n//fZdl0tPT9dprr12eneDGe++9p9atWysiIkJJSUnaunWrXn31Vc2aNUtRUVHKyMi4YtsuaoGBgQoNDb2i27hazi9OnTqlDh06aMCAAcUdSpG6ZooflSpVsl4hISGSpPLly1tt5cuXt+b19/dXpUqVVLVqVd1+++3q3LmzvvnmG5d1ZmZm6qOPPlKvXr3UuXNnvfPOO07Tjx8/rm7duikmJkaLFi1Su3btFB4ervr162vAgAH64Ycf5OPj4xRbYGCgPD09ndqCgoKu7M75S5969+6t8uXLy8/PT02bNtXChQut6e5+GZGkiIgIvfDCC9b7d999V/Xq1ZOfn5/KlSun6Ohop0ub161bpzZt2igwMFDly5dXhw4dtHPnTpd45s+fr7p166pUqVJq1aqVfv75Z6fpCxYsUJMmTeTr66sKFSooISFBx44dO28fx40bp6pVqyogIEBt27bVrl27zjt/jRo1FB4erkWLFlltSUlJ+tvf/qa7777bpd0Y43QC/uGHHyoyMlK+vr6qWrWqhg4dqpycHGt6TEyMHn30UT377LOqXLmywsLC3MaRmJiooKAgjR492mr79ttvFRUVJX9/f4WFhenhhx/W4cOHrennfhkYN26catasKV9fXx07dkwrVqywqr2lS5dWgwYN3H7Gz+err77SY489poYNG6pOnToaNWqU6tWrpzlz5uS7zNChQ9WyZUvr/eLFi+VwODR06FCr7fnnn9dNN91kvV+1apWio6Pl7++v4OBgdenSRQcOHLCmn/t1fdasWapbt658fHz0008/uWx7586dqlevnjp16qRTp05JkrZv36777rtPZcuWVXBwsNq0aaMNGzZYy5z7dW/x4sVq1KiRfH19L3g/XevIvYVD7nVF7nWvbdu2uueee1SvXj3VqlVL3bt3V5s2bVx+Nb4U5GrY0bm8HxYWpujoaPXq1Uvff/+9yx/3fz0+VKpUSRUqVLCmJyQk6PTp01q/fr26du2q+vXr6/rrr1e7du00adIkjR07Nt8Yhg4dqm3btmnRokW6//77VaNGDTVs2FBvvfWWevXqpT59+mjPnj1Oyzz11FN6/fXXXa5SuRz27NmjPn36qHfv3ho3bpwaNWqkGjVqqGPHjlq0aJG2bdvm9L3PycnRSy+9pPDwcPn6+iosLEz9+vWzpmdlZal///6qVq2afH19VbNmTQ0bNkxS4Y9jDodDb775pu677z6VKlVKVapU0RtvvOG0zJtvvqmGDRsqMDBQlSpVUufOnbV3715rO7fccosk6brrrpPD4bCKv+6uyCzMsaJnz556+eWXrXOZHj165HvMK+z5RbNmzfT44487LXvmzBlVq1ZNI0aMkCR17txZ7du318iRI1W5cmWVKlVKDzzwgMtVsdOmTVP9+vXl5+en6667Ts8884xOnDjhNr5zhg8frqefflpNmzY973x2c80UPy7W9u3btWDBAvn4+LhMmzFjhmrXrq369eurR48e+uijj5SVlWVNX7hwoQ4cOKAhQ4a4XXdwcPAVi/tiPfLII/rmm280ffp0rV+/XlFRUWrfvr02b95c6HWsW7dO8fHxGjRokLZs2aIlS5aoW7du1vS0tDTdeuutatGihdauXaukpCR5enrqtttu08mTJ6359u7dq//+97+aMWOGVq5cqSNHjuiRRx6xpv/444+66667FB0drZSUFH344Yf64osvFB8fn29s8+fP15NPPqmnnnpKKSkp6tSpk/7zn/8U2KfWrVu7nGjHxsYqNjbWpb1u3brWSfSXX36pRx55RF27dtWGDRs0evRoTZgwQS+++KLT+j/55BMdPHhQixYtUlJSksv2Z8yYoXvuuUf//e9/9fTTT1vbuvvuu9W5c2f9+OOPmjdvnnbs2KF7773X6RfG1atXKykpSfPmzVNqaqq8vb111113qVmzZkpOTlZycrJeeOEFBQQEWMvExMRc8K+Eubm5yszMPG9FPTY2Vj/88IP1PUlKSlL58uXd7ltJ2rdvn9q0aaOqVatq9erV+vzzz7Vx40bdd999Tuvds2ePJk6cqA8++EBpaWmqUaOG0/TU1FS1aNFCt912mz7++GP5+vpq//79atmypSpUqKDly5dr1apVqlOnjmJiYnTw4EGnfj3zzDMaPXq0Nm/erGbNml3QfsHFIfeSeyVyb0GMMVq9erW+++47tWrVqtDLFYRcDbvbs2ePZs+eLU9PT3l6ehZ6ufT0dC1YsED9+vVTmTJl3M7jcDjcthtjNGPGDD344IMun31JGjx4sE6ePKnZs2c7tT/22GO67rrrNHjw4ELHWViffvqpTp065XbdNWrUUJcuXTRz5kwrtz366KMaP368XnjhBaWlpemzzz5TrVq1rP61b99e//vf/zRu3Dj99NNPmjp1qtOPHIX14osvKiYmRuvXr9eAAQP0zDPPuPy4NmrUKG3YsEFz587Vrl271LlzZ0lStWrVXK40ze+HucIeK2bPnq309HQtWbJEM2fO1Lx58y75apz4+HhNnz7d6fj79ddfa9++fU63xSxbtkxr1qzRt99+q88//1yrV69Wr169rOmTJk3Sk08+qYEDByotLU3vv/++vvjiC5fCCv6fuQYtX77cSDK//vqry7Rbb73VeHl5mVKlShlfX18jyUgy48aNc5m3UaNGZuzYsdb7yMhI8/bbb1vvR44caSSZw4cPFzq2l19+2dSoUeOC+lOQ559/3jgcDlOqVCmXl8PhMC+//LIxxpht27YZSebLL790Wr5Ro0bm4YcfNsYY8+uvvxpJZvny5U7zhIeHm+eff94YY8ycOXNMmTJlzNGjR93G0717d/PAAw84tZ08edL4+/ubuXPnWjF7enqaAwcOWPN89NFHxuFwmBMnThhjjHnooYfM3//+d6f1zJs3zzgcDrNjxw5rPeHh4db0qKgo06VLF6dlnn76aSPJ7N69O589aMysWbOMw+Ew+/fvN8YYU7t2bTN//nxz+PBh4+np6dTet29fa7mWLVua+++/32ldY8eONX5+fubUqVPGmLOfudq1a5szZ844zVejRg3z8ssvm9dff92UKVPGLFy40Gn6rbfeagYMGODUtnPnTiPJrF+/3hhzdl8HBQWZzMxMa5709HQjySxevDjf/nbt2tV07do13+nuvPzyyyYoKOi8+/HEiRPGz8/P+ozdfPPNZtSoUcbLy8scPXrUHDt2zPj4+JhvvvnGGGPM0KFDTVhYmLWvjDEmJSXFSDJLly41xvz5+d65c6fTtrp3725at25tkpKSTFBQkBk2bJjT9Oeff940a9bMqS03N9fUqlXLjBkzxhhjzJQpU4wks2zZsgL7nzd35H0FBAS4fGckGV9fX5d5fX19jaenZ4HbulqRe8m9eZF7XRU29x45csSUKlXKeHt7Gw8PD/Piiy+ed/4pU6aYW2+9tcD1nkOuPutazdV21L17d+Pp6WlKlSpl/P39rWPM008/ne98eV/t27c3xhjzww8/GElmzpw5Tsu1aNHCmjcyMtJpfa1btzbGGLN//34jybzxxhv5xlmmTBmTkJBgjDFm8eLFVo78+uuvjcPhMGvXrnVZ76X417/+ZcqUKZPv9NGjRxtJ5sCBA9ax6tNPP3U7b2JiopFk1qxZ43Z6YY5jxpz93j300ENO8/zzn/80UVFR+caZnJxsJJnffvvNGJP/+cZfj02FPVbceOONTvP07t3bNG/ePN948srv/OLYsWMmKCjITJs2zWq75557TIcOHaz3DzzwgMuxZP78+VYuzc3NNZUqVTJTpkxxWvc333xjHA6HOXbsWIHxffXVV0aSOXjwYKH6c7Xjyg837r33XqWkpOiHH37QY489pg4dOrjcd7569Wpt2LBBXbp0sdq6d+/udPm1ucKDjwUGBlqvdu3anXfeatWqKSUlxeVVpUoVa560tDRJUnR0tNOy0dHR2rRpU6Hjuu2221SrVi1dd9111iXpeQfRWbNmjebOnesUf7ly5XTy5Elt27bNmq9KlSpO1eKwsDAZY6zLaDdt2uQS66233ipjjNWXv0pLS9PNN9/s1Jb30t78nPt1a9GiRfrtt9/0yy+/6NZbb1VISIjq169vtW/bts1pAKr8Yjx58qTTZeRNmjSRh4fr1/Gdd97R0KFDlZSUpNtuu81p2po1azR27Fin/RgZGSlJTvuxXr16TgN1BQcHq2fPnmrbtq3atWunESNGaMuWLU7rnjp1qqZOnVrgfjln4sSJGjZsmGbPnq2qVavmO5+fn59atGihpKQkZWVlac2aNercubOuv/56LVu2TMuXL5f05//Jpk2b1Lx5c6df/xs0aKCgoCCnz2TFihVVvXp1l+1t2LBBt99+u1555RUNGjTIadqaNWu0bt06p/1XunRp7dixw2n/SdLf//73Qu2Hc7kj72vBggVu53311Vdd5n3ppZcKtR27IveSe/+K3Ote6dKllZKSorVr12rChAkaM2aM3n33XWv6jBkznOKLj4/X8uXLXdryQ67+E7naPpo1a6aUlBStXr1azz77rJo3b66XX3453/nyvt5++21J+R9fZs2apZSUFPXq1Svf2yEKc2zKb562bduqbdu2euqppwpchyQNGzbM6Ttz7jt7MTGdk5ycLElq06aN2+nr1q1TcHDwZbmNokWLFk7vo6KinI4vS5YsUdu2bVWtWjWVLl3aykXubuM8n8IeKxo2bOg0T1hYmPbv339B2/qrgIAAde3aVZMnT5Z09gq6L774Qo899pjTfPXr13c6lkRFRckYo82bN+u3337Tvn37lJCQ4PT/fe5KxL/esgqJoardKFOmjHU/2Ntvv62bb75Zr7zyip577jlrnnfeeUc5OTmqXLmy1WaMUW5urpKTk9W4cWPVqVNH0tmTvsKc5F2olJQU69/+/v7nndfb29vtUwcKM1q5Mca6hO/cSeJfk2XegcUCAwO1du1afffdd0pMTNSkSZP0zDPPaNGiRWrSpIlyc3PVtWtXDRw40GVb5cqVs/7918vdz8WQm5vr0vZX+bUXNC0/oaGhatCggRYtWqTTp0+rcePG1ngArVq1sto9PT1dLln+6/bO7bu87aVKlXK73RYtWmjx4sV677331LhxY6dlcnNzNWDAAHXt2tVluUqVKp133ZMnT9YTTzyhhQsX6ttvv9Wzzz6r8ePHq3fv3gXsCVejRo3S888/r//973+FGnk8NjZWn332mVq3bq1atWopLCzMuoTdx8dHzZo1c7oMvDD/x/ntv+rVq6tmzZqaPn26unbt6jSGQ25urlq3bq3x48e7LJd3Pk9PT/n5+RXYL8k5d5yT33esYsWKLvPmvaf4WkTudUbuJffmx8PDw/pc1a9fX3/88YeGDh1qPcXk3O0158yZM0efffaZZsyYYbXld8n+OeTqs8jV9uHv72/9X/7tb3/T1q1b1adPH5dBRvPO91e1a9eWh4eH0tLSdO+991rt1apVkyRrbCt3ypcvr+DgYG3cuNHt9N27dyszM9M6hv3V6NGj1aBBA3322Wf5d/L/xcfHq1OnTtb7/MY0qlOnjjIyMrR7926rD3lt2rRJISEhhR4k9Hx5vjDHsfzkXWbXrl2644471LVrVz333HMKDQ3Vb7/9pri4uIsauLowxwp3x8W8x8SLFR8frxtvvFFbtmzR3LlzFRYWlm9x6a/xSX8elydNmuTyA4Mkt/+n1zqu/CiAw+HQiy++qOHDh1uDxmVkZOjjjz/WhAkTnKrCqampatWqlfULZJs2bVShQgW9+uqrbtf9xx9/XFJsERER1iu/pHYhbrjhBkln7y3La/ny5da0c78G5h2M6cCBAy6DMHl6eio6OlovvfSS1q1bp8qVK2vmzJmSpKZNm+rHH39UeHi4Ux8iIiIu6F78G264wWm0f0launSpHA6H9SvcX0VGRro8jaSwTyc5d+953vucpT9PwJOSktS0aVOnkzF3MS5btkz+/v7WPZLnc+ONN2rx4sWaM2eOevXq5ZTwmjZtqk2bNrnsw4iICJdHsrnzt7/9TU899ZS++uorPfrooy6DRhbGc889pxdffFELFiwo9CPXYmNjlZqaqk8//dQanDA2NlZJSUku+/aGG27Q999/73QwS01N1dGjR63P5PkEBQXp22+/laenp+Li4py+c+f2X1hYmMv+u5j7U3F5kXvJveeQewuWm5trDQ4qnb0yJG9cFSpUsP6gy9t2PuRq2N0LL7ygDz/80O0Tw/ITEhKidu3aady4cTp69OgFbc/Dw8MaQ8PdFQrDhg2Tr6+vOnbs6Hb5yMhIPfbYYxowYECBf+SHhIQ4fVfyK9Tff//98vX11fDhw12m7dy5UzNnztSDDz4oh8NhPVo+72DceTVp0kTp6en57s/CHsckuTyO9vvvv1e9evUknb0a7MSJExo7dqyioqJUp04dl6swzhUrCnqi1KUeKy7VDTfcoJtvvlmTJ0/We++9p0cffdTlasQNGzY4XU30/fffy+FwqG7duqpWrZoqVKigrVu3uj0m+fr6XvE+XG0ofhRCmzZtVKdOHWvwm+nTp8vhcOjhhx/W3/72N6fXQw89pJkzZ+rYsWMKCAjQBx98oMWLFysuLk5fffWVfvnlF23YsEGjRo1S8+bNi7lnzsLDw3X//fcrISFB33zzjTZv3qwnnnhCGzdutAam8/f3V1RUlF577TWlpqZq3bp16tatm9OXa/78+RozZozWrVunXbt2ad68edq9e7d1Ujx48GD99NNPeuihh7R69Wr9+uuvWrx4sZ544gmnR4kV5D//+Y+Sk5P11FNPafPmzfr666/Vr18/Pfjgg24vq5Wkp59+WrNmzdKbb76pbdu2acqUKZo2bVqhtte6dWvt2LFDc+fOdTrpi46O1u7duzV37lyXxywOGjRIn332mUaMGKGtW7fqk08+0QsvvKCnn37a7UCO7pxLzAsWLNDDDz9sVXlfeuklaxDBlJQU/fzzz/r666/16KOPnneE5+3bt2vAgAFasWKFdu7cqe+//17Lly93+qOlW7duTgMlutO/f3+9/vrrmjZtmurUqaN9+/Zp3759BZ4M3HTTTSpVqpSmTZtm7ceYmBht2rRJycnJTvu2b9++ysjIUI8ePbRx40atWLFCXbt2VcuWLa2RvAtSpkwZffPNNwoICFBsbKz1RIa+ffvqzJkzuueee7R8+XLt2LFDK1as0JAhQ7Ry5cpCrRtXFrmX3CuRe//q+eefV2Jion755Rdt2bJFkydP1siRIwtc7kKRq2F3devWVfv27V1utTp9+rR1TpP3da4IOnHiRHl7e6tRo0aaOnWqfvzxR/3yyy/66quv9MUXX5x3ANVXXnlFtWrVUuvWrTV79mzt2rVLqampeuKJJ/TOO+9owoQJTrdF/tVLL72kQ4cOad68eZdlH4SFhemtt97S22+/rX79+ik1NVW7du3SZ599pri4ONWuXVuvvPKKpLOF/wcffFAJCQmaPn26fv75Z61Zs8Z6bGtsbKxuueUWPfDAA5o/f75+/fVXfffdd9YteYU5jp3zxRdfaPz48dq2bZvGjRunWbNm6cknn5R09uobh8Oh0aNH69dff9W8efNcbkWrUaOGPDw8tGDBAh04cCDfc9PLcay4VOeetPPrr786DS5+zpkzZ/Twww9r48aN1jG7Q4cOql69ujw8PPTKK69o1KhRGjFihNLS0rR582bNmTNHffr0Oe92d+7cqZSUFOv4v3HjRqWkpLg8ScZ2imhskRKloEH3Hn30UZf26dOnG09PT7N582bToEED07lzZ7frTk9PN97e3mby5MlW248//mi6dOliKleubLy9vU21atXMvffeaw0ClteVGnQv7+A+eZ0b2O2co0ePml69epnQ0FDj4+NjmjRpYg1ods6WLVtMdHS0CQgIMBEREeazzz5zGqxo6dKlplWrViY0NNT4+vqaiIgIM3z4cJObm2ut48cffzR33XWXKVu2rPHz8zPh4eHmscceswYodBezu/+3L7/80jRu3Nj4+PiY0NBQEx8fb7Kyss7b97Fjx5oqVaoYPz8/07p1a/PBBx8UOOieMcZkZWUZb29v4+3t7TKA0E033WQkmaSkJJflPvjgA1O3bl3j7e1tqlSpYgYPHmyys7Ot6fl95v76f7Nt2zZTrVo106VLF5OTk2OMMWbZsmWmdevWJjAw0AQEBJi6deuaJ554wlq/uwGx9uzZY+69914TFhZmfHx8TOXKlU3Pnj3NkSNHnGIqaHA8/f9gYX99de/e/bzLGWPMHXfcYRwOhzl06JDV1rhxY+Pv7+80YJ4xxnz//ffmlltuMX5+fiYoKMj885//tAY5NCb/z/df+37s2DHTunVrc+ONN1rL79ixw3Tp0sX6vFevXt08+OCD5pdffjHGnB1Er7CD2uX3/+hugC9JTgNcnXMh27sakXv/RO4l915s7u3fv78JDw83fn5+pmzZsqZx48Zm/PjxVmzuXOiAp+eQq6/NXG1H+Q0QumLFCiPJJCYmWvPld36Td0DIgwcPmmeeecbUrVvX+Pn5GT8/P1OvXj3Tv39/p1zpbrtHjx41AwcONBEREcbb29sEBQWZtm3buuSxvAOe5vX6668bSZdlwNNzEhMTTZs2bUxQUJDx9vY2ERERZtCgQUbe1b4AACAASURBVCYjI8NpvtOnT5uhQ4eaGjVqGG9vbxMWFmaeeOIJa3pGRobp27evqVSpkvH29jY1a9Y0w4cPt6YXdBwz5uz3bsyYMebuu+82/v7+plKlSua1115zimP8+PGmatWqxs/Pz0RFRVmDduYdUHrkyJGmSpUqxsPDw8p/7vLQxRwrLuScoaB5T5w4YcqWLWvuuusul2kPPPCAufPOO82rr75qKlSoYPz9/U3Hjh1dBnT/9NNPzU033WT8/PxM6dKlTaNGjVwGj3a3bnef848++qhQ/bpaOYy5wiPDAQAAAABQAIfDoWnTpumhhx4q7lCKxP79+1WtWjXNnTtXd955p9O0zp07KysrS1988UUxRWc/3PYCAAAAAEARyc7O1q5duzRw4ECFh4frjjvuKO6QrgkUPwAAAAAAKCKLFi1SjRo1tGLFCn344YcX9UQ0XDhuewEAAAAAALbGlR8AAAAAAMDWKH4AAAAAAABb8yruAEqiPXv2XND8oaGhOnTo0BWKhu2X5O1fy30v7u1frX2vUqXKFYjG/i40L59T3J+Ty4V+lCz0o+S41D6Qky+vi83VV4IdPt952a0/kv36RH+urMuRr7nyAwAAAAAA2BrFDwAAAAAAYGsUPwAAAAAAgK1R/AAAAAAAALZG8QMAAAAAANgaxQ8AAAAAAGBrPOoWuAi7dnnqtddKKz3dSyEhZfXMM5mqXv1McYcFAAAAAHCD4gdwgXbt8lTnziHaudP7/1sClJzsrY8/TqcAAgAAAAAlEMUP4AK99lrpPIWPs3bu9NZrr5XW+PFHiikqoOhMnDhRycnJCgoK0ujRoyVJO3bs0OTJk3X69Gl5enqqZ8+eioiIcFl2yZIlmjNnjiSpQ4cOiomJKcrQAQAAcI1izA/gAu3b5+m2ff9+9+2A3cTExGjw4MFObdOnT1fHjh31+uuvq1OnTpo+fbrLcllZWZo9e7aGDRumYcOGafbs2crKyiqqsAHYyK5dnurbt6zatPFS375ltWsXx2AAwPlx5QdwgSpVcn9rS8WK3PKCa0NkZKQOHDjg1OZwOHTixAlJ0vHjxxUcHOyyXEpKiurXr6/AwEBJUv369ZWSkqKWLVte+aAB2Aa3nwIALgZXfgAX6JlnMlWjRrZTW40a2Xrmmcxiiggoft27d9e0adP0r3/9S9OmTVOXLl1c5klPT1e5cuWs9yEhIUpPTy/KMAHYwPluPwUAID9c+QFcoOrVz+jjj9P//2kvfgoJOcnTXnDNW7hwobp3767mzZtr5cqVmjRpkp599tkCl3M4HG7bExMTlZiYKEkaMWKEQkNDLyouLy+vi162JKEfJQv9KF7p6e5PX9PT/a7K/gAAigbFD+AiVK9+RuPHH1FoaKgOHWKQU2Dp0qV6+OGHJUktWrTQ22+/7TJPSEiI0tLSrPfp6emKjIx0u764uDjFxcVZ7w8dOnRRcZ39jl7csiUJ/ShZ6EfxCgkpKynATfvJCz4mV6lS5TJFBQAo6bjtBQBwyfIWNjZu3KhKlSq5zNOwYUOlpqYqKytLWVlZSk1NVcOGDYs6VABXOW4/BQBcDK78AABckLFjxyotLU2ZmZmKj49Xp06d1Lt3b02ZMkW5ubny9vZW7969JUk///yzvv32W8XHxyswMFD33XefBg0aJEnq2LGjNfgpABQWt58CAC4GxQ8AwAXp37+/2/aRI0e6tIWHhys8PNx6Hxsbq9jY2CsWG4BrA7efAgAuFLe9AAAAAAAAW6P4AQAAAAAAbM0Wt71MnDhRycnJCgoK0ujRo632r776Sl9//bU8PT3VuHFjPfTQQ8UYJQAAAAAAKA62KH7ExMTo9ttv14QJE6y2jRs3au3atRo1apS8vb119OjRYowQAAAAAAAUF1vc9hIZGenyxICFCxfq7rvvlre3tyQpKCioOEIDAAAAAADFzBZXfrizd+9ebd68WR9//LG8vb3VtWtXRUREuJ03MTFRiYmJkqQRI0YoNDT0grbl5eV1wctcTmy/+LZ/Lfe9uLd/LfcdAAAAwIWxbfEjNzdXWVlZevXVV/Xzzz9rzJgxGj9+vBwOh8u8cXFxiouLs94fOnTogrZ19jFrF7bM5cT2i2/713Lfi3v7V2vfq1SpcgWiAQAAAHA+trjtxZ2QkBA1a9ZMDodDERER8vDwUGZmZnGHBQAAAAAAiphtix9///vftXHjRknSnj17lJOTo9KlSxdzVAAAAAAAoKjZ4raXsWPHKi0tTZmZmYqPj1enTp0UGxuriRMn6umnn5aXl5f69Onj9pYXAAAAAABgb7YofvTv399t++OPP17EkQAAAAAAgJLGtre9AAAAAAAASBQ/AAAAAACAzdnithcAAADgWjRx4kQlJycrKChIo0ePdplujNGUKVO0fv16+fr6KiEhQbVq1ZIkvfrqq9q2bZvq1q2rgQMHWsscOHBAY8eOVVZWlq677jr169dPXl782QDg6saVHwAAAMBVKiYmRoMHD853+vr167Vv3z699dZb6tWrl959911r2l133aW+ffu6LDN9+nTdeeedeuutt1SqVCklJSVdkdgBoChR/AAAAACuUpGRkQoMDMx3+tq1axUdHS2Hw6Hrr79ex44d0x9//CFJuvHGG+Xv7+80vzFGmzZtUvPmzSWdLa6sWbPmynUAAIoI168BAAAANpWenq7Q0FDrfbly5ZSenq7g4GC382dmZiogIECenp6SpJCQEKWnp7udNzExUYmJiZKkESNGOG2nuHl5eZWoeC6V3foj2a9P9Kfko/gBAAAA2JQxxqXN4XBclnXHxcUpLi7Oen/o0KHLst7LITQ0tETFc6ns1h/Jfn2iP1dWlSpVLnkd3PYCAAAA2FS5cuWc/oA5fPhwvld9SFLp0qV1/PhxnTlzRtLZK0dCQkKueJwAcKVR/AAAAABsqmnTplq2bJmMMdq6dasCAgLOW/xwOBy64YYbtGrVKknSkiVL1LRp06IKFwCuGG57AQAAAK5SY8eOVVpamjIzMxUfH69OnTopJydHktSmTRs1atRIycnJevzxx+Xj46OEhARr2eeee06///67Tp48qfj4eMXHx6thw4Z68MEHNXbsWH388ce67rrrFBsbW1zdA4DLhuIHAAAAcJXq37//eac7HA717NnT7bSXXnrJbXvFihU1fPjwS44NAEoSbnsBAAAAAAC2RvEDAAAAAADYGsUPAAAAAABgaxQ/AAAAAACArVH8AAAAAAAAtkbxAwAAAAAA2Jotih8TJ05Uz5499fTTT7tM+9///qdOnTopIyOjGCIDAAAAAADFzRbFj5iYGA0ePNil/dChQ9qwYYNCQ0OLISoAAAAAAFAS2KL4ERkZqcDAQJf2Dz/8UA8++KAcDkcxRAUAAAAAAEoCr+IO4EpZu3atQkJCVLNmzQLnTUxMVGJioiRpxIgRF3yliJeXV7FeXcL2i2/713Lfi3v713LfAQAAAFwYWxY/Tp06pTlz5mjo0KGFmj8uLk5xcXHW+0OHDl3Q9kJDQy94mcuJ7Rff9q/lvhf39q/WvlepUuUKRFO0Jk6cqOTkZAUFBWn06NGSpDFjxmjPnj2SpOPHjysgIECvv/66y7JffPGFkpKS5HA4VK1aNSUkJMjHx6dI4wcAAMC1x5bFj/379+vAgQP6z3/+I0k6fPiwBgwYoOHDh6ts2bLFHB0AXN1iYmJ0++23a8KECVbbk08+af176tSpCggIcFkuPT1dX331lcaMGSMfHx+98cYbWrlypWJiYooibAAAAFzDbFn8qF69ut59913rfZ8+fTR8+HCVKVOmGKMCAHuIjIzUgQMH3E4zxuj777/Xc88953Z6bm6uTp8+LU9PT50+fVrBwcFXMlQAAABAkk2KH2PHjlVaWpoyMzMVHx+vTp06KTY2trjDAoBrzk8//aSgoCBVrlzZZVpISIj+8Y9/6F//+pd8fHzUoEEDNWjQwO16LnUspnPsMjYL/ShZ6EfJYYc+AACKhi2KH/379z/v9LyXZgMArpzvvvtOUVFRbqdlZWVpzZo1mjBhggICAvTGG29o2bJlio6Odpn3UsdiOqe4x4a5XOhHyUI/So5L7YMdxmECABSOLR51CwAofmfOnNHq1at18803u52+YcMGVahQQWXKlJGXl5eaNWumrVu3FnGUAAAAuBZR/AAAXBYbNmxQlSpVVK5cObfTQ0NDtW3bNp06dUrGGG3YsEFhYWFFHCUAAACuRRQ/AAAXZOzYsRo6dKj27Nmj+Ph4JSUlSXJ/y0t6erqGDx8uSapdu7aaN2+uAQMG6N///reMMU63tgAAAABXii3G/AAAFJ38xlnq06ePS1tISIgGDRpkve/UqZM6dep0xWIDAAAA3OHKDwAAAAAAYGsUPwAAAAAAgK1R/AAAAAAAALZG8QMAAAAAANgaxQ8AAAAAAGBrFD8AAAAAAICtUfwAAAAAAAC2RvEDAAAAAADYGsUPAAAAAABgaxQ/AAAAAACArVH8AAAAAAAAtkbxAwAAAAAA2JpXcQcAAAAA4OJMnDhRycnJCgoK0ujRo12mG2M0ZcoUrV+/Xr6+vkpISFCtWrUkSUuWLNGcOXMkSR06dFBMTIwk6YUXXtAff/whHx8fSdLQoUMVFBRUNB0CgCvEFsUPd0l/2rRpWrdunby8vFSxYkUlJCSoVKlSxRwpAAAAcPnExMTo9ttv14QJE9xOX79+vfbt26e33npL27Zt07vvvqthw4YpKytLs2fP1ogRIyRJAwcOVNOmTRUYGChJevzxxxUeHl5k/QCAK80Wt73ExMRo8ODBTm3169fX6NGjNWrUKFWuXFlz584tpugAAACAKyMyMtIqWLizdu1aRUdHy+Fw6Prrr9exY8f0xx9/KCUlRfXr11dgYKACAwNVv359paSkFGHkAFC0bHHlR2RkpA4cOODU1qBBA+vf119/vVatWlXUYQEAAADFKj09XaGhodb7cuXKKT09Xenp6SpXrpzVHhISovT0dOv9xIkT5eHhoWbNmum+++6Tw+FwWXdiYqISExMlSSNGjHDaTnHz8vIqUfFcKrv1R7Jfn+hPyWeL4kdBkpKSdPPNN+c7/VITd3F/MNh+8W3/Wu57cW//Wu47AACFZYxxaXNXyMjb/vjjjyskJEQnTpzQ6NGjtWzZMt16660u88fFxSkuLs56f+jQocsU9aULDQ0tUfFcKrv1R7Jfn+jPlVWlSpVLXoftix9z5syRp6enbrnllnznudTEXdwfDLZffNu/lvte3Nu/Wvt+ORI3AACFVa5cOafj1eHDhxUcHKyQkBClpaVZ7enp6YqMjJR09ioQSfL391fLli21fft2t8UPALia2GLMj/wsWbJE69at0+OPP55vhRsAAACwq6ZNm2rZsmUyxmjr1q0KCAhQcHCwGjZsqNTUVGVlZSkrK0upqalq2LChzpw5o4yMDElSTk6O1q1bp2rVqhVzLwDg0tn2yo+UlBTNnz9fL774onx9fYs7HAAAAOCyGzt2rNLS0pSZman4+Hh16tRJOTk5kqQ2bdqoUaNGSk5O1uOPPy4fHx8lJCRIkgIDA3Xfffdp0KBBkqSOHTsqMDBQJ0+e1KuvvqozZ84oNzdXN954o9MV0gBwtbJF8cNd0p87d65ycnL08ssvS5Jq166tXr16FXOkAAAAwOXTv3//8053OBzq2bOn22mxsbGKjY11avPz89PIkSMvW3wAUFLYovjhLun/NZEDAAAAAIBrk63H/AAAAAAAAKD4AQAAAAAAbI3iBwAAAAAAsDWKHwAAAAAAwNYofgAAAAAAAFuj+AEAAAAAAGytxBQ/FixYoIyMjOIOAwBsj3wLACULeRkArjyv4g7gnA0bNuijjz7SDTfcoOjoaP3973+Xt7d3cYcFALZDvgWAkoW8DABXXokpfgwYMECZmZn67rvv9OWXX2ry5Mlq1qyZoqOjFRkZWdzhAYBtkG8BoGQhLwPAlVdiih+SVLp0ad1+++26/fbbtXPnTo0fP16LFy9WaGioWrdurTvuuEN+fn7FHSYAXPXItwBQspCXAeDKKlHFD+nsZX/Lly/XmjVrFB4err59+yo0NFQLFizQsGHD9NJLLxV3iABgCxeTbydOnKjk5GQFBQVp9OjRkqQxY8Zoz549kqTjx48rICBAr7/+usuyx44d06RJk7R79245HP/H3r2HN1nf/x9/pSkFSqE0CacCBTlULeMocwjKOFSH4iYiQzygiIhIwYFD5OTh2newilYQKYIKKCgCU2Fzc9NfRWSKyqGgQJGTnARqaQO0pS1tmvv3B5LRtYXSJE169/m4rl5Xc9937s/7nSbvpO/cn/u26LHHHlNsbKx/kwSAaoTPwQDgP0HT/Fi2bJk2btyo8PBw9e7dW0lJSbLZbJ717du310MPPRTACAHAHLypt3369NGAAQOUnJzsWTZx4sQS+w4PDy/zvkuXLlWXLl30xz/+US6XS+fOnfNRRgBQvfE5GAD8L2iaH0VFRZo0aZLatWtX5vrQ0FAlJiZWcVQAYD7e1Nu4uDhlZGSUuc4wDH311Vd65plnSq3Ly8vT7t27lZCQ4BkjNDRo3oIAIKD4HAwA/hc0nzzvvPNOhYWFlViWm5urwsJCT+e7efPmgQgNAEzFX/V29+7dioyMVLNmzUqty8jIUIMGDbRgwQIdPnxYbdq00YgRI8qdv56SkqKUlBRJUmJiohwOxxXHI53/h6Gy9w0m5BFcyCN4mCEHic/BAFAVgqb58cILL+ixxx5TRESEZ5nT6dTChQs1a9asAEYGAObir3r75ZdfqlevXmWuKy4u1sGDBzVy5Ei1b99eS5cu1dq1azVs2LAyt4+Pj1d8fLzndmZmZqVicjgclb5vMCGP4EIewcPbHKKjo30YTeXxORgA/C8k0AFccPz4ccXExJRYFhMTo2PHjgUoIgAwJ3/U2+LiYm3atEk9e/Ysc73dbpfdblf79u0lST169NDBgwcrPR4AmAmfgwHA/4Km+dGgQQOlp6eXWJaenq769esHKCIAMCd/1NsdO3YoOjpadru9zPUNGzaU3W73XBVmx44datGiRaXHAwAz4XMwAPhf0Ex76du3r5KSkjRs2DA1adJE6enpWrVqlfr163fZ+5Z16cXc3FzNmTNHJ0+eVKNGjTRx4sQShxICQE3lTb2dO3eu0tLSlJOTozFjxmjo0KHq169fmVNenE6nFi1apKlTp0qSRo4cqXnz5snlcqlx48YaO3asX/IDgOrGm7oMAKiYoGl+DBo0SKGhoVq+fLmysrJkt9vVr18/3X777Ze9b1mXXly7dq06duyoQYMGae3atVq7dq3uv/9+f6YAANWCN/V2woQJZS6/cBWXi9lsNk/jQ5Jat27N1QoAoAze1GUAQMUETfMjJCREv/vd7/S73/3uiu9b1qUXN2/erOeee06S9Otf/1rPPfcczQ8AkHf1FgDge9RlAPC/oGl+SOdP9nTo0CEVFBSUWF6ZQ/7OnDmjqKgoSVJUVJSys7N9EiMAmIEv6y0AwHvUZQDwr6BpfnzwwQd6//331apVK9WuXbvEOn8X/ZSUFKWkpEiSEhMTr/h68YG+xjzjB278mpx7oMevybl7K5D1FgBQGnUZAPwvaJofH330kWbNmqVWrVr5ZH+RkZE6deqUoqKidOrUKTVo0KDcbePj4xUfH++5faXXi/f2GvPeYvzAjV+Tcw/0+NU19+joaD9Ec2V8XW8BAN6hLgOA/wXNpW7DwsLUvHlzn+2ve/fu+vzzzyVJn3/+uX75y1/6bN8AUJ35ut4CALxDXQYA/wua5sfdd9+tJUuW6NSpU3K73SV+Lmfu3LmaMWOGjh8/rjFjxmjdunUaNGiQvvvuOz3++OP67rvvNGjQoCrIAgCCnzf1FgDge9RlAPC/oJn2smDBAknSp59+WmrdqlWrLnnf8i69+Mwzz3gfGACYjDf1FgDge9RlAPC/oGl+zJ8/P9AhAECNQL0FgOBCXQYA/wua5kejRo0kSW63u8RlagEAvkW9BYDgQl0GAP8LmubH2bNn9cYbb+jrr79WaGioli9fri1btmj//v0aNmxYoMMDANOg3gJAcKEuA4D/Bc0JT19//XWFh4drwYIFCg0935OJjY3Vxo0bAxwZAJgL9RYAggt1GQD8L2iO/NixY4cWLVrkKfiS1KBBA505cyaAUQGA+VBvASC4eFOXFyxYoNTUVEVGRiopKanUesMwtHTpUm3btk21a9fW2LFj1aZNG0nS+vXr9cEHH0iSBg8erD59+kiSfvjhByUnJ6uwsFBdu3bVQw89JIvF4oNMASBwgubIj/DwcOXk5JRYlpmZyZxHAPAx6i0ABBdv6nKfPn00bdq0ctdv27ZN6enpmjdvnkaPHq033nhDkpSbm6v33ntPs2bN0qxZs/Tee+8pNzdX0vkjUR599FHNmzdP6enp2r59uxfZASUdOWLVuHENdcstoRo3rqGOHLEGOiTUEEHT/Ojfv7+SkpK0c+dOGYahvXv3Kjk5WTfffHOgQwMAU6HeAkBw8aYux8XFKSIiotz1W7ZsUe/evWWxWBQbG6uzZ8/q1KlT2r59uzp16qSIiAhFRESoU6dO2r59u06dOqX8/HzFxsbKYrGod+/e2rx5sy/TRQ125IhVw4bZtGZNuD7/PERr1oRr2DAbDRBUiaCZ9nLHHXeoVq1aWrx4sYqLi/Xqq68qPj5et912W6BDAwBTod4CQHDxZ112Op1yOBye23a7XU6nU06nU3a73bPcZrOVufzC9oAvzJ5dX4cP1yqx7PDhWpo9u77mzz8doKhQUwRN88NisWjgwIEaOHBgoEMBAFOj3gJAcPFnXTYMo8zxyoujrO3Lk5KSopSUFElSYmJiiSZLoIWGhgZVPN4ySz5OZ9n/fjqddap9fmb5G11gtnykIGp+7Ny5s9x1v/jFL6owEgAwN+otAAQXf9Zlu92uzMxMz+2srCxFRUXJZrMpLS3Ns9zpdCouLk52u11ZWVkltrfZbGXuOz4+XvHx8Z7bF48TaA6HI6ji8ZZZ8rHZGkoKL2N5gTIzq/eRH2b5G10QbPlER0d7vY+gaX68+uqrJW5nZ2fL5XLJbrdr/vz5AYoKAMyHegsAwcWfdbl79+7697//rV69emnfvn0KDw9XVFSUunTponfffddzktNvv/1W9957ryIiIlS3bl3t3btX7du314YNGzRgwACvYgAumDw5R6mptUpMfWnVqkiTJ+dc4l6AbwRN8yM5ObnEbbfbrffff19169YNUEQAYE7UWwAILt7U5blz5yotLU05OTkaM2aMhg4dKpfLJUm65ZZb1LVrV6Wmpurxxx9XWFiYxo4dK0mKiIjQXXfdpalTp0qShgwZ4jlx6qhRo7RgwQIVFhaqS5cu6tq1qy/TRQ0WE1OslSudmj27vpzOOrLZCjR5co5iYooDHRpqgKBpfvyvkJAQDR48WGPGjNHtt98e6HAAwLSotwAQXK6kLk+YMOGS6y0Wi0aNGlXmun79+qlfv36llrdt21ZJSUkVDxi4AjExxZo///TP0yqq91QXVC9Bc6nbsnz33XcKCQnqEAHAFKi3ABBcqMsA4FtBc+THY489VuJ2YWGhCgsLy+1UAwAqh3oLAMGFugwA/hc0zY/x48eXuF27dm01a9ZM4eGlzwYMAKg86i0ABBfqMgD4X9A0P+Li4gIdAgDUCNRbAAgu1GUA8L+gaX688sorslgsl91u3LhxV7Tff/zjH1q3bp0sFotatmypsWPHKiwsrLJhAkC15696CwCoHOoyAPhf0JxFqV69etq8ebPcbrdsNpvcbrc2b96s8PBwNWnSxPNzJZxOp/71r38pMTFRSUlJcrvd2rhxo58yAGqOI0esGjeuoW65JVTjxjXUkSPWQIeEK+CPegsAqDzqMgD4X9Ac+XHixAlNmTJF1157rWfZ999/r/fff18jR46s9H7dbrcKCwtltVpVWFioqKgoX4QL1FhHjlg1bJhNhw/X+nlJuFJTa2nlSifXaK8m/FVvAQCVQ10GAP8LmiM/9u7dq/bt25dY1q5dO+3du7fS+7TZbPrtb3+rxx57TKNHj1Z4eLg6d+7sbahAjTZ7dv2LGh/nHT5cS7Nn1w9QRLhS/qi3AIDKoy4DgP8FzZEfV111ld59913dfffdCgsLU2FhoVavXq3WrVtXep+5ubnavHmzkpOTFR4erpdeekkbNmxQ7969S2yXkpKilJQUSVJiYqIcDscVjRMaGnrF9/Elxg/c+DUxd6ez7LLhdNap0lhq4mPvK/6otwCAyqMuA4D/BU3zY+zYsZo3b54efPBBRUREKDc3V23bttXjjz9e6X3u2LFDjRs3VoMGDSRJv/rVr7R3795SzY/4+HjFx8d7bmdmZl7ROA6H44rv40uMH7jxa2LuNltDSaUvvWezFSgz83SVxVFdH/vo6Gg/RHNl/FFvAQCVR10GAP8LmuZH48aN9ec//1mZmZk6deqUoqKivP5W1eFwaN++fTp37pzCwsK0Y8cOtW3b1kcRAzXT5Mk5Sk2tVWLqS6tWRZo8OSeAUeFK+KPeAgAqj7oMAP4XNM0PScrJyVFaWppOnTqlO+64Q06nU4ZhyG63V2p/7du3V48ePfTUU0/JarWqdevWJY7wAHDlYmKKtXKlU7Nn15fTWUc2W4EmT87hZKfVjDf1dsGCBUpNTVVkZKSSkpIkSXPmzNHx48clSXl5eQoPD9cLL7xQ5v3dbremTJkim82mKVOm+C4pAKjGfP05GABQUtA0P9LS0pSUlKQ2bdpoz549uuOOO5Senq6///3vXn04Hjp0qIYOHerDSAHExBRr/vzTP0/9qLqpLvANb+ttnz59NGDAACUnJ3uWTZw40fP7smXLFB5eemrUBR999JGaN2+u/Px87xIBAJPw1+dgAMB/Bc3VXt58801NmDBB06dPl9VqlXT+LNcHSqDw5AAAIABJREFUDhwIcGQAYC7e1tu4uDhFRESUuc4wDH311Vfq1atXmeuzsrKUmpqq/v37Vy54ADAhPgcDgP8FTfPj5MmT6tixY4lloaGhKi7mUHoA8CV/1tvdu3crMjJSzZo1K3P9m2++qfvvv18Wi8XrsQDALPgcDAD+FzTTXlq0aKHt27erS5cunmU7duxQTExMAKMCAPPxZ7398ssvyz3qY+vWrYqMjFSbNm20a9euS+7H20uQX1CdL0l8MfIILuQRPMyQg8TnYACoCkHT/Bg+fLief/55de3aVYWFhXrttde0detWPfnkk4EODQBMxV/1tri4WJs2bVJiYmKZ6/fs2aMtW7Zo27ZtKiwsVH5+vubNm1fmpRy9vQT5BYG+JLKvkEdwIY/g4W0OwXD5cYnPwQBQFYKm+REbG6sXXnhB//nPf1SnTh05HA7NmjWLM1wDgI/5q97u2LFD0dHR5e7n3nvv1b333itJ2rVrlz788MMyGx8AUNPwORgA/C8omh9ut1t/+tOfNH36dN1xxx2BDgcVdOSI9efLnYbKZmvI5U6BasAX9Xbu3LlKS0tTTk6OxowZo6FDh6pfv35lTnlxOp1atGiRpk6d6ovwAcB0+BwMAFUjKJofISEhysjIkGEYgQ4FFXTkiFXDhtl0+HCtn5eEKzW1llaudNIAAYKYL+rthAkTylyekJBQapnNZiuz8dGhQwd16NCh0jEAgFnwORgAqkbQXO1lyJAhev3113Xy5Em53e4SPwg+s2fXv6jxcd7hw7U0e3b9AEUEoKKotwAQXKjLAOB/QXHkhyQtWrRIkrRhw4ZS61atWlXV4eAy0tOtZS7/6aeylwMIHtRbAAgu1GUA8L+ANz9Onz6thg0bav78+YEOBVegadOyp7Y0acKUFyBYUW8BILhQlwGg6gR82ssf/vAHSVKjRo3UqFEjvfXWW57fL/wg+EyenKNWrYpKLGvVqkiTJ+cEKCIAl0O9BYDgQl0GgKoT8CM//vfkTrt27QpQJLgSMTHFWrnS+fPVXurIZivgai9AkKPeAkBwoS4DQNUJePPDYrEEOgRUUkxMsebPPy2Hw6HMzNOBDgfAZVBvASC4UJcBoOoEvPlRXFysnTt3em673e4StyXpF7/4RVWHBQCmQ70FgOBCXQaAqhPw5kdkZKReffVVz+2IiIgSty0WCyeBAgAfoN4CQHChLgNA1Ql48yM5OTnQIQBAjUC9BYDgQl0GgKoT8Ku9AAAAAAAA+FPAj/zwt7Nnz2rhwoU6evSoLBaLHnvsMcXGxgY6LAAAAAAAUEVM3/xYunSpunTpoj/+8Y9yuVw6d+5coEMCAAAAfGL79u1aunSp3G63+vfvr0GDBpVYf/LkSb366qvKzs5WRESExo8fL7vdLkl6++23tW3bNknSXXfdpZ49e0o6Px0nLS1N4eHhkqSEhAS1bt266pICAD8wdfMjLy9Pu3fvVkJCgiQpNDRUoaGmThkAAAA1hNvt1uLFizVjxgzZ7XZNnTpV3bt3V4sWLTzbLF++XL1791afPn20c+dOrVixQuPHj1dqaqoOHjyo2bNnq6ioSM8995y6dOniaXgMHz5cPXr0CFRqAOBzpj7nR0ZGhho0aKAFCxZo8uTJWrhwoQoKCgIdFgAAAOC1/fv3q2nTpmrSpIlCQ0PVs2dPbd68ucQ2P/74ozp27ChJ6tChg7Zs2eJZHhcXJ6vVqjp16qhVq1bavn17lecAAFXF1IdBFBcX6+DBgxo5cqTat2+vpUuXau3atRo2bFiJ7VJSUpSSkiJJSkxMlMPhuKJxQkNDr/g+vsT4gRu/Juce6PFrcu4AAEiS0+n0TGGRJLvdrn379pXYplWrVvrmm2902223adOmTcrPz1dOTo5atWql9957T7fffrvOnTunXbt2lThi5N1339V7772nX/ziF7rvvvtUq1atKssLAPzB1M0Pu90uu92u9u3bS5J69OihtWvXltouPj5e8fHxntuZmZlXNI7D4bji+/gS4wdu/Jqce6DHr665R0dH+yEaAEBNZBhGqWUWi6XE7eHDh2vJkiVav369rr32WtlsNlmtVnXu3FkHDhzQjBkz1KBBA8XGxspqtUqS7r33XjVs2FAul0uLFi3S3/72Nw0ZMqTUWN5+gehPZvuSwmz5SObLiXyCn6mbHw0bNpTdbtfx48cVHR2tHTt2lOhoAwAAANWV3W5XVlaW53ZWVpaioqJKbGOz2TRp0iRJUkFBgb755hvPeT0GDx6swYMHS5JefvllNW3aVJI8+6hVq5b69u2rDz/8sMzxvf0C0Z8C/SWJr5ktH8l8OZGPf/niC0RTn/NDkkaOHKl58+Zp0qRJOnTokO68885AhwQAAAB4rW3btjpx4oQyMjLkcrm0ceNGde/evcQ22dnZcrvdkqQ1a9aob9++ks6fLDUnJ0eSdPjwYR05ckSdO3eWJJ06dUrS+SNLNm/erJYtW1ZVSgDgN6Y+8kOSWrdurcTExECHAQAAAPiU1WrVyJEjNXPmTLndbvXt21ctW7bUqlWr1LZtW3Xv3l1paWlasWKFLBaLrr32Wj388MOSJJfLpWeeeUaSFB4ervHjx3umvcybN0/Z2dmSzp8zZPTo0YFJEAB8yPTNDwAAAMCsunXrpm7dupVYdvfdd3t+79GjR5mXrA0LC9OcOXPK3Oezzz7r2yABIAiYftoLAAAAAACo2Wh+AAAAAAAAU6P5AQAAAAAATI3mBwAAAAAAMDWaHwAAAAAAwNRofgAAAAAAAFOj+QEAAAAAAEyN5gcAAAAAADA1mh8AAAAAAMDUaH4AAAAAAABTo/kBAAAAAABMjeYHAAAAAAAwtdBABwAAqD4WLFig1NRURUZGKikpSZI0Z84cHT9+XJKUl5en8PBwvfDCCyXul5mZqeTkZJ0+fVoWi0Xx8fG67bbbqjx+AAAA1Ew0PwAAFdanTx8NGDBAycnJnmUTJ070/L5s2TKFh4eXup/VatXw4cPVpk0b5efna8qUKerUqZNatGhRJXEDAACgZmPaCwCgwuLi4hQREVHmOsMw9NVXX6lXr16l1kVFRalNmzaSpLp166p58+ZyOp1+jRUAAAC4gOYHAMAndu/ercjISDVr1uyS22VkZOjgwYNq165dFUUGAACAmq5GTHtxu92aMmWKbDabpkyZEuhwAMCUvvzyyzKP+rhYQUGBkpKSNGLEiDKnx1yQkpKilJQUSVJiYqIcDkelYgoNDa30fYMJeQQX8ggeZsgBAFA1akTz46OPPlLz5s2Vn58f6FAAwJSKi4u1adMmJSYmlruNy+VSUlKSbrrpJv3qV7+65P7i4+MVHx/vuZ2ZmVmpuBwOR6XvG0zII7iQR/DwNofo6GgfRgMACGamn/aSlZWl1NRU9e/fP9ChAIBp7dixQ9HR0bLb7WWuNwxDCxcuVPPmzXX77bdXcXQAAACo6Uzf/HjzzTd1//33y2KxBDoUAKj25s6dqxkzZuj48eMaM2aM1q1bJ6nsKS9Op1N/+ctfJEl79uzRhg0btHPnTj355JN68sknlZqaWuXxAwAAoGYy9bSXrVu3KjIyUm3atNGuXbvK3c7bueWBnm/K+IEbvybnHujxa3LugTRhwoQylyckJJRaZrPZNHXqVEnSNddco9WrV/s1NgAAAKA8pm5+7NmzR1u2bNG2bdtUWFio/Px8zZs3T48//niJ7bydWx7oObOMH7jxa3LugR6/uubO/HIAAACg6pm6+XHvvffq3nvvlSTt2rVLH374YanGBwAAAAAAMDfTn/MDAAAAAADUbKY+8uNiHTp0UIcOHQIdBgAAAAAAqGIc+QEAAAAAAEyN5gcAAAAAADA1mh8AAAAAAMDUaH4AAAAAAABTo/kBAAAAAABMjeYHAAAAAAAwtRpzqVsAAADAbLZv366lS5fK7Xarf//+GjRoUIn1J0+e1Kuvvqrs7GxFRERo/PjxstvtkqS3335b27ZtkyTddddd6tmzpyQpIyNDc+fOVW5urq666iqNHz9eoaH82wCgeuPIDwAAAKAacrvdWrx4saZNm6Y5c+boyy+/1I8//lhim+XLl6t379568cUXNWTIEK1YsUKSlJqaqoMHD2r27NmaOXOm/v73vysvL0/S+abIwIEDNW/ePNWrV0/r1q2r8twAwNdofgAAAADV0P79+9W0aVM1adJEoaGh6tmzpzZv3lximx9//FEdO3aUJHXo0EFbtmzxLI+Li5PValWdOnXUqlUrbd++XYZhaNeuXerRo4ckqU+fPqX2CQDVEc0PAAAAoBpyOp2eKSySZLfb5XQ6S2zTqlUrffPNN5KkTZs2KT8/Xzk5OZ5mx7lz55Sdna1du3YpKytLOTk5Cg8Pl9VqlSTZbLZS+wSA6ojJewAAAEA1ZBhGqWUWi6XE7eHDh2vJkiVav369rr32WtlsNlmtVnXu3FkHDhzQjBkz1KBBA8XGxnoaHhWVkpKilJQUSVJiYqIcDkflk/Gx0NDQoIrHW2bLRzJfTuQT/Gh+AAAAANWQ3W5XVlaW53ZWVpaioqJKbGOz2TRp0iRJUkFBgb755huFh4dLkgYPHqzBgwdLkl5++WU1bdpU9evXV15enoqLi2W1WuV0OmWz2cocPz4+XvHx8Z7bmZmZPs3PGw6HI6ji8ZbZ8pHMlxP5+Fd0dLTX+2DaCwAAAFANtW3bVidOnFBGRoZcLpc2btyo7t27l9gmOztbbrdbkrRmzRr17dtX0vmTpebk5EiSDh8+rCNHjqhz586yWCzq0KGDvv76a0nS+vXrS+0TAKojjvwAAAAAqiGr1aqRI0dq5syZcrvd6tu3r1q2bKlVq1apbdu26t69u9LS0rRixQpZLBZde+21evjhhyVJLpdLzzzzjCQpPDxc48eP90x7ue+++zR37lytXLlSV111lfr16xewHAHAV2h+AAAAANVUt27d1K1btxLL7r77bs/vPXr08Fy55WJhYWGaM2dOmfts0qSJ/vKXv/g2UAAIMKa9AAAAAAAAU6P5AQAAAAAATI3mBwAAAAAAMDVTn/MjMzNTycnJOn36tCwWi+Lj43XbbbcFOiwA1diRI1bNnl1fTmeobLaGmjw5RzExxYEOCwAAAMAlmLr5YbVaNXz4cLVp00b5+fmaMmWKOnXqpBYtWgQ6NADV0JEjVg0bZtPhw7V+XhKu1NRaWrnSSQMEAAAACGKmnvYSFRWlNm3aSJLq1q2r5s2by+l0BjgqANXV7Nn1L2p8nHf4cC3Nnl0/QBEBAAAAqAhTH/lxsYyMDB08eFDt2rUrtS4lJUUpKSmSpMTERDkcjivad2ho6BXfx5cYP3Dj1+TcAz1+IMZ2OssumU5nnYD+HQAAAABcWo1ofhQUFCgpKUkjRoxQeHh4qfXx8fGKj4/33M7MzLyi/Tscjiu+jy8xfuDGr8m5B3r8QIxtszWUVLqG2GwFysw8XaF9REdH+zgqAAAAAJdj6mkvkuRyuZSUlKSbbrpJv/rVrwIdDoBqbPLkHLVqVVRiWatWRZo8OSdAEQEAAACoCFMf+WEYhhYuXKjmzZvr9ttvD3Q4AKq5mJhirVzp/PlqL3VksxVwtRcAAACgGjB182PPnj3asGGDYmJi9OSTT0qS7rnnHnXr1i3AkQGormJiijV//umfp91UbKoLAAAAgMAydfPjmmuu0erVqwMdBgAAAAAACCDTn/MDAAAAAADUbKY+8gMA4HsLFixQamqqIiMjlZSUJEmaM2eOjh8/LknKy8tTeHi4XnjhhVL33b59u5YuXSq3263+/ftr0KBBVRo7AAAAaiaaHwCAK9KnTx8NGDBAycnJnmUTJ070/L5s2bIyLyvudru1ePFizZgxQ3a7XVOnTlX37t3VokULn8d45Ij15xPThspma8iJaQEAAGo4pr0AAK5IXFycIiIiylxnGIa++uor9erVq9S6/fv3q2nTpmrSpIlCQ0PVs2dPbd682efxHTli1bBhNq1ZE67PPw/RmjXhGjbMpiNHrD4fCwAAANUDzQ8vHDli1bhxDXXLLaEaN64hH6wB1Hi7d+9WZGSkmjVrVmqd0+mU3W733Lbb7XI6nT6PYfbs+jp8uFaJZYcP19Ls2fV9PhYAAACqB6a9VNKFbxb/+wE7XKmptbRypZNDqwHUWF9++WWZR31I548K+V8Wi6XMbVNSUpSSkiJJSkxMlMPhqHAMTmfZb21OZ50r2k8wCQ0NrbaxX4w8gosZ8jBDDgCAqkHzo5Iu9c3i/PmnAxQVAAROcXGxNm3apMTExDLX2+12ZWVleW5nZWUpKiqqzG3j4+MVHx/vuZ2ZmVnhOGy2hpJKn3PEZitQZmb1rM8Oh+OKHoNgRR7BxQx5eJtDdHS0D6MBAAQzpr1UUnp62VNcfvqJqS8AaqYdO3YoOjq6xNSWi7Vt21YnTpxQRkaGXC6XNm7cqO7du/s8jsmTc9SqVVGJZa1aFWny5ByfjwUAAIDqgSM/Kqlp07KntjRpwpQXAOY2d+5cpaWlKScnR2PGjNHQoUPVr1+/Mqe8OJ1OLVq0SFOnTpXVatXIkSM1c+ZMud1u9e3bVy1btvR5fDExxVq50vnz1V7qyGYr4GovAAAANRzNj0qaPDlHqam1Skx94ZtFADXBhAkTylyekJBQapnNZtPUqVM9t7t166Zu3br5LbYLYmKKNX/+6Z8Pia+eU10AAADgOzQ/KolvFgEAAAAAqB5ofniBbxYBAAAAAAh+nPAUAAAAAACYGs0PAAAAAABgajQ/AAAAAACAqdH8AAAAAAAApkbzAwAAAAAAmBrNDwAAAAAAYGoWwzCMQAcBAAAAAADgLxz54QNTpkxh/Bo6fk3OPdDj1+TcUXFm+TuRR3Ahj+BhhhzgH2Z7bpgtH8l8OZFP8KP5AQAAAAAATI3mBwAAAAAAMDXrc88991yggzCDNm3aMH4NHb8m5x7o8Wty7qg4s/ydyCO4kEfwMEMO8A+zPTfMlo9kvpzIJ7hxwlMAAAAAAGBqTHsBAAAAAACmFhroAKqrlStXasuWLbJYLIqMjNTYsWNls9lKbbd+/Xp98MEHkqTBgwerT58+Xo+9fPlybd26VaGhoWrSpInGjh2revXqldouISFBderUUUhIiKxWqxITE70e+0rG3759u5YuXSq3263+/ftr0KBBXo/91Vdf6a9//auOHTumWbNmqW3btmVu56/cKzq+P3KXpNzcXM2ZM0cnT55Uo0aNNHHiREVERJTa7u6771ZMTIwkyeFw6Kmnnqr0mJfLpaioSPPnz9cPP/yg+vXra8KECWrcuHGlx7vS8devX6/ly5d7Xn8DBgxQ//79fTL2ggULlJqaqsjISCUlJZVabxiGli5dqm3btql27doaO3as6Q4PrG4C/Rr1lYq+1t9++22lpqbKMAx17NhRDz30kCwWSwAiLltF88jMzNTChQuVlZUlSZo6dapP64i3KpqHJOXl5WnixIm6/vrr9fDDD1dxpJdWkTwOHTqk119/Xfn5+QoJCdHgwYPVs2fPAEX8X4F+L0LwqOjrsbzP4O+++642bNig3NxcLV++3LN9oJ5D3ubzww8/KDk5WYWFheratavnfWD16tX69NNP1aBBA0nSPffco27duvktD29eo2vWrNG6desUEhKihx56SF26dKnQPv3JH/n46/8Tf+eUk5Ojl156Sfv371efPn1KvLeV9/wLWgYq5ezZs57f//nPfxqLFi0qtU1OTo6RkJBg5OTklPjdW9u3bzdcLpdhGIaxfPlyY/ny5WVuN3bsWOPMmTNej1eZ8YuLi41x48YZ6enpRlFRkTFp0iTj6NGjXo999OhR49ixY8azzz5r7N+/v9zt/JV7Rcb3V+6Gcf7xXrNmjWEYhrFmzZpy//b333+/T8arSC7//ve/Pc//L774wnjppZd8MnZFx//ss8+MN954w2djXmzXrl3GgQMHjCeeeKLM9Vu3bjVmzpxpuN1uY8+ePcbUqVP9EgcqLtCvUV+pyGv9+++/N2bMmGEUFxcbxcXFxrRp04ydO3dWdaiXVNGa9eyzzxrffvutYRiGkZ+fbxQUFFRZjBVR0TwMwzCWLFlizJ071291yRsVyePYsWPG8ePHDcMwjKysLOORRx4xcnNzqzTO/xXo9yIEl4o8jy/1GXzPnj2G0+ks9VkpUM8hb/OZMmWKsWfPHsPtdhszZ840UlNTDcMwjFWrVhl/+9vfqiQHb16jR48eNSZNmmQUFhYaP/30kzFu3DjP+1qg3qv9kY9h+O//k4rwJqf8/Hxj9+7dxscff1zqva2851+wYtpLJYWHh3t+P3fuXJkdru3bt6tTp06KiIhQRESEOnXqpO3bt3s9dufOnWW1WiVJsbGxcjqdXu/T1+Pv379fTZs2VZMmTRQaGqqePXtq8+bNXo/dokULRUdHe70ff47vr9wlafPmzfr1r38tSfr1r3/ts/2WpyK5bNmyxfPtQ48ePbRz504ZPjqVkD8fy4qIi4sr99td6XzuvXv3lsViUWxsrM6ePatTp05VWXwoLdCvUV+pyGvdYrGosLBQLpdLRUVFKi4uVmRkZFWHekkVyePHH39UcXGxOnXqJEmqU6eOateuXaVxXk5Fa+8PP/ygM2fOqHPnzlUZXoVVJI/o6Gg1a9ZMkmSz2RQZGans7OwqjfN/Bfq9CMGlIs/jS30Gj42NVVRUVKn7BOo55E0+p06dUn5+vmJjY2WxWNS7d++AvJ958xrdvHmzevbsqVq1aqlx48Zq2rSp9u/fH9D3an/kE2je5FSnTh1dc801CgsLK7F9sDz/rgTTXrxw4bC58PBwPfvss6XWO51O2e12z22bzebzRsW6desueTjqzJkzJUk333yz4uPjfTr2pcb/39ztdrv27dvn8/Evxd+5l8efuZ85c8bzhh0VFVXuB9KioiJNmTJFVqtVd9xxh66//vpKjVeRXC7exmq1Kjw8XDk5OZ7DLL1R0cfym2++0e7du9WsWTM9+OCDcjgcXo9d0fguHstut8vpdJb5oQrBIxjq0+VU5LUeGxurDh06aPTo0TIMQwMGDFCLFi2qOtRLqkgex48fV7169fTiiy8qIyNDHTt21H333aeQkOD5fqYiebjdbi1btkzjxo3Tzp07qzrECqnoe8gF+/fvl8vlUpMmTaoivHIF+r0IwaUiz+PKfAYP1HPIm3zKem1cnOfHH3+sDRs2qE2bNnrggQcu+YWON7x5jTqdTrVv375Ubhf2c6l9+ou/8pGC+/+TK30NXO75F4xoflzC//3f/+n06dOllg8bNky//OUvdc899+iee+7RmjVr9O9//1tDhw697D4rOgfqcmNL0gcffCCr1aqbbrqp3H3YbDadOXNGf/7znxUdHa24uLgqGb+sTrkvc6/IPvyZ+6V4k/vlxq+oBQsWyGaz6aefftKf/vQnxcTEqGnTphW+/wUVycXbfL0d/7rrrlOvXr1Uq1YtffLJJ0pOTi6zGekP/swd5Qv0a9RXvH2tp6en69ixY1q4cKFnf2lpaRWudb7ibR5ut1u7d+/W7Nmz5XA4NGfOHK1fv179+vXzdaiX5G0en3zyibp27Vplzdfy+OI9RDr/jd4rr7yihISEgDeiAv1ehKrnq+fxxS73fPDnc8hf+VzqyJRbbrlFQ4YMkSStWrVKy5Yt09ixYys93qV48xotL4dAvqb9kY/k3f8n3vJHHa2OR9fR/LiEp59+ukLb3XjjjUpMTCzV/LDZbEpLS/PcdjqdFX6CX27s9evXa+vWrXrmmWfKfVJeOAFkZGSkfvnLX2r//v1VNr7dbvecuE6SsrKyKvxteEUf90vxZ+6X403ulxs/MjJSp06dUlRUlE6dOlVuJ/ZC/k2aNFFcXJwOHTpUqeZHRXK5sI3dbldxcbHy8vJ89s1CRcavX7++5/f4+Hi98847Phm7ovFlZmZeMj74XqBfo77i7Wt906ZNat++verUqSNJ6tq1q/bt21flzQ9v87DZbLrqqqs8Rxdcf/312rt3b5U3P7zNY+/evdq9e7c++eQTFRQUyOVyqU6dOrrvvvv8GXYpvngPycvLU2JiooYNG6bY2Fh/hVphgX4vQtXzRV250s/g/nwO+Sufsl4bFz4DNmzY0LO8f//+ev75532RSpm8eY3+732dTqcnh0C9V/srH2/+P/GWP+ropZ5/wSp4jimtZk6cOOH5fcuWLWXOMe/SpYu+/fZb5ebmKjc3V99++63nbL/e2L59u/72t7/pqaeeKndedEFBgfLz8z2/f/fdd56rf1TF+G3bttWJEyeUkZEhl8uljRs3qnv37j4Z/3L8mXtF+DP37t276/PPP5ckff7552V+y52bm6uioiJJUnZ2tvbs2VPpQ+Erkst1112n9evXS5K+/vprdejQwWed+YqMf/E5NrZs2VKlh/13795dGzZskGEY2rt3r8LDw2l+VAOBrE8VVZHXusPh0O7du1VcXCyXy6W0tDQ1b968qkO9pIrk0a5dO509e9ZzqPfOnTuDbvpORfJ4/PHH9eqrryo5OVnDhw9X7969q7zxcTkVycPlcunFF19U7969dcMNN1R1iGUK9HsRgktFnseV+QweqOeQN/lERUWpbt262rt3rwzD0IYNGzyvjYs/H23atEktW7b0Ww7evEa7d++ujRs3qqioSBkZGTpx4oTatWsX0Pdqf+RTHf4/udLXwKWef8HKYlTH41WCwIsvvqgTJ07IYrHI4XBo9OjRstlsOnDggP7f//t/GjNmjKTz58RYs2aNpPOXperbt6/XY48fP14ul8vTiWvfvr1Gjx4tp9OpRYsWaerUqfrpp5/04osvSpKKi4t14403avDgwV6PXdHxJSk1NVVvvfWW3G63+vbt65PxN23apCVLlig7O1v16tVT69atNX369CrLvSLjS/7JXZJycnI0Z84cZWZmyuFw6IknnlBERESJ592ePXv02msGX7hUAAAgAElEQVSvKSQkRG63WwMHDvTqG9Syclm1apXatm2r7t27q7CwUPPnz9fBgwcVERGhCRMm+HR++OXGX7FihbZs2SKr1aqIiAiNGjXKZ/8Azp07V2lpacrJyVFkZKSGDh0ql8sl6fzhpIZhaPHixfr2228VFhamsWPHlntpVVSNQL9GfaUir3W326033nhDu3fvlnT+w/GDDz4Y4MhLqkgekvTdd99p2bJlMgxDbdq00aOPPqrQ0OA5OLWieVywfv16HThwIOgudVuRPDZs2KBXX321RAMqISFBrVu3DlzgCvx7EYJHRV+P5X0Gf/vtt/XFF194jrbo16+fhg4dGrDnkLf5HDhwQAsWLFBhYaG6dOmikSNHymKx6JVXXtGhQ4dksVjUqFEjjR492q9f0HjzGv3ggw/02WefKSQkRCNGjFDXrl3L3WdV8XU+/vz/pCpySkhIUF5enlwul+rVq6cZM2aoRYsW5T7/ghXNDwAAAAAAYGpMewEAAAAAAKZG8wMAAAAAAJgazQ8AAAAAAGBqND8AAAAAAICpBc+p1AEAAAAAQFBbvXq1Pv30UzVo0ECSdM8996hbt26ltluwYIFSU1MVGRmppKSky+43LS1Nb731lg4fPqwJEyaoR48ePo2bIz9Qymuvvab33nvPc/uTTz7RI488ouHDhysnJ0fff/+9Hn/8cQ0fPlybNm0KYKTmt2vXrlKXUDSL1atXa968eYEOAwh61OTgQU0GcCnU6+BBvfadXbt2KTk5udTygQMH6oUXXtALL7xQZuNDkvr06aNp06ZVeCyHw6GxY8fqxhtvrHS8l8KRHzVMQkKCTp8+LavVqpCQELVo0UK9e/dWfHy8QkLO98JGjx7t2d7lcumtt97SzJkz1bp1a0nnX3ADBgzQbbfdFogUqo1du3bplVde0cKFCwMdStDLyMjQuHHj9O6778pqtQY6HKDKUJOrDjW54qjJQGnU66pDva64YK/XcXFxysjIKLU8PT1dixcvVnZ2tmrXrq1HH31UzZs3V+PGjSVJFovFL/HQ/KiBnnrqKXXq1El5eXlKS0vT0qVLtX//fo0dO7bUtmfOnFFRUZFatmzpWXby5Em1aNGiUmMXFxcH5QszUIL98Qj2+AAzoCYHj2B/PII9PsDsqNfBI9gfj2CPzxc+/vhjbdiwQW3atNEDDzygiIiICt/3tdde0yOPPKJmzZpp3759euONN/Tss8/6MdrzaH7UYOHh4erevbsaNmyo6dOn6/bbb1dMTIySk5Nlt9vVu3dvPfXUU5KkESNGqF27dsrMzFRGRoaef/55hYSEaMmSJSoqKtJbb72lbdu2yWKxqG/fvho6dKhCQkK0fv16ffrpp2rbtq0+//xz/eY3v9GwYcO0bt06ffjhhzp9+rTatWun0aNHq1GjRpKkoUOHatSoUfrHP/6hnJwc9erVSw8//LCnA5iSkqJ//vOfysrKkt1u1/jx49WmTRs5nU4tWbJEu3fvVp06dTRw4MAKd9YLCwu1cuVKff311zp79qxiYmL09NNPKywsTFu2bNGKFSvkdDrVunVrjRo1yvPGlZCQoN/85jfasGGDTp48qS5duighIUFut1uzZs2Sy+XS8OHDJUkvv/yyUlJSdPToUdWqVUtbt27VAw88oN69e+udd97RV199JUm64YYbdN9996lWrVqXjPm1115TnTp19MADD3iWzZ49W3Fxcbr99tu1du1a/etf/1J+fr6ioqI0atQodezY8bKPRUJCgm6++WZ98cUXOn78uJYvX64zZ86U+9ju379fb7zxhk6cOKGwsDDdeOONevDBB8vs2ickJOjRRx9Vp06dSox5odiNGDFCkvT0008rNjb2srECZkJN/i9q8n9Rk4HgQ73+L+r1f5mtXk+bNk1FRUUqKChQbm6unnzySUnSfffdp1tuuUVDhgyRJK1atUrLli0rswlYloKCAu3Zs0cvvfSSZ5nL5fJJzJdloEYZO3as8e2335ZaPmbMGOPjjz82DMMw5s+fb7z77ruGYRjGTz/9ZPz+9783XC5Xuft4/vnnjUWLFhn5+fnG6dOnjSlTphiffPKJYRiG8dlnnxl333238dFHHxkul8s4d+6c8c033xjjxo0zjh49arhcLuO9994zpk+f7tnf73//e+Mvf/mLkZuba5w8edIYOXKksW3bNsMwDGPjxo3G6NGjjX379hlut9s4ceKEkZGRYRQXFxuTJ082/vrXvxpFRUVGenq6kZCQ4Lnf7t27jQcffLDcx+X11183nn32WSMrK8soLi42vv/+e6OwsNA4duyYcf/99xvffvutUVRUZKxdu9YYN26cUVRU5HkspkyZYmRlZRk5OTnGhAkTPI/jzp07jUcffbTEOKtWrTKGDRtmfPPNN0ZxcbFx7tw5Y+XKlca0adOM06dPG2fOnDGmT5/uefzL2scFu3btMsaMGWO43W7DMAwjJyfHuPfee42srCzj2LFjxpgxY4ysrCzP3/HEiRPl5n+xsWPHGpMmTTJOnjxpnDt37rKP7bRp04zPP//cMAzDyM/PN/bs2VNu7Bc/d1atWmW8/PLLnvj+93kG1ATU5LJRk/+LmgwEB+p12ajX/2XWer1z505j/vz55a7/6aefjCeeeKLC68+ePWs88sgjlxxz/vz5xldffXXlwV4GJzyFJMlmsyk3N/eK73f69Glt375dI0aMUJ06dRQZGamBAwdq48aNnm2ioqJ06623ymq1KiwsTCkpKbrzzjvVokULWa1W3XnnnTp06JBOnjzpuc+gQYNUr149ORwOdejQQYcOHZIkrVu3TnfccYfatWsni8Wipk2bqlGjRjpw4ICys7M1ZMgQhYaGqkmTJurfv78njmuuuUZvvvlmmTm43W599tlnGjFihGw2m0JCQnT11VerVq1a2rhxo7p27apOnTopNDRUv/3tb1VYWKg9e/Z47n/rrbfKZrMpIiJC1113nSfW8sTGxur6669XSEiIwsLC9MUXX+iuu+5SZGSkGjRooCFDhug///nPZR/7a6+9VpK0e/duSdLXX3+t2NhYTw5FRUX68ccf5XK51LhxYzVt2vSy+7w4J4fDobCwsMs+tqGhoUpPT1d2drbq1KnDt4OAD1CTqckXoyYDwYt6Tb2+WE2p16dOnfL8vmnTphLTuy4nPDxcjRs39hyxYxjGZf/2vsK0F0iSnE7nFc3TuiAzM1PFxcUlTvBkGIbsdrvntsPhKHGfkydPaunSpVq2bFmJ+zidTs9hew0bNvSsq127tgoKCjzjNWnSpFQcJ0+e1KlTpzyHfEnnC/KF4nYpOTk5KioqKrOwnTp1yhOTJIWEhMjhcMjpdHqWXRxrWFhYiXVlufixkVQib0lq1KjRZfchnT8RUK9evfTll18qLi5OX375pW666SZJUtOmTTVixAj99a9/1Y8//qjOnTvrgQcekM1mu+x+pZJ/s8s9tmPGjNGqVas0ceJENW7cWEOGDNF1111XoXEAlI2aTE2+GDUZCF7Ua+r1xWpKvX777bd16NAhWSwWNWrUyPM8djqdWrRokaZOnSpJmjt3rtLS0pSTk6MxY8Zo6NCh6tevnx5//HG9/vrr+uCDD+RyudSrVy+1bt1a+/fv14svvqizZ89q69atWr16dYnpMd6i+QHt379fTqdT11xzzRXf1263KzQ0VIsXL67wSX0cDocGDx7sKTJXwuFw6KeffipzeePGjSt12af69eurVq1aSk9P95yN+4KoqCgdOXLEc9swDGVmZlaoAFb0LMU2m00nT570dEwrun9J6tWrl/785z9r0KBB2rdvnyZNmuRZd+ONN+rGG29UXl6eXnvtNb3zzjsaP358hfZ7scs9ts2aNdOECRPkdru1adMmvfTSS1q8eLFq166tc+fOebZzu93Kzs4ucx/+OqMzUB1Rk6nJl0JNBoIH9Zp6fSlmqdcdOnRQhw4dSiwr7/Gw2WyexockTZgwocztGjdurOnTp5da3q5dO79e5YdpLzVYXl6etm7dqpdfflk33XSTYmJirngfUVFR6ty5s5YtW6a8vDy53W6lp6crLS2t3PvcfPPNWrt2rY4ePeqJ48JhT5fTr18/ffjhh/rhhx9kGIbS09N18uRJtWvXTnXr1tXatWtVWFgot9utI0eOaP/+/ZfdZ0hIiPr27atly5bJ6XTK7XZr7969KioqUs+ePbVt2zbt2LFDLpdLH374oWrVqqWrr776svuNjIxUTk6O8vLyLrldr1699MEHHyg7O1vZ2dl67733KvymdtVVV6lBgwZauHChOnfurHr16kmSjh8/rp07d6qoqEhhYWEKCwvzXIbtSl3usd2wYYOys7MVEhKi8PBwSecf0+joaBUVFSk1NVUul0vvv/++ioqKyhyjQYMGslgsZb4pAzUFNfk8avKlUZOBwKNen0e9vjTqdfDhyI8a6Pnnn5fVapXFYlGLFi00cOBA3XLLLZXe37hx4/TOO+/oiSeeUH5+vpo0aaI77rij3O2vv/56FRQUaO7cucrMzFR4eLg6duyoG2644bJj3XDDDcrJydHLL78sp9Opxo0ba9y4cWrUqJGeeuopLVu2TAkJCXK5XIqOjtbdd98t6fycvlmzZmn58uVl7veBBx7QihUrNHXqVBUUFKh169aaPn26oqOjNX78eC1ZssRzpuqnnnpKoaGXf+k0b95cvXr10rhx4+R2u8s9ZGvw4MHKy8vzdJx79OihwYMHX3b/F/Tq1UurV6/WxIkTPcuKior0zjvv6NixY7Jarbr66qs9h6P95z//0Zo1ayp8CFlISMglH9vt27dr2bJlOnfunBo1aqQ//OEPnjeLUaNGaeHChXK73frd735X6nDFC2rXrq3Bgwfr6aefVnFxsaZNm1at5j0C3qAml0ZNLh81GQgc6nVp1OvyUa+Dj8UwDCPQQQAAAAAAAPgL014AAAAAAICp0fwAAAAAAACmRvMDAAAAAACYGs0PAAAAAABgajQ/AAAAAACAqdH8AAAAAAAApkbzAwAAAAAAmBrNDwAAAAAAYGo0PwAAAAAAgKnR/AAAAAAAAKZG8wMAAAAAAJgazQ8AAAAAAGBqND8AAAAAAICp0fwAAAAAAACmRvMDAAAAAACYGs0PAAAAAABgajQ/AAAAAACAqdH8AAAAAAAApkbzAwAAAAAAmBrNDwAAAAAAYGo0PwAAAAAAgKnR/AAAAAAAAKZG8wMAAAAAAJgazQ8AAAAAAGBqND8AAAAAAICp0fwAAAAAAACmRvMDAAAAAACYGs0PAAAAAABgajQ/AAAAAACAqdH8AAAAAAAApkbzAwAAAAAAmBrNDwAAAAAAYGo0PwAAAAAAgKnR/AAAAAAAAKZG8wMAAAAAAJgazQ8AAAAAAGBqND8AAAAAAICp0fwAAAAAAACmRvMDAAAAAACYGs0PAAAAAABgajQ/AAAAAACAqdH8AAAAAAAApkbzAwAAAAAAmBrNDwAAAAAAYGo0PwAAAAAAgKnR/AAAAAAAAKZG8wMAAAAAAJgazQ8AAAAAAGBqND8AAAAAAICp0fwAAAAAAACmRvMDAAAAAACYGs0PAAAAAABgajQ/AAAAAACAqdH8AAAAAAAApkbzAwAAAAAAmBrNDwAAAAAAYGo0PwAAAAAAgKnR/AAAAAAAAKZG8wMAAAAAAJgazQ8AAAAAAGBqND8AAAAAAICp0fwAAAAAAACmRvMDAAAAAACYGs0PAAAAAABgajQ/AAAAAACAqdH8AAAAAAAApkbzAwAAAAAAmBrNDwAAAAAAYGo0PwAAAAAAgKnR/AAAAAAAAKZG8wMAAAAAAJgazQ8AAAAAAGBqND8AAAAAAICp0fwAAAAAAACmRvMDAAAAAACYGs0PAAAAAABgajQ/AAAAAACAqdH8AAAAAAAApkbzAwAAAAAAmBrNDwAAAAAAYGo0PwAAAAAAgKnR/ACqkeeee07t2rULdBgAgJ9RlwGgeqBeg+ZHNTFixAhZLBZZLBZZrVa1aNFCDzzwgI4dO1budhf/RERElNjO6XRq6tSpiouLU3h4uKKiotSlSxdNnz5dR48eLbG/+Pj4EvfNycnR9OnTdfXVV6t27dqKiorSrbfeqvXr15fYbv369bJYLGrRooXy8vJKxfm/+/XG+vXrdeuttyoqKkq1a9fW1VdfrenTpysnJ8dnY1SlL774QhaLRYcOHSqxfNKkSfr666/9OvaFv9ulfkaMGOHXGC7nhx9+0KhRo9SuXTvVrVtXLVu21KhRo5Senh7QuFCzUJcvjbrsO9WhLkvS0KFD1aZNG9WtW1cOh0O/+c1vtHnz5kCHBVCvL4N67TvVpV5fbNiwYbJYLHrxxRcDHYrf0fyoRm666SadOHFCR44c0YoVK7Rt2zb9/ve/L3e7i39++P/s3XucznX+//HnNSdjDGMOImcGZUS004lWZKJNtw6SlNR2shqHrb5tVDpsRUo2OZWIFUvKYWurVTsktXIYjDBKqHE2zIWZwZjD9f794edaVzPDjPlcM5/r43G/3eaWz/n9unzmeV29fD6fa8cO7/Jdu3apQ4cO+uijj/TMM89o5cqVWrVqlV577TVlZWWd9cTPzs5Wp06dNG/ePL366qvaunWrvv76a7Vs2VLdunXT9OnTi23jdrv1xhtvWPMilOD9999Xt27d1KJFCy1dulRbt27VyJEjNW/ePHXq1EnZ2dl+O3Zli4yMVFxcnF+P0bFjR59zZ9iwYWrYsKHPvLffftuvYziXLVu2qKCgQBMmTNCmTZs0e/Zspaam6uabb5YxpkrHhgsLuVwyctlagZDLktSpUyd98MEH2rJli5YsWaI6deooKSlJmZmZVT00gLwuBXltrUDJ69PeffddZWRk+P11sQ2DgPDAAw+Ybt26+cwbP368kWSOHj161vV+65ZbbjH16tXz2e5MHo+n1P0NGTLEhIeHm19//bXYdgMHDjTh4eFmz549xhhjvv76ayPJPPfccyYiIsLs3r27XOMsiz179phq1aqZxx57rNiyX3/91YSHh5shQ4Z45xUUFJi//vWvpnnz5iYsLMzUr1/fDB482Ls8JyfH/PnPfzYNGzY0YWFhpkmTJmbkyJHGGGN++eUXI8l8++23PseJj483L774ondakhk3bpzp1auXiYiIMBdffLEZO3aszzbjxo0zl19+ualRo4apW7euufvuu83evXt9jnPmz/XXX2+MMebFF1808fHxPvv6+9//blq3bm3CwsJMgwYNzHPPPWcKCgq8y6+//nrz8MMPm5dfftnUrVvXREdHmwceeMDk5uaW6TV+5ZVXTJMmTYrNv+qqq3xeW2OMKSwsNA0bNjSvvfaaMcaYu+++2/Ts2dOMHj3a1KtXz0RERJg+ffqYw4cP+2z3wQcfmLZt25pq1aqZpk2bmr/85S/m+PHjZRrfad99952RZLZu3Vqu7YDzRS6XjFwml0/bv3+/kWQWL15cru0Aq5HXJSOvL+y8TktLM3Xr1jW//PKLqVu3rhkzZkyZagpkXPkRoPbu3av58+crODhYwcHBZd7O7Xbriy++0JAhQ1SrVq0S13G5XCXON8boH//4h/r166cmTZoUW/7ss88qLy9P8+fP95n/6KOPqlmzZnr22WfLPM6y+vjjj3Xy5MkS992kSRPde++9mjNnjvdqgIcfflgTJ07USy+9pPT0dC1YsEDNmzf31nfLLbfo008/1YQJE7RlyxZ98MEHqlOnTrnH9de//lVdunTR+vXrNWzYMD399NNauHChzzpvvvmmNm7cqEWLFmnnzp3q27evJKlRo0b65JNPJEmrV6/Wvn37im172ueff66HHnpI/fv318aNGzV27FhNmjRJf/3rX33Wmz9/vtxut5YtW6Y5c+bon//8Z4X/FWHgwIGaPXu28vLyvPMWL16s/fv3+1zOt3z5cq1Zs0b/+c9/9K9//UurV6/WgAEDvMvfffddPfHEExo+fLjS09M1ffp0ffbZZxo6dGi5xnP06FFJUmxsbIXqAs4XuXwKuUwuS9KJEyf0zjvvKCoqSh06dKhQXYDVyOtTyOsLN69zcnLUp08fjR8/Xk2bNq1QLQGlytouKJcHHnjABAcHmxo1apjq1at7O5n/93//V+p6Z/7ccsstxhhjVq1aZSSZhQsX+mx37bXXetdNSEjw2d/pzvKBAweMJPO3v/2t1HHWqlXLJCcnG2P+17HetWuXWbx4sXG5XCY1NbXYfiviscceM7Vq1Sp1+dixY40kk5mZaX7++WcjyXz88cclrpuSkmIkmTVr1pS4vDwd6/vuu89nnXvuucd06tSp1HGuW7fOSPJ29b/99lsjyfzyyy8+6/22Y33dddeZu+66y2edcePGmfDwcHPy5EljzKmOddu2bX3W+dOf/mSuueaaUsdzptI61seOHTNRUVFm1qxZ3nm333676dWrl3f67rvvNlFRUSYnJ8c775NPPjEul8tkZGQYj8dj6tWrZ2bMmOGz7y+//NK4XC5z7NixMo3x6NGjJiEhwfTr169M6wNWIJdLRi5f2Lk8duxYU6NGDeNyuUzjxo3N2rVry1QT4E/kdcnI6ws3r++55x7z6KOPeqe58gO2c/XVVystLU2rV6/W888/r2uuuUavvPJKqeud+TNlyhRJKvV5CPPmzVNaWpoGDBigY8eOlbhOaduWZZ0ePXqoR48eevLJJ8+5D0kaNWqUIiMjvT/ffvvteY/ptHXr1kmSunfvXuLytWvXKjo6WomJiWXeZ2muvfZan+lOnTopPT3dO71s2TL16NFDjRo1Us2aNXXddddJkjIyMsp1nM2bN6tz584+866//nrl5eVp+/bt3nnt27f3WadBgwY6cOBAuY71WxEREerfv7+mTp0qSdq/f78+++wzPfrooz7rtWvXzudBYZ06dZIxRj/++KN2796t/fv3Kzk52efv+4477pAxxqeG0uTk5Khnz56qVauW3n333QrVBJQXuXx+YzqNXP4fp+TyQw89pLS0NC1fvlzXXXed7rzzTu3bt69CdQFWIK/Pb0ynkdf/E+h5PW3aNG3YsEHjxo2rUA2BKKSqB4Cyq169uvfrmS677DJt3bpVgwYNKvZwpDPX+62WLVsqKChI6enpuuOOO7zzGzVqJEmKiYkp9fh16tRRdHS0Nm3aVOLyXbt2KScnR5dcckmJy8eOHavLL79cCxYsKL3I/2/gwIHq06ePd7pBgwYlrnfJJZcoOztbu3bt8tZwps2bNysmJqbMD/Ep7VJFSQoKOtUr/O0bRUFBwTn3e+Y2O3fu1M0336z+/fvrhRdeUFxcnHbv3q2kpCTl5+eXaZxnG/PpY505PywsrNg2Ho+n3Mf6rYEDB6pt27b66aeftGjRIjVo0KDUN8Xfjk+SdwzvvvuuOnbsWGzdkv5Oz+R2u/WHP/xBoaGh+uqrr4o9jR3wN3K5OHL5ws7l2rVrq3bt2mrRooU6deqkZs2aacqUKXrppZfKXwxgIfK6OPL6wszrlJQUbdmyxefWraKiIg0bNkyvvvqqjhw5cj7lBASu/AhgL730kmbOnKnU1NQybxMTE6M//OEPmjBhgvcZCWUVFBTkvfevpM7qqFGjVK1aNfXu3bvE7RMSEvToo49q2LBh5wynmJgYtWjRwvtTvXr1Ete76667VK1aNb322mvFlmVkZGjOnDnq16+fXC6XrrjiCknSV199VeK+fve738ntdpf6ep6+Z3Hv3r3eeZmZmcW+Jk1Ssa/R+v7779W6dWtJ0po1a3TixAmNGzdOnTp10iWXXFKse3w6ZIuKikocy2lt2rTRN9984zNv+fLlql69uvceTH9q06aNOnbsqKlTp+r999/Xww8/7H1zO23jxo0+/wry/fffy+Vy6dJLL1WjRo100UUXaevWrT5/36d/qlWrVuqxDxw4oC5duqhGjRpavHixatas6bc6gbIil8nlCzmXS2KM0cmTJy2pDbASeU1eX6h5/eabb+qHH37wubopNjZWTzzxhL7//nu/1lzlKuHWGligtHv7br31VpOUlOSz3u9//3uzb9++Yj+nnz6dkZFhGjZsaJo1a2ZmzpxpNmzYYLZv326++OILc/XVV5vmzZuXetzDhw+bhIQEEx8fbz7++GOTkZFh0tLSzNChQ01QUJCZNm2ad90z71U87eDBgyYqKspUr17dknsVjTFmypQpJigoyAwePNikpaWZjIwMM3/+fNOiRQvTtm1bn6dx9+vXz9SpU8fMmjXLbNu2zaxevdqMGzfOGHPq6dy///3vTfPmzc0///lPs2PHDvPdd9+ZqVOnerfv1KmTueKKK0xaWppJTU01PXr0MBEREcXuVYyOjjYTJkwwW7duNePHjzfBwcHeeyQ3bNhgXC6XeeWVV8yOHTvMokWLzCWXXGIkma+//toYc+oJ+UFBQWb8+PHmwIED5siRI8aY4vcqfv755yYoKMi89tpr5qeffjLz5s0ztWvXNiNGjPCuc/op1Wcq7f7Dkpxr3Q8++MCEhYWZ4OBgnyeRG3PqXsWaNWuau+66y2zcuNEsXbrUNGvWzNx5553edd577z1TrVo189prr5nNmzebLVu2mAULFnjveS3Jzp07TYsWLczVV19tduzY4XOe5+fnl6kuoKLI5dKRyxdeLq9du9aMHTvWrF271mRkZJhVq1aZ++67z4SFhZm0tLQy1QX4C3ldOvL6wsvrklwoz/yg+REgSgvt01/vmZKS4l1Pv/l6p9M/Bw8e9G538OBB8/TTT5tLL73UhIeHm/DwcNO6dWvz+OOP+zwcqKTjHj161AwfPty0aNHChIaGmqioKNOjRw+zdOlSn/VKCm1jjBkzZoyRZFloG3PqIUvdu3c3UVFRJjQ01LRo0cI888wzJjs722e9/Px8M2LECNOkSRMTGhpqGjRoYP785z97l2dnZ5vBgwebevXqmdDQUNO0aVPv100ZY2C4AIkAACAASURBVMxPP/1kOnfubCIiIkyLFi3MggULSnxQ01tvvWVuu+02U716dVOvXj3zxhtv+Ixj4sSJpmHDhiY8PNx06tTJ/Pvf//YJbWOMef311039+vVNUFDQOb+i69JLLzWhoaGmfv365tlnny3xK7rOZGVonzhxwtSuXdvceuutxZad/oqukSNHmosuushUr17d9O7d22RlZfms9/HHH5urrrrKhIeHm5o1a5oOHTqYUaNGlXrMd955p9Tz/Pvvvy9TXUBFkctnRy5fWLm8ZcsWk5SUZOrUqeP9e7zjjjvM6tWry1QT4E/k9dmR1xdWXpfkQml+uIwpx5NuAJyTy+XSrFmzdN9991X1UCrFgQMH1KhRIy1atEg9e/b0Wda3b1/l5ubqs88+q6LRAQC5fCZyGYCdkdf/Q15bj2d+ADgvBQUF2rlzp4YPH674+HjdfPPNVT0kALigkcsAEBjI66pB8wPAeVmyZImaNGmi7777TjNnzjzrE74BAP5HLgNAYCCvqwa3vQAAAAAAAEfjyg8AAAAAAOBoND8AAAAAAICj0fwAAAAAAACOFlLVA7CjvXv3VvUQvOLi4nTo0KGqHoZlqMf+nFaT3eqpX79+VQ8hINkll+12PlnBaTVRj/3ZqSYy2Vp2yWrJXueZFZxWj+S8mqjHv6zIa678AAAAAAAAjkbzAwAAAAAAOBrNDwAAAAAA4Gg0PwAAAAAAgKPR/AAAAAAAAI5G8wMAAAAAADgazQ8AAAAAAOBoND8AAAAAAICj0fwAAAAAAACORvMDAAAAAAA4Gs0PAAAAAADgaDQ/AAAAAACAo9H8AAAAAAAAjkbzAwAAAAAAOBrNDwAAAAAA4Gg0PwAAAAAAgKPR/AAAAAAAAI5G8wMAAAAAADgazQ8AAAAAAOBoND8AAAAAAICj0fwAAAAAAACORvMDAAAAAAA4Gs0PAAAAAADgaDQ/AAAAAACAo9H8AAAAAAAAjkbzAwAAAAAAOBrNDwAAAAAA4Gg0PwAAAAAAgKPR/AAAAAAAAI4WUtUDOG3y5Mlat26doqKiNHbs2GLLjTGaMWOG1q9fr2rVqik5OVnNmzeXJI0cOVI///yzLr30Ug0fPty7TWZmpsaNG6fc3Fw1a9ZMQ4YMUUiIbUoGANsikwEgMJDXAFA2trnyo0uXLnr22WdLXb5+/Xrt379f48eP14ABAzRt2jTvsltvvVWDBw8uts3s2bPVs2dPjR8/XjVq1NDSpUv9MnYAcBoyGQACA3kNAGVjm+ZHQkKCIiMjS12empqqzp07y+VyqVWrVjp27JgOHz4sSWrbtq2qV6/us74xRps3b9Y111wj6dQbw5o1a/xXAAA4CJkMAIGBvAaAsrFN8+Nc3G634uLivNOxsbFyu92lrp+Tk6OIiAgFBwdLkmJiYs66PgCg7MhkAAgM5DUAnBIwN+8ZY4rNc7lcluw7JSVFKSkpkqTRo0f7vEFUtZCQEFuNp6Kox/6cVpPT6rELf2ayZN9cduL55LSaqMf+nFiTnfEZ2hmcVo/kvJqox/4CpvkRGxurQ4cOeaezsrIUHR1d6vo1a9bU8ePHVVRUpODgYLndbsXExJS4blJSkpKSkrzTZx6nqsXFxdlqPBVFPfbntJrsVk/9+vWregiW8GcmS/bNZbudT1ZwWk3UY392qskpmXw2fIZ2BqfVIzmvJurxLyvyOmBue0lMTNTy5ctljNHWrVsVERFx1uB2uVxq06aNVq5cKUlatmyZEhMTK2u4AOBoZDIABAbyGgBOcZmSroWrAuPGjVN6erpycnIUFRWlPn36qLCwUJLUvXt3GWP0/vvva8OGDQoLC1NycrLi4+MlSS+88IL27NmjvLw81axZUwMHDlT79u114MCBYl/TFRoaes6x7N2716+1lofdOm4VRT3257Sa7FZPoPwro50yWbJPLtvtfLKC02qiHvuzU02BkslnY6e8tktWS/Y6z6zgtHok59VEPf5lRV7bpvlhJwS3/1CP/TmtJrvV44QP2lXBLrlst/PJCk6riXrsz041kcnWsktWS/Y6z6zgtHok59VEPf51Qd32AgAAAAAAcD5ofgAAAAAAAEej+QEAAAAAAByN5gcAAAAAAHA0mh8AAAAAAMDRaH4AAAAAAABHo/kBAAAAAAAcjeYHAAAAAABwNJofAAAAAADA0Wh+AAAAAAAAR6P5AQAAAAAAHI3mBwAAAAAAcDSaHwAAAAAAwNFofgAAAAAAAEej+QEAAAAAAByN5gcAAAAAAHA0mh8AAAAAAMDRaH4AAAAAAABHo/kBAAAAAAAcjeYHAAAAAABwNJofAAAAAADA0Wh+AAAAAAAAR6P5AQAAAAAAHI3mBwAAAAAAcDSaHwAAAAAAwNFofgAAAAAAAEej+QEAAAAAAByN5gcAAAAAAHA0mh8AAAAAAMDRaH4AAAAAAABHo/kBAAAAAAAcjeYHAAAAAABwtJCqHsBpkydP1rp16xQVFaWxY8cWW26M0YwZM7R+/XpVq1ZNycnJat68uSRp2bJlWrhwoSSpV69e6tKliyTppZde0uHDhxUWFiZJGjFihKKioiqnIAAIYGQyAAQG8hoAysY2zY8uXbropptu0qRJk0pcvn79eu3fv1/jx4/Xzz//rGnTpmnUqFHKzc3V/PnzNXr0aEnS8OHDlZiYqMjISEnS0KFDFR8fX2l1AIATkMkAEBjIawAoG9vc9pKQkOAN25Kkpqaqc+fOcrlcatWqlY4dO6bDhw8rLS1N7dq1U2RkpCIjI9WuXTulpaVV4sgBwHnIZAAIDOQ1AJSNba78OBe32624uDjvdGxsrNxut9xut2JjY73zY2Ji5Ha7vdOTJ09WUFCQrr76at15551yuVzF9p2SkqKUlBRJ0ujRo32OU9VCQkJsNZ6Koh77c1pNTqvHLvyZyZJ9c9mJ55PTaqIe+3NiTXbGZ2hncFo9kvNqoh77C5jmhzGm2LzSPjSfnj906FDFxMToxIkTGjt2rJYvX67rr7++2PpJSUlKSkryTh86dMiiUVdcXFycrcZTUdRjf06ryW711K9fv6qHYAl/ZrJk31y22/lkBafVRD32Z6eanJLJZ8NnaGdwWj2S82qiHv+yIq9tc9vLucTGxvq8+FlZWYqOjlZMTIyysrK8891ut6KjoyWd6mBLUvXq1XXddddp27ZtlTtoAHAoMhkAAgN5DQCnBEzzIzExUcuXL5cxRlu3blVERISio6PVvn17bdiwQbm5ucrNzdWGDRvUvn17FRUVKTs7W5JUWFiotWvXqlGjRlVcBQA4A5kMAIGBvAaAU2xz28u4ceOUnp6unJwcDRw4UH369FFhYaEkqXv37urQoYPWrVunoUOHKiwsTMnJyZKkyMhI3XnnnXrmmWckSb1791ZkZKTy8vI0cuRIFRUVyePxqG3btj6X5QEASkcmA0BgIK8BoGxcpqQbAS9we/fureoheNntXquKoh77c1pNdqvnQri/3B/skst2O5+s4LSaqMf+7FQTmWwtu2S1ZK/zzApOq0dyXk3U418X1DM/AAAAAAAAzgfNDwAAAAAA4Gg0PwAAAAAAgKPR/AAAAAAAAI5G8wMAAAAAADgazQ8AAAAAAOBoljU/vvjiC2VnZ1u1OwBABZHLABAYyGsA8L8Qq3a0ceNGzZ07V23atFHnzp115ZVXKjQ01KrdAwDKiVwGgMBAXgOA/1nW/Bg2bJhycnL03//+V59//rmmTp2qq6++Wp07d1ZCQoJVhwEAlBG5DACBgbwGAP+zrPkhSTVr1tRNN92km266SRkZGZo4caK+/vprxcXFqVu3brr55psVHh5u5SEBAGdBLgNAYCCvAcC/LG1+SKcu2/v222+1Zs0axcfHa/DgwYqLi9MXX3yhUaNG6eWXX7b6kACAsyCXASAwkNcA4D+WNT8++OADrVixQhEREercubPGjh2rmJgY7/KWLVvqwQcftOpwAIBzIJcBIDCQ1wDgf5Y1PwoKCvTUU0+pRYsWJR8oJESjR4+26nAAgHMglwEgMJDXAOB/ljU/7rjjDoWFhfnMy83NVX5+vrdz3aBBA6sOBwA4B3IZAAIDeQ0A/hdk1Y7GjBkjt9vtM8/tduvNN9+06hAAgHIglwEgMJDXAOB/ljU/9u7dq8aNG/vMa9y4sfbs2WPVIQAA5UAuA0BgIK8BwP8sa37UqlVL+/fv95m3f/9+1axZ06pDAADKgVwGgMBAXgOA/1n2zI+uXbtq7Nix6tu3r+rWrav9+/dr3rx5uuGGG6w6BACgHMhlAAgM5DUA+J9lzY/bb79dISEhmjVrlrKyshQbG6sbbrhBt9xyi1WHAACUA7kMAIGBvAYA/7Os+REUFKRbb71Vt956q1W7BABUALkMAIGBvAYA/7Os+SGdeljTr7/+qry8PJ/5XLIHAFWDXAaAwEBeA4B/Wdb8WLhwoRYsWKAmTZqoWrVqPssIbQCofOQyAAQG8hoA/M+y5scXX3yhUaNGqUmTJlbtEgBQAeQyAAQG8hoA/M+yr7oNCwtTgwYNrNodAKCCyGUACAzkNQD4n2XNj7vvvlvTp0/X4cOH5fF4fH4AAJWPXAaAwEBeA4D/WXbby+TJkyVJS5YsKbZs3rx5Vh0GAFBG5DIABAbyGgD8z7Lmx8SJE63aFQDAAuQyAAQG8hoA/M+y5kedOnUkSR6PR0ePHlV0dLRVuwYAnAdyGQACA3kNAP5nWfPj2LFjmjZtmlauXKmQkBDNmjVLqamp2rZtm/r27WvVYQAAZUQuA0BgIK8BwP8se+Dp1KlTFRERocmTJysk5FRPpVWrVlqxYoVVhwAAlAO5DACBgbwGAP+z7MqPjRs3asqUKd7AlqRatWrp6NGjVh0CAFAO5DIABAbyGgD8z7LmR0REhHJycnzuUTx06FCZ71mcPHmy1q1bp6ioKI0dO7bYcmOMZsyYofXr16tatWpKTk5W8+bNJUnLli3TwoULJUm9evVSly5dJEk7duzQpEmTlJ+frw4dOujBBx+Uy+WqYKWAtHNnsN54o6bc7hDFxNTW00/nqHHjoqoeFuCjIrlMJiPQkMsIZOQ1LiTkNaqKZbe9dOvWTWPHjtWmTZtkjNHWrVs1adIk3XjjjWXavkuXLnr22WdLXb5+/Xrt379f48eP14ABAzRt2jRJUm5urubPn69Ro0Zp1KhRmj9/vnJzcyWduoTwT3/6k8aPH6/9+/crLS2t4oXigrdzZ7D69o3RokUR+uabIC1aFKG+fWO0c2dwVQ8N8FGRXCaTEUjIZQQ68hoXCvIaVcmy5sdtt92ma6+9Vu+//76Kior0zjvvKDExUTfffHOZtk9ISFBkZGSpy1NTU9W5c2e5XC61atVKx44d0+HDh5WWlqZ27dopMjJSkZGRateundLS0nT48GGdOHFCrVq1ksvlUufOnbVmzRqrysUF7I03aiojI9RnXkZGqN54o2YVjQgoWUVymUxGICGXEejIa1woyGtUJctue3G5XOrZs6d69uxp1S59uN1uxcXFeadjY2PldrvldrsVGxvrnR8TE1Pi/NPrlyQlJUUpKSmSpNGjR/scp6qFhITYajwV5YR63O6Sf23c7vCAr01yxt/RmZxWT3n4M5f9mcmSfXPZieeTE2pyci474e/nt5xYU0UFal7bNasl551nTqmHvA4cTqtHsrD5sWnTplKXXXbZZRXevzGm2LzS7j10uVwlrl+apKQkJSUleacPHTpU/gH6SVxcnK3GU1FOqCcmprakiBLm5+nQoSOVPyCLOeHv6Ex2q6d+/fqVdix/5rI/M1myby7b7XyyghNqcnIuO+Hv57fsVFNlZvLZBGpe2zWrJXudZ1ZwSj3kdeCwWz1W5LVlzY933nnHZzo7O1uFhYWKjY3VxIkTK7z/2NhYnxc/KytL0dHRiomJUXp6une+2+1WQkKCYmNjlZWV5bN+TExMhccBPP10jtatC/W5ZK9JkwI9/XROFY4KKM6fuUwmw07IZQQ68hoXCvIaVcmy5sekSZN8pj0ejxYsWKDq1atbsv/ExEQtXrxYnTp10s8//6yIiAhFR0erffv2mjt3rvcBTRs2bNC9996ryMhIVa9eXVu3blXLli21fPly3XTTTZaMBRe2xo2L9OGH7v//lOpwxcTk8ZRq2JI/c5lMhp2Qywh05DUuFOQ1qpLLlPda5HIoKirSwIEDNXXq1HOuO27cOKWnpysnJ0dRUVHq06ePCgsLJUndu3eXMUbvv/++NmzYoLCwMCUnJys+Pl6StHTpUi1atEjSqa/p6tq1qyRp+/btmjx5svLz89W+fXs99NBDZfqarr17955vyZaz2+VGFUU99ue0muxWT1VfYl3WXLZTJkv2yWW7nU9WcFpN1GN/dqqpqjP5bAIxr+2S1ZK9zjMrOK0eyXk1UY9/WZHXfm1+rF+/Xu+++66mTJnir0P4BcHtP9Rjf06ryW71VPUHbXK5Yux2PlnBaTVRj/3ZqaaqzuSzCcS8tktWS/Y6z6zgtHok59VEPf5lq2d+PPbYYz7T+fn5ys/P1yOPPGLVIQAA5UAuA0BgIK8BwP8sa34MGTLEZ7patWq6+OKLFRFR/Gm+AAD/I5cBIDCQ1wDgf5Y1PxISEqzaFQDAAuQyAAQG8hoA/M+y5seECRPK9CCkwYMHW3VIAMBZkMsAEBjIawDwvyCrdlSjRg2tWbNGHo9HMTEx8ng8WrNmjSIiIlS3bl3vDwCgcpDLABAYyGsA8D/LrvzYt2+fhg8frtatW3vn/fjjj1qwYIEeeughqw4DACgjchkAAgN5DQD+Z9mVH1u3blXLli195rVo0UJbt2616hAAgHIglwEgMJDXAOB/ljU/mjVrprlz5yo/P1/Sqa/o+vDDD9W0aVOrDgEAKAdyGQACA3kNAP5n2W0vycnJGj9+vB544AFFRkYqNzdX8fHxGjp0qFWHAACUA7kMAIGBvAYA/7Os+XHRRRfp1Vdf1aFDh3T48GFFR0crLi7Oqt0DAMqJXAaAwEBeA4D/WXbbiyTl5OQoPT1d6enpiouLk9vtVlZWlpWHAACUA7kMAIGBvAYA/7Ks+ZGenq7HH39c3377rRYsWCBJ2r9/v6ZOnWrVIQAA5UAuA0BgIK8BwP8sa378/e9/1+OPP67nnntOwcHBkk49pXr79u1WHQIAUA7kMgAEBvIaAPzPsubHwYMH1bZtW595ISEhKioqsuoQAIByIJcBIDCQ1wDgf5Y1Pxo2bKi0tDSfeRs3blTjxo2tOgQAoBzIZQAIDOQ1APifZd/20r9/f73++uvq0KGD8vPz9d5772nt2rX6y1/+YtUhAADlQC4DQGAgrwHA/yxrfrRq1UpjxozRt99+q/DwcMXFxWnUqFGKjY216hAAgHIglwEgMJDXAOB/ljQ/PB6PXn75ZT333HO67bbbrNglAKACyGUACAzkNQBUDkue+REUFKTMzEwZY6zYHQCggshlAAgM5DUAVA7LHnjau3dvTZ06VQcPHpTH4/H5AQBUPnIZAAIDeQ0A/mfZMz+mTJkiSVq+fHmxZfPmzbPqMACAMiKXASAwkNcA4H8Vbn4cOXJEtWvX1sSJE60YDwCggshlAAgM5DUAVJ4K3/by5z//WZJUp04d1alTRzNnzvT++fQPAKDykMsAEBjIawCoPBVufvz24UybN2+u6C4BABVALgNAYCCvAaDyVLj54XK5rBgHAMAi5DIABAbyGgAqT4Wf+VFUVKRNmzZ5pz0ej8+0JF122WUVPQwAoIzIZQAIDOQ1AFSeCjc/oqKi9M4773inIyMjfaZdLhcPcQKASkQuA0BgIK8BoPJUuPkxadIkK8YBALAIuQwAgYG8BoDKU+FnfgAAAAAAANgZzQ8AAAAAAOBoND8AAAAAAICjVfiZH1ZJS0vTjBkz5PF41K1bN91+++0+yw8ePKh33nlH2dnZioyM1JAhQxQbGytJmj17ttavXy9JuvPOO9WxY0dJp+6jTE9PV0REhCRp0KBBatq0aeUVBQABjFwGAPsjqwGgbGzR/PB4PHr//fc1YsQIxcbG6plnnlFiYqIaNmzoXWfWrFnq3LmzunTpok2bNmnOnDkaMmSI1q1bp19++UVvvPGGCgoK9NJLL6l9+/besO7fv7+uueaaqioNAAISuQwA9kdWA0DZ2eK2l23btqlevXqqW7euQkJC1LFjR61Zs8Znnd27d6tt27aSpDZt2ig1NdU7PyEhQcHBwQoPD1eTJk2UlpZW6TUAgJOQywBgf2Q1AJSdLa78cLvd3svvJCk2NlY///yzzzpNmjTRqlWrdPPNN2v16tU6ceKEcnJy1KRJE82fP1+33HKLTp48qc2bN/t0u+fOnav58+frsssuU79+/RQaGlrs+CkpKUpJSZEkjR49WnFxcX6qtPxCQkJsNZ6Koh77c1pNTqunspDLJXPi+eS0mqjH/pxYU1Uhq0vntPPMafVIzquJeuzPFs0PY0yxeS6Xy2e6f//+mj59upYtW6bWrVsrJiZGwcHBuvzyy7V9+3aNGDFCtWrVUqtWrRQcHCxJuvfee1W7dm0VFhZqypQp+uSTT9S7d+9ix0pKSlJSUpJ3+tChQxZXeP7i4uJsNZ6Koh77c1pNdqunfv36VT2EMiGXS2a388kKTquJeuzPTjUFSiaXhqwunZ3OMys4rR7JeTVRj39Zkde2aH7ExsYqKyvLO52VlaXo6GifdWJiYvTUU09JkvLy8rRq1SrvPYm9evVSr169JElvv/226tWrJ0nefYSGhqpr167617/+5fdaAMAJyGUAsD+yGgDKzhbP/IiPj9e+ffuUmZmpwsJCrVixQomJiT7rZGdny+PxSJIWLVqkrl27Sjr1oKecnBxJUkZGhnbu3KnLL79cknT48GFJp7ria9asUaNGjSqrJAAIaOQyANgfWQ0AZWeLKz+Cg4P10EMPaeTIkfJ4POratasaNWqkefPmKT4+XomJiUpPT9ecOXPkcrnUunVrPfzww5KkwsJCvfDCC5KkiIgIDRkyxHvJ3vjx45WdnS3p1P2OAwYMqJoCASDAkMsAYH9kNQCUncuUdLPgBW7v3r1VPQQvu91rVVHUY39Oq8lu9QT6/eVVxS65bLfzyQpOq4l67M9ONZHJ1rJLVkv2Os+s4LR6JOfVRD3+ZUVe2+K2FwAAAAAAAH+h+QEAAAAAAByN5gcAAAAAAHA0mh8AAAAAAMDRaH4AAAAAAABHo/kBAAAAAAAcjeYHAAAAAABwNJofAAAAAADA0Wh+AAAAAAAAR6P5AQAAAAAAHI3mBwAAAAAAcDSaHwAAAAAAwNFofgAAAAAAAEej+QEAAAAAAByN5gcAAAAAAHA0mh8AAAAAAMDRaH4AAAAAAABHo/kBAAAAAAAcjeYHAAAAAABwNJofAAAAAADA0Wh+AAAAAAAAR6P5AQAAAAAAHI3mBwAAAAAAcDSaHwAAAAAAwNFofgAAAAAAAEej+QEAAAAAAByN5gcAAAAAAHA0mh8AAAAAAMDRaH4AAAAAAABHo/kBAAAAAAAcjeYHAAAAAABwtJCqHsBpaWlpmjFjhjwej7p166bbb7/dZ/nBgwf1zjvvKDs7W5GRkRoyZIhiY2MlSbNnz9b69eslSXfeeac6duwoScrMzNS4ceOUm5urZs2aaciQIQoJsU3JAGBr5DIA2B9ZDQBlY4srPzwej95//309++yzeuutt/Tf//5Xu3fv9lln1qxZ6ty5s95880317t1bc+bMkSStW7dOv/zyi9544w2NHDlSn376qY4fPy7pVKD37NlT48ePV40aNbR06dJKrw0AAhG5DAD2R1YDQNnZovmxbds21atXT3Xr1lVISIg6duyoNWvW+Kyze/dutW3bVpLUpk0bpaameucnJCQoODhY4eHhatKkidLS0mSM0ebNm3XNNddIkrp06VJsnwCAkpHLAGB/ZDUAlJ0tmh9ut9t7+Z0kxcbGyu12+6zTpEkTrVq1SpK0evVqnThxQjk5Od6gPnnypLKzs7V582ZlZWUpJydHERERCg4OliTFxMQU2ycAoGTkMgDYH1kNAGVni5v3jDHF5rlcLp/p/v37a/r06Vq2bJlat26tmJgYBQcH6/LLL9f27ds1YsQI1apVS61atfKGdVmlpKQoJSVFkjR69GjFxcWdfzEWCwkJsdV4Kop67M9pNTmtnspCLpfMieeT02qiHvtzYk1VhawundPOM6fVIzmvJuqxP1s0P2JjY5WVleWdzsrKUnR0tM86MTExeuqppyRJeXl5WrVqlSIiIiRJvXr1Uq9evSRJb7/9turVq6eaNWvq+PHjKioqUnBwsNxut2JiYko8flJSkpKSkrzThw4dsrS+ioiLi7PVeCqKeuzPaTXZrZ769etX9RDKhFwumd3OJys4rSbqsT871RQomVwasrp0djrPrOC0eiTn1UQ9/mVFXtvitpf4+Hjt27dPmZmZKiws1IoVK5SYmOizTnZ2tjwejyRp0aJF6tq1q6RTD3rKycmRJGVkZGjnzp26/PLL5XK51KZNG61cuVKStGzZsmL7BACUjFwGAPsjqwGg7Gxx5UdwcLAeeughjRw5Uh6PR127dlWjRo00b948xcfHKzExUenp6ZozZ45cLpdat26thx9+WJJUWFioF154QZIUERGhIUOGeC/Z69evn8aNG6cPP/xQzZo10w033FBlNQJAICGXAcD+yGoAKDuXKelmwQvc3r17q3oIXna73KiiqMf+nFaT3eoJ9Eusq4pdctlu55MVnFYT9difnWoik61ll6yW7HWeWcFp9UjOq4l6/Msxt70AAAAAAAD4C80PAAAAAADgaDQ/AAAAAACAo9H8AAAAAAAAjkbzAwAAAAAAOBrNDwAAAAAA4Gg0PwAAAAAAgKPR/AAAAAAAAI5G8wMAAAAAADgazQ8AAAAAAOBoND8AAAAAAICj0fwAAAAAAACORvMDAAAAMc46+QAAIABJREFUAAA4Gs0PAAAAAADgaDQ/AAAAAACAo9H8AAAAAAAAjkbzAwAAAAAAOBrNDwAAAAAA4Gg0PwAAAAAAgKPR/AAAAAAAAI5G8wMAAAAAADgazQ8AAAAAAOBoND8AAAAAAICj0fwAAAAAAACORvMDAAAAAAA4Gs0PAAAAAADgaDQ/AAAAAACAo9H8AAAAAAAAjkbzAwAAAAAAOJrLGGOqehAAAAAAAAD+wpUfNjd8+PCqHoKlqMf+nFaT0+pB1XLi+eS0mqjH/pxYE+zHaeeZ0+qRnFcT9dgfzQ8AAAAAAOBoND8AAAAAAICjBb/00ksvVfUgcHbNmzev6iFYinrsz2k1Oa0eVC0nnk9Oq4l67M+JNcF+nHaeOa0eyXk1UY+98cBTAAAAAADgaNz2AgAAAAAAHI3mBwAAAAAAcLSQqh7AhSg3N1dvvfWWDh48qDp16uiJJ55QZGRksfWWLVumhQsXSpJ69eqlLl26SJLmzp2r5cuXKzc3V7NmzfKuX1BQoIkTJ2rHjh2qWbOmHn/8cV100UUBUdOOHTs0adIk5efnq0OHDnrwwQflcrn00UcfacmSJapVq5Yk6Z577tEVV1zhtzrS0tI0Y8YMeTwedevWTbfffrvP8rO9xosWLdLSpUsVFBSkBx98UO3bty/TPv3JH/UMGjRI4eHhCgoKUnBwsEaPHm37enJycvS3v/1N27ZtU5cuXfTwww97tynt3IMzTZ48WevWrVNUVJTGjh0rSZo1a5bWrl2rkJAQ1a1bV8nJyapRo0axbb/44gstWbJExhh169ZNPXv2lCT9+uuvmjp1qvLy8lSnTh0NHTpUERERkkr/PQrEejIzM/XEE0+ofv36kqSWLVtqwIABltZTWk0ffvihUlNT5XK5FBUVpeTkZMXExBTbtrzvMWV97wqUeirjPdMf9djxcw2qVn5+vl588UUVFhaqqKhI11xzjfr06aONGzdq9uzZ8ng8Cg8P16BBg1SvXj2fbQsLC/Xee+9p+/btCgoK0h//+Ee1adNGkrRixQotXLhQHo9HV1xxhe677z5JlXOuVXZNy5Yt06xZs7y/izfddJO6devm93o2bdqkWbNmqbCwUM2aNdNjjz2m4ODgYtvbLa8ru57KyGt/1RTQmW1Q6WbNmmUWLVpkjDFm0aJFZtasWcXWycnJMYMGDTI5OTk+fzbGmJ9++sm43W5z3333+WyzePFiM2XKFGOMMd99953529/+5udK/qeiNQ0fPtz89NNPxuPxmJEjR5p169YZY4yZN2+e+eSTTyqlhqKiIjN48GCzf/9+U1BQYJ566imza9cun3VKe4137dplnnrqKZOfn28OHDhgBg8ebIqKisq0z0CqxxhjkpOTzdGjRyulhjNVpJ4TJ06YLVu2mC+//NJMmzbNZ5vSzj040+bNm8327dvNk08+6Z2XlpZmCgsLjTGnsqyk/MrIyDBPPvmkycvLM4WFhebll182e/fuNcacOoc2b95sjDFmyZIlZu7cucaYs/8eBWI9Bw4c8DmOv5RU07Fjx7x//vzzz72/52c6n/eYsrx3BVI9lfGe6Y967Pi5BlXL4/GYEydOGGOMKSgoMM8884z56aefzNChQ73v/YsXLzYTJ04stu2///1vM2nSJGOMMUeOHDFPP/20KSoqMtnZ2WbgwIHezzATJkwwP/zwg3df/j7XKrumr7/+uthnHn/X8+OPP5qBAweaPXv2GGOM+fDDD82SJUuKbWvHvK7seiojr/1VUyBnNre9VIE1a9bo+uuvlyRdf/31WrNmTbF10tLS1K5dO0VGRioyMlLt2rVTWlqaJKlVq1aKjo4utk1qaqq3I3fNNddo06ZNMpX0PNuK1HT48GGdOHFCrVq1ksvlUufOnUvc3t+2bdumevXqqW7dugoJCVHHjh2LjaO013jNmjXq2LGjQkNDddFFF6levXratm1bmfYZSPVUpYrUEx4erksvvVRhYWE+69vl3EPlSUhIKPYvRZdffrn3XzxatWolt9tdbLs9e/aoZcuWqlatmoKDg9W6dWutXr1akrR37161bt1aktSuXTutWrVKkirl96gy66ksJdV0+koaSTp58mSJV2edz3tMWd67AqmeymB1PZI9P9egarlcLoWHh0uSioqKVFRU5D2vTpw4IUk6fvx4iefN7t27ddlll0mSoqKiVKNGDe3YsUMHDhxQ/fr1vf/Sfma+Vca5Vtk1+VtJ9QQFBSkkJMR7hWBp47FjXld2PZXBHzVJgZ3Z3PZSBY4ePeo9YaKjo5WdnV1sHbfbrdjYWO90TExMiR9gS9smODhYERERysnJ8QaiP1Wkpt/Oj42N9an1yy+/1PLly9W8eXPdf//9ll+SXNr4YmNj9fPPP5e6zpmvsdvtVsuWLYvVdno/Z9unv/irHkkaOXKkJOnGG29UUlKSP8socaxS+eop7XfgXOceLjxLly5Vx44di81v1KiRPvzwQ+Xk5CgsLEzr169XfHy8d1lqaqquvPJKrVy5UllZWZJ0zt+jymBlPZKUmZmpp59+WtWrV1ffvn29TZLKcPoy24iICL344ovFlp/Pe0xZ3rv8xR/1SJX3nvlb51vP2VTl5xpUPY/Ho2HDhmn//v3q0aOHWrZsqYEDB+q1115TWFiYqlev7v08cqamTZsqNTVVnTp1UlZWlnbs2KFDhw7psssu0549e5SZmanY2FitXr1ahYWFkirvXKvMmiRp1apV2rJliy6++GI98MADiouL82s9LVq0UFFRkbZv3674+HitXLlShw4dKradXfO6MuuRKievra7pbAIhs2l++Mkrr7yiI0eOFJvft2/f897nuZ5DUFJnzcpnF/irprN1BLt3767evXtLkubNm6cPPvhAycnJ5328synL61faOqXV4O+/k7PxRz3SqfMgJiZGR48e1auvvqr69esrISGh4gM+h4rUU5594sK1cOFCBQcH6/e//32xZQ0bNtRtt92mV199VeHh4WrSpImCgk5dPPnYY49pxowZmj9/vhITExUScuqttarPL6vriY6O1uTJk1WzZk3t2LFDY8aM0dixY33+1d+f7rnnHt1zzz1atGiRFi9erD59+pxzm3PlWVXyRz2V+Z75W+dbz9lU5Xsoql5QUJDGjBmjY8eO6c0339TOnTv1+eef65lnnlHLli316aef6oMPPtDAgQN9tuvatat2796t4cOHq06dOrrkkksUHBysyMhIPfLIIxo3bpxcLpcuueQSHThwQFLlnWuVWdPvfvc7derUSaGhofrqq680adKkEhuTVtaza9cuPf7445o5c6YKCgp8rkQ8FzvkdWXWU1l5bXVNZxMImU3zw0+ef/75UpdFRUXp8OHDio6O1uHDh0vshsXExCg9Pd077Xa7z/k/mLGxscrKylJsbKyKiop0/PhxSzuI/qrp9LhPy8rK8j6cqXbt2t753bp10+uvv25FKSUqaRy/vaSrtNf4t9u63W5vDefap7/4q57T/42KitKVV16pbdu2VUrzoyL1lGefJT2kD863bNkyrV27Vi+88EKpb9Q33HCDbrjhBknSnDlzvP+60aBBA40YMULSqVtG1q1bJ6n4+XXm75G/+aOe0NBQhYaGSpKaN2+uunXrat++fd4rRirLddddp9GjRxf7n+vzeY8py3uXv1lZT2W+Z5amvPWcjb8/1yAw1KhRQwkJCUpLS1NGRob3irqOHTuWeJVEcHCw/vjHP3qnR4wYoYsvvliSlJiYqMTERElSSkqKt+lb2edaZdRUs2ZN7/pJSUn6xz/+4a9yfOq59dZb9fLLL0uSNmzYoL179xZb3+55XRn1VHZeW1XT2QRCZvPMjyqQmJiob775RpL0zTff6Morryy2Tvv27bVhwwbl5uYqNzdXGzZsOOe3BPzud7/TsmXLJEkrV65UmzZtKq3bVpGaoqOjVb16dW3dulXGGC1fvtwb4ocPH/Zuv3r1ajVq1MhvNcTHx2vfvn3KzMxUYWGhVqxY4R3HaaW9xomJiVqxYoUKCgqUmZmpffv2qUWLFmXaZyDVk5eX570vNS8vTz/88IMaN25s+3pKc7ZzDxeOtLQ0ffLJJxo2bJiqVatW6npHjx6VJB06dEirV69Wp06dfOZ7PB4tXLhQN954oySV+nvkb/6qJzs7Wx6PR5J04MAB7du3T3Xr1vVnKV779u3z/jk1NdV7r/KZzuc9pizvXYFUT2W+Z56pIvWcTVV+rkHVys7O1rFjxySd+saKjRs3qkGDBjp+/Lj3f9R++OEHNWjQoNi2J0+eVF5enned4OBgNWzYUNL/8i03N1dffvmltwFcGedaZdd0Zh6kpqZ61/d3PafHU1BQoE8++UTdu3cvtq0d87qy66mMvPZHTWcTCJntMlV9fdEFKCcnR2+99ZYOHTqkuLg4Pfnkk4qMjNT27dv1n//8x3up29KlS7Vo0SJJp75eqGvXrpKk2bNn67vvvvN2P2+44Qb16dNH+fn5mjhxon755RdFRkbq8ccfr7QPphWtafv27Zo8ebLy8/PVvn17PfTQQ3K5XJowYYJ+/fVXuVwu1alTRwMGDPDrlRPr1q3TzJkz5fF41LVrV/Xq1Uvz5s1TfHy8EhMTz/oaL1y4UF9//bX3K8g6dOhQ6j4ri9X1HDhwQG+++aakUw9Ouu666wKmnkGDBun48eMqLCxUjRo1NGLECDVs2LDUcw/ONG7cOKWnpysnJ0dRUVHq06ePFi1apMLCQu+/Tpz+Cle3260pU6bomWeekSS98MILysnJUUhIiO6//361bdtW0qmvjP3yyy8lSVdddZXuvfde7zlUWi4EYj0rV67URx99pODgYAUFBemuu+7yS7OwpJrWrVunffv2yeVyKS4uTgMGDFBMTEyF32NKe+8K1Hoq4z3TH/XY8XMNqlZGRoYmTZokj8cjY4yuvfZa9e7dW6tXr9a8efMUFBSkGjVq6LHHHlPdunWVmpqq7du36+6771ZmZqZGjhypoKAgxcTEaODAgapTp46kU+dvRkaGJKl3797epm9lnGuVXdOcOXOUmprqc3tMSY0Vq+uZNWuW1q1bJ4/Ho+7du3u/Rt3ueV3Z9VRGXvurpkDObJofAAAAAADA0bjtBQAAAAAAOBrNDwAAAAAA4Gg0PwAAAAAAgKPR/AAAAAAAAI4WUtUDAICq9umnn2r27NmaNm1aid8bf/fdd3u/0jcuLk7Dhg076/6+//57ffzxx9qzZ49GjRql+Ph4v4wbAAAAQNlw5QeKee+99zR//nzv9FdffaVHH31U/fv3V05Ojn788UcNHTpU/fv31+rVq6twpM63efNm79dNOc1HH32k8ePHV9rxNm/erEmTJhWbf+jQIW3cuFFxcXGlbhsWFqYxY8ZozJgx52x8SFKjRo301FNPqXXr1hUaMyCRyXZCJgM4G/LaPshrlIQrPy4wgwYN0pEjRxQcHKygoCA1bNhQnTt3VlJSkoKCTvXCBgwY4F2/sLBQM2fO1MiRI9W0aVNJp37hbrrpJt18881VUULA2Lx5syZMmKB33323qodie5mZmRo8eLDmzp2r4ODgSj32zJkz1a9fP40ZM6bc2+7YsUMzZ85UXl6eatWqpeTkZEVHR6thw4Z+GCmciEyuPGRy2VVlJgN2RV5XHvK67Mjr8qH5cQEaNmyY2rVrp+PHjys9PV0zZszQtm3blJycXGzdo0ePqqCgQI0aNfLOO3jw4Hn/z11RURG/mGew++th9/FVVGpqqmJiYrwfSkpTUFCg4cOHKzg4WLfddpuuuuoqFRYWavr06Xr66adVq1YtrVixQnPnzi3x9wg4GzLZPuz+eth9fIDTkdf2YffXw+7ju1DR/LiARUREKDExUbVr19Zzzz2nW265RY0bN9akSZMUGxurzp07ey/x/+Mf/6gWLVro0KFDyszM1Ouvv66goCBNnz5dBQUFmjlzptavXy+Xy6WuXbuqT58+CgoK0rJly7RkyRLFx8frm2++UY8ePdS3b18tXbpU//rXv3TkyBG1aNFCAwYMUJ06dSRJffr00SOPPKLPPvtMOTk56tSpkx5++GG5XC5JUkpKij7//HNlZWUpNjZWQ4YMUfPmzeV2uzV9+nRt2bJF4eHh6tmzZ5k76/n5+frwww+1cuVKHTt2TI0bN9bzzz+vsLAwpaamas6cOXK73WratKkeeeQR7xvXoEGD1KNHDy1fvlwHDx5U+/btNWjQIHk8Ho0aNUqFhYXq37+/JOntt99WSkqKdu3apdDQUK1du1b333+/OnfurH/84x/6/vvvJUnXXnut+vXrp9DQ0LOO+b333lN4eLjuv/9+77w33nhDCQkJuuWWW/TPf/5T//73v3XixAlFR0frkUceUdu2bc/5WgwaNEg33nijvvvuO+3du1ezZs3S0aNHS31tt23bpmnTpmnfvn0KCwvTddddpwceeKDErv2gQYP0pz/9Se3atfM55osvvijp1HkmSc8//7xatWp1zrGWxbPPPquCggLl5eUpNzdXf/nLXySdOs8WLVqkESNGnHMfkydPVkxMjA4cOKCXX35ZjRs3Vn5+vnbt2qVXXnlFkuTxeBQdHW3JmHFhIpP/h0z+H6dlMuAE5PX/kNf/Q14HAIMLSnJystmwYUOx+QMHDjRffvmlMcaYiRMnmrlz5xpjjDlw4IC56667TGFhYan7eP31182UKVPMiRMnzJEjR8zw4cPNV199ZYwx5uuvvzZ33323+eKLL0xhYaE5efKkWbVqlRk8eLDZtWuXKSwsNPPn/z/27jw8qvLu//hnkpCEEAhZWAwgS1iDCFh+LkQRhLqAVQRc6lIXWsRIUFurCD6KbVlEUUTAhU1BUQqIrUt9niIiKGUzCQ8Sy6ogSyBk0CSyJZn79wcPU4YkkJgz5MzN+3Vdc12dc+5zzv2dHD9Jv5xzZqEZNWqUf38333yzGTdunCkqKjJ5eXnmvvvuM1lZWcYYY1auXGmGDBlitmzZYnw+n9m7d6/Zv3+/KS0tNY899phZsGCBKS4uNrm5uebBBx/0b/fNN9+Yu+++u8LPZfr06ebpp582+fn5prS01Pz73/82x44dM7t37zZ33nmnWb9+vSkuLjbvv/++GTZsmCkuLvZ/FiNGjDD5+fmmsLDQPPzww/7P8euvvzb3339/wHHmz59vbrvtNrN69WpTWlpqjh49at59910zcuRI88MPP5gff/zRjBo1yv/5l7ePEzZu3GiGDh1qfD6fMcaYwsJCc/vtt5v8/Hyze/duM3ToUJOfn+//Oe7du7fC+k+Wnp5uHn30UZOXl2eOHj16xs925MiR5vPPPzfGGHP48GGzadOmCud+8rkzf/5889JLL/nnd+p55rSvv/7aTJkyxf9+x44dZvDgwSY9Pd2kp6ebW2+91QwdOtQcPHjwtPuZMmWK+de//mV27NhhRo4cedqxTz/9tNm6dasj84edyOTykcn/YWsmA6GGvC4fef0f5LX78cBTSJISEhJUVFRU5e1++OEHZWdn65577lF0dLTi4uLUr18/rVy50j8mPj5e1113ncLDwxUZGaklS5bopptuUtOmTRUeHq6bbrpJ3333nfLy8vzb9O/fX3Xq1FFSUpI6duyo7777TpK0dOlS3XjjjWrdurU8Ho8aN26sBg0aaNu2bSooKNCgQYMUERGhRo0aqXfv3v55tG/fXm+88Ua5Nfh8Pn322We65557lJCQoLCwMLVr1061atXSypUr1bVrV1144YWKiIjQr371Kx07dkybNm3yb3/dddcpISFBsbGx+sUvfuGfa0Xatm2riy++WGFhYYqMjNQXX3yhgQMHKi4uTvXq1dOgQYO0YsWKM372Jx6m+c0330iSVq1apbZt2/prKC4u1q5du1RSUqKGDRuqcePGZ9znyTUlJSUpMjLyjJ9tRESEcnNzVVBQoOjo6JDpNp9//vmaMWOGpk6d6v+XmmeffVb169cPGFdUVKTi4mJJUkFBgTZt2qSmTZsqOTlZBQUF2rx5s6Tj9/Z+//33Z70O2IlMJpNPdi5kMhCqyGvy+mTktbtx2wskSV6vV7GxsVXe7sCBAyotLQ14wJMxRomJif73p36LRl5enmbPnq05c+YEbOP1ev2X7Z38f0CjoqJ05MgR//EaNWpUZh55eXk6ePCg/5Iv6XggV+bbNgoLC1VcXFxusB08eNA/J0kKCwtTUlKSvF6vf9nJc42MjAxYV56TPxtJAXVLUoMGDc64D0nyeDxKS0vTl19+qdTUVH355Ze64oorJEmNGzfWPffcowULFmjXrl3q3LmzfvOb3yghIeGM+5UCf2Zn+myHDh2q+fPn65FHHlHDhg01aNAg/eIXv6jUcdxq27Zt+uc//6mhQ4dq9+7dev311xUWFiafz6f+/fv7L9n8wx/+oNmzZ+vQoUMqLS1V37591axZM61Zs0azZs1SQUGBxo8frxYtWmjUqFE1XBVCCZlMJp/sXM9kwM3Ia/L6ZOS1u9H8gLZu3Sqv16v27dtXedvExERFRERo5syZlX6oT1JSkgYMGOAPmapISkrSvn37yl3esGHDn/W1T3Xr1lWtWrWUm5tb5sGX8fHx2rlzp/+9MUYHDhyoVACeuL/yTBISEpSXl+d/IFZl9y9JaWlp+stf/qL+/ftry5YtevTRR/3rLr/8cl1++eU6dOiQXn/9db399tvKyMio1H5PdqbP9rzzztPDDz8sn8+nNWvW6IUXXtDMmTMVFRWlo0eP+sf5fD4VFBSUu4/KflbV0bFjR3Xs2LHC9Sd/DW5KSopSUlIkSe3atdPEiRPL3aZFixZ65plnyiy/+OKLdfHFF1dzxjhXkclk8unYksmADchr8vp0yGv34baXc9ihQ4f01Vdf6aWXXtIVV1yh888/v8r7iI+PV+fOnTVnzhwdOnRIPp9Pubm5ysnJqXCbX/7yl3r//ff9twgcOnTI/6CiM7nqqqv0wQcfaPv27TLGKDc3V3l5eWrdurVq166t999/X8eOHZPP59POnTu1devWM+4zLCxMvXr10pw5c+T1euXz+bR582YVFxere/fuysrK0oYNG1RSUqIPPvhAtWrVUrt27c6437i4OBUWFurQoUOnHZeWlqb33ntPBQUFKigo0MKFCyv9S61ly5aqV6+eXn31VXXu3Fl16tSRJO3Zs0dff/21iouLFRkZqcjISP/XsFXVmT7b5cuXq6CgQGFhYYqJiZF0/DNNTk5WcXGxMjMzVVJSokWLFvlvHzlVvXr15PF4yv2lDJwryOTjyOTTI5OBmkdeH0denx557T5c+XEOevbZZxUeHi6Px6OmTZuqX79+uvrqq3/2/oYNG6a3335bv//973X48GE1atRIN954Y4XjL774Yh05ckSTJk3SgQMHFBMTo06dOumyyy4747Euu+wyFRYW6qWXXpLX61XDhg01bNgwNWjQQI8//rjmzJmjBx98UCUlJUpOTtatt94q6fg9fWPHjtXcuXPL3e9vfvMbzZs3T0888YSOHDniv00hOTlZGRkZmjVrlv9J1Y8//rgiIs78n06TJk2UlpamYcOGyefz6YUXXih33IABA3To0CF/x/nSSy/VgAEDzrj/E9LS0vTXv/5VjzzyiH9ZcXGx3n77be3evVvh4eFq166d/7LKFStWaPHixRXO51RhYWGn/Wyzs7M1Z84cHT16VA0aNNBDDz3k/2Xx29/+Vq+++qp8Pp9uuOGGMpcrnhAVFaUBAwbov/7rv1RaWqqRI0dy3yPOGWRyWWRyxchkoOaQ12WR1xUjr93HY4wxNT0JAAAAAACAYOG2FwAAAAAAYDWaHwAAAAAAwGo0PwAAAAAAgNVofgAAAAAAAKvR/AAAAAAAAFaj+QEAAAAAAKxG8wMAAAAAAFiN5gcAAAAAALAazQ8AAAAAAGA1mh8AAAAAAMBqND8AAAAAAIDVaH4AAAAAAACr0fwAAAAAAABWo/kBAAAAAACsRvMDAAAAAABYjeYHAAAAAACwGs0PAAAAAABgNZofAAAAAADAajQ/AAAAAACA1Wh+AAAAAAAAq9H8AAAAAAAAVqP5AQAAAAAArEbzAwAAAAAAWI3mBwAAAAAAsBrNDwAAAAAAYDWaHwAAAAAAwGo0PwAAAAAAgNVofgAAAAAAAKvR/AAAAAAAAFaj+QEAAAAAAKxG8wMAAAAAAFiN5gcAAAAAALAazQ8AAAAAAGA1mh8AAAAAAMBqND8AAAAAAIDVaH4AAAAAAACr0fwAAAAAAABWo/kBAAAAAACsRvMDAAAAAABYjeYHAAAAAACwGs0PAAAAAABgNZofAAAAAADAajQ/AAAAAACA1Wh+AAAAAAAAq9H8AAAAAAAAVqP5AQAAAAAArEbzAwAAAAAAWI3mBwAAAAAAsBrNDwAAAAAAYDWaHwAAAAAAwGo0PwAAAAAAgNVofgAAAAAAAKvR/AAAAAAAAFaj+QEAAAAAAKxG8wMAAAAAAFiN5gcAAAAAALAazQ8AAAAAAGA1mh8AAAAAAMBqND8AAAAAAIDVaH4AAAAAAACr0fwAAAAAAABWo/kBAAAAAACsRvMDAAAAAABYjeYHAAAAAACwGs0PAAAAAABgNZofAAAAAADAajQ/AAAAAACA1Wh+AAAAAAAAq9H8AAAAAAAAVqP5AQAAAAAArEbzAwAAAAAAWI3mBwAAAAAAsBrNDwAAAAAAYDWaHwAAAAAAwGo0PwAAAAAAgNVofgAAAAAAAKvR/AAAAAAAAFaj+QEAAAAAAKxG8wMAAAAAAFiN5gcAAAAAALAazQ8AAAAAAGA1mh9ACBk9erRat25d09MAAPwfchkAQgN5DZofIeKee+6Rx+ORx+NReHi4mjZtqt/85jfavXt3heNOfsXGxgaM83q9euKJJ5SamqqYmBjFx8erS5cuGjVqlL7//vuA/fXp0ydg28LCQo0aNUrt2rVTVFSU4uMFALCUAAAgAElEQVTjdd1112nZsmUB45YtWyaPx6OmTZvq0KFDZeZ56n6rY9myZbruuusUHx+vqKgotWvXTqNGjVJhYaFjxzibvvjiC3k8Hn333XcByx999FGtWrUqqMc+8XM73euee+4J6hwqo3HjxmXm5eQ5BZwJuXx65LJzQiWXJWnp0qW68sorVadOHdWtW1eXXHKJdu7cWdPTwjmOvD498to5oZDXn3zySYVze/nll2t0bsFG8yOEXHHFFdq7d6927typefPmKSsrSzfffHOF405+bd++3b/++++/V9euXfXXv/5VTzzxhFatWqXVq1dr3Lhxys/P1/PPP1/hHAoKCpSWlqb58+frL3/5izZv3qzPPvtMbdq0Ue/evTVr1qwy23i9Xk2YMMGZD6EcM2fOVO/evdW6dWstXbpUmzdv1pgxYzR//nylpaWpoKAgaMc+22JjY5WUlBTUY3Tv3j3g3Hn88cfVtGnTgGUvvfRSUOdQWU899VTAvBYsWFDTU8I5hlwuH7nsrFDJ5b///e/61a9+pWuuuUarVq1SZmamRo4cqejo6JqeGkBeV4C8dlYo5PVVV11V5hwfN26cIiIiNGjQoBqdW9AZhIS7777b9O7dO2DZ5MmTjSTz448/nnbcqa6//nrTuHHjgO1O5vP5KtxfRkaGiY6ONt99912Z7YYOHWqio6PN7t27jTHGfPbZZ0aSGTVqlImJiTG7du2q0jwrY/fu3SYqKso88MADZdZ99913Jjo62mRkZPiXFRcXm2eeeca0atXKREZGmuTkZDNs2DD/+sLCQvPQQw+Zpk2bmsjISNO8eXMzZswYY4wx3377rZFkVqxYEXCclJQU8/TTT/vfSzKTJk0yAwYMMDExMea8884zEydODNhm0qRJpnPnzqZOnTqmUaNG5tZbbzV79uwJOM7JryuvvNIYY8zTTz9tUlJSAvb1xhtvmA4dOpjIyEjTpEkTM2rUKFNcXOxff+WVV5rBgwebP/3pT6ZRo0YmPj7e3H333aaoqKhSn/Gf//xn07x58zLLL7744oDP1hhjSkpKTNOmTc24ceOMMcbceuutpl+/fmb8+PGmcePGJiYmxtxyyy3m4MGDAdvNmTPHdOrUyURFRZkWLVqYP/7xj+bQoUOnnVejRo3Mc889V6kagGAgl8tHLp+buVxcXGyaNGliRo8eXakagLOJvC4feX1u5nV5LrroIjNgwIAqbROKuPIjRO3Zs0cLFy5UeHi4wsPDK72d1+vVxx9/rIyMDNWrV6/cMR6Pp9zlxhi9/fbbuuOOO9S8efMy60eOHKkjR45o4cKFAct/97vfqWXLlho5cmSl51lZCxYs0NGjR8vdd/PmzXX77bdr3rx5MsZIkgYPHqwpU6Zo9OjRysnJ0aJFi9SqVSt/fddff73+/ve/6+WXX9Y333yjOXPmqEGDBlWe1zPPPKOePXsqKytLjz/+uB577DG99957AWOef/55bdiwQYsXL9bOnTt12223SZKaNWumv/3tb5KkNWvWaO/evWW2PeGjjz7Sfffdp7vuuksbNmzQxIkTNXXqVD3zzDMB4xYuXCiv16tly5Zp3rx5ev/996v9rwhDhw7VW2+9pSNHjviXffLJJ8rNzQ24nG/58uVau3at/vnPf+qDDz7QmjVrNGTIEP/6V199VY888ohGjBihnJwczZo1Sx9++KGGDx9+xjlMnDhRiYmJuuCCC/TII4/o4MGD1aoJqA5y+Thy+dzM5VWrVmn37t1q1KiR0tLS1LBhQ3Xv3l0fffRRtWoCgoG8Po68Pjfz+lRr165VZmam7r///mrVFBJqrO2CKrn77rtNeHi4qVOnjqldu7a/k/mHP/yhwnEnv66//npjjDGrV682ksx7770XsN1ll13mH5uamhqwvxOd5X379hlJ5oUXXqhwnvXq1TPp6enGmP90rL///nvzySefGI/HY9atW1dmv9XxwAMPmHr16lW4fuLEiUaS2b9/v9myZYuRZBYsWFDu2CVLlhhJZu3ateWur0rH+s477wwY8+tf/9qkpaVVOM/MzEwjyd/VX7FihZFkvv3224Bxp3asL7/8cnPzzTcHjJk0aZKJjo42R48eNcYc71h36tQpYMz9999vLr300grnc7KKOtY//fSTiYuLM3PnzvUv69+/f0DX+NZbbzVxcXGmsLDQv+xvf/ub8Xg8ZseOHcbn85nGjRub2bNnB+z7v//7v43H4zE//fRThfOaMGGCWbZsmdmwYYOZN2+eadmypenYsaO/biDYyOXykcvnZi6/8cYbRpJJSkoys2bNMllZWeapp54yHo/HfP7555WqCwgW8rp85PW5mdenGjx4sGnZsmXAVUu24sqPEHLJJZcoOztba9as0X/913/p0ksv1Z///OcKx538eu211yTJ37k91fz585Wdna0hQ4bop59+KndMRdtWZsw111yja665Rr///e/PuA9JGjt2rGJjY/2vFStW/Ow5nZCZmSlJuvrqq8td/9VXXyk+Pl7dunWr9D4rctlllwW8T0tLU05Ojv/9smXLdM0116hZs2aqW7euLr/8cknSjh07qnScjRs3qkePHgHLrrzySh05ckTbtm3zL+vSpUvAmCZNmmjfvn1VOtapYmJidNddd2n69OmSpNzcXH344Yf63e9+FzDuwgsvDHhQWFpamowx+ve//61du3YpNzdX6enpAT/vm266ScaYgBpO9cc//lFXXnmlLrjgAv3617/Whx9+qI0bN+rDDz+sVl1AVZDLP29OJ5DL/xHquVxaWipJeuCBB3TvvfeqS5cueuaZZ3TVVVdpypQp1aoLcAJ5/fPmdAJ5/R+hntcnKygo0LvvvqshQ4ZUeNWSTSJqegKovNq1a/u/numCCy7Q5s2b9eCDD5Z5ONLJ407Vpk0bhYWFKScnRzfddJN/ebNmzSRJCQkJFR6/QYMGio+P19dff13u+u+//16FhYVq165duesnTpyozp07a9GiRRUX+X+GDh2qW265xf++SZMm5Y5r166dCgoK9P333/trONnGjRuVkJBQ6Ycbne4/+rCw473CU39RFBcXn3G/J2+zc+dO9e3bV3fddZeeeuopJSUladeuXerTp4+OHTtWqXmebs4njnXy8sjIyDLb+Hy+Kh/rVEOHDlWnTp20adMmLV68WE2aNKnwl+Kp85Pkn8Orr76q7t27lxlb3s+0IqmpqYqLiyvzZG8gmMjlssjlczOXk5OTJR3P4pN17Ngx6N+uAFQGeV0WeX1u5vXJ5s6dq2PHjum+++6r4uxDE1d+hLDRo0frzTff1Lp16yq9TUJCgq677jq9/PLL+vHHH6t0vLCwMP+9f+V1VseOHauoqKgKnxKcmpqq3/3ud3r88cfPGE4JCQlq3bq1/1W7du1yx918882KiorSuHHjyqzbsWOH5s2bpzvuuEMej0cXXXSRJOl//ud/yt3XL37xC3m93go/zxP3LO7Zs8e/bP/+/WW+Jk1SmT/0/vWvf6lDhw6Sjt9Xd/jwYU2aNElpaWlq165dme7xiZA98S9pFenYsaM+//zzgGXLly9X7dq1/fdgBlPHjh3VvXt3TZ8+XTNnztTgwYP9v9xO2LBhQ8C/gvzrX/+Sx+NR+/bt1axZMzVs2FCbN28O+HmfeEVFRVV6Ltu3b9ePP/5YpYYJ4DRymVw+V3P5kksuUa1atbRp06aA5Zs2bVKLFi0crxOoLvKavD5X8/pkr7/+um666SY1bNjQ8fpc6WzcW4Pqq+jevhtuuMH06dMnYNwVV1xh9u7dW+Z14j6uHTt2mKZNm5qWLVuaN99806xfv95s27bNfPzxx+aSSy4xrVq1qvC4Bw8eNKmpqSYlJcUsWLDA7Nixw2RnZ5vhw4ebsLAwM2PGDP/Yk+9VPCEvL8/ExcWZ2rVrO3KvojHGvPbaayYsLMwMGzbMZGdnmx07dpiFCxea1q1bm06dOgU8jfuOO+4wDRo0MHPnzjVbt241a9asMZMmTTLGHH869xVXXGFatWpl3n//fbN9+3bzxRdfmOnTp/u3T0tLMxdddJHJzs4269atM9dcc42JiYkpc69ifHy8efnll83mzZvN5MmTTXh4uP8eyfXr1xuPx2P+/Oc/m+3bt5vFixebdu3aGUnms88+M8YYk5uba8LCwszkyZPNvn37zA8//GCMKXuv4kcffWTCwsLMuHHjzKZNm8z8+fNN/fr1zZNPPukfc+Ip1Ser6P7D8pxp7Jw5c0xkZKQJDw8PeBK5McfvVaxbt665+eabzYYNG8zSpUtNy5YtzcCBA/1jXn/9dRMVFWXGjRtnNm7caL755huzaNEi/z2v5fn888/NCy+8YDIzM823335rPvroI3PBBReYNm3amMOHD1eqLqC6yOWKkcvnXi4bY8zw4cNN/fr1zYIFC8yWLVvMhAkTTFhYmPniiy8qVRcQLOR1xcjrczOvjTFm5cqVRpL59NNPK1WLDWh+hIiKQvuLL74wksySJUv843TK1zudeOXl5fm3y8vLM4899php3769iY6ONtHR0aZDhw7m4YcfDng4UHnH/fHHH82IESNM69atTa1atUxcXJy55pprzNKlSwPGlRfaxhjz3HPPGUmOhbYxxx+ydPXVV5u4uDhTq1Yt07p1a/PEE0+YgoKCgHHHjh0zTz75pGnevLmpVauWadKkiXnooYf86wsKCsywYcNM48aNTa1atUyLFi38XzdljDGbNm0yPXr0MDExMaZ169Zm0aJF5T6o6cUXXzQ33nijqV27tmncuLGZMGFCwDymTJlimjZtaqKjo01aWpr5xz/+ERDaxhjz7LPPmuTkZBMWFnbGr+hq3769qVWrlklOTjYjR44s9yu6TuZkaB8+fNjUr1/f3HDDDWXWnfiKrjFjxpiGDRua2rVrm0GDBpn8/PyAcQsWLDAXX3yxiY6ONnXr1jVdu3Y1Y8eOrfCYq1atMpdccompX7++iYyMNCkpKWbYsGFm3759laoJcAK5fHrk8rmVy8Yc/xrMJ554wpx33nkmJibGdOvWzXz00UeVqgkIJvL69Mjrcy+vjTl+frZp0+aceNDpCR5jqvCkGwBn5PF4NHfuXN155501PZWzYt++fWrWrJkWL16sfv36Bay77bbbVFRUxENIAdQocvk/yGUAbkZe/wd57Tye+QHgZykuLtbOnTs1YsQIpaSkqG/fvjU9JQA4p5HLABAayOuaQfMDwM/y6aefqnnz5vriiy/05ptvnhNfjwUAbkYuA0BoIK9rBre9AAAAAAAAq3HlBwAAAAAAsBrNDwAAAAAAYDWaHwAAAAAAwGoRNT0BN9qzZ09NT8EvKSlJBw4cqOlpOIZ63M+2mtxWT3Jyck1PISS5JZfddj45wbaaqMf93FQTmewst2S15K7zzAm21SPZVxP1BJcTec2VHwAAAAAAwGo0PwAAAAAAgNVofgAAAAAAAKvR/AAAAAAAAFaj+QEAAAAAAKxG8wMAAAAAAFiN5gcAAAAAALAazQ8AAAAAAGA1mh8AAAAAAMBqND8AAAAAAIDVaH4AAAAAAACr0fwAAAAAAABWo/kBAAAAAACsRvMDAAAAAABYjeYHAAAAAACwGs0PAAAAAABgNZofAAAAAADAajQ/AAAAAACA1Wh+AAAAAAAAq9H8AAAAAAAAVqP5AQAAAAAArEbzAwAAAAAAWI3mBwAAAAAAsBrNDwAAAAAAYDWaHwAAAAAAwGo0PwAAAAAAgNVofgAAAAAAAKvR/AAAAAAAAFaj+QEAAAAAAKwWUdMTOGHatGnKzMxUXFycJk6cWGa9MUazZ89WVlaWoqKilJ6erlatWkmSxowZoy1btqh9+/YaMWKEf5v9+/dr0qRJKioqUsuWLZWRkaGICNeUDACuRSYDQGggrwGgclxz5UfPnj01cuTICtdnZWUpNzdXkydP1pAhQzRjxgz/uhtuuEHDhg0rs81bb72lfv36afLkyapTp46WLl0alLkDgG3IZAAIDeQ1AFSOa5ofqampio2NrXD9unXr1KNHD3k8HrVt21Y//fSTDh48KEnq1KmTateuHTDeGKONGzfq0ksvlXT8F8PatWuDVwAAWIRMBoDQQF4DQOW4pvlxJl6vV0lJSf73iYmJ8nq9FY4vLCxUTEyMwsPDJUkJCQmnHQ8AqDwyGQBCA3kNAMeFzM17xpgyyzwejyP7XrJkiZYsWSJJGj9+fMAviJoWERHhqvlUF/W4n2012VaPWwQzkyX35rKN55NtNVGP+9lYk5vxN7QdbKtHsq8m6nG/kGl+JCYm6sCBA/73+fn5io+Pr3B83bp1dejQIZWWlio8PFxer1cJCQnlju3Tp4/69Onjf3/ycWpaUlKSq+ZTXdTjfrbV5LZ6kpOTa3oKjghmJkvuzWW3nU9OsK0m6nE/N9VkSyafDn9D28G2eiT7aqKe4HIir0Pmtpdu3bpp+fLlMsZo8+bNiomJOW1wezwedezYUatWrZIkLVu2TN26dTtb0wUAq5HJABAayGsAOM5jyrsWrgZMmjRJOTk5KiwsVFxcnG655RaVlJRIkq6++moZYzRz5kytX79ekZGRSk9PV0pKiiTpqaee0u7du3XkyBHVrVtXQ4cOVZcuXbRv374yX9NVq1atM85lz549Qa21KtzWcasu6nE/22pyWz2h8q+MbspkyT257LbzyQm21UQ97uemmkIlk0/HTXntlqyW3HWeOcG2eiT7aqKe4HIir13T/HATgjt4qMf9bKvJbfXY8Id2TXBLLrvtfHKCbTVRj/u5qSYy2VluyWrJXeeZE2yrR7KvJuoJrnPqthcAAAAAAICfg+YHAAAAAACwGs0PAAAAAABgNZofAAAAAADAajQ/AAAAAACA1Wh+AAAAAAAAq9H8AAAAAAAAVqP5AQAAAAAArEbzAwAAAAAAWI3mBwAAAAAAsBrNDwAAAAAAYDWaHwAAAAAAwGo0PwAAAAAAgNVofgAAAAAAAKvR/AAAAAAAAFaj+QEAAAAAAKxG8wMAAAAAAFiN5gcAAAAAALAazQ8AAAAAAGA1mh8AAAAAAMBqND8AAAAAAIDVaH4AAAAAAACr0fwAAAAAAABWo/kBAAAAAACsRvMDAAAAAABYjeYHAAAAAACwGs0PAAAAAABgNZofAAAAAADAajQ/AAAAAACA1Wh+AAAAAAAAq9H8AAAAAAAAVouo6QmcMG3aNGVmZiouLk4TJ04ss94Yo9mzZysrK0tRUVFKT09Xq1atJEnLli3Te++9J0kaMGCAevbsKUkaPXq0Dh48qMjISEnSk08+qbi4uLNTEACEMDIZAEIDeQ0AleOa5kfPnj117bXXaurUqeWuz8rKUm5uriZPnqwtW7ZoxowZGjt2rIqKirRw4UKNHz9ekjRixAh169ZNsbGxkqThw4crJSXlrNUBADYgkwEgNJDXAFA5rrntJTU11R+25Vm3bp169Oghj8ejtm3b6qefftLBgweVnZ2tCy+8ULGxsYqNjdWFF16o7OzsszhzALAPmQwAoYG8BoDKcc2VH2fi9XqVlJTkf5+YmCiv1yuv16vExET/8oSEBHm9Xv/7adOmKSwsTJdccokGDhwoj8dzVucNADYikwEgNJDXAHBcyDQ/jDFlllUUwieWDx8+XAkJCTp8+LAmTpyo5cuX68orrywzfsmSJVqyZIkkafz48QG/IGpaRESEq+ZTXdTjfrbVZFs9bhHMTJbcm8s2nk+21UQ97mdjTW7G39B2sK0eyb6aqMf9Qqb5kZiYqAMHDvjf5+fnKz4+XgkJCcrJyfEv93q9Sk1NlXS8gy1JtWvX1uWXX66tW7eWG9x9+vRRnz59/O9PPk5NS0pKctV8qot63M+2mtxWT3Jyck1PwRHBzGTJvbnstvPJCbbVRD3u56aabMnk0+FvaDvYVo9kX03UE1xO5LVrnvlxJt26ddPy5ctljNHmzZsVExOj+Ph4denSRevXr1dRUZGKioq0fv16denSRaWlpSooKJAklZSU6KuvvlKzZs1quAoAsAOZDAChgbwGgONcc+XHpEmTlJOTo8LCQg0dOlS33HKLSkpKJElXX321unbtqszMTA0fPlyRkZFKT0+XJMXGxmrgwIF64oknJEmDBg1SbGysjhw5ojFjxqi0tFQ+n0+dOnUK6EwDACpGJgNAaCCvAaByPKa8GwHPcXv27KnpKfi57XKj6qIe97OtJrfVcy5cYh0Mbsllt51PTrCtJupxPzfVRCY7yy1ZLbnrPHOCbfVI9tVEPcF1Tt32AgAAAAAA8HPQ/AAAAAAAAFaj+QEAAAAAAKxG8wMAAAAAAFiN5gcAAAAAALAazQ8AAAAAAGA1mh8AAAAAAMBqjjU/Pv74YxUUFDi1OwBANZHLABAayGsACL4Ip3a0YcMGvfPOO+rYsaN69Oih//f//p9q1arl1O4BAFVELgNAaCCvASD4HGt+PP744yosLNSXX36pjz76SNOnT9cll1yiHj16KDU11anDAAAqiVwGgNBAXgNA8DnW/JCkunXr6tprr9W1116rHTt2aMqUKfrss8+UlJSk3r17q2/fvoqOjnbykACA0yCXASA0kNcAEFyONj+k45ftrVixQmvXrlVKSoqGDRumpKQkffzxxxo7dqz+9Kc/OX1IAMBpkMsAEBrIawAIHseaH3PmzNHKlSsVExOjHj16aOLEiUpISPCvb9Omje69916nDgcAOANyGQBCA3kNAMHnWPOjuLhYjz76qFq3bl3+gSIiNH78eKcOBwA4A3IZAEIDeQ0AwedY8+Omm25SZGRkwLKioiIdO3bM37lu0qSJU4cDAJwBuQwAoYG8BoDgC3NqR88995y8Xm/AMq/Xq+eff96pQwAAqoBcBoDQQF4DQPA51vzYs2ePzj///IBl559/vnbv3u3UIQAAVUAuA0BoIK8BIPgca37Uq1dPubm5Actyc3NVt25dpw4BAKgCchkAQgN5DQDB59gzP3r16qWJEyfqtttuU6NGjZSbm6v58+frqquucuoQAIAqIJcBIDSQ1wAQfI41P/r376+IiAjNnTtX+fn5SkxM1FVXXaXrr7/eqUMAAKqAXAaA0EBeA0DwOdb8CAsL0w033KAbbrjBqV0CAKqBXAaA0EBeA0DwOdb8kI4/rOm7777TkSNHApZzyR4A1AxyGQBCA3kNAMHlWPPjvffe06JFi9S8eXNFRUUFrCO0AeDsI5cBIDSQ1wAQfI41Pz7++GONHTtWzZs3d2qXAIBqIJcBIDSQ1wAQfI591W1kZKSaNGni1O4AANVELgNAaCCvASD4HGt+3HrrrZo1a5YOHjwon88X8AIAnH3kMgCEBvIaAILPsdtepk2bJkn69NNPy6ybP3++U4cBAFQSuQwAoYG8BoDgc6z5MWXKFKd2BQBwALkMAKGBvAaA4HOs+dGgQQNJks/n048//qj4+Hindg0A+BnIZQAIDeQ1AASfY82Pn376STNmzNCqVasUERGhuXPnat26ddq6datuu+02pw4DAKgkchkAQgN5DQDB59gDT6dPn66YmBhNmzZNERHHeypt27bVypUrnToEAKAKyGUACA3kNQAEn2NXfmzYsEGvvfaaP7AlqV69evrxxx8rtf20adOUmZmpuLg4TZw4scx6Y4xmz56trKwsRUVFKT09Xa1atZIkLVu2TO+9954kacCAAerZs6ckafv27Zo6daqOHTumrl276t5775XH46lmpQAQGqqTy2QyAJw95DUABJ9jV37ExMSosLAwYNmBAwcqfc9iz549NXLkyArXZ2VlKTc3V5MnT9aQIUM0Y8YMSVJRUZEWLlyosWPHauzYsVq4cKGKiookHe+i33///Zo8ebJyc3OVnZ39M6sDAu3cGa5hw+rr6qsjNGxYfe3cGV7TUwLKqE4uk8kINeQyQhl5jXMJeY2a4tiVH71799bEiRN12223yRijzZs365133tEvf/nLSm2fmpqq/fv3V7h+3bp16tGjhzwej9q2bauffvpJBw8e1MaNG3XhhRcqNjZWknThhRcqOztbHTt21OHDh9W2bVtJUo8ePbR27Vp17dq1+sXinLZzZ7huuy1BO3bU+r8lMcrMrKV33/Xq/PNLa3RuwMmqk8tkMkIJuYxQR17jXEFeoyY5duXHjTfeqMsuu0wzZ85UaWmpXnnlFXXr1k19+/Z1ZP9er1dJSUn+94mJifJ6vfJ6vUpMTPQvT0hIKHf5ifFAdU2YUPekwD5ux45amjChbg3NCChfMHOZTIabkMsIdeQ1zhXkNWqSY1d+eDwe9evXT/369XNqlwGMMeUes6K5lDe+IkuWLNGSJUskSePHjw/4BVHTIiIiXDWf6rKhHq+3/P9svN7okK9NsuNndDLb6qmKYOZyMDNZcm8u23g+2VCTzblsw8/nVDbWVF2hmtduzWrJvvPMlnrI69BhWz2Sg82Pr7/+usJ1F1xwQbX3n5iYqAMHDvjf5+fnKz4+XgkJCcrJyfEv93q9Sk1NVWJiovLz8wPGJyQklLvvPn36qE+fPv73Jx+npiUlJblqPtVlQz0JCfUlxZSz/IgOHPjh7E/IYTb8jE7mtnqSk5PP2rGCmcvBzGTJvbnstvPJCTbUZHMu2/DzOZWbajqbmXw6oZrXbs1qyV3nmRNsqYe8Dh1uq8eJvHas+fHKK68EvC8oKFBJSYkSExM1ZcqUau+/W7du+uSTT5SWlqYtW7YoJiZG8fHx6tKli9555x3/A5rWr1+v22+/XbGxsapdu7Y2b96sNm3aaPny5br22murPQ/gsccKlZlZK+CSvebNi/XYY4Wn2Qo4+4KZy2Qy3IRcRqgjr3GuIK9RkzymqtciV5LP59OiRYtUu3ZtXX/99WccP2nSJOXk5KiwsFBxcXG65ZZbVFJSIkm6+uqrZYzRzJkztX79ekVGRio9PV0pKSmSpKVLl2rx4sWSjn9NV69evSRJ27Zt07Rp06eO0R4AACAASURBVHTs2DF16dJF9913X6W+pmvPnj0/t2zHua3jVl221LNzZ7gmTKgrrzdaCQlH9NhjhdY8pMmWn9EJbqunJv+VsSq57KZMltyTy247n5xgS0225rItP5+Tuakmt1z5capQzWu3ZLXkrvPMCTbVQ16HBrfV40ReB635IUmlpaUaOnSopk+fHqxDBAXBHTzU43621eS2emr6D21yuXrcdj45wbaaqMf93FRTTWfy6YRiXrslqyV3nWdOsK0eyb6aqCe4nMhrx77tpTz/+7//q7CwoB4CAFAF5DIAhAbyGgCc5dgzPx544IGA98eOHdOxY8f029/+1qlDAACqgFwGgNBAXgNA8DnW/MjIyAh4HxUVpfPOO08xMWWf5gsACD5yGQBCA3kNAMHnWPMjNTXVqV0BABxALgNAaCCvASD4HGt+vPzyy5V6CvSwYcOcOiQA4DTIZQAIDeQ1AASfY09RqlOnjtauXSufz6eEhAT5fD6tXbtWMTExatSokf8FADg7yGUACA3kNQAEn2NXfuzdu1cjRoxQhw4d/Mv+/e9/a9GiRbrvvvucOgwAoJLIZQAIDeQ1AASfY1d+bN68WW3atAlY1rp1a23evNmpQwAAqoBcBoDQQF4DQPA51vxo2bKl3nnnHR07dkzS8a/oevfdd9WiRQunDgEAqAJyGQBCA3kNAMHn2G0v6enpmjx5su6++27FxsaqqKhIKSkpGj58uFOHAABUAbkMAKGBvAaA4HOs+dGwYUP95S9/0YEDB3Tw4EHFx8crKSnJqd0DAKqIXAaA0EBeA0DwOXbbiyQVFhYqJydHOTk5SkpKktfrVX5+vpOHAABUAbkMAKGBvAaA4HKs+ZGTk6OHH35YK1as0KJFiyRJubm5mj59ulOHAABUAbkMAKGBvAaA4HOs+fHGG2/o4Ycf1qhRoxQeHi7p+FOqt23b5tQhAABVQC4DQGggrwEg+BxrfuTl5alTp04ByyIiIlRaWurUIQAAVUAuA0BoIK8BIPgca340bdpU2dnZAcs2bNig888/36lDAACqgFwGgNBAXgNA8Dn2bS933XWXnn32WXXt2lXHjh3T66+/rq+++kp//OMfnToEAKAKyGUACA3kNQAEn2PNj7Zt2+q5557TihUrFB0draSkJI0dO1aJiYlOHQIAUAXkMgCEBvIaAILPkeaHz+fTn/70J40aNUo33nijE7sEAFQDuQwAoYG8BoCzw5FnfoSFhWn//v0yxjixOwBANZHLABAayGsAODsce+DpoEGDNH36dOXl5cnn8wW8AABnH7kMAKGBvAaA4HPsmR+vvfaaJGn58uVl1s2fP9+pwwAAKolcBoDQQF4DQPBVu/nxww8/qH79+poyZYoT8wEAVBO5DAChgbwGgLOn2re9PPTQQ5KkBg0aqEGDBnrzzTf9//vECwBw9pDLABAayGsAOHuq3fw49eFMGzdurO4uAQDVQC4DQGggrwHg7Kl288Pj8TgxDwCAQ8hlAAgN5DUAnD3VfuZHaWmpvv76a/97n88X8F6SLrjgguoeBgBQSeQyAIQG8hoAzp5qNz/i4uL0yiuv+N/HxsYGvPd4PDzECQDOInIZAEIDeQ0AZ0+1mx9Tp051Yh4AAIeQywAQGshrADh7qv3MDwAAAAAAADej+QEAAAAAAKxW7dtenJKdna3Zs2fL5/Opd+/e6t+/f8D6vLw8vfLKKyooKFBsbKwyMjKUmJgoSXrrrbeUlZUlSRo4cKC6d+8u6filhDk5OYqJiZEkPfjgg2rRosXZKwoAQhi5DADuR1YDQOW4ovnh8/k0c+ZMPfnkk0pMTNQTTzyhbt26qWnTpv4xc+fOVY8ePdSzZ099/fXXmjdvnjIyMpSZmalvv/1WEyZMUHFxsUaPHq0uXbr4w/quu+7SpZdeWlOlAUBIIpcBwP3IagCoPFfc9rJ161Y1btxYjRo1UkREhLp37661a9cGjNm1a5c6deokSerYsaPWrVvnX56amqrw8HBFR0erefPmys7OPus1AIBNyGUAcD+yGgAqzxXND6/X67/8TpISExPl9XoDxjRv3lyrV6+WJK1Zs0aHDx9WYWGhP6iPHj2qgoICbdy4Ufn5+f7t3nnnHT366KN64403VFxcfHYKAoAQRy4DgPuR1QBQea647cUYU2aZx+MJeH/XXXdp1qxZWrZsmTp06KCEhASFh4erc+fO2rZtm5588knVq1dPbdu2VXh4uCTp9ttvV/369VVSUqLXXntNf/vb3zRo0KAyx1qyZImWLFkiSRo/frySkpKCUOXPExER4ar5VBf1uJ9tNdlWz9lCLpfPxvPJtpqox/1srKmmkNUVs+08s60eyb6aqMf9XNH8SExMDOg05+fnKz4+PmBMQkKCHn30UUnSkSNHtHr1av89iQMGDNCAAQMkSS+99JIaN24sSf591KpVS7169dIHH3xQ7vH79OmjPn36+N8fOHDAocqqLykpyVXzqS7qcT/banJbPcnJyTU9hUohl8vntvPJCbbVRD3u56aaQiWTK0JWV8xN55kTbKtHsq8m6gkuJ/LaFbe9pKSkaO/evdq/f79KSkq0cuVKdevWLWBMQUGBfD6fJGnx4sXq1auXpOMPeiosLJQk7dixQzt37lTnzp0lSQcPHpR0vCu+du1aNWvW7GyVBAAhjVwGAPcjqwGg8lxx5Ud4eLjuu+8+jRkzRj6fT7169VKzZs00f/58paSkqFu3bsrJydG8efPk8XjUoUMHDR48WJJUUlKip556SpIUExOjjIwM/yV7kydPVkFBgaTj9zsOGTKkZgoEgBBDLgOA+5HVAFB5HlPezYLnuD179tT0FPzcdrlRdVGP+9lWk9vqCfVLrGuKW3LZbeeTE2yriXrcz001kcnOcktWS+46z5xgWz2SfTVRT3BZc9sLAAAAAABAsND8AAAAAAAAVqP5AQAAAAAArEbzAwAAAAAAWI3mBwAAAAAAsBrNDwAAAAAAYDWaHwAAAAAAwGo0PwAAAAAAgNVofgAAAAAAAKvR/AAAAAAAAFaj+QEAAAAAAKxG8wMAAAAAAFiN5gcAAAAAALAazQ8AAAAAAGA1mh8AAAAAAMBqND8AAAAAAIDVaH4AAAAAAACr0fwAAAAAAABWo/kBAAAAAACsRvMDAAAAAABYjeYHAAAAAACwGs0PAAAAAABgNZofAAAAAADAajQ/AAAAAACA1Wh+AAAAAAAAq9H8AAAAAAAAVqP5AQAAAAAArEbzAwAAAAAAWI3mBwAAAAAAsBrNDwAAAAAAYDWaHwAAAAAAwGo0PwAAAAAAgNUianoCJ2RnZ2v27Nny+Xzq3bu3+vfvH7A+Ly9Pr7zyigoKChQbG6uMjAwlJiZKkt566y1lZWVJkgYOHKju3btLkvbv369JkyapqKhILVu2VEZGhiIiXFMyALgauQwA7kdWA0DluOLKD5/Pp5kzZ2rkyJF68cUX9eWXX2rXrl0BY+bOnasePXro+eef16BBgzRv3jxJUmZmpr799ltNmDBBY8aM0d///ncdOnRI0vFA79evnyZPnqw6depo6dKlZ702AAhF5DIAuB9ZDQCV54rmx9atW9W4cWM1atRIERER6t69u9auXRswZteuXerUqZMkqWPHjlq3bp1/eWpqqsLDwxUdHa3mzZsrOztbxhht3LhRl156qSSpZ8+eZfYJACgfuQwA7kdWA0DlueL6Na/X67/8TpISExO1ZcuWgDHNmzfX6tWr1bdvX61Zs0aHDx9WYWGhmjdvroULF+r666/X0aNHtXHjRjVt2lSFhYWKiYlReHi4JCkhIUFer7fc4y9ZskRLliyRJI0fP15JSUlBqrTqIiIiXDWf6qIe97OtJtvqOVvI5fLZeD7ZVhP1uJ+NNdUUsrpitp1nttUj2VcT9bifK5ofxpgyyzweT8D7u+66S7NmzdKyZcvUoUMHJSQkKDw8XJ07d9a2bdv05JNPql69emrbtq0/rCurT58+6tOnj//9gQMHfl4hQZCUlOSq+VQX9bifbTW5rZ7k5OSankKlkMvlc9v55ATbaqIe93NTTaGSyRUhqyvmpvPMCbbVI9lXE/UElxN57YrmR2JiovLz8/3v8/PzFR8fHzAmISFBjz76qCTpyJEjWr16tWJiYiRJAwYM0IABAyRJL730kho3bqy6devq0KFDKi0tVXh4uLxerxISEs5SRQAQ2shlAHA/shoAKs8Vz/xISUnR3r17tX//fpWUlGjlypXq1q1bwJiCggL5fD5J0uLFi9WrVy9Jxx/0VFhYKEnasWOHdu7cqc6dO8vj8ahjx45atWqVJGnZsmVl9gkAKB+5DADuR1YDQOW54sqP8PBw3XfffRozZox8Pp969eqlZs2aaf78+UpJSVG3bt2Uk5OjefPmyePxqEOHDho8eLAkqaSkRE899ZQkKSYmRhkZGf5L9u644w5NmjRJ7777rlq2bKmrrrqqxmoEgFBCLgOA+5HVAFB5HlPezYLnuD179tT0FPzcdq9VdVGP+9lWk9vqCfX7y2uKW3LZbeeTE2yriXrcz001kcnOcktWS+46z5xgWz2SfTVRT3A5kdeuuO0FAAAAAAAgWGh+AAAAAAAAq9H8AAAAAAAAVqP5AQAAAAAArEbzAwAAAAAAWI3mBwAAAAAAsBrNDwAAAAAAYDWaHwAAAAAAwGo0PwAAAAAAgNVofgAAAAAAAKvR/AAAAAAAAFaj+QEAAAAAAKxG8wMAAAAAAFiN5gcAAAAAALAazQ8AAAAAAGA1mh8AAAAAAMBqND8AAAAAAIDVaH4AAAAAAACr0fwAAAAAAABWo/kBAAAAAACsRvMDAAAAAABYjeYHAAAAAACwGs0PAAAAAABgNZofAAAAAADAajQ/AAAAAACA1Wh+AAAAAAAAq9H8AAAAAAAAVqP5AQAAAAAArEbzAwAAAAAAWM1jjDE1PQkAAAAAAIBg4coPlxsxYkRNT8FR1ON+ttVkWz2oWTaeT7bVRD3uZ2NNcB/bzjPb6pHsq4l63I/mBwAAAAAAsBrNDwAAAAAAYLXw0aNHj67pSeD0WrVqVdNTcBT1uJ9tNdlWD2qWjeeTbTVRj/vZWBPcx7bzzLZ6JPtqoh5344GnAAAAAADAatz2AgAAAAAArEbzAwAAAAAAWC2ipidgswMHDmjq1Kn64Ycf5PF41KdPH/Xt21eS9I9//EOffPKJwsPDddFFF+nOO+8ss/3HH3+sTz/9VMYY9e7dW/369ZMkfffdd5o+fbqOHDmiBg0aaPjw4YqJiZEkLV68WEuXLlVYWJjuvfdedenSJWTr2b9/vx555BElJydLktq0aaMhQ4Y4Vs/panrxxRe1Z88eSdKhQ4cUExOj5557rsz22dnZmj17tnw+n3r37q3+/ftLkvbv369JkyapqKhILVu2VEZGhiIiIlRcXKwpU6Zo+/btqlu3rh5++GE1bNgwZOtZtmyZ5s6dq4SEBEnStddeq969e7u+nk8++UQfffSR9u3bpxkzZqhevXqSJGOMZs+eraysLEVFRSk9Pd26ex3PddOmTVNmZqbi4uI0ceJESdLcuXP11VdfKSIiQo0aNVJ6errq1KlTZlu3ZfLZrudsZHJFNb377rtat26dPB6P4uLilJ6e7s+dky1btkzvvfeeJGnAgAHq2bOnJGn79u2aOnWqjh07pq5du+ree++Vx+NRUVGRXnzxReXl5alBgwZ65JFHFBsbG7L1/PWvf9Wnn37qz7Rf//rXuuiii1xfzzvvvKPly5erqKhIc+fO9Y8P9u9MhI6Kfp+fkJeXp1deeUUFBQWKjY1VRkaGEhMTJUlvvfWWsrKyJEkDBw5U9+7dJVX8t00o1zR16lTl5OT4fwc9+OCDatGixVmpp7xsONnp/saqataFaj2jR4/WwYMHFRkZKUl68sknFRcX5/p6xowZoy1btqh9+/YBX39b0/8N/Sz/n737Do+qzN8/fk96QiCkUJaqEILA0jRrIRgpEVRYC1JslFXEGIro8pWmoi4gusZF2oqCKCiI0lzLqhsFEREJhLBA1AAiNQGSATKhpczz+4NfZjMmoU6SyeT9uq5cF3POc855PhPymcmdc84YlBur1Wp2795tjDHm1KlTZtSoUWb//v1m27Zt5sUXXzR5eXnGGGOOHz9eYtu9e/eap556ypw5c8YUFBSYF1980Rw6dMgYY8y4cePMjh07jDHGfP3112bJkiXGGGP2799vxowZY/Ly8szhw4fNiBEjTGFhYZWt5/Dhw+app55y2fwvpabi3n33XfPRRx+V2LawsNCMGDHCZGZmmvz8fDNmzBjHtomJiWbdunXGGGPmzp1rvvzyS2OMMV988YWZO3euMcaYdevWmddee61K17N69Wozb948l9ZQEfX8+uuv5vDhwyYhIcGcOHHCsc3mzZvNlClTjN1uN7/88osZP358udWGyrFjxw6ze/dup96SmppqCgoKjDHGLFq0yCxatKjEdu7Ykyu6noroycaUXtPJkycd//7ss88cfbQ4m81mhg8fbmw2m9O/jTlX0y+//GLsdruZMmWKSUlJMcace35WrlxpjDFm5cqVpT5XVamepUuXmo8//tjlNZR3Pb/88ouxWq3moYcectqmvF8zUTWc7/W8SGJiolm9erUxxpht27aZGTNmGGPOva6/+OKLpqCgwJw+fdqMHTvW8f+1rPc2VbmmWbNmmR9++KHC6iiutN5QXFnvsS6n11XVeiZNmmR27dpVYTUUd7n1GGPMf//7X5OcnGxeeuklp20q82focnHZSzkKDQ11JGaBgYFq2LChrFarvvrqK911113y9fWVpFITv4MHD6pFixby9/eXt7e3WrVqpY0bN0qSDh06pFatWkmS2rVrpx9//FGSlJycrE6dOsnX11d169ZV/fr1tWvXripbT0Uoq6Yixhj98MMPiomJKbHtrl27VL9+fdWrV08+Pj7q1KmTkpOTZYzRjh07dOONN0qSunTpouTkZEnSpk2bHOnvjTfeqO3bt8u48J7DFV1PeSuPeiTp6quvLvWvh5s2bVJsbKwsFouioqJ08uRJHTt2rJyqQ2Vo3bp1ib/st2/fXt7e3pKkqKgop/9jRdyxJ1d0PRWltJqK/oopSWfPni31L3+pqalq166dgoODFRwcrHbt2ik1NVXHjh3T6dOnFRUVJYvFotjYWEcvSE5O1i233CJJuuWWW8qlt1VkPRXB1fVI5/6fhoaGltimvF8zUTWc7/W8yIEDB9S2bVtJUps2bbRp0ybH8tatW8vb21sBAQFq2rSpUlNTK/W9TXnVVNlK6w3FlfUeqyr1uiupp7Jdbj2S1LZtWwUGBjqNr+yfoctF+FFBjhw5oj179igyMlIZGRn6+eefNWHCBE2aNKnUN8ONGzfWTz/9JJvNprNnz2rLli3Kzs52rCtqgBs2bHAst1qtjtPhJCksLKzUN71VpZ6i4zz99NOaNGmSfvrpp3KppbSaivz0008KCQnRH/7whxLjf/98h4eHy2q1ymazKSgoyPHLR/HvQ/FtvL29FRQUJJvNVmXrkaQff/xRY8aMUWJiorKyssqlFlfWcz5Wq1URERGXtA08yzfffFPqpSnu3pPL4sp6pIrtyb+3ZMkSPf7441q3bp0GDBhQYn1Zz/f5esGJEyccv3SHhoYqJyennKv4n/KoR5K+/PJLjRkzRnPmzFFubm75FlHM5dZzPhX5mgn3dTGv502bNnUEtRs3btTp06dls9kcwcDZs2eVk5OjHTt2KDs7+4LvbapiTUWWLFmiMWPG6J133lF+fn7FFHQRynqPdbm9rrJdaj1F5syZo//7v//TsmXL3CrMvdT3wJX9M3S53PyiHM9w5swZJSYmasiQIQoKCpLdbldubq6mTJmi3bt36x//+IdmzZrl9JeSRo0a6a677tLkyZMdqa6X17ms6vHHH9eCBQu0bNkyRUdHO66tqqgfoIqqJzQ0VHPmzFHNmjX166+/6u9//7sSExOd/sJUXjUV+f7770s9q0Aq/fm+0HWIl7PN5aioeq677jrFxMTI19dXX331lWbPnq1JkyZd2eRL4WnfH7inFStWyNvbWzfffHOJde7ck8vi6noqsieX5v7779f999+vlStX6osvvlD//v0vuI3FYqn070NZyqOeHj16qG/fvpKkpUuXauHChUpISHDZnM/ncus5H3oypIv7fzBw4EC9/fbbWrNmjVq1aqWwsDB5e3urffv22r17t5555hnVqlVLUVFRjl/WKlN51fTAAw+odu3aKigo0Ny5c/Xxxx87ekJlu5SfZ3fu3UUutR5JGjVqlMLCwnT69GklJiZq7dq1jrMPK1t16beEH+WsoKBAiYmJuvnmm3XDDTdIOpeM3XDDDbJYLIqMjJSXl5dsNpvjBmVFunXrpm7dukmSFi9e7EgRGzZsqGeeeUbSudOTU1JSJJ1L6Ionv1artdQbjlWVenx9fR2X0jRr1kz16tVTRkaGmjdvXu41SVJhYaE2btyoadOmlbrd75/v7OxshYaGqmbNmjp16pQKCwvl7e3t9H0o2iY8PFyFhYU6deqUy2+uV5H11KxZ0zE+Li5O77//vktrKY96zic8PNzp7JWL2QaeYc2aNdq8ebOee+65Ml/s3bEnl6U86qmonnwhnTt31rRp00r8ch0WFqa0tDTHY6vVqtatW5faC4q+DyEhITp27JhCQ0N17NixEq9bFcGV9dSuXduxvHv37nr55ZfLefYlXWo951MRr5lwfxfzeh4WFqYxY8ZIOvcHkx9//NERzPbp00d9+vSRJL3++uuqX7/+ed/bVITyqEmSYx++vr7q2rWrPvnkk3Kv5WKV9R7rcnqdO7jUeiQ55h8YGKjOnTtr165dbhN+XOp74Mr+GbpcXPZSjowxeuONN9SwYUP17t3bsfxPf/qTtm/fLuncG8uCggKnXyKLnDhxQtK5T7zYuHGj4y/cRcvtdrtWrFihW2+9VZIUHR2t9evXKz8/X0eOHFFGRobTJQJVrZ6cnBzZ7XZJ0uHDh5WRkaF69eq5rJ7z1SRJ27ZtU4MGDZxOXSuuefPmysjI0JEjR1RQUKD169crOjpaFotFbdq00YYNGySd+yUkOjpa0rkzJdasWSPp3Onkbdq0cWmqWtH1FL8fxqZNm9SoUSOX1VJe9ZxPdHS01q5dK2OM0tPTFRQURPhRDaSmpurjjz/W2LFj5e/vX+Y4d+vJZSmveiqiJ5clIyPD8e9NmzY5PnGmuA4dOmjr1q3Kzc1Vbm6utm7dqg4dOig0NFSBgYFKT0+XMUZr16519ILo6Gh9++23kqRvv/1Wf/rTn6p0PcV78saNG9W4cePyL0ZXVs/5lPdrJqqGi3k9L96fVq5cqa5du0o618eKLpXau3ev9u3bp/bt25/3vU1VrUn6Xw8wxig5ObnCesDFKOs91uX0OndwqfUUFhY6Lq0sKCjQ5s2bq8T3pyyV/TN0uSzG3c8pqsJ+/vlnPffcc2rSpInjxfr+++9Xu3btNGfOHO3du1c+Pj4aOHCg/vjHP8pqtWru3LkaP368JOm5556TzWaTj4+PBg0a5Ljp0eeff64vv/xSknT99dfrgQcecOx/xYoVWr16tby8vDRkyBB17NixytazYcMGffjhh/L29paXl5f69evn8h+qsmq69tprNXv2bLVo0UI9evRwjP99TSkpKXr33Xdlt9vVtWtXRwp/+PDhEh/95Ovrq7y8PM2aNUt79uxRcHCwRo8e7dJfHiq6nsWLF2vTpk3y9vZWcHCwhg4dqoYNG7p9PZ9//rn+9a9/6fjx4woJCVHHjh0VHx8vY4zmz5+vrVu3ys/PTwkJCRX+V22Ur+nTpystLU02m00hISHq37+/Vq5cqYKCAsdflIs+wtXde3JF11MRPbmsmlJSUpSRkSGLxaKIiAgNGzZMYWFh2r17t/7zn/8oPj5e0rl7nKxcuVLSub+MFv2ysHv3bs2ZM0d5eXnq0KGDHn74YVksFtlsNv3jH/9QVlaWIiIi9NRTT7n8zIKKrGfmzJn67bffZLFYVKdOHQ0bNszlAW551PPee+9p3bp1jrNwunXrpv79+5f7ayaqjtJez5cuXarmzZsrOjpaGzZs0OLFi2WxWNSqVSs98sgjjvddY8eOlXTuxryPPvqo46Nfy3pvU5VreuGFFxy/YDdt2lTDhg1TQEBAhdRTWm8oKCiQdO6SvPO9x7rUXlcV6zlz5owmTZqkwsJC2e12tW3bVoMHD3ZccurO9Tz33HM6ePCgzpw5o5o1ayo+Pl4dOnSo9J+hy0H4AQAAAAAAPBqXvQAAAAAAAI9G+AEAAAAAADwa4QcAAAAAAPBohB8AAAAAAMCjEX4AAAAAAACPRviBEt58800tW7bM8firr77So48+qoEDB8pms+nnn3/WqFGjNHDgQG3cuLESZ+r5duzY4fiIQE/z4YcfasaMGZU9DcDt0ZPdBz0ZwPnQr90H/Rql8ansCaBiDR8+XMePH5e3t7e8vLzUqFEjxcbGKi4uzvE508OGDXOMLygo0LvvvqspU6Y4PkP8ww8/1G233aY77rijMkqoMnbs2KGZM2fqjTfeqOypuL0jR45oxIgRWrJkiby9vSt7OkCFoSdXHHryxaMnAyXRrysO/fri0a8vDeFHNTR27Fi1a9dOp06dUlpamhYsWKBdu3YpISGhxNgTJ04oPz9fjRs3diw7evSoGjVqdFnHLiws5AezGHd/Ptx9foAnoCe7D3d/Ptx9foCno1+7D3d/Ptx9ftUV4Uc1FhQUpOjoaNWuXVsTJ05U79691aRJE82ePVvh4eGKjY3V2LFjJUlDhgxRZGSksrKydOTIEb388svy8vLS22+/rfz8fL377rvasmWLLBaLunbtqv79+8vLy0tr1qzR119/rebNm+vbb79Vz549dd999+mbb77RJ598ouPHjysyMlLDBnskQQAAIABJREFUhg1TnTp1JEn9+/fX0KFD9emnn8pmsykmJkaPPPKILBaLJCkpKUmfffaZsrOzFR4erpEjR6pZs2ayWq16++239dNPPykgIEC9evW66GQ9Ly9PH3zwgTZs2KCTJ0+qSZMmevbZZ+Xn56dNmzZp8eLFslqtuuqqqzR06FDHC9fw4cPVs2dPrV27VkePHlWHDh00fPhw2e12TZ06VQUFBRo4cKAk6fXXX1dSUpL2798vX19fbd68WYMGDVJsbKzef/99/fDDD5Kkm266SQ8++KB8fX3PO+c333xTAQEBGjRokGPZK6+8otatW6t3795atWqV/v3vf+v06dMKDQ3V0KFD1bZt2ws+F8OHD9ett96qdevW6dChQ1q0aJFOnDhR5nO7a9cuzZs3TxkZGfLz81Pnzp01ePDgUlP74cOH67HHHlO7du2cjjlp0iRJ5/6fSdKzzz6rqKioC84V8CT05P+hJ/8PPRlwP/Tr/6Ff/w/9ugowqFYSEhLM1q1bSyyPj483X375pTHGmFmzZpklS5YYY4w5fPiw6devnykoKChzHy+//LKZO3euOX36tDl+/LgZN26c+eqrr4wxxqxevdoMGDDAfP7556agoMCcPXvW/Pjjj2bEiBFm//79pqCgwCxbtsxMnDjRsb9+/fqZl156yeTm5pqjR4+ahx9+2GzZssUYY8z69evNsGHDzM6dO43dbjcZGRnmyJEjprCw0Dz99NPmo48+Mvn5+SYzM9MMHz7csd1PP/1kBg8eXObz8tZbb5lJkyaZ7OxsU1hYaH7++WeTl5dnDh48aB566CGzdetWk5+fb1atWmVGjBhh8vPzHc/FuHHjTHZ2trHZbGb06NGO53H79u3mscceczrO0qVLzX333Wd+/PFHU1hYaM6ePWs++OADM2HCBHP8+HFz4sQJM3HiRMfzX9o+iuzYscPEx8cbu91ujDHGZrOZBx54wGRnZ5uDBw+a+Ph4k52d7fg+ZmRklFl/cQkJCWbMmDHm6NGj5uzZsxd8bidMmGC+/fZbY4wxp0+fNr/88kuZcy/+f2fp0qXm9ddfd8zv9//PgOqAnlw6evL/0JMB90C/Lh39+n/o1+6PG55CkhQWFqbc3NxL3u748eNKTU3VkCFDFBAQoJCQEPXq1Uvr1693jAkNDdXtt98ub29v+fn5KSkpSffcc48aNWokb29v3XPPPfrtt9909OhRxzZ33323atSooYiICLVp00a//fabJOmbb77RXXfdpcjISFksFtWvX1916tTR7t27lZOTo759+8rHx0f16tVT9+7dHfO45ppr9M4775Rag91u1+rVqzVkyBCFhYXJy8tLLVu2lK+vr9avX6+OHTuqXbt28vHx0Z///Gfl5eXpl19+cWx/++23KywsTMHBwbruuusccy1LVFSUrr/+enl5ecnPz0/r1q3Tvffeq5CQENWqVUt9+/bVd999d8HnvlWrVpKkn376SZK0YcMGRUVFOWrIz8/XgQMHVFBQoLp166p+/foX3GfxmiIiIuTn53fB59bHx0eZmZnKyclRQEAAaTPgAvRkenJx9GTAfdGv6dfF0a/dG5e9QJJktVoVHBx8ydtlZWWpsLDQ6QZPxhiFh4c7HkdERDhtc/ToUS1YsEALFy502sZqtTpO26tdu7Zjnb+/v86cOeM4Xr169UrM4+jRozp27JjjlC/pXEMuam7nY7PZlJ+fX2pjO3bsmGNOkuTl5aWIiAhZrVbHsuJz9fPzc1pXmuLPjSSnuiWpTp06F9yHJFksFsXExOj7779X69at9f333+vmm2+WJNWvX19DhgzRRx99pAMHDqh9+/YaNGiQwsLCLrhfyfl7dqHnNj4+XkuXLtWTTz6punXrqm/fvrruuusu6jgASkdPpicXR08G3Bf9mn5dHP3avRF+QLt27ZLVatU111xzyduGh4fLx8dH8+fPv+ib+kRERKhPnz6OJnMpIiIidPjw4VKX161b97I+9qlmzZry9fVVZmam427cRUJDQ7Vv3z7HY2OMsrKyLqoBFl1feSFhYWE6evSo44ZYF7t/SYqJidHkyZN19913a+fOnRozZoxjXefOndW5c2edOnVKb775pt5//32NHDnyovZb3IWe2z/84Q8aPXq07Ha7Nm7cqNdee03z58+Xv7+/zp496xhnt9uVk5NT6j4u9rkCqgN6Mj35fOjJgPugX9Ovz4d+7X647KUaO3XqlDZv3qzXX39dN998s5o0aXLJ+wgNDVX79u21cOFCnTp1Sna7XZmZmUpLSytzm1tvvVWrVq3S/v37HfMoulHRhXTr1k2ffPKJfv31VxljlJmZqaNHjyoyMlKBgYFatWqV8vLyZLfbtW/fPu3ateuC+/Ty8lLXrl21cOFCWa1W2e12paenKz8/X506ddKWLVu0bds2FRQU6JNPPpGvr69atmx5wf2GhITIZrPp1KlT5x0XExOjFStWKCcnRzk5OVq2bNlFv6hdffXVqlWrlt544w21b99eNWrUkCQdOnRI27dvV35+vvz8/OTn5+f4GLZLdaHndu3atcrJyZGXl5eCgoIknXtOGzRooPz8fKWkpKigoEDLly9Xfn5+qceoVauWLBZLqS/KQHVBTz6Hnnx+9GSg8tGvz6Ffnx/92v1w5kc19PLLL8vb21sWi0WNGjVSr1691KNHj8ve34gRI/T+++/rqaee0unTp1WvXj3dddddZY6//vrrdebMGU2fPl1ZWVkKCgpS27ZtddNNN13wWDfddJNsNptef/11Wa1W1a1bVyNGjFCdOnU0duxYLVy4UMOHD1dBQYEaNGigAQMGSDp3Td/UqVO1aNGiUvc7aNAgLV68WOPHj9eZM2d01VVXaeLEiWrQoIFGjhypt99+23Gn6rFjx8rH58I/Og0bNlRMTIxGjBghu92u1157rdRxffr00alTpxyJ84033qg+ffpccP9FYmJi9OGHH+rJJ590LMvPz9f777+vgwcPytvbWy1btnScVvndd99p5cqVZc7n97y8vM773KampmrhwoU6e/as6tSpoyeeeMLxYjF06FC98cYbstvtuvPOO0ucrljE399fffr00bPPPqvCwkJNmDCB6x5RbdCTS6Inl42eDFQe+nVJ9Ouy0a/dj8UYYyp7EgAAAAAAAOWFy14AAAAAAIBHI/wAAAAAAAAejfADAAAAAAB4NMIPAAAAAADg0Qg/AAAAAACARyP8AAAAAAAAHo3wAwAAAAAAeDTCDwAAAAAA4NEIPwAAAAAAgEcj/AAAAAAAAB6N8AMAAAAAAHg0wg8AAAAAAODRCD8AAAAAAIBHI/wAAAAAAAAejfADAAAAAAB4NMIPAAAAAADg0Qg/AAAAAACARyP8AAAAAAAAHo3wAwAAAAAAeDTCDwAAAAAA4NEIPwAAAAAAgEcj/AAAAAAAAB6N8AMAAAAAAHg0wg8AAAAAAODRCD8AAAAAAIBHI/wAAAAAAAAejfADAAAAAAB4NMIPAAAAAADg0Qg/AAAAAACARyP8AAAAAAAAHo3wAwAAAAAAeDTCDwAAAAAA4NEIPwAAAAAAgEcj/AAAAAAAAB6N8AMAAAAAAHg0wg8AAAAAAODRCD8AAAAAAIBHI/wAAAAAAAAejfADAAAAAAB4NMIPAAAAAADg0Qg/AAAAAACARyP8AAAAAAAAHo3wAwAAAAAAeDTCDwAAAAAA4NEIPwAAAAAAgEcj/AAAAAAAAB6N8AMAAAAAAHg0wg8AAAAAAODRCD8AAAAAAIBHI/wAAAAAAAAejfADAAAAAAB4NMIPAAAAAADg0Qg/AAAAAACARyP8AAAAAAAAHo3wAwAAAAAAeDTCDwAAAAAA4NEIPwAAAAAAgEcj/AAAAAAAAB6N8AMAAAAAAHg0wg8AAAAAAODRCD8AAAAAAIBHI/wAAAAAAAAejfADAAAAAAB4NMIPAAAAAADg0Qg/AAAAAACARyP8AAAAAAAAHo3wAwAAAAAAeDTCDwAAAAAA4NEIPwAAAAAAgEcj/AAAAAAAAB6N8AMAAAAAAHg0wg8AAAAAAODRCD8AAAAAAIBHI/wAAAAAAAAejfADAAAAAAB4NMIPAAAAAADg0Qg/AAAAAACARyP8AAAAAAAAHo3wAwAAAAAAeDTCDwAAAAAA4NEIPwAAAAAAgEcj/ACqkOeff16RkZGVPQ0AAAAAqFIIP6qIIUOGyGKxyGKxyNvbW40aNdKgQYN08ODBMscV/woODnYaZ7VaNX78eLVu3VpBQUEKDQ1Vhw4dNHHiRO3fv99pf3FxcU7b2mw2TZw4US1btpS/v79CQ0N1++23a82aNU7j1qxZI4vFokaNGunUqVMl5vn7/V6JNWvW6Pbbb1doaKj8/f3VsmVLTZw4UTabzWXHqEjr1q2TxWLRb7/95rR8zJgx2rBhQ7keu+j7dr6vIUOGlOscLkZ6erruuece1alTR8HBwbruuuu0fPnyyp4WAAAAADdE+FGF3HzzzcrIyNC+ffu0ePFibdmyRf369StzXPGvX3/91bF+//796tixoz788EONHz9eGzZs0I8//qiXXnpJ2dnZevXVV8ucQ05OjmJiYrR06VJNnjxZ6enpWr16tVq0aKHu3bvr7bffLrGN1WrVK6+84ponoRTz589X9+7dFRkZqW+++Ubp6emaMmWKli5dqpiYGOXk5JTbsStacHCwIiIiyvUYnTp1cvq/M3bsWDVq1Mhp2euvv16uc7gYd9xxh3Jzc/XVV19p69atuuOOO9S/f39t3ry5sqcGAAAAwN0YVAmDBw823bt3d1o2Y8YMI8mcOHHivON+r3fv3qZ+/fpO2xVnt9vL3N/IkSNNQECA+e2330psFx8fbwICAszBgweNMcasXr3aSDITJ040QUFB5sCBA5c0z4tx8OBB4+/vbx5//PES63777TcTEBBgRo4c6ViWn59vXnjhBdOsWTPj5+dnGjRoYEaMGOFYb7PZzBNPPGEaNWpk/Pz8TNOmTc2UKVOMMcbs2bPHSDLfffed03GaN29uJk2a5HgsyUyfPt306dPHBAUFmT/84Q8mMTHRaZvp06eb9u3bmxo1aph69eqZAQMGmEOHDjkdp/jXLbfcYowxZtKkSaZ58+ZO+3rnnXdMq1atjJ+fn2nYsKGZOHGiyc/Pd6y/5ZZbzCOPPGJefPFFU69ePRMaGmoGDx5scnNzL+o5/tvf/maaNm1aYvn111/v9NwaY0xBQYFp1KiReemll4wxxgwYMMD06tXLTJs2zdSvX98EBQWZ/v37m2PHjjltt3DhQtO2bVvj7+9vrrrqKvN///d/5tSpU2XOKSMjw0gyX331ldPyoKAg88Ybb1xUXQAAAACqD878qKIOHTqkZcuWydvbW97e3he9ndVq1eeff66RI0eqVq1apY6xWCylLjfG6P3339eDDz6opk2bllg/YcIEnTlzRsuWLXNa/uijj+rqq6/WhAkTLnqeF+ujjz7S2bNnS91306ZN9cADD2jx4sUyxkiSHnnkEc2aNUvPP/+80tLStHz5cjVr1sxRX+/evfWvf/1LM2fO1E8//aSFCxeqTp06lzyvF154QV26dNGWLVs0duxYPf3001qxYoXTmFdffVXbtm3TypUrtW/fPt13332SpMaNG+vjjz+WJG3cuFEZGRklti3y2Wef6eGHH9bAgQO1bds2JSYmavbs2XrhhRecxi1btkxWq1Vr1qzR4sWLtWrVqis+Gyc+Pl7vvfeezpw541j2xRdfKDMz0+mymLVr1yo5OVn/+c9/9Mknn2jjxo0aNmyYY/0bb7yhJ598UuPGjVNaWprefvttffrppxo1alSZx65bt66ioqK0aNEi2Ww2FRYW6t1335UxRl27dr2iugAAAAB4oMrNXnCxBg8ebLy9vU2NGjVMYGCg44yAv/71r2WOK/7Vu3dvY4wxP/74o5FkVqxY4bTdTTfd5BjbunVrp/0VnaFx+PBhI8m89tprZc6zVq1aJiEhwRjzvzM/9u/fb7744gtjsVjMpk2bSuz3Sjz++OOmVq1aZa5PTEw0ksyRI0fMzp07jSTz0UcflTo2KSnJSDLJycmlrr+UMz8eeughpzH333+/iYmJKXOeKSkpRpLj7JjvvvvOSDJ79uxxGvf7Mz86d+5s+vXr5zRm+vTpJiAgwJw9e9YYc+7Mj7Zt2zqNeeyxx8yNN95Y5nyKK+vMj5MnT5qQkBCzaNEix7K7777b9OnTx/F4wIABJiQkxNhsNseyjz/+2FgsFrN3715jt9tN/fr1zYIFC5z2/eWXXxqLxWJOnjxZ5rwOHDhgbrzxRiPJeHt7m9q1a5v//Oc/F1UTAAAAgOqFMz+qkBtuuEGpqanauHGjnn32Wd14443629/+Vua44l9z586VJMcZEL+3dOlSpaamatiwYTp58mSpY8ra9mLG9OzZUz179tRTTz11wX1I0tSpUxUcHOz4+u677y57TkVSUlIkST169Ch1/ebNmxUaGqro6OiL3mdZbrrpJqfHMTExSktLczxes2aNevbsqcaNG6tmzZrq3LmzJGnv3r2XdJwdO3YoNjbWadktt9yiM2fOaPfu3Y5lHTp0cBrTsGFDHT58+JKO9XtBQUEaOHCg3nrrLUlSZmamPv30Uz366KNO49q1a+d0w92YmBgZY/Tzzz/rwIEDyszMVEJCgtP3+5577pExxqmG4ux2u+Lj41WrVi3HmSXx8fHq16+ftm3bdkV1AQAAAPA8PpU9AVy8wMBAx8ec/vGPf1R6erqGDx9e4iajxcf9XosWLeTl5aW0tDTdc889juWNGzeWJIWFhZV5/Dp16ig0NFTbt28vdf3+/ftls9nUsmXLUtcnJiaqffv2F/WJHPHx8erfv7/jccOGDUsd17JlS+Xk5Gj//v2OGorbsWOHwsLCLvomoWVd8iNJXl7nssLfBy75+fkX3G/xbfbt26c77rhDAwcO1HPPPaeIiAgdOHBAcXFxysvLu6h5nm/ORccqvtzPz6/ENna7/ZKP9Xvx8fFq27atfvnlF61cuVINGzYsM1z6/fwkOebwxhtvqFOnTiXGlvY9lc5dXvPZZ58pOztboaGhkqSOHTtq7dq1ev311zVv3rzLLQkAAACAB+LMjyrs+eef17vvvqtNmzZd9DZhYWG6/fbbNXPmTJ04ceKSjufl5eW4h0ZpZyhMnTpV/v7+6tu3b6nbt27dWo8++qjGjh17wV/yw8LCFBkZ6fgKDAwsdVy/fv3k7++vl156qcS6vXv3avHixXrwwQdlsVh07bXXSpK++uqrUvd13XXXyWq1lvl8Ft3749ChQ45lR44cKfFxw5JKfBztDz/8oFatWkmSkpOTdfr0aU2fPl0xMTFq2bJlibMwisKKwsLCUudSpE2bNvr222+dlq1du1aBgYGOe5mUpzZt2qhTp0566623NH/+fD3yyCOOkKjItm3bnM4m+uGHH2SxWHTNNdeocePGqlu3rtLT052+30Vf/v7+pR63aH+/v9+Nt7f3JZ0NBAAAAKB6IPyowq655hr17t1b48ePd1qel5enzMzMEl9FvxTOmTNHvr6+6tixoxYuXKj//ve/+vXXX/Xvf/9bn3766XlvoDp58mQ1a9ZM3bt317Jly7Rv3z5t3bpVTzzxhN58803Nnj1bDRo0KHP7F198UVlZWVq1apVLnoOGDRtqxowZmjt3rkaOHKmtW7dq3759Wr58ueLi4tSiRQtNnjxZkhQZGakHH3xQCQkJeu+997R7924lJyc7Pra1W7duuvnmmzVgwAB9/PHH2rNnj77//nvHWQSBgYGKiYnRK6+8oq1bt2rz5s0aNGhQqb+gf/rpp5o1a5Z27typmTNnaunSpXryySclnTv7xmKxKDExUXv27NGqVav04osvOm3ftGlTeXl56fPPP9eRI0fKDKrGjx+v5cuXa9q0aUpPT9eHH36o559/Xn/9619LnO1RXh577DHNnDlTe/bs0cMPP1xifWFhof7yl79o+/btWr16tZ544gn16dNHTZo0kZeXlyZPnqxXX31V06ZNU1pamn7++WetWLFCw4cPL/OYsbGxql27tgYNGqTU1FTt2rVLU6ZM0Xfffed0RhMAAAAASOKGp1VFWTcIXbdunZFkkpKSHOP0u49JLfo6evSoY7ujR4+ap59+2lxzzTUmICDABAQEmFatWpnRo0c73WSztOOeOHHCjBs3zkRGRhpfX18TEhJievbsab755hunccVveFrc3//+dyPJJTc8LZKUlGR69OhhQkJCjK+vr4mMjDTjx483OTk5TuPy8vLMM888Y5o2bWp8fX1Nw4YNzRNPPOFYn5OTY0aMGGHq169vfH19zVVXXeX42FZjjPnll19MbGysCQoKMpGRkWb58uWl3vD0H//4h7nrrrtMYGCgqV+/vnnllVec5jFr1izTqFEjExAQYGJiYsy///1vI8msXr3aMebll182DRo0MF5eXhf8qNtrrrnG+Pr6mgYNGpgJEyaU+lG3xZV1E9PSXGjs6dOnTe3atc2dd95ZYl3RR91OmTLF1K1b1wQGBpq+ffua7Oxsp3EfffSRuf76601AQICpWbOm6dixo5k6dep555WcnGx69uxpwsPDTY0aNUyHDh2cbr4KAAAAAEUsxnCOOOBKFotFixYt0kMPPVTZU6kQhw8fVuPGjbVy5Ur16tXLad19992n3Nxcffrpp5U0OwAAAADgshcAlyk/P1/79u3TuHHj1Lx5c91xxx2VPSUAAAAAKBWf9gLgsnz99de6/fbbFRkZqffff/+8n5SD6mHOnDlKSUlRSEiIEhMTS6w3xmjBggXasmWL/P39lZCQUCE35gUAOKNfA6iOCD8AF6suV5LddtttF6z1gw8+qKDZwB106dJFt912m2bPnl3q+i1btigzM1MzZszQzp07NW/ePE2dOrWCZwkAoF8DqI647AUA4BKtW7dWcHBwmes3bdqk2NhYWSwWRUVF6eTJkzp27FgFzhAAINGvAVRPnPkBAKgQVqtVERERjsfh4eGyWq0KDQ0tMTYpKUlJSUmSpGnTplXYHAEAF9+v6dUAqhLCj1IcOnSosqfgEBERoaysrMqehstQj/vztJrcrZ4GDRpU9hQqTWmXSZV1r5i4uDjFxcU5HrtTX3Y1d/s/6mrUV7V5en3VuSefz8X2a3q1Z/H0GqmvanNFv+ayFwBAhQgPD3d6Uc7Ozi71rA8AQOWiXwPwRIQfAIAKER0drbVr18oYo/T0dAUFBfFmGgDcEP0agCfishcAgEtMnz5daWlpstlsio+PV//+/VVQUCBJ6tGjhzp27KiUlBSNGjVKfn5+SkhIqOQZA0D1RL8GUB0RfgAAXGL06NHnXW+xWDR06NAKmg0AoCz0awDVEZe9AAAAAAAAj0b4AQAAAAAAPBrhBwAAAAAA8GiEHwAAAAAAwKMRfgAAAAAAAI9G+AEAAAAAADwa4QcAAAAAAPBohB8AAAAAAMCjEX4AAAAAAACPRvgBAAAAAAA8GuEHAAAAAADwaIQfAAAAAADAoxF+AAAAAAAAj0b4AQAAAAAAPBrhBwAAAAAA8GiEHwAAAAAAwKMRfgAAAAAAAI9G+AEAAAAAADwa4QcAAAAAAPBohB8AAAAAAMCjEX4AAAAAAACPRvgBAAAAAAA8GuEHAAAAAADwaIQfAAAAAADAoxF+AAAAAAAAj0b4AQAAAAAAPJpPZU+gyJw5c5SSkqKQkBAlJiaWWG+M0YIFC7Rlyxb5+/srISFBzZo1kyRNmTJFO3fu1DXXXKNx48Y5tjly5IimT5+u3NxcXX311Ro5cqR8fNymZAAAAAAAUAHc5syPLl26aMKECWWu37JlizIzMzVjxgwNGzZM8+bNc6y78847NWLEiBLbvPfee+rVq5dmzJihGjVq6JtvvimXuQMAAAAAAPflNuFH69atFRwcXOb6TZs2KTY2VhaLRVFRUTp58qSOHTsmSWrbtq0CAwOdxhtjtGPHDt14442SzoUrycnJ5VcAAAAAAABwS1XmGhCr1aqIiAjH4/DwcFmtVoWGhpY63mazKSgoSN7e3pKksLAwWa3WUscmJSUpKSlJkjRt2jSn41Q2Hx8ft5rPlaIe9+dpNXlaPQAAAAAuXZUJP4wxJZZZLBaX7DsuLk5xcXGOx1lZWS7ZrytERES41XyuFPW4P0+ryd3qadCgQWVPAQAAAKh23OaylwsJDw93+gUmOzu7zLM+JKlmzZo6deqUCgsLJZ07cyQsLKzc5wkAAAAAANxLlQk/oqOjtXbtWhljlJ6erqCgoPOGHxaLRW3atNGGDRskSWvWrFF0dHRFTRcAAAAAALgJt7nsZfr06UpLS5PNZlN8fLz69++vgoICSVKPHj3UsWNHpaSkaNSoUfLz81NCQoJj2+eee04HDx7UmTNnFB8fr/j4eHXo0EEPPvigpk+frg8++EBXX321unXrVlnlAQAAAACASuI24cfo0aPPu95isWjo0KGlrnvxxRdLXV6vXj299NJLVzw3AAAAAABQdVWZy14AAAAAAAAuB+EHAAAAAADwaG5z2QsAoOpLTU3VggULZLfb1b17d919991O67OysjR79mydPHlSdrtdDzzwgK699tpKmi0AVE/0agDVEeEHAMAl7Ha75s+fr2eeeUbh4eEaP368oqOj1ahRI8eY5cuX66abblKPHj104MABvfTSS7yhBoAKRK8GUF1x2QsAwCV27dql+vXrq169evLx8VGnTp2UnJzsNMZisejUqVOSpFOnTp33I8sBAK5HrwZQXXHmBwDAJaxWq8LDwx2Pw8PDtXPnTqcx/fr10+TJk/XFF1/o7NmzevbZZ0vdV1JSkpKSkiRJ06ZNU0RERPlNvJL5+PhQXxVGfahq6NWXpzr8LHh6jdQHwg8AgEsYY0oss1gsTo+///57denSRX/+85+Vnp6umTNnKjExUV5ezidssknOAAAgAElEQVQixsXFKS4uzvE4KyurfCbtBiIiIqivCqO+qq1BgwaVPYUKR6++PJ7+syB5fo3UV7W5ol9z2QsAwCXCw8OVnZ3teJydnV3iVOlvvvlGN910kyQpKipK+fn5stlsFTpPAKjO6NUAqivCDwCASzRv3lwZGRk6cuSICgoKtH79ekVHRzuNiYiI0Pbt2yVJBw4cUH5+vmrVqlUZ0wWAaoleDaC64rIXAIBLeHt76+GHH9aUKVNkt9vVtWtXNW7cWEuXLlXz5s0VHR2tQYMGae7cufrss88kSQkJCSVOtwYAlB96NYDqymJKu/Cvmjt06FBlT8HB067doh7352k1uVs91fH6cldwp77sau72f9TVqK9q8/T66MmuRa+u2jy9Ruqr2rjnBwAAAAAAwAUQfgAAAAAAAI9G+AEAAAAAADwa4QcAAAAAAPBohB8AAAAAAMCjEX4AAAAAAACPRvgBAAAAAAA8GuEHAAAAAADwaIQfAAAAAADAoxF+AAAAAAAAj0b4AQAAAAAAPBrhBwAAAAAA8GiEHwAAAAAAwKMRfgAAAAAAAI9G+AEAAAAAADwa4QcAAAAAAPBohB8AAAAAAMCjEX4AAAAAAACPRvgBAAAAAAA8GuEHAAAAAADwaD6VPYEic+bMUUpKikJCQpSYmFhivTFGCxYs0JYtW+Tv76+EhAQ1a9ZMkrRmzRqtWLFCktSnTx916dJFkvT888/r2LFj8vPzkyQ988wzCgkJqZiCAAAAAACAW3Cb8KNLly667bbbNHv27FLXb9myRZmZmZoxY4Z27typefPmaerUqcrNzdWyZcs0bdo0SdK4ceMUHR2t4OBgSdKoUaPUvHnzCqsDAAAAAAC4F7e57KV169aOwKI0mzZtUmxsrCwWi6KionTy5EkdO3ZMqampateunYKDgxUcHKx27dopNTW1AmcOAAAAAADcmduc+XEhVqtVERERjsfh4eGyWq2yWq0KDw93LA8LC5PVanU8njNnjry8vHTDDTfo3nvvlcViKbHvpKQkJSUlSZKmTZvmdJzK5uPj41bzuVLU4/48rSZPqwcAAADApasy4YcxpsSy0oKM4stHjRqlsLAwnT59WomJiVq7dq1uueWWEuPj4uIUFxfneJyVleWiWV+5iIgIt5rPlaIe9+dpNblbPQ0aNKjsKQAAAADVjttc9nIh4eHhTr/AZGdnKzQ0VGFhYcrOznYst1qtCg0NlXTuLBBJCgwMVOfOnbVr166KnTQAAAAAAKh0VSb8iI6O1tq1a2WMUXp6uoKCghQaGqoOHTpo69atys3NVW5urrZu3aoOHTqosLBQOTk5kqSCggJt3rxZjRs3ruQqAAAAAABARXOby16mT5+utLQ02Ww2xcfHq3///iooKJAk9ejRQx07dlRKSopGjRolPz8/JSQkSJKCg4N17733avz48ZKkvn37Kjg4WGfOnNGUKVNUWFgou92utm3bOl3aAgAAAAAAqge3CT9Gjx593vUWi0VDhw4tdV23bt3UrVs3p2UBAQF6+eWXXTY/AAAAAABQNVWZy14AAAAAAAAuB+EHAAAAAADwaIQfAAAAAADAoxF+AAAAAAAAj0b4AQAAAAAAPBrhBwAAAAAA8GguCz8+//xz5eTkuGp3AAAAAAAALuHjqh1t27ZNS5YsUZs2bRQbG6s//elP8vX1ddXuAQAAAAAALovLwo+xY8fKZrPp+++/12effaa33npLN9xwg2JjY9W6dWtXHQYA4KZSU1O1YMEC2e12de/eXXfffXeJMevXr9dHH30ki8Wipk2b6oknnqiEmQJA9Ua/BlAduSz8kKSaNWvqtttu02233aa9e/dq1qxZWr16tSIiItS9e3fdcccdCggIcOUhAQBuwG63a/78+XrmmWcUHh6u8ePHKzo6Wo0aNXKMycjI0KpVq/S3v/1NwcHBOnHiRCXOGACqJ/o1gOrK5Tc83bZtm+bMmaPnn39eISEhGjFihEaMGKE9e/Zo6tSprj4cAMAN7Nq1S/Xr11e9evXk4+OjTp06KTk52WnM119/rZ49eyo4OFiSFBISUhlTBYBqjX4NoLpy2ZkfCxcu1Pr16xUUFKTY2FglJiYqLCzMsb5Fixb6y1/+4qrDAQDciNVqVXh4uONxeHi4du7c6TTm0KFDkqRnn31Wdrtd/fr1U4cOHSp0ngBQ3dGvAVRXLgs/8vPzNWbMGEVGRpZ+IB8fTZs2zVWHAwC4EWNMiWUWi8Xpsd1uV0ZGhiZNmiSr1arnnntOiYmJqlGjRoltk5KSlJSUJEmaNm2aIiIiymfibsDHx4f6qjDqQ1Xjyn5Nr/Ysnl4j9cFl4cc999wjPz8/p2W5ubnKy8tznAHSsGFDVx0OAOBGwsPDlZ2d7XicnZ2t0NBQpzFhYWGKioqSj4+P6tatqwYNGigjI6PU0DwuLk5xcXGOx1lZWeU3+UoWERFBfVUY9VVtDRo0qOwpVDhX9mt6tWfx9Bqpr2pzRb922T0//v73v8tqtTots1qtevXVV111CACAm2revLkyMjJ05MgRFRQUaP369YqOjnYac/3112v79u2SpJycHGVkZKhevXqVMV0AqLbo1wCqK5ed+XHo0CE1adLEaVmTJk108OBBVx0CAOCmvL299fDDD2vKlCmy2+3q2rWrGjdurKVLl6p58+aKjo5W+/bttXXrVj355JPy8vLSQw89pJo1a1b21AGgWqFfA6iuXBZ+1KpVS5mZmapfv75jWWZmJo0SAKqJa6+9Vtdee63TsgEDBjj+bbFYNHjwYA0ePLiipwYAKIZ+DaA6cln40bVrVyUmJuq+++5TvXr1lJmZqaVLl6pbt26uOgQAAAAAAMAlc1n4cffdd8vHx0eLFi1Sdna2wsPD1a1bN/Xu3dtVhwAAAAAAALhkLgs/vLy8dOedd+rOO+901S4BAAAAAACumMvCD+ncTU9/++03nTlzxmk5l74AAAAAAIDK4rLwY8WKFVq+fLmaNm0qf39/p3WEHwAAAAAAoLK4LPz4/PPPNXXqVDVt2tRVuwQAAAAAALhiXq7akZ+fnxo2bOiq3QEAAAAAALiEy8KPAQMG6O2339axY8dkt9udvgAAAAAAACqLyy57mTNnjiTp66+/LrFu6dKlrjoMAAAAAADAJXFZ+DFr1ixX7QoAAAAAAMBlXBZ+1KlTR5Jkt9t14sQJhYaGumrXAAAAAAAAl81l4cfJkyc1b948bdiwQT4+Plq0aJE2bdqkXbt26b777nPVYQAAAAAAAC6Jy254+tZbbykoKEhz5syRj8+5TCUqKkrr16931SEAAAAAAAAumcvO/Ni2bZvmzp3rCD4kqVatWjpx4oSrDgEAAAAAAHDJXBZ+BAUFyWazOd3rIysr66Lv/TFnzhylpKQoJCREiYmJJdYbY7RgwQJt2bJF/v7+SkhIULNmzSRJa9as0YoVKyRJffr0UZcuXSRJv/76q2bPnq28vDx17NhRf/nLX2SxWK6wUgAAAAAAUJW47LKX7t27KzExUdu3b5cxRunp6Zo9e7ZuvfXWi9q+S5cumjBhQpnrt2zZoszMTM2YMUPDhg3TvHnzJEm5ublatmyZpk6dqqlTp2rZsmXKzc2VdO5SnMcee0wzZsxQZmamUlNTr7xQQNK+fd4aMaK2evTw0YgRtbVvn3dlTwkAAAAAUAaXnflx1113ydfXV/Pnz1dhYaH++c9/Ki4uTnfcccdFbd+6dWsdOXKkzPWbNm1SbGysLBaLoqKidPLkSR07dkw7duxQu3btFBwcLElq166dUlNT1aZNG50+fVpRUVGSpNjYWCUnJ6tjx45XXiyqtX37vHXffWHau9f3/y8JUkqKrz74wKomTQordW4AAAAAgJJcFn5YLBb16tVLvXr1ctUunVitVkVERDgeh4eHy2q1ymq1Kjw83LE8LCys1OVF44Er9corNYsFH+fs3eurV16pqVmzjlfSrAAAAAAAZXFZ+LF9+/Yy1/3xj3+84v0bY0osK+v+HRaLpdTxZUlKSlJSUpIkadq0aU4hS2Xz8fFxq/lcKU+ox2ot/cfGag2o8rVJnvE9Ks7T6gEAAABw6VwWfvzzn/90epyTk6OCggKFh4dr1qxZV7z/8PBwZWVlOR5nZ2crNDRUYWFhSktLcyy3Wq1q3bq1wsPDlZ2d7TQ+LCys1H3HxcUpLi7O8bj4cSpbRESEW83nSnlCPWFhtSUFlbL8jLKyqv6ZH57wPSrO3epp0KBBZU8BAAAAqHZcFn7Mnj3b6bHdbtfy5csVGBjokv1HR0friy++UExMjHbu3KmgoCCFhoaqQ4cOWrJkieMmp1u3btUDDzyg4OBgBQYGKj09XS1atNDatWt12223uWQuqN6eftqmlBRfp0tfmjbN19NP2ypxVgAAAACAsrgs/Pg9Ly8v9enTR/Hx8erdu/cFx0+fPl1paWmy2WyKj49X//79VVBQIEnq0aOHOnbsqJSUFI0aNUp+fn5KSEiQJAUHB+vee+/V+PHjJUl9+/Z13Px06NChmjNnjvLy8tShQwdudgqXaNKkUB98YNUrr9SU1RqgsLAzevppGzc7BQAAAAA3VW7hhyT997//lZfXxX2a7ujRo8+73mKxaOjQoaWu69atm7p161ZiefPmzZWYmHhRxwcuRZMmhZo16/j/v6Si6l/qAgAAAACezGXhx+OPP+70OC8vT3l5eWUGFgAAAAAAABXBZeHHyJEjnR77+/vrD3/4g4KCSt4YEgAAAAAAoKK4LPxo3bq1q3YFAAAAAADgMi4LP2bOnCmLxXLBcSNGjHDVIQEAAAAAAC7o4u5GehFq1Kih5ORk2e12hYWFyW63Kzk5WUFBQapXr57jCwAAAAAAoCK57MyPjIwMjRs3Tq1atXIs+/nnn7V8+XI9/PDDrjoMAAAAAADAJXHZmR/p6elq0aKF07LIyEilp6e76hAAAAAAAACXzGXhx9VXX60lS5YoLy9P0rmPuv3ggw901VVXueoQAAAAAAAAl8xll70kJCRoxowZGjx4sIKDg5Wbm6vmzZtr1KhRrjoEAAAAAADAJXNZ+FG3bl1NnjxZWVlZOnbsmEJDQxUREeGq3QMAAAAAAFwWl132Ikk2m01paWlKS0tTRESErFarsrOzXXkIAAAAAACAS+Ky8CMtLU2jR4/Wd999p+XLl0uSMjMz9dZbb7nqEAAAAAAAAJfMZeHHO++8o9GjR2vixIny9vaWdO7TXnbv3u2qQwAAAAAAAFwyl4UfR48eVdu2bZ2W+fj4qLCw0FWHAAAAAAAAuGQuCz8aNWqk1NRUp2Xbtm1Tkyb/r717j6uqzvc//t5sQEO8sDcKcTQtjPJOSj0UHY8k1SlnyiFH5zRD0zGn04iUzUPFzAudItHJa1pag7fUhqlJZ2wec5oHOR5L8y6VOJWokzJiXLYGBiibtX5/8HOPOzAQkH3h9fyLtdZ3r/X57MX+bPjstb77ppY6BADAy+Xm5urpp59Wamqqtm7detVxe/bs0fjx47k6EAA8gFoNoC1qsW97SU5O1oIFC3THHXfo0qVLev3113Xw4EFNnz69pQ4BAPBihmEoKytLs2fPlt1u17PPPqu4uDh1797dbVxlZaX+8pe/6NZbb/VQpADQdlGrAbRVLXblR0xMjH7zm9+oR48eSkhIULdu3fTSSy+pd+/eLXUIAIAXy8/PV2RkpCIiIhQYGKj4+Hjt37+/zrjs7Gw9+OCDCgoK8kCUANC2UasBtFUt0vwwDEPp6enq2LGjHnroIU2aNEljx46V3W5vid0DAHyAw+Fwq/t2u10Oh8NtzMmTJ1VSUqIhQ4a0dngAAFGrAbRdLXLbS0BAgIqKimSaZkvsDgDgg+p7D7BYLK6fDcPQ+vXrNXny5Ab3lZOTo5ycHElSZmamwsPDWy5QLxMYGEh+Poz84Guo1U3TFl4L/p4j+aHF5vwYN26c3njjDY0fP77OFR8BAS12dw0AwEvZ7XaVlpa6lktLSxUWFuZarqqq0unTp/X8889Lks6fP6+FCxdqxowZio6OdttXYmKiEhMTXcslJSXXOXrPCQ8PJz8fRn6+LSoqytMhtDpqddP4+2tB8v8cyc+3tUS9brHmx+rVqyVJO3furLMtOzu7pQ4DAPBS0dHRKiwsVFFRkWw2m3bv3q2nnnrKtT0kJERZWVmu5fT0dCUnJ9f5YxoAcP1QqwG0Vc1ufpw/f15dunTRihUrWiIeAICPslqtmjhxojIyMmQYhhISEtSjRw9lZ2crOjpacXFxng4RANo8ajWAtqrZzY+nn35a69evV9euXSVJL7/8sqZNm9bswAAAvmfw4MEaPHiw27oJEybUOzY9Pb0VIgIAfBe1GkBb1OzJOL47aVJeXl5zdwkAAAAAANBimt38uHJ2aAAAAAAAAG/T7NteampqdOTIEdeyYRhuy5LUv3//5h4GAAAAAACgSZrd/OjcubNee+0113JoaKjbssViYTJUAAAAAADgMc1ufqxcubIl4gAAAAAAALgumj3nBwAAAAAAgDej+QEAAAAAAPwazQ8AAAAAAODXmj3nR0vJzc3V2rVrZRiGRo8erbFjx7ptLy4u1muvvaaysjKFhoYqNTVVdrtdkrRx40YdPnxYkvTwww8rPj5eUu18JEePHlVISIgkKSUlRb169Wq9pAAAAAAAgMd5RfPDMAxlZWVp9uzZstvtevbZZxUXF6fu3bu7xrz55psaOXKkRo0apSNHjmjz5s1KTU3VoUOHdPLkSS1cuFDV1dVKT09XbGysq+GRnJysoUOHeio1AAAAAADgYV5x20t+fr4iIyMVERGhwMBAxcfHa//+/W5jCgoKNGDAAElSv379dODAAdf6vn37ymq1qn379urZs6dyc3NbPQcAAAAAAOCdvKL54XA4XLewSJLdbpfD4XAb07NnT+3du1eStG/fPlVWVqq8vNzV7Lh48aLKysqUl5en0tJS1+PeeustTZs2TevWrVN1dXXrJAQAAAAAALyGV9z2YppmnXUWi8VtOTk5WWvWrNGOHTvUp08f2Ww2Wa1WDRo0SMePH9fs2bPVqVMnxcTEyGq1SpIeeeQRdenSRU6nU6tXr9Yf//hHjRs3rs6xcnJylJOTI0nKzMxUeHj4dciyaQIDA70qnuYiH+/nbzn5Wz4AAAAArp1XND/sdrvb1RqlpaUKCwtzG2Oz2TRt2jRJUlVVlfbu3eua1yMpKUlJSUmSpGXLlikyMlKSXPsICgpSQkKCtm3bVu/xExMTlZiY6FouKSlpocyaLzw83KviaS7y8X7+lpO35RMVFeXpEAAAAIA2xytue4mOjlZhYaGKiorkdDq1e/duxcXFuY0pKyuTYRiSpC1btighIUFS7WSp5eXlkqSvvvpKp06d0qBBgyRJ586dk1R7Zcn+/fvVo0eP1koJAAAAAAB4Ca+48sNqtWrixInKyMiQYRhKSEhQjx49lJ2drejoaMXFxeno0aPavHmzLBaL+vTpo8cff1yS5HQ6NXfuXElSSEiIUlNTXbe9LF++XGVlZZJq5wx54oknPJMgAAAAAADwGK9ofkjS4MGDNXjwYLd1EyZMcP08dOjQer+yNjg4WEuWLKl3n/PmzWvZIAEAAAAAgM/xitteAAAAAAAArheaHwAAAAAAwK/R/AAAAAAAAH6N5gcAAAAAAPBrND8AAAAAAIBfo/kBAAAAAAD8Gs0PAAAAAADg12h+AAAAAAAAv0bzAwAAAAAA+DWaHwAAAAAAwK/R/AAAAAAAAH6N5gcAAAAAAPBrND8AAAAAAIBfo/kBAAAAAAD8Gs0PAAAAAADg12h+AAAAAAAAv0bzAwAAAAAA+DWaHwAAAAAAwK/R/AAAAAAAAH6N5gcAAAAAAPBrgZ4OAADgH3Jzc7V27VoZhqHRo0dr7Nixbtvfe+89ffDBB7JarerUqZN+9atfqWvXrh6KFgDaLuo1gLaIKz8AAM1mGIaysrI0a9YsLVmyRLt27VJBQYHbmF69eikzM1Mvv/yyhg4dqo0bN3ooWgBou6jXANoqmh8AgGbLz89XZGSkIiIiFBgYqPj4eO3fv99tTP/+/dWuXTtJ0q233iqHw+GJUAGgTaNeA2iraH4AAJrN4XDIbre7lu12+/f+sbx9+3bFxsa2RmgAgCtQrwG0Vcz5AQBoNtM066yzWCz1jt25c6dOnDih9PT0q+4vJydHOTk5kqTMzEyFh4e3SJzeKDAwkPx8GPnB17RkvaZW+xd/z5H8QPMDANBsdrtdpaWlruXS0lKFhYXVGffpp59qy5YtSk9PV1BQ0FX3l5iYqMTERNdySUlJywbsRcLDw8nPh5Gfb4uKivJ0CK2uJes1tdq/+HuO5OfbWqJec9sLAKDZoqOjVVhYqKKiIjmdTu3evVtxcXFuY06ePKk33nhDM2bMUOfOnT0UKQC0bdRrAG0VV34AAJrNarVq4sSJysjIkGEYSkhIUI8ePZSdna3o6GjFxcVp48aNqqqq0uLFiyXVfkKRlpbm4cgBoG2hXgNoq2h+AABaxODBgzV48GC3dRMmTHD9PGfOnNYOCQBQD+o1gLaI214AAAAAAIBfo/kBAAAAAAD8mtfc9pKbm6u1a9fKMAyNHj1aY8eOddteXFys1157TWVlZQoNDVVqaqrrO8o3btyow4cPS5IefvhhxcfHS5KKioq0dOlSXbhwQTfffLNSU1MVGOg1KQMAAAAAgFbgFVd+GIahrKwszZo1S0uWLNGuXbtUUFDgNubNN9/UyJEj9fLLL2vcuHHavHmzJOnQoUM6efKkFi5cqIyMDP3pT39SRUWFpNqmyJgxY7R8+XJ16NBB27dvb/XcAAAAAACAZ3lF8yM/P1+RkZGKiIhQYGCg4uPjtX//frcxBQUFGjBggCSpX79+OnDggGt93759ZbVa1b59e/Xs2VO5ubkyTVN5eXkaOnSoJGnUqFF19gkAAAAAAPyfVzQ/HA6H6xYWSbLb7XI4HG5jevbsqb1790qS9u3bp8rKSpWXl7uaHRcvXlRZWZny8vJUWlqq8vJyhYSEyGq1SpJsNludfQIAAAAAAP/nFRNgmKZZZ53FYnFbTk5O1po1a7Rjxw716dNHNptNVqtVgwYN0vHjxzV79mx16tRJMTExroZHY+Xk5CgnJ0eSlJmZqfDw8KYn08ICAwO9Kp7mIh/v5285+Vs+AAAAAK6dVzQ/7Ha7SktLXculpaUKCwtzG2Oz2TRt2jRJUlVVlfbu3auQkBBJUlJSkpKSkiRJy5YtU2RkpDp27KiKigrV1NTIarXK4XDIZrPVe/zExEQlJia6lktKSlo0v+YIDw/3qniai3y8n7/l5G35REVFeToEAAAAoM3xitteoqOjVVhYqKKiIjmdTu3evVtxcXFuY8rKymQYhiRpy5YtSkhIkFQ7WWp5ebkk6auvvtKpU6c0aNAgWSwW9evXT3v27JEk7dixo84+AQAAAACA//OKKz+sVqsmTpyojIwMGYahhIQE9ejRQ9nZ2YqOjlZcXJyOHj2qzZs3y2KxqE+fPnr88cclSU6nU3PnzpUkhYSEKDU11XXby89+9jMtXbpUv/vd73TzzTfr7rvv9liOAAAAAADAM7yi+SFJgwcP1uDBg93WTZgwwfXz0KFDXd/ccqXg4GAtWbKk3n1GRERo/vz5LRsoAAAAAADwKV5x2wsAAAAAAMD1QvMDAAAAAAD4NZofAAAAAADAr9H8AAAAAAAAfo3mBwAAAAAA8Gs0PwAAAAAAgF+j+QEAAAAAAPwazQ8AAAAAAODXaH4AAAAAAAC/RvMDAAAAAAD4NZofAAAAAADAr9H8AAAAAAAAfo3mBwAAAAAA8Gs0PwAAAAAAgF+j+QEAAAAAAPwazQ8AAAAAAODXaH4AAAAAAAC/RvMDAAAAAAD4NZofAAAAAADAr9H8AAAAAAAAfo3mBwAAAAAA8Gs0PwAAAAAAgF+j+QEAAAAAAPwazQ8AAAAAAODXaH4AAAAAAAC/RvMDAAAAAAD4tUBPBwAA8B+5ublau3atDMPQ6NGjNXbsWLft1dXVWrFihU6cOKGOHTtq6tSp6tatm4eiBYC2iVoNoC3iyg8AQIswDENZWVmaNWuWlixZol27dqmgoMBtzPbt29WhQwe98sorGjNmjDZt2uShaAGgbaJWA2iraH4AAFpEfn6+IiMjFRERocDAQMXHx2v//v1uYw4cOKBRo0ZJkoYOHaojR47INE0PRAsAbRO1GkBbRfMDANAiHA6H7Ha7a9lut8vhcFx1jNVqVUhIiMrLy1s1TgBoy6jVANoq5vyoR1RUlKdDcONt8TQX+Xg/f8vJ3/LxVvV9KmixWK55jCTl5OQoJydHkpSZmen355D8fBv5wZdQq5vO3/OT/D9H8mvbuPLDy82cOdPTIbQo8vF+/paTv+Xjzex2u0pLS13LpaWlCgsLu+qYmpoaVVRUKDQ0tM6+EhMTlZmZqczMTL8/h+Tn28jPt/l7fvWhVjeNv+cn+X+O5OfbWiI/mh8AgBYRHR2twsJCFRUVyel0avfu3YqLi3MbM2TIEO3YsUOStGfPHvXr16/eTxMBANcHtRpAW8VtLwCAFmG1WjVx4kRlZGTIMAwlJCSoR48eys7OVnR0tOLi4nT33XdrxYoVSk1NVWhoqKZOnerpsAGgTaFWA2irrOnp6emeDgLf75ZbbvF0CC2KfLyfv+Xkb/l4sxtvvFH333+/HnjgAfXp00eS1L9/f9c9qFarVcOGDdMDDzygxMTEei+jro+/n0Py823k59v8Pb/6UKubxt/zk/w/R/Lzbc3Nz2LyvVUAAAAAAMCPMecHAAAAAADwa8z50coMw9DMmTNls9nqzFhbXFys1157TWVlZQoNDVVqaqrrO9Y3btyow4cPS5IefvhhxcfHS5KKioq0dOlSXbhwQTfffLNSU1MVGNh6p7Wl81m5cqWOHj2qkJAQSVJKSmnUbVIAABVISURBVIp69erVavmkpKSoffv2CggIkNVqVWZmptt20zS1du1aHT58WO3atdPkyZNdl1/t2LFD7777riQpKSlJo0aNkiSdOHFCK1eu1KVLl3THHXfov/7rv1pt0rDrkU96errOnTun4OBgSdLs2bPVuXNnr88nIyNDx44d0+233+72u+rp1xBq5ebmau3atTIMQ6NHj9bYsWPdtldXV2vFihU6ceKEOnbsqKlTp6pbt24eivbaNZTfe++9pw8++EBWq1WdOnXSr371K3Xt2tVD0TZNQzletmfPHi1evFjz589XdHR0K0fZdI3Jb/fu3Xr77bdlsVjUs2dPPf300x6ItGkayq+kpEQrV67Ut99+K8Mw9Mgjj2jw4MEeivbavPrqqzp06JA6d+6sRYsW1dn+fe8dqIt67dv1mlrt27Vaol43q16baFXbtm0zly5das6fP7/OtkWLFpl/+9vfTNM0zc8++8xcvny5aZqmefDgQfN//ud/TKfTaVZWVpppaWnmt99+63rMRx99ZJqmaa5evdp8//33WyeR/6+l81mxYoX58ccft1r83zV58mTzm2++uer2gwcPmhkZGaZhGOYXX3xhPvvss6ZpmmZ5ebmZkpJilpeXu/1smqY5c+ZM84svvjANwzAzMjLMQ4cOtUoupnl98pk3b56Zn5/fKvF/V1PzMU3T/PTTT839+/fX+V319GsIpllTU2NOmTLFPHv2rFldXW1OmzbNPH36tNuY//3f/zVXr15tmqZpfvTRR+bixYs9EWqTNCa/zz77zKyqqjJN0zTff/99n8rPNBuXo2maZkVFhTl37lxz1qxZHqsjTdGY/M6cOWNOnz7dVSvPnz/viVCbpDH5rVq1ylUfT58+bU6ePNkToTZJXl6eefz4cfPXv/51vdu/770D7qjXvl2vqdW+XatNk3rd3HrNbS+tqLS0VIcOHdLo0aPr3V5QUKABAwZIkvr166cDBw641vft21dWq1Xt27dXz549lZubK9M0lZeXp6FDh0qSRo0apf3797dOMmr5fHzBgQMHNHLkSFksFsXExOjbb7/VuXPnlJubq4EDByo0NFShoaEaOHCgcnNzde7cOVVWViomJkYWi0UjR45s1XPUkGvNx9tdLR9JGjBggG644Qa38Z5+DaFWfn6+IiMjFRERocDAQMXHx9c5DwcOHHBdfTR06FAdOXJEpo9MWdWY/Pr376927dpJkm699VY5HA5PhNpkjclRkrKzs/Xggw8qKCjIA1E2XWPy++CDD3Tfffe5JoZsrSviWkJj8rNYLKqoqJAkVVRUKCwszBOhNknfvn2/d8LO73vvgDvqtW/Xa2q1b9dqiXrd3HpN86MVrVu3Tj//+c+vestDz549tXfvXknSvn37VFlZqfLycldz4OLFiyorK1NeXp5KS0tVXl6ukJAQWa1WSZLNZmvVAtzS+Vz21ltvadq0aVq3bp2qq6tbJZcrZWRkKC0tTTk5OXW2ORwOhYeHu5btdrscDoccDofrlh7pX+fiu+svj29NLZnPZa+++qqmT5+ud955p9X/oGlKPlfj6dcQajXmdXLlGKvVqpCQEJWXl7dqnE11rXVg+/btio2NbY3QWkxjcjx58qRKSko0ZMiQ1g6v2RqT35kzZ1RYWKg5c+boueee84mG8WWNye8nP/mJPvzwQz355JOaP3++Jk6c2NphXjfX+t7RllGv3flavaZW+3atlqjXza3X3NjeSg4ePKjOnTvrlltuUV5eXr1jkpOTtWbNGu3YsUN9+vSRzWaT1WrVoEGDdPz4cc2ePVudOnVSTEyM6581T7le+TzyyCPq0qWLnE6nVq9erT/+8Y8aN25cq+X1wgsvyGaz6ZtvvtGLL76oqKgo9e3b17W9vn/0r9b8sVgsHv+ko6XzkaSnnnpKNptNlZWVWrRokXbu3Kl///d/vz4JfEdL5gPv0Zjz5svn9lpi37lzp06cOCFf+xb6hnI0DEPr16/X5MmTWzOsFtOYc2gYhgoLCzVv3jw5HA7NnTtXixYtUocOHVorzCZrTH67du3SqFGj9KMf/UhffvmlXnnlFS1atEgBAb7/OZov15fWRr3+F1+s19Rq367VEvW6ufXF958BH/HFF1/owIEDSklJ0dKlS3XkyBEtX77cbYzNZtO0adO0cOFC/ed//qckuSb+TEpK0m9+8xvNmTNHpmkqMjJSHTt2VEVFhWpqaiTVdsJsNpvP5iNJYWFhslgsCgoKUkJCgvLz81slnytjlmovgbvzzjvrHN9ut6ukpMS1XFpaqrCwMNlsNrerVxwOh8LCwmS3293Wl5aWtto5klo+nyv3ecMNN2jEiBGteo6ams/VePI1hH+p73Xy3fN25ZiamhpVVFR872WR3qQx+UnSp59+qi1btmjGjBk+d6lxQzlWVVXp9OnTev7555WSkqJjx45p4cKFOn78uCfCvWaNOYc2m0133nmnAgMD1a1bN0VFRamwsLC1Q22SxuS3fft2DRs2TJIUExOj6upqn/k0vyHX+t7RllGva/lqvaZW+3atlqjXza3XND9aySOPPKJVq1Zp5cqVmjp1qvr376+nnnrKbUxZWZkMw5AkbdmyRQkJCZJqO5SXf2G/+uornTp1SoMGDZLFYlG/fv20Z88eSbXfzhEXF+ez+Uhy3bNlmqb279+vHj16tEo+Um3Br6ysdP386aef6qabbnIbExcXp507d8o0TX355ZcKCQlRWFiYYmNj9cknn+jChQu6cOGCPvnkE8XGxiosLEw33HCDvvzyS5mmqZ07d7baOboe+dTU1KisrEyS5HQ6dfDgwVY7R83J52o8+RrCv0RHR6uwsFBFRUVyOp3avXt3nfMwZMgQ7dixQ1LtDPT9+vXzmU8SG5PfyZMn9cYbb2jGjBk+d/+x1HCOISEhysrK0sqVK7Vy5UrdeuutmjFjhs98g0BjzuFdd92lI0eOSKp9/yssLFRERIQnwr1mjckvPDzclV9BQYGqq6vVqVMnT4Tb4q71vaMto177dr2mVvt2rZao182t1xbT09flt0F5eXnatm2bZs6cqezsbEVHRysuLk579uzR5s2bZbFY1KdPHz3++OMKCgrSpUuXlJaWJqm2KP3yl790ff3r119/XedrOlu7A92S+Tz//POuf6579uypJ554Qu3bt2+VPL7++mu9/PLLkmo/qRgxYoSSkpL017/+VZJ07733yjRNZWVl6ZNPPlFwcLAmT57sekPYvn27tmzZIqn2ypbLzZ7jx4/r1Vdf1aVLlxQbG6uJEye2yh8B1yOfqqoqzZs3TzU1NTIMQwMGDNAvfvGLVrmMrrn5zJ07V//85z9VVVWljh076sknn1RsbKxXvIYgHTp0SOvXr5dhGEpISFBSUpJbPbl06ZJWrFihkydPKjQ0VFOnTvWpP1Yayu+FF17QqVOn1KVLF0m1f7hcrpO+oqEcr5Senq7k5GSf+YNaajg/0zS1YcMG5ebmKiAgQElJSRo+fLinw260hvIrKCjQ6tWrVVVVJUn6+c9/7vrgwtstXbpUR48eVXl5uTp37qzx48fL6XRKavi9A3VRr327XlOrfbtWS9Tr5tRrmh8AAAAAAMCvcdsLAAAAAADwazQ/AAAAAACAX6P5AQAAAAAA/BrNDwAAAAAA4NdofgAAAAAAAL9G8wN1vP7663rnnXdcy3/961/1y1/+UsnJySovL9fnn3+up556SsnJydq3b58HI/V/eXl5evLJJz0dxnXx+9//XsuXL/d0GAAAAADagEBPB4DWlZKSovPnz8tqtSogIEDdu3fXyJEjlZiYqICA2l7YE0884RrvdDq1fv16ZWRkqFevXpJq/2n9j//4Dz3wwAOeSMFn5OXl6ZVXXtGqVas8HYrXKyoq0pQpU/TWW2/JarV6OhwAAAAAfobmRxuUlpamgQMHqqKiQkePHtXatWuVn5+vyZMn1xn7zTffqLq6Wj169HCtKy4uVvfu3Zt07JqaGv65vYK3Px/eHh8AAAAANAbNjzYsJCREcXFx6tKli5577jn98Ic/1E033aSVK1fKbrdr5MiRSktLkyQ99thj6t27t0pKSlRUVKQFCxYoICBAa9asUXV1tdavX6/Dhw/LYrEoISFB48ePV0BAgHbs2KEPPvhA0dHR+r//+z/dd999+ulPf6rt27dr27ZtOn/+vHr37q0nnnhCXbt2lSSNHz9ekyZN0nvvvafy8nINHz5cjz/+uCwWiyQpJydHf/7zn1VaWiq73a7U1FTdcsstcjgcWrNmjf7+97+rffv2GjNmTKOvTrl06ZJ+97vfac+ePfr222910003ac6cOQoODtaBAwe0efNmORwO9erVS5MmTXI1f1JSUnTfffdp586dKi4uVmxsrFJSUmQYhl566SU5nU4lJydLkpYtW6acnBydPn1aQUFBOnjwoB599FGNHDlSmzZt0scffyxJGjZsmH72s58pKCjoe2N+/fXX1b59ez366KOudQsXLlTfvn31wx/+UFu3btVf/vIXVVZWKiwsTJMmTdKAAQMafC5SUlJ0zz336KOPPtKZM2f05ptv6ptvvrnqc5ufn6/f/va3KiwsVHBwsEaMGKFf/OIX9V75kpKSov/+7//WwIED3Y45b948SbW/Z5I0Z84cxcTENBgrAAAAADQGzQ+od+/estls+vzzz3XTTTe51kdFRWnRokWaMmWK1q1b57oC4Lv/wC5ZskRdunTR8uXLdfHiRWVmZsput+uee+6RJB07dkzx8fH67W9/q5qaGu3bt09btmxRWlqabrzxRm3dulXLli3Tiy++6Dr2oUOHNH/+fFVWViotLU1xcXGKjY3Vxx9/rLffflvTp09XdHS0vv76a1mtVhmGoQULFujOO+/U1KlTVVpaqhdeeEFRUVGKjY3V559/rszMTK1bt67e52DDhg0qKCjQiy++qC5duujYsWOyWCw6c+aMli1bpunTp6tv377685//rAULFmjJkiUKDKx9+Xz88ceaNWuWgoODNWfOHO3YsUP33nuvZs2aVe9tLwcOHNAzzzyjKVOmyOl06t1339WxY8e0cOFCWSwWLVy4UH/4wx/005/+9HvP24gRI/TKK68oOTlZFotFFy5c0CeffKJJkybpzJkzev/99zV//nzZbDYVFRXJMIxG/07s2rVLM2fOVKdOnWSxWL73uV27dq0eeOABjRw5UlVVVTp16lSjj3PZ888/X+f3DAAAAABaChOeQpJks9l04cKFa37c+fPnlZubq8cee0zt27dX586dNWbMGO3evds1JiwsTPfff7+sVquCg4OVk5OjH//4x+revbusVqt+/OMf6x//+IeKi4tdjxk7dqw6dOig8PBw9evXT//4xz8kSdu3b9dDDz2k3r17y2KxKDIyUl27dtXx48dVVlamcePGKTAwUBERERo9erQrjttvv/2qjQ/DMPS3v/1Njz32mGw2mwICAnTbbbcpKChIu3fv1h133KGBAwcqMDBQP/rRj3Tp0iV98cUXrsfff//9stlsCg0N1ZAhQ1yxXk1MTIzuuusuBQQEKDg4WB999JEefvhhde7cWZ06ddK4ceP04YcfNvjc9+nTR5L097//XZK0Z88excTEuHKorq5WQUGBnE6nunXrpsjIyAb3eWVO4eHhCg4ObvC5DQwM1NmzZ1VWVqb27dtzxQYAAAAAr8OVH5AkORwOhYaGXvPjSkpKVFNT4zZJqmmastvtruXw8HC3xxQXF2vt2rXasGGD22McDofr1pcuXbq4trVr105VVVWu40VERNSJo7i4WOfOnXPdNiHVNjUuNwi+T3l5uaqrq+ttDpw7d84VkyQFBAQoPDxcDofDte7KWIODg9221efK50aSW96S1LVr1wb3IUkWi0XDhw/Xrl271LdvX+3atUs/+MEPJEmRkZF67LHH9Pbbb6ugoECDBg3So48+KpvN1uB+Jfdz1tBz++STTyo7O1vPPPOMunXrpnHjxmnIkCGNOg4AAAAAtAaaH1B+fr4cDoduv/32a36s3W5XYGCgsrKyGn27Qnh4uJKSklz/qF+L8PBwff311/Wu79atW5O+OrVjx44KCgrS2bNnXd9oc1lYWJjbbRymaaqkpKRRTYTLc5Q0xGazqbi42DWpbGP3L0nDhw/Xiy++qLFjx+rYsWOaNm2aa9uIESM0YsQIVVRU6PXXX9emTZuUmpraqP1eqaHn9sYbb9TUqVNlGIb27dunxYsXKysrS+3atdPFixdd4wzDUFlZWb37aOxzBQAAAABNwW0vbVhFRYUOHjyoZcuW6Qc/+IHbfB+NFRYWpkGDBmnDhg2qqKiQYRg6e/asjh49etXH3HPPPdq6datOnz7tiuPyZJ8Nufvuu7Vt2zadOHFCpmnq7NmzKi4uVu/evXXDDTdo69atunTpkgzD0KlTp5Sfn9/gPgMCApSQkKANGzbI4XDIMAx9+eWXqq6uVnx8vA4fPqzPPvtMTqdT27ZtU1BQkG677bYG99u5c2eVl5eroqLie8cNHz5c7777rsrKylRWVqZ33nmn0Y2hm2++WZ06ddKqVas0aNAgdejQQZJ05swZHTlyRNXV1QoODlZwcLDrq4yvVUPP7c6dO1VWVqaAgACFhIRIqn1Oo6KiVF1drUOHDsnpdOoPf/iDqqur6z3G5blF6mtsAQAAAEBzceVHG7RgwQJZrVZZLBZ1795dY8aM0b333tvk/U2ZMkWbNm3Sr3/9a1VWVioiIkIPPfTQVcffddddqqqq0tKlS1VSUqKQkBANGDBAw4YNa/BYw4YNU3l5uZYtWyaHw6Fu3bppypQp6tq1q9LS0rRhwwalpKTI6XQqKipKEyZMkFQ7L8ZLL72kN998s979Pvroo9q8ebOeffZZVVVVqVevXnruuecUFRWl1NRUrVmzxvVtL2lpaa7JTr/Pv/3bv2n48OGaMmWKDMPQ4sWL6x2XlJSkiooK11UbQ4cOVVJSUoP7v2z48OH6/e9/r2eeeca1rrq6Wps2bdI///lPWa1W3Xbbba5bkz788ENt2bLlqvF8V0BAwPc+t7m5udqwYYMuXryorl276umnn3Y1XCZNmqRVq1bJMAw9+OCDdW75uaxdu3ZKSkrSnDlzVFNTo1mzZjF3CAAAAIAWYzFN0/R0EAAAAAAAANcLt70AAAAAAAC/RvMDAAAAAAD4NZofAAAAAADAr9H8AAAAAAAAfo3mBwAAAAAA8Gs0PwAAAAAAgF+j+QEAAAAAAPwazQ8AAAAAAODXaH4AAAAAAAC/9v8A1l+qX831uhIAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABEAAAA8+CAYAAADd0B4EAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzde1hVZf7//9cGAtycYYOGmoqHTGPSxENZQEpOaQeaUsuszHHM+CSesuzwMScno8ww1FJHwxqbqaaMmppsYkg0GxtUTNNSTC39qClChBIeYP3+8Of+usMDh73Zi+XzcV1cV3vttdZ9v/emN8v3uu972QzDMAQAAAAAAGBhPt7uAAAAAAAAgKdRAAEAAAAAAJZHAQQAAAAAAFgeBRAAAAAAAGB5FEAAAAAAAIDlUQABAAAAAACWRwEEkLRixQrZbDbt2bPH211xq2nTpqlDhw6Nch6rfoYAakpOTtaoUaMa5TzuymPu6jMANEXkbeAkCiAXCJvNds6ftm3bOvd966235Ovrq8GDB9c4z4gRI855nvvvv7/efdy1a9d5+5mcnHzOc6SkpGjEiBH17sO5nCuZt23bVn/605880i6AumsKOe+Us13gncqJn3/+eYPbsLrvv/9e9913n1q3bq2AgAC1aNFCKSkp+vTTT537LFu2TC+++GKj923hwoXq37+/oqKiLvjv81yF8hEjRiglJcX5mr+5Fx7y9oXFrHn7p59+0vjx49W1a1cFBQWpRYsWuv322/Xtt982aj/Mwop5mwLIBWLfvn3On3fffVeStH79eue2goIC574LFizQo48+qg8//FAHDhxwOc9LL73kcq5TP+PGjVNAQIAeeOCBevexdevWLuecPXu2fH19XbYtW7as3ucHcOFoCjkP7nH8+HGlpKRo9+7d+utf/6pt27bpgw8+0IABA3To0CHnfpGRkQoNDW30/lVUVKhfv356/vnnG73tXzMMQ8ePH/d2N4AzIm9fOMyct/ft26edO3fq6aef1vr16/XRRx8583hpaWmj9kUib3sCBZALRIsWLZw/kZGRkqTo6GjntujoaElSUVGRvvjiC02aNEnJycnKzs52OU9YWJjLuVq0aKEvvvhCc+bM0eLFi9WnT59699HX19flvGFhYTX6/o9//ENdunSRv7+/WrVqpSeffFInTpyQdLIK+e9//1uvvfaas8q/YsUKSdITTzyhyy67THa7Xa1bt9aYMWNUVlZW776eT3l5uR544AFFR0crICBACQkJ+te//uV8/2x3CDp06KBp06Y5Xy9atEiXXXaZAgMDFRkZqcTERJcK7Lp16zRgwAAFBwcrOjpav/vd7/T999/X6M/777+vzp07KygoSMnJySoqKnJ5/5///Kd69OihgIAAxcTEKC0tTUeOHDlnjHPmzFGrVq1kt9v129/+Vj/88IPL+z///LPuv/9+tWjRQgEBAWrdurUmTpx43s8OcIemkPPqY+vWrRo0aJCCg4MVHBysm2++Wdu3b3e+v2TJEvn5+bkcs2fPHpd8ePz4cU2cOFGtWrVSQECALr74Yt15550ux7z55pvq1q2bAgMD1bZtW02cOPGMOWH69OnOz/jee+/V4cOHne8ZhqEXXnhBcXFx8vf3V/v27TV79uxzxldZWakHH3xQYWFhioiI0IMPPqijR4+e85jNmzdr+/btysrK0rXXXqs2bdqoV69eeuSRR1ziOv2O7ak7Wue6w7x9+3bdfvvtCg8PV0REhAYMGKBNmzadsy9nMn78eD3xxBPq379/rY851b9//OMf6tWrlwIDA3X55ZcrLy/PZb/z9fHU78Nnn32m7t27KyAgQLm5udqzZ49uv/12ORwOBQYGKi4uTjNnznQeV9u/YW+//bZuuukm2e12xcXFacmSJXX+fIBTyNv/D3n7JG/k7csuu0zvv/++br/9dl166aXq0aOHli5dqn379p1zZA95u+mgAAIXCxcu1KBBgxQVFaURI0boz3/+swzDOOv+hYWFuueee/T444/r7rvv9mjfPvroI40cOVL33HOPvv76a82aNUvz5s3TH//4R0knK/7XXnuthgwZ4qz2X3311ZKkZs2aaeHChdqyZYuWLFmiFStWKD093WN9HTlypD755BMtXbpUGzZsUN++fXXTTTfVafjcunXrNGbMGD322GPaunWr8vPzde+99zrf37Jli5KSknTVVVdp7dq1ysvLk6+vr66//npVVlY699u3b59eeeUVvfHGG/riiy9UXl6ukSNHOt/fuHGjbrnlFiUmJuqrr77Sa6+9pg8//FBjxow5a9/ef/99TZgwQRMnTtSGDRs0ZMgQTZ482WWfJ598UuvXr9f777+voqIivfXWW7rssstqHT/QGMyc837tl19+0YABA1RZWan8/Hzl5+fr8OHDuuGGG3Ts2LFan2fOnDl6++23tXTpUhUVFemDDz5w+QfBkiVL9OCDD2rSpEnasmWLXn/9deXm5tbICe+8845KSkq0YsUKvfnmm/rwww/13HPPOd9/+eWX9b//+7+aMmWKNm/erMmTJ2vKlClavHjxWfv22GOP6d1339Xrr7+u//znPwoKCtK8efPOGU9MTIx8fHz0zjvv1PpzuPrqq13uDG/evFmxsbG67rrrJEk//vijrrnmGsXExGjVqlVas2aNLr30UiUnJ+vgwYPO89hsNpeitbtNnDhRU6dOVWFhoXr37q2bb75Z+/btq1Mfq6ur9eijj+rFF1/Ut99+q4SEBKWlpamsrEy5ubn69ttvtXjxYrVq1cp5TG3/hk2ZMkX33nuvNm7cqDvvvFOjRo3Stm3bPPZ5ABJ5m7zd+Hn71E3ToKCg8+5L3m4CDFxwPvvsM0OSsXv3bpftR48eNaKjo40PPvjAMAzD+OWXX4ywsDDj008/PeN59u3bZ7Rq1cq44447jOrqarf3Mzs72/D19XW+vuaaa4zBgwe77DN79mwjMDDQOHr0qGEYhtG/f3/jvvvuO++5ly1bZvj7+xtVVVWGYZz9MzndU089ZdhsNiMoKKjGj81mM6ZPn24YhmEUFRUZkoyPPvrI5fju3bsb999/v2EYhrFz505DkrFq1SqXfdq3b2889dRTzj6GhoYaZWVlZ+zPfffdZwwdOtRlW2VlpdGsWTPjvffec/bZ19fXOHDggHOfN99807DZbMYvv/xiGIZhDB8+3OjZs6fLeXJycgybzWbs2rXLeZ727ds73+/bt68xbNgwl2MmTZrk8hnecssttfouAE8ze85LSkoy/Pz8auQVu93ukicWLVpkNGvWzDh48KDz2P379xuBgYHGa6+9ZhhGzbxpGIaxe/duQ5Lx2WefGYZhGOnp6cZ111131hjatGljvPLKKy7b8vPzDUlGSUmJs8+/+c1vXPYZM2aM0adPH+frVq1aGZMnT3bZZ/z48Ua7du1cYv/9739vGIZhHD582AgICDAWLlzockyPHj1c8s+ZvPLKK0ZQUJARGBhoXH311cYjjzxi/Pe//3XZ5/S2Tnfs2DEjOTnZuOaaa4zKykrDME7mvN69e7vsV11dbcTFxRmZmZnObZdeeqkxZ86cc/btlLPl/TM59Tu7aNEi57bjx48bl1xyifHkk0/Wuo/Z2dmGJGPlypUu+/3mN79x/q35tbr8DZs1a5bz/RMnThjBwcHG/PnzzxuX3W6v8fvu5+dn9O/f37lvbf/mwprI2+TtX7d1usbK24ZxMrf99re/NXr27On8d8OZkLebTt5mBAic3nvvPfn4+OjGG2+UJAUGBmro0KFasGBBjX0rKyt16623qnnz5s4pJ+eyatUq59C/4OBgzZgxo87927x5sxITE122JSUlqbKyUt999905j122bJkSExMVGxur4OBg3X333Tp27Jj2799fpz60bt1aGzZsqPETGxvr3GfLli2SVKOviYmJ2rx5c63buv766xUXF6d27drpzjvv1MKFC1VcXOx8v6CgQO+9957L5xoVFaXKykqXKS6xsbHOYaOnXhuG4Zwze7bP1TAMZyy/tmXLFufomlOuueYal9dpaWl65513dPnll2vcuHH6+OOPVV1dXev4AU8zU8677bbbauSVf/7zny77bN68WV26dJHD4XBua968uS699NI65Zb7779fmzZtUocOHTRmzBi9++67zjtwBw8e1Pfff6+JEye69P/UZ3T6sO0rrrjC5byxsbH68ccfJZ2cArdnz54z5pZdu3apoqKiRr++++47HT169Ly55UzGjBmj/fv3691339X111+v/Px89e7d2+XO5tk8+OCD2r17t3JychQQECDpZH5dt26dy2cQEhKiXbt2ueTXb7/9Vg899NB526ivq666yvnffn5+6tWrl/O7rm0fJalnz54ur8ePH68ZM2aod+/eevTRR7Vy5Urne3X5G9atWzfnf/v6+iomJsb5O3Aun3zySY3f91tuuaXGfrX5m4sLC3mbvC01Xt6uqqrSvffeq23btmnZsmXy8Tn/P53J2+bP237n3wUXigULFujAgQMKDAx0bjMMQ76+vjpw4IBiYmKc20eOHKk9e/aooKBAdrv9vOdOSEjQhg0bnK9Pze1sDF9++aUGDx6sxx57TDNnzlRERITWrFmj++67r07DDyXpoosuOuPqxr+eu3k+pxKo8ashm6cvchQcHKy1a9dq9erVys3N1fz58/XII4/o3//+t3r06KHq6mrdc889mjJlSo3zR0VFOf/b39/f5b1TFwCeLkacWhfkk08+0YoVKzR8+HDFx8fr3//+t3x9fT3aNlAbZsp5oaGhNXJLXfOKpDNenP168bRu3bpp586d+vTTT/XZZ59p3Lhx+t///V+tWbPGmRdeeukl57Di050+3PZMucWbRc7g4GANHDhQAwcO1LRp0zRq1ChNnTpVEyZMqNHXU55//nktW7ZM//nPf1zyZnV1tfr376+5c+fWOObU+lTeVts++vr6uvyOSyf/MXXDDTdo+fLl+uyzz3TjjTfqtttu09KlS+vUh/r+DrRt29bld0mSQkJCaqzN5a6/ubAO8jZ5u7Hy9rFjx3TXXXfpq6++Un5+fo2cVR/kbXNgBAgknVxQasWKFVq2bJlLte6rr75SmzZtXBaYmj59ut5//3198MEHta7mNWvWTB06dHD+1KcA0rVrV5dqpyTl5+erWbNmat++vaST/1NXVVW57PP555/L4XDoT3/6k3r37q1OnTqd8VFO7tK1a1dJqtHXlStX6vLLL5ck54iMvXv3Ot8/cOCA/u///s/lGF9fXyUmJurpp5/WunXrdPHFF+uvf/2rpJN/qDdu3Kj27du7fLYdOnRQREREnfp7ps/VZrM5Y/m1Ll266IsvvnDZtnr16hr7RUZG6q677tKCBQv00UcfKT8//6yjSoDG1BRy3q917dpVW7ZscRkJ9uOPP2rr1q3O3BITE6OqqiqXuznr16+vca7g4GDddtttysrK0tq1a/XNN98oPz9fzZs3V+vWrbV169YaeaVDhw41LsjOJjQ0VK1atTpjbmnXrt0Z/zHSvn17+fv71yq31MZll12mY8eOnXXB65ycHE2dOlXLli3TpZde6vJeQkKCNm/erFatWtX4DE4fUedpa9ascf73iRMn9N///lddunRxSx8vvvhi3X///Xr99de1ePFivfHGG/r5559r9TcM8AbyNnm7sfJ2RUWFbrnlFm3ZskUrV65U69ata30sedv8zFOKgVctXLhQcXFxSk1NrfHe4MGD9ec//1mPPPKIli1bpqeeekpZWVlq2bJljSkk/v7+Hhvd8dhjj+nmm29WRkaGfve732nDhg2aNm2aJk2a5KxmtmvXTp999pm+++47hYWFKSwsTJdeeqkOHjyoxYsX67rrrtPnn3+ul19+2SN9lE7+MRg8eLDS0tK0YMECtWnTRq+88oq+/vprZ/GiWbNm6tu3r55//nl17txZJ06c0BNPPOEcxiedXGh0x44dSkxMVHR0tNatW6fdu3c7k+jjjz+uXr16afjw4Ro3bpyio6O1a9cu5eTkaNy4cYqLi6tVfydPnqwrr7xSEyZM0AMPPKBdu3Zp7Nixuvvuu3XJJZec8ZhJkyZp8ODB6tWrlwYOHKjPP/9cf/nLX1z2eeKJJ9SjRw917dpVPj4+euONNxQcHHzWcwKNqSnkvF8bNmyYnn76aQ0dOlQzZ86UYRh6+OGH1bJlSw0dOlSS1KtXL4WEhGjKlCl6/PHH9d133+npp592Oc/MmTMVGxurbt26yW63629/+5t8fX3VqVMnSdIzzzyj3//+94qIiNCtt96qiy66SN98840+/vjjMw4zP5vHHntMkyZNUseOHZWcnKy8vDy98sorZ10cLygoSGPGjNGTTz7pHCK+ePFibd261eWu7q8VFhZq6tSpuueee9SlSxfZ7XYVFBTo+eefV9++fc94Ubl582YNHz5c06ZNU+fOnZ3fq6+vr6Kjo/XQQw9p8eLFuvXWW/Xkk0+qdevW2rNnjz7++GMNGjTIOdy7c+fOeuihh845nHr//v3av3+/s+C9fft2BQcHO59OcS4ZGRlq0aKF2rVrpxdffFEHDx5UWlqaJNW6j2fy0EMPaeDAgbr00ktVWVmpZcuWqXXr1goJCVFoaOh5/4YB3kDeJm83Rt4uLy/XwIEDtWfPHr3//vvy8fFxthUWFqZmzZqd8zMkbzcB3lt+BN7y64WlTi0oNWXKlDPuv2HDBkOS8emnnxrJycmGpLP+JCUlua2fZ1oUasmSJUbnzp2Niy66yIiNjTUef/xx4/jx4873v/vuO+Paa681goKCXBaPevLJJ42YmBjDbrcbN954o/HXv/7VkGTs3LnzjJ/Jmfx6IdDTtWnTxmVhn7KyMmP06NGGw+Ew/P39jR49ehiffPKJyzFbt241EhMTDbvdbnTo0MF49913XRZBzc/PN6677jrD4XAYAQEBRocOHYxnn33W5RwbN240brnlFiM8PNwIDAw02rdvb/zhD38wDh06dNY+r1q1yiV2wzCMjz76yLjyyisNf39/w+FwGGPGjDEOHz58zthnz55txMbGGoGBgUb//v2NJUuWuHyGTz/9tNG1a1cjKCjICA0NNRITE2u1+B/gbmbPeWdb5O1Mi2Z+++23xo033uhcVGzQoEFGUVGRy3Effvih0blzZ+fCcsuXL3fJh/PnzzeuvPJKIyQkxAgKCjISEhKMnJwcl3O89957Rp8+fYxmzZoZISEhxhVXXGH88Y9/PGefp0+fbrRp08b5urq62nj++eeNtm3bGn5+fka7du1cFqI703kqKiqM0aNHG6GhoUZoaKjxhz/8wZgyZco5F9M7ePCgMX78eOOKK64wQkNDDbvdbnTs2NGYPHmyMxf+uq1Ti8z9+uf0/u/atcsYNmyYM49fcsklxt13323s2LHDuY+ksy5Kd8pTTz11xrbOddyp39n333/fmZsvu+wy41//+pfLfufr45n+jhqGYaSlpRkdO3Y0AgMDjcjISGPgwIHG119/7Xz/fH/DarOQ97niOtPf2vvuu6/GYnq1/ZsL6yFvk7d/3VZj5e1Tv3tn+snOzj7vceRt8+dtm2Gc47lRAAAAaFQrVqzQddddp927d7tl3jkAwLPI200Ha4AAAAAAAADLowACAAAAAAAsjykwAAAAAADA8hgBAgAAAAAALI8CCAAAAAAAsDwKIAAAAAAAwPL8vN0Bb9q7d6+3u3BGDodDxcXF3u6GW1gpFol4zM7M8cTGxnq7C00K+blxWCkeK8UiEU9jIj+7B3m7cRCPuVkpHjPH0pC8bdoCyIcffqi8vDzZbDa1bt1aaWlp+umnnzR79myVl5crLi5OY8eOlZ+fn44fP665c+dqx44dCgkJ0fjx4xUTE+PtEAAAAAAAgEmYcgpMSUmJPv74Y2VkZGjWrFmqrq7WF198oaVLl2rQoEGaM2eOgoKClJeXJ0nKy8tTUFCQ5syZo0GDBumNN97wcgQAAAAAAMBMTFkAkaTq6modO3ZMVVVVOnbsmMLDw7V582b16dNHkpScnKyCggJJ0tq1a5WcnCxJ6tOnj77++mvxdF8AAAAAAHCKKafAREZG6uabb9aDDz4of39/XXHFFYqLi5Pdbpevr69zn5KSEkknR4xERUVJknx9fWW321VeXq7Q0FCX8+bm5io3N1eSlJGRIYfD0YhR1Z6fn59p+1ZXVopFIh6zs1o8AAAAANzHlAWQw4cPq6CgQPPmzZPdbteLL76oDRs2NPi8KSkpSklJcb4266IuZl5wpq6sFItEPGZn5nhYZA8AAADwLlNOgdm0aZNiYmIUGhoqPz8/9e7dW1u3blVFRYWqqqoknRz1ERkZKenkaJBDhw5JkqqqqlRRUaGQkBCv9R8AAAAAAJiLKQsgDodDRUVFOnr0qAzD0KZNm9SqVSt17dpVa9askSStWLFCCQkJkqQePXpoxYoVkqQ1a9aoa9eustls3uo+AAAAAAAwGVNOgenYsaP69OmjRx99VL6+vmrbtq1SUlJ05ZVXavbs2XrzzTfVrl079evXT5LUr18/zZ07V2PHjlVwcLDGjx/v5QgAAAAAAICZmLIAIklDhgzRkCFDXLY1b95czz77bI19/f39NXHixMbqGgAAAAAAaGJMWwABzGj6dF9VVHh+fZlJk8o93gYAWAn5GQCaHnI3Gpsp1wABAAAAAABwJwogAAAAAADA8iiAAAAAAAAAy2MNEAAAAMCi9u7dq8zMTOfrAwcOaMiQIUpKSlJmZqYOHjyo6OhoTZgwQcHBwTIMQ9nZ2SosLFRAQIDS0tIUFxfnxQgAwH0YAQIAAABYVGxsrGbOnKmZM2fqueeek7+/v3r16qWcnBzFx8crKytL8fHxysnJkSQVFhZq//79ysrK0ujRo7Vo0SIvRwAA7kMBBAAAALgAbNq0SS1atFB0dLQKCgqUlJQkSUpKSlJBQYEkae3atUpMTJTNZlOnTp105MgRlZaWerPbAOA2FEAAAACAC8Dq1avVt29fSVJZWZkiIiIkSeHh4SorK5MklZSUyOFwOI+JiopSSUlJ43cWADyANUAAALXGXHIAaJpOnDihdevWadiwYTXes9lsstlsdTpfbm6ucnNzJUkZGRkuRRMz8fPzM23f6sNq8fj4+Mhut3u8HYcjwONtSNb6fqwUy+kogAAAau3UXHJJqq6u1gMPPOAylzw1NVU5OTnKycnR8OHDXeaSFxUVadGiRZoxY4aXowCAC09hYaHatWun8PBwSVJYWJhKS0sVERGh0tJShYaGSpIiIyNVXFzsPO7QoUOKjIyscb6UlBSlpKQ4X59+jJk4HA7T9q0+rBZPdXVzVVRUeLyd4uJyj7chWev7MXMssbGx9T6WKTAAgHphLjkANB2nT3+RpISEBOXn50uS8vPz1bNnT+f2lStXyjAMbdu2TXa73TlVBgCaOgogAIB6YS45ADQNlZWV2rhxo3r37u3clpqaqo0bNyo9PV2bNm1SamqqJKl79+6KiYlRenq6FixYoFGjRnmr2wDgdkyBAQDUGXPJrcFK8TCP3NysFk9TExgYqFdffdVlW0hIiKZOnVpjX5vNRtEDgGVRAAEA1Blzya3BSvEwj9zczBxPQ+aSAwCaFqbAAADqjLnkAAAAaGoogAAA6oS55AAAAGiKmAIDAKgT5pIDAACgKWIECAAAAAAAsDwKIAAAAAAAwPJMOQVm7969yszMdL4+cOCAhgwZoqSkJGVmZurgwYOKjo7WhAkTFBwcLMMwlJ2drcLCQgUEBCgtLU1xcXFejAAAAAAAAJiJKUeAxMbGaubMmZo5c6aee+45+fv7q1evXsrJyVF8fLyysrIUHx+vnJwcSScfx7h//35lZWVp9OjRWrRokZcjAAAAAAAAZmLKAsjpNm3apBYtWig6OloFBQVKSkqSJCUlJamgoECStHbtWiUmJspms6lTp046cuSISktLvdltAAAAAABgIqYvgKxevVp9+/aVJJWVlSkiIkKSFB4errKyMklSSUmJHA6H85ioqCiVlJQ0fmcBAAAAAIApmXINkFNOnDihdevWadiwYTXes9lsstlsdTpfbm6ucnNzJUkZGRkuRRMz8fPzM23f6spKsUiSj4+P7Ha7x9txOAI83oZkve/HavEAAAAAcB9TF0AKCwvVrl07hYeHS5LCwsJUWlqqiIgIlZaWKjQ0VJIUGRmp4uJi53GHDh1SZGRkjfOlpKQoJSXF+fr0Y8zE4XCYtm91ZaVYJKm6urkqKio83k5xcbnH25Cs9/2YOZ7Y2FhvdwEAAAC4oJl6Cszp018kKSEhQfn5+ZKk/Px89ezZ07l95cqVMgxD27Ztk91ud06VAQAAAAAAMG0BpLKyUhs3blTv3r2d21JTU7Vx40alp6dr06ZNSk1NlSR1795dMTExSk9P14IFCzRq1ChvdRsAAAAAAJiQaafABAYG6tVXX3XZFhISoqlTp9bY12azUfQAAAAAAABnZdoRIAAAAAAAAO5CAQQAAAAAAFgeBRAAAAAAAGB5FEAAAAAAAIDlUQABAAAAAACWRwEEAAAAAABYHgUQAAAAAABgeX7e7gAAAAAAzzly5Ijmz5+v3bt3y2az6cEHH1RsbKwyMzN18OBBRUdHa8KECQoODpZhGMrOzlZhYaECAgKUlpamuLg4b4cAAG7BCBAAAADAwrKzs9WtWzfNnj1bM2fOVMuWLZWTk6P4+HhlZWUpPj5eOTk5kqTCwkLt379fWVlZGj16tBYtWuTl3gOA+1AAAQAAACyqoqJC33zzjfr16ydJ8vPzU1BQkAoKCpSUlCRJSkpKUkFBgSRp7dq1SkxMlM1mU6dOnXTkyBGVlpZ6rf8A4E5MgQEA1AlDqQGg6Thw4IBCQ0P18ssv6/vvv1dcXJxGjBihsrIyRURESJLCw8NVVlYmSSopKZHD4XAeHxUVpZKSEue+p+Tm5io3N1eSlJGR4XKMmfj5+Zm2b/VhtXh8fHxkt9s93o7DEeDxNiRrfT9WiuV0FEAAAHVyaij1pEmTdOLECR09elTvvfee4uPjlZqaqpycHOXk5Gj48OEuQ6mLioq0aNEizZgxw9shAMAFo6qqSjt37tTIkSPVsWNHZWdnO1DNqU0AACAASURBVKe7nGKz2WSz2ep03pSUFKWkpDhfFxcXu6W/7uZwOEzbt/qwWjzV1c1VUVHh8XaKi8s93oZkre/HzLHExsbW+1imwAAAao2h1ADQtERFRSkqKkodO3aUJPXp00c7d+5UWFiYMx+XlpYqNDRUkhQZGenyj55Dhw4pMjKy8TsOAB5AAQQAUGunD6V+5JFHNH/+fFVWVtZ5KDUAoHGEh4crKipKe/fulSRt2rRJrVq1UkJCgvLz8yVJ+fn56tmzpyQpISFBK1eulGEY2rZtm+x2e43pLwDQVDEFBgBQa54aSs1ccu+wUjzMIzc3q8XT1IwcOVJZWVk6ceKEYmJilJaWJsMwlJmZqby8POfaTZLUvXt3rV+/Xunp6fL391daWpqXew8A7kMBBABQa2caSp2Tk+McSh0REVGvodTMJfcOK8XDPHJzM3M8DZlL3lS0bdtWGRkZNbZPnTq1xjabzaZRo0Y1RrcAoNExBQYAUGsMpQYAAEBTxQgQAECdMJQaAAAATREFEABAnTCUGgAAAE2RaQsgR44c0fz587V7927ZbDY9+OCDio2NVWZmpg4ePOi8wxgcHCzDMJSdna3CwkIFBAQoLS1NcXFx3g4BAAAAAACYhGnXAMnOzla3bt00e/ZszZw5Uy1btlROTo7i4+OVlZWl+Ph455MHCgsLtX//fmVlZWn06NFatGiRl3sPAAAAAADMxJQFkIqKCn3zzTfq16+fpJOPTgsKClJBQYGSkpIkSUlJSSooKJAkrV27VomJibLZbOrUqZOOHDmi0tJSr/UfAAAAAACYiymnwBw4cEChoaF6+eWX9f333ysuLk4jRoxQWVmZ8+kB4eHhKisrkySVlJS4PFs+KipKJSUlPGkAAAAAAABIMmkBpKqqSjt37tTIkSPVsWNHZWdnO6e7nGKz2WSz2ep03tzcXOXm5kqSMjIyXIomZuLn52favtWVlWKRJB8fH9ntdo+343AEeLwNyXrfj9XiAQAAAOA+piyAREVFKSoqSh07dpQk9enTRzk5OQoLC1NpaakiIiJUWlqq0NBQSVJkZKSKi4udxx86dEiRkZE1zpuSkqKUlBTn69OPMROHw2HavtWVlWKRpOrq5qqoqPB4O8XF5R5vQ7Le92PmeGJjY73dBQAAAOCCZso1QMLDwxUVFaW9e/dKkjZt2qRWrVopISFB+fn5kqT8/Hz17NlTkpSQkKCVK1fKMAxt27ZNdrud6S8AAAAAAMDJlCNAJGnkyJHKysrSiRMnFBMTo7S0NBmGoczMTOXl5TkfgytJ3bt31/r165Weni5/f3+lpaV5ufcAAAAAAMBMTFsAadu2rTIyMmpsnzp1ao1tNptNo0aNaoxuAQAAAACAJsiUU2AAAAAAAADciQIIAAAAAACwPAogAAAAAADA8iiAAAAAAAAAy6MAAgAAAAAALI8CCAAAAAAAsDwKIAAAAAAAwPIogAAAAAAAAMujAAIAAAAAACzPz9sdAAAAAOA5//M//6PAwED5+PjI19dXGRkZOnz4sDIzM3Xw4EFFR0drwoQJCg4OlmEYys7OVmFhoQICApSWlqa4uDhvhwAAbkEBBAAAALC4p556SqGhoc7XOTk5io+PV2pqqnJycpSTk6Phw4ersLBQ+/fvV1ZWloqKirRo0SLNmDHDiz0HAPdhCgwAAABwgSkoKFBSUpIkKSkpSQUFBZKktWvXKjExUTabTZ06ddKRI0dUWlrqza4CgNswAgQAUCcMpQaApueZZ56RJF1//fVKSUlRWVmZIiIiJEnh4eEqKyuTJJWUlMjhcDiPi4qKUklJiXPfU3Jzc5WbmytJysjIcDnGTPz8/Ezbt/qwWjw+Pj6y2+0eb8fhCPB4G5K1vh8rxXI6CiAAgDpjKDUANB3Tp09XZGSkysrK9Kc//UmxsbEu79tsNtlstjqdMyUlRSkpKc7XxcXFbumruzkcDtP2rT6sFk91dXNVVFR4vJ3i4nKPtyFZ6/sxcyy/zmF1wRQYAECDMZQaAMwrMjJSkhQWFqaePXtq+/btCgsLc+bj0tJSZ1E7MjLS5R89hw4dch4PAE0dI0AAAHXGUGprsFI8DKM2N6vF05RUVlbKMAw1a9ZMlZWV2rhxo+644w4lJCQoPz9fqampys/PV8+ePSVJCQkJWr58ufr27auioiLZ7fYaORsAmioKIACAOmEotTn7Vh9Wiodh1OZm5ngaMpS6KSgrK9MLL7wgSaqqqtI111yjbt26qX379srMzFReXp5z7SZJ6t69u9avX6/09HT5+/srLS3Nm90HALeiAAIAqJNzDaWOiIhgKDUAmEjz5s01c+bMGttDQkI0derUGtttNptGjRrVGF0DgEbHGiAAgFqrrKzUL7/84vzvjRs36pJLLnEOpZZUYyj1ypUrZRiGtm3bxlBqAAAAeI1pR4DwmEUAMB+GUgMAAKCp8lgBpKCgQFdeeaV8fX3rfQ4eswgA7teQ/MxQagDwDndcWwPAhc5jU2DefvttjR49WosXL1ZRUZFbzsljFgGg4TyRnwEAnkXuBoCG89gIkJkzZ2rXrl1atWqVZs2apYCAACUmJuraa69VTExMrc7h7scsAgDck58BAI2L3A0ADefRNUDatm2rtm3bavjw4dq0aZP+8pe/6O2331bnzp2VkpKivn37ysfnzINQPPGYxdzcXOXm5kqSMjIyTPs8ej8/P9P2ra6sFIsk+fj4yG63e7wdhyPA421I1vt+rBaPJzUkPwMAvIPcDQAN4/FFUPfv369Vq1Zp1apVstlsGjp0qBwOh5YvX64vv/xSDz/88BmP88RjFlNSUpSSkuJ8bdbn0TscDtP2ra6sFIskVVc3V0VFhcfbKS4u93gbkvW+HzPH8+sirhnUNz8DALyH3A0A9eexAsjy5cu1atUq7du3T1dffbUeeughderUyfl+7969z7owXmVlpQzDULNmzZyPWbzjjjucj1lMTU2t8ZjF5cuXq2/fvioqKuIxiwBwDg3JzwAA7yB3A0DDeawAsmHDBt10001KSEjQRRddVOP9gICAs1aoecwiAHhOQ/IzAMA7yN0A0HAeK4BMnDhRPj4+8vP7f02cOHFChmE4k/YVV1xxxmN5zCIAeE5D8jMAwDvI3QDQcB5bJemZZ57Rjh07XLbt2LHD+WQXAIB3kJ8BoOkhdwNAw3msAPL999+rY8eOLts6dOig77//3lNNAgBqgfwMAE0PuRsAGs5jBZCgoCCVlZW5bCsrK1NAQOM83hMAcGbkZwBoesjdANBwHiuA9O7dWy+99JJ++OEHHT16VD/88IPmzp2rq666ylNNAgBqgfwMAE0PuRsAGs5ji6Deeeedev311/X444/r+PHj8vf3V3Jysu666y5PNQkAqAXyMwA0PeRuAGg4jxVA/P39NWrUKP3+979XeXm5QkJCZLPZPNUcAKCWyM8A0PSQuwGg4TxWAJGkiooK7d27V5WVlS7bL7/8ck82CwA4D/IzADQ95G4AaBiPFUBWrFihxYsXKzAwUP7+/s7tNptNc+fO9VSzAIDzID8DQNND7gaAhvNYAeRvf/ubJk6cqO7du3uqCQBAPZCfAaDpIXcDQMN57Ckw1dXVuuKKKzx1egBAPZGfAaDpIXcDQMN5rABy66236t1331V1dbWnmgAA1AP5GQCaHnI3ADScx6bAfPTRR/rpp5/0wQcfKDg42OW9V155xVPNAgDOg/wMAE1PQ3N3dXW1pkyZosjISE2ZMkUHDhzQ7NmzVV5erri4OI0dO1Z+fn46fvy45s6dqx07digkJETjx49XTEyMp8ICgEblsQLI2LFjPXVqAEADkJ8BoOlpaO7+5z//qZYtW+qXX36RJC1dulSDBg1S3759tXDhQuXl5WnAgAHKy8tTUFCQ5syZo9WrV+uNN97QhAkT3BECAHidxwogXbp08dSpAQAN4I78zJ1EAGhcDcndhw4d0vr16/W73/1OH374oQzD0ObNmzVu3DhJUnJysv7+979rwIABWrt2rQYPHixJ6tOnj1599VUZhiGbzeaWOADAmzxWADl+/LjeeecdrV69WuXl5Xrttdf01Vdfad++fbrhhhs81SwA4DzckZ+5kwgAjashuXvJkiUaPny4M2eXl5fLbrfL19dXkhQZGamSkhJJUklJiaKioiRJvr6+stvtKi8vV2hoqMs5c3NzlZubK0nKyMiQw+Fwa7zu4ufnZ9q+1YfV4vHx8ZHdbvd4Ow5HgMfbkKz1/VgpltN5rADy2muvqaSkROnp6ZoxY4YkqXXr1nrttdcogACAFzU0P3MnEQAaX31z97p16xQWFqa4uDht3rzZbf1JSUlRSkqK83VxcbHbzu1ODofDtH2rD6vFU13dXBUVFR5vp7i43ONtSNb6fswcS2xsbL2P9VgB5L///a+ysrIUGBjovNA9vboMAPCOhuZnT9xJBACcW31z99atW7V27VoVFhbq2LFj+uWXX7RkyRJVVFSoqqpKvr6+KikpUWRkpPOchw4dUlRUlKqqqlRRUaGQkBCPxwcAjcFjBRA/P78aj+n6+eefSaAA4GUNyc+eupPIUGrvsFI8DKM2N6vF4w31zd3Dhg3TsGHDJEmbN2/WP/7xD6Wnp+vFF1/UmjVr1LdvX61YsUIJCQmSpB49emjFihXq1KmT1qxZo65duzJqD4BleKwA0qdPH82dO1cjRoyQJJWWlmrJkiW6+uqrPdUkAKAWGpKfPXUnkaHU3mGleBhGbW5mjqchQ6kbk7uvre+++27Nnj1bb775ptq1a6d+/fpJkvr166e5c+dq7NixCg4O1vjx490VAgB4nccKIMOGDdPSpUs1adIkHTt2TOnp6erfv79zLvj58IQBAPCMhuRn7iQCgHc09Npakrp27aquXbtKkpo3b65nn322xj7+/v6aOHGi2/oNAGbi0SkwI0aM0IgRI5zD8+py0csTBgDAMxqan8+EO4kA4FmeyN0AcKHxWAHkxx9/dHl9qpAhnaw4nwtPGAAAz2lIfj4ddxIBoPG4K3cDwIXMYwWQ9PT0s7731ltvnfNYnjAAAJ7TkPwMAPAOcjcANJzHCiC/TsQ//fST/v73v+uyyy4753GeesKAxFMGvMFKsUg8ZcDsrBaPp9Q3PwMAvIfcDQAN57ECyK+Fh4drxIgRGjdunK655pqz7ufJZ5XzlIHGZ6VYJJ4yYHZmjsfMTxmobX4GAJgHuRsA6s6nMRvbu3evjh49es59hg0bpvnz52vevHkaP368Lr/8cqWnp6tr165as2aNJJ3xCQOSeMIAANRTbfIzAMBcyN0AUDceGwEydepUl0LE0aNHtXv3bt1xxx31Oh9PGAAA93B3fgYAeB65GwAazmMFkFMFilMCAwPVpk0bXXzxxbU+B08YAAD3c0d+BgA0LnI3ADScxwogycnJnjo1AKAByM8A0PSQuwGg4RrtKTBnM3ToUE91AQBwBuRnAGh6yN0A0HAeK4Ds27dPX375pTp06OB8MsP27dvVu3dv+fv7e6pZAMB5kJ8BoOkhdwNAw3n0Mbjjxo1Tnz59nK+//PJL/ec//1FaWponmwUAnAf5GQCaHnI3ADSMxx6DW1hYqF69erlsS0hIUGFhoaeaBADUAvkZAJoecjcANJzHCiAtWrTQ8uXLXbb961//UosWLTzVJACgFsjPAND0kLsBoOE8NgVmzJgxeuGFF/TBBx8oMjJSJSUl8vX11aRJkzzVJACgFsjPAND0kLsBoOE8VgBp166dXnrpJRUVFam0tFTh4eHq1KmT/Pw8uuwIAOA8yM8A0PSQuwGg4Tw2BebXunTpohMnTqiysrKxmgQA1AL5GQCaHnI3ANSdx0rGP/zwg5577jlddNFFOnTokK6++mpt2bJF+fn5mjBhgqeaBQCcB/kZAJoecjcANJzHRoD8+c9/1tChQzV79mzn0LwuXbro22+/9VSTAIBaID8DQNND7gaAhvNYAWTPnj269tprXbYFBgbq2LFjnmoSAFAL5GcAaHrI3QDQcB4rgERHR2vHjh0u27Zv386jugDAy8jPAND0kLsBoOE8tgbI0KFDlZGRoeuvv14nTpzQe++9p08//VQPPPCAp5oEANQC+RkAmp765u5jx47pqaee0okTJ1RVVaU+ffpoyJAhOnDggGbPnq3y8nLFxcVp7Nix8vPz0/HjxzV37lzt2LFDISEhGj9+vGJiYhopSgDwLI+NAOnRo4cef/xx/fzzz+rSpYsOHjyohx9+WFdccYWnmgQA1AL5GQCanvrm7osuukhPPfWUZs6cqeeff14bNmzQtm3btHTpUg0aNEhz5sxRUFCQ8vLyJEl5eXkKCgrSnDlzNGjQIL3xxhuNER4ANAqPjACprq7WuHHj9OKLL2rUqFGeaAIAUA8Nzc/cSQSAxteQ3G2z2RQYGChJqqqqUlVVlWw2mzZv3qxx48ZJkpKTk/X3v/9dAwYM0Nq1azV48GBJUp8+ffTqq6/KMAzZbDb3BgUAXuCRESA+Pj7y8fHR8ePHPXF6AEA9NTQ/cycRABpfQ3N3dXW1Jk+erFGjRik+Pl7NmzeX3W6Xr6+vJCkyMlIlJSWSpJKSEkVFRUmSfH19ZbfbVV5e7p5AAMDLPLYGyMCBA5WZmanbbrtNkZGRLlXj5s2be6pZAMB5NCQ/cycRALyjIbnbx8dHM2fO1JEjR/TCCy9o7969De5Pbm6ucnNzJUkZGRlyOBwNPqcn+Pn5mbZv9WG1eHx8fGS32z3ejsMR4PE2JGt9P1aK5XRuL4D89NNPCg8P16uvvipJ2rhxY4193nrrLXc3CwA4D3fl5+rqaj366KPav3+/fvvb39brTmJoaKjLObmQ9g4rxcNFtLlZLZ7G5M5r66CgIHXt2lXbtm1TRUWFqqqq5Ovrq5KSEkVGRko6mcMPHTqkqKgoVVVVqaKiQiEhITXOlZKSopSUFOfr4uLi+oTncQ6Hw7R9qw+rxVNd3VwVFRUeb6e4uHFGMVnp+zFzLLGxsfU+1u0FkHHjxum1115zJuKZM2dq8uTJdToHc8wBwP3ckZ8lz9xJ5ELaO6wUDxfR5mbmeBpyId0YGpq7f/75Z/n6+iooKEjHjh3Txo0bdeutt6pr165as2aN+vbtqxUrVighIUHSycVWV6xYoU6dOmnNmjXq2rUro/YAWIbbCyCGYbi83rJlS53PcWqOeWBgoE6cOKGpU6eqW7du+vDDDzVo0CD17dtXCxcuVF5engYMGOAyx3z16tV64403NGHCBHeFBACW4I78fDp33kkEAJxZQ3N3aWmp5s2bp+rqahmGoauuuko9evRQq1atNHv2bL355ptq166d+vXrJ0nq16+f5s6dq7Fjxyo4OFjjx493WywA4G1uL4C4o0LMHHMAcD935ETuJAJA42pozmzTpo2ef/75GtubN2+uZ599tsZ2f39/TZw4sUFtAoBZub0AUlVVpa+//tr5urq62uW1JF1++eXnPY8n5pgDwIXMHfmZO4kA0LjcdW0NAPBAASQsLEyvvPKK83VwcLDLa5vNprlz5573PKxWbc6+1ZWVYpFYZM/srBaPu7kjP3MnEQAal7uurQEAHiiAzJs3z63nY7Xqps1KsUgssmd2Zo7HDIvsuTs/AwA8j9wNAO7j4+0OnMnPP/+sI0eOSJJzjnnLli2dc8wlnXGOuSTmmAMAAAAAgBrcPgLEHZhjDgAAAAAA3MmUBRDmmAMAAAAAAHcy5RQYAAAAAAAAd6IAAgAAAAAALI8CCAAAAAAAsDwKIAAAAAAAwPIogAAAAAAAAMujAAIAAAAAACyPAggAAAAAALA8CiAAAAAAAMDyKIAAAAAAAADLowACAAAAAAAsjwIIAAAAAACwPAogAAAAAADA8iiAAAAAAAAAy6MAAgAAAAAALI8CCAAAAAAAsDw/b3cAAAAAgGcUFxdr3rx5+umnn2Sz2ZSSkqKBAwfq8OHDyszM1MGDBxUdHa0JEyYoODhYhmEoOztbhYWFCggIUFpamuLi4rwdBgC4BQUQAECtcSENAE2Lr6+v7rnnHsXFxemXX37RlClT9Jvf/EYrVqxQfHy8UlNTlZOTo5ycHA0fPlyFhYXav3+/srKyVFRUpEWLFmnGjBneDgMA3IIpMACAWjt1IZ2ZmalnnnlGn3zyifbs2aOcnBzFx8crKytL8fHxysnJkSSXC+nRo0dr0aJFXo4AAC4sERERzsJzs2bN1LJlS5WUlKigoEBJSUmSpKSkJBUUFEiS1q5dq8TERNlsNnXq1ElHjhxRaWmp1/oPAO5EAQQAUGtcSANA03XgwAHt3LlTHTp0UFlZmSIiIiRJ4eHhKisrkySVlJTI4XA4j4mKilJJSYlX+gsA7mbKKTAMsQYA82vIhfSpfQEAjaOyslKzZs3SiBEjZLfbXd6z2Wyy2Wx1Ol9ubq5yc3MlSRkZGS653kz8/PxM27f6sFo8Pj4+NX4fPcHhCPB4G5K1vh8rxXI6UxZAmKsIAObGhbQ1WCkeLqLNzWrxNDUnTpzQrFmzdO2116p3796SpLCwMJWWlioiIkKlpaUKDQ2VJEVGRqq4uNh57KFDhxQZGVnjnCkpKUpJSXG+Pv0YM3E4HKbtW31YLZ7q6uaqqKjweDvFxeUeb0Oy1vdj5lhiY2PrfawpCyARERHOu4O/HmI9bdo0SSeHWE+bNk3Dhw8/6xBr7jACgPtxIW3OvtWHleLhItrczBxPQy6kmwLDMDR//ny1bNlSN910k3N7QkKC8vPzlZqaqvz8fPXs2dO5ffny5erbt6+Kiopkt9u5pgZgGaZfA4S5igBgHue7kJZU40J65cqVMgxD27Zt40IaABrZ1q1btXLlSn399deaPHmyJk+erPXr1ys1NVUbN25Uenq6Nm3apNTUVElS9+7dFRMTo/T0dC1YsECjRo3ycgQA4D6mHAFyCkOsmz4rxSIxxNrsrBaPGZ26kL7kkks0efJkSdJdd92l1NRUZWZmKi8vz7lGk3TyQnr9+vVKT0+Xv7+/0tLSvNl9ALjgdO7cWW+//fYZ35s6dWqNbTabjaIHAMsybQGEIdbm7FtdWSkWiSHWZmfmeKwyxJoLaQAAADRVppwCwxBrAAAAAADgTqYcAcIQawAAAAAA4E6mLIAwxBoAAAAAALiTKafAAAAAAAAAuBMFEAAAAAAAYHkUQAAAAAAAgOVRAAEAAAAAAJZHAQQAAAAAAFgeBRAAAAAAAGB5FEAAAAAAAIDlUQABAAAAAACWRwEEAAAAAABYHgUQAAAAAABgeRRAAAAAAACA5VEAAQAAAAAAlkcBBAAAAAAAWB4FEAAAAAAAYHkUQAAAAAAAgOVRAAEAAAAAAJZHAQQAAAAAAFien7c7AAAAAMBzXn75Za1fv15hYWGaNWuWJOnw4cPKzMzUwYMHFR0drQkTJig4OFiGYSg7O1uFhYUKCAhQWlqa4uLivBwBALgHI0AAALX28ssva9SoUZo0aZJz2+HDhzV9+nSlp6dr+vTpOnz4sCTJMAy9+uqrGjt2rB5++GHt2LHDW90GgAtacnKyHn/8cZdtOTk5io+PV1ZWluLj45WTkyNJKiws1P79+5WVlaXRo0dr0aJF3ugyAHgEBRAAQK1xEQ0ATU+XLl0UHBzssq2goEBJSUmSpKSkJBUUFEiS1q5dq8TERNlsNnXq1ElHjhxRaWlpo/cZADzBlAUQ7jACgDlxEQ0A1lBWVqaIiAhJUnh4uMrKyiRJJSUlcjgczv2ioqJUUlLilT4CgLuZcg2Q5ORk3XDDDZo3b55z26k7jKmpqcrJyVFOTo6GDx/ucoexqKhIixYt0owZM7zYewC4sNT1IvrUvgAAc7DZbLLZbHU6Jjc3V7m5uZKkjIwMl3xvJn5+fqbtW31YLR4fHx/Z7XaPt+NwBHi8Dcla34+VYjmdKQsgXbp00YEDB1y2FRQUaNq0aZJO3mGcNm2ahg8fftY7jFxgA0Djq89FtMSFtLdYKR4uos3NavFYQVhYmPOaubS0VKGhoZKkyMhIFRcXO/c7dOiQIiMjaxyfkpKilJQU5+vTjzETh8Nh2r7Vh9Xiqa5uroqKCo+3U1xc7vE2JGt9P2aOJTY2tt7HmrIAcibuuMPIBXbjs1IsEhfYZme1eJqKhl5ES1xIe4uV4uEi2tzMHE9DLqSbsoSEBOXn5ys1NVX5+fnq2bOnc/vy5cvVt29fFRUVyW63c2MRgGU0mQLI6ep7h5EL7MZnpVgkLrDNzszxWPkCm4toADC32bNna8uWLSovL9eYMWM0ZMgQpaamKjMzU3l5ec7H4EpS9+7dtX79eqWnp8vf319paWle7j0AuE+TKYC44w4jAKBhuIgGgKZn/PjxZ9w+derUGttsNptGjRrl6S4BgFc0mQIIdxgBwPu4iAYAAEBTZcoCCHcYAQAAAACAO5myAMIdRgAAAAAA4E4+3u4AAAAAAACAp1EAAQAAAAAAlkcBBAAAAAAAWB4FEAAAAAAAYHkUQAAAAAAAgOVRAAEAAAAAAJZHAQQAAAAAAFgeBRAAAAAAAGB5FEAAAAAAAIDlUQABAAAAAACWRwEEAAAAAABYHgUQAAAAAABgeRRAAAAAAACA5fl5uwMAAAAAAHjKrFkhjdLOs882SjNoAEaAAAAAAAAAy6MAAgAAAAAALI8pMAAAALXEMGoAF4LGynV2e6M0AzhRAAEAAB7VGBfSXEQDAIDzYQoMAAAAAACwPMuMANmwYYOys7NVXV2t/v37KzU11dtdAgCI/AwATRG5G4AVWWIESHV1tRYvXqzHH39cmZmZWr16tfbs2ePtbgHABY/8DABND7kbgFVZogCyfft2tWjRQs2bN5efn5+uvvpqFRQUeLtbAHDBIz8DQNND7gZgVZaYAlNSUqKoqCjn66ioKBUVFdXYLzc3V7m5uZKkjIwMxcbGNlof68rMfasrK8UyfbokNcaq2I2zKXlJGQAAIABJREFU8rZkre9Hsl48TR352fwaI55ZszzexP+v8XLn/8fenYdFWe//H38NICA7A4jhkuJa5laQ5gYm1UnthO0qlpqZoXnKFpdKOZl+KTMMyzIX1GyzUurUyYpMsMxCxTTTxFOZ/hQBQY6KpMD9+8OLOU4oogIz3D4f18V1Nffcy/sz9/iC3vO576kLvNfgKNXJbnLbccyV2xLZ7bzMNJYKppgBUl0xMTFKTExUYmKio0up0qRJkxxdQo0x01gkxuPszDaeSwn57BhmGo+ZxiIxHjg/ctsxGI9zM9N4zDSW05miAWK1WnXo0CHb40OHDslqtTqwIgCARD4DQH1EdgMwK1M0QFq1aqUDBw4oNzdXpaWlWr9+vSIiIhxdFgBc8shnAKh/yG4AZuWakJCQ4OgiLpaLi4saN26suXPnavXq1erdu7e6d+/u6LIuSnh4uKNLqDFmGovEeJyd2cZT35HPzs9M4zHTWCTGA8cxW3ab7b3HeJybmcZjprFUsBiGYTi6CAAAAAAAgNpkiktgAAAAAAAAqkIDBAAAAAAAmJ6bowvA2f3rX//Sm2++qYULF8rPz8/R5VywN998U5s2bZKbm5tCQ0MVHx8vb29vR5d13rZs2aKUlBSVl5erX79+io2NdXRJFyQ/P1+vvvqqDh8+LIvFopiYGPXv39/RZV208vJyTZo0SVar1bRf2wXnYoaMJp+djxkzmnyGszBDbkvmyG5y2/mZNbtpgDip/Px8bd26VcHBwY4u5aJ16tRJQ4YMkaurq5YvX65Vq1YpLi7O0WWdl/Lyci1atEhPP/20goKCNHnyZEVERKhp06aOLu28ubq6atiwYQoPD9fx48c1adIkderUqV6O5XT//ve/1aRJEx0/ftzRpeASYJaMJp+djxkzmnyGMzBLbkv1P7vJ7frBrNnNJTBOaunSpRo6dKgsFoujS7lonTt3lqurqySpbdu2KigocHBF52/37t1q3LixQkND5ebmph49eigzM9PRZV2QwMBA2x2dGzZsqCZNmtTLc3K6Q4cOafPmzerXr5+jS8ElwiwZTT47H7NlNPkMZ2GW3Jbqf3aT287PzNlNA8QJZWZmymq1qkWLFo4upcatWbNGXbp0cXQZ562goEBBQUG2x0FBQfU+2CQpNzdXv/32m1q3bu3oUi7KkiVLFBcXZ4o/auD8zJrR5LPzMUNGk89wBmbNbal+Zje57fzMnN1cAuMg06dP1+HDhystv+eee7Rq1So9/fTTDqjqwlU1nsjISEnSypUr5erqqt69e9d1eTiDkpISzZ49W8OHD5eXl5ejy7lgmzZtkr+/v8LDw7V9+3ZHlwOTMFNGk8/1kxkymnxGXTJTbktkd31khtyWzJ/dFsMwDEcXgf/5448/9Oyzz8rDw0PSqelHgYGB+r//+z8FBAQ4uLoLt3btWn355ZeaOnWqbWz1ya5du/T+++/rqaeekiStWrVKkjRo0CBHlnXBSktL9fzzz6tz584aOHCgo8u5KG+//bYyMjLk6uqqEydO6Pjx47r22ms1fvx4R5cGEzJjRpPPzscsGU0+wxmYMbel+p3d5LZzM312G3Bq8fHxRlFRkaPLuChZWVnGI488Uq/HUVpaaowdO9Y4ePCgcfLkSePxxx83/vjjD0eXdUHKy8uNuXPnGikpKY4upcb99NNPxv/93/85ugxcQup7RpPPzsesGU0+w1nU99w2jPqf3eR2/WHG7OYSGNS6RYsWqbS0VNOnT5cktWnTRqNHj3ZwVefH1dVVI0eO1IwZM1ReXq6+ffuqWbNmji7rgvzyyy/KyMhQ8+bN9cQTT0iSBg8erKuvvtrBlQGoa+Sz8yGjAZxLfc9uchuOxCUwAAAAAADA9PgWGAAAAAAAYHo0QAAAAAAAgOnRAAEAAAAAAKZHAwQAAAAAAJgeDRAAAAAAAGB6NECgN954Qx988IHt8RdffKEHHnhAw4YN05EjR7Rz506NHz9ew4YN0w8//ODASs0vISFBX331laPLqHHbt2/XmDFjHF0GUO+Qz86DfAZQHeS28yC3cSZuji4AtWvs2LE6fPiwXF1d5eLioqZNm6pPnz6KiYmRi8up/tfp3xteWlqqpUuXasaMGWrRooUkacWKFfrb3/6m/v37O2II9caKFSuUk5Oj8ePHO7oUpzd27Fg9+OCD6tSpk6NLARyGfK475HP1kc/A2ZHbdYfcrj5y+/zQALkETJw4UZ06dVJxcbF+/vlnpaSkaPfu3YqPj6+0blFRkU6ePKlmzZrZluXl5alp06YXdOyysjK5urpecO1mYhiGDMOw/YJ0RpwvoG6Rz86BfAZQXeS2cyC3caFogFxCvLy8FBERoYCAAD311FMaOHCgmjdvrldffVVBQUHq06ePJk6cKEkaPny4Wrdurfz8fOXm5ur555+Xi4uLFi9erJMnT2rp0qXKysqSxWJR3759ddddd8nFxUVr167VV199pVatWikjI0M33nijbr/9dr3zzjv67rvvVFpaqsjISA0fPlzu7u7avn275s6dqwEDBuijjz6Si4uLBg8erL59+0qSTpw4oXfffVcbNmzQsWPH1Lx5cz3zzDNyd3fXrl27tGzZMu3bt08hISEaPny4OnToUK3XIj8/X0uWLNGOHTtkGIZ69uyp+++/X+Xl5Vq1apW++uornThxQl26dNHIkSPl5eWl3NxcjRs3TvHx8Xrvvfd04sQJDRgwQLfddpu2bNmiVatWSZIyMzPVuHFjzZo1SwkJCWrXrp1+/vln/frrr5o9e7aKioq0ZMkS7d+/X2FhYRo+fLjatWtXZb0FBQV6+OGHNX/+fPn4+EiSfvvtNz333HOaP3++8vPz9dprr+n333+Xm5ubrrrqKj366KPnfB3O93z997//1bx587Rz505ZLBY1a9ZMCQkJcnFx0V133aXk5GQ1btxYkmzvq3vuucfumHPnzlV+fr7tPXXHHXfo1ltvrdZ5A8yKfP4f8vkU8hlwbuT2/5Dbp5Db9QMNkEtQ69atZbVatXPnTjVv3ty2PCwsTLNnz9a4ceO0ZMkSW8fyr9Oq5syZI39/fyUnJ+vPP/9UYmKigoKCdMMNN0iSsrOz1aNHDy1YsEBlZWV66623dPDgQc2aNUuurq56+eWX9cEHH2jIkCGSpMOHD6u4uFivv/66tm7dqpdeekmRkZHy8fGxBfFzzz2ngIAAZWdny2KxqKCgQImJiRo3bpy6dOmin376SbNnz9acOXPk5+en1NRU7dy5U5MmTao0/vLycj3//PPq0KGDXn31Vbm4uOjXX3+VdCq41q5dq2nTpsnf31+vvPKKFi1apIcffti2/c6dO/Xyyy9r//79mjJliq699lp16dJFgwYNOuNUvYyMDE2ZMkVhYWE6cuSIJk+erBEjRqhnz5767rvvlJiYqOTkZPn6+p71nFmtVrVt21YbNmxQTEyMJOmbb75Rt27d5ObmpnfffVedO3fWtGnTVFpaahtPdZzP+frkk09ktVq1cOFC27YWi6Xax5Kkhx9+WDt37mSqHnAG5DP5fDryGXB+5Da5fTpy2/k575wh1Cqr1aqjR4+e93aHDx9WVlaWhg8fLk9PT/n7+2vAgAFav369bZ3AwEDdfPPNcnV1VYMGDfTVV1/pvvvuk4+Pjxo2bKjbbrtN3377rW19V1dX3XHHHXJzc9PVV18tT09P7d+/X+Xl5fr66681fPhwWa1Wubi4qF27dmrQoIEyMjLUtWtXXX311XJxcVGnTp3UqlUrbd68WZIUGxt7xpCWpN27d6ugoEDDhg2Tp6en3N3d1b59e0mnwm/gwIEKDQ2Vp6enhgwZovXr16usrMy2/Z133il3d3e1aNFCl19+ufbs2VPlaxYdHa1mzZrJ1dVVW7duVePGjdWnTx+5urqqV69eCgsL06ZNm8752vfq1cv2uhmGofXr16tXr16SJDc3N+Xl5amwsNBuPNVxPufL1dVVhw8fVn5+vtzc3HTFFVecd1ADqBr5TD5XIJ+B+oHcJrcrkNvOjxkgl6iCggLblK/zkZ+fr7KyMrsbPBmGoaCgINvj4OBg23//97//1Z9//mkXmoZhqLy83PbY19fX7vo4Dw8PlZSU6MiRIzp58qRt6tdf69iwYYNdwJWVlVVrql5+fr5CQkLOeE1eYWGhQkJC7MZSVlamoqIi27KAgIBKtVbl9NemoKDAbv+SFBISooKCgnPW3a1bNy1evFiFhYU6cOCALBaLrrjiCklSXFyc3n33XU2ZMkXe3t4aOHCgrr/++nPus2KMFc51vv7+97/r/fff13PPPSdJiomJUWxsbLWOA6B6yGfy+fQxViCfAedFbpPbp4+xArntnGiAXIIqOrXn082sEBQUJDc3Ny1atKhaN/Xx9fWVu7u7XnrpJVmt1vM6lq+vrxo0aKCcnBzbnbNPr6N3794X9BVQwcHBtl84fx1DYGCg8vLybI/z8/Pl6uoqf39/HTp0qMr9nq1je/pyq9Wq77//3u75/Px8denS5Zx1+/j4qHPnzlq/fr3+3//7f+rRo4dt3wEBAbbXYufOnZo+fbquvPLKM/6Sq8q5zlfDhg1177336t5779Uff/yhZ599Vq1atVLHjh3l4eGhP//807bu4cOH7X5JATg38pl8PhvyGXBO5Da5fTbktnPiEphLSHFxsTZt2qSXX35ZvXv3trtOsboCAwPVuXNnLVu2TMXFxSovL1dOTo5+/vnnM67v4uKifv36acmSJbZub0FBgbZs2XLOY7m4uKhv375atmyZCgoKVF5erl27dunkyZPq3bu3Nm3apC1btqi8vFwnTpzQ9u3bzxmm0qlrNQMDA/XWW2+ppKREJ06c0M6dOyVJPXv21Keffqrc3FyVlJTonXfe0XXXXVetX0r+/v7Ky8uz68L/VdeuXXXgwAF98803Kisr0/r167Vv3z5dffXV59y/dGq6XkZGhjZs2GCbpidJ3333nW3s3t7eks7+i6Mq5zpfmzZtUk5OjgzDkJeXl1xcXGzHadGihb755huVl5dry5YtZ31PSKd+seTm5p53fYBZkc+nkM9nRz4DzoXcPoXcPjty2zkxA+QS8Pzzz8vV1VUWi0VNmzbVgAEDdOONN17w/saNG6e33npLEyZM0PHjxxUaGlrl3YaHDh2qDz74QE899ZSOHDkiq9WqG264oVrd2XvvvVdvv/22Jk+erJKSErVo0UJPPfWUgoOD9eSTT2r58uV6+eWX5eLiotatW+uBBx6QJK1cuVI7d+7UlClTKu3TxcVFEydO1OLFixUfHy+LxaKePXuqffv26tu3rwoLCzVt2jSdOHFCnTt31siRI6v1ulx33XVat26d7r//fjVq1EjPP/98pXV8fX01adIkpaSkaMGCBWrcuLEmTZokPz+/ah0jIiJCr7/+uoKDg+269//5z3+0ZMkSFRcXKyAgQCNGjFBoaKgkacKECRo0aJB69+5drWNUdb4OHDigxYsX67///a+8vb1144036qqrrpJ06g7nr776qj7//HNFRkYqMjLyrMeIjY3V4sWLtXz5ct122236+9//Xq3aALMhn+2Rz1UjnwHHI7ftkdtVI7edj8UwDMPRRQAAAAAAANQmLoEBAAAAAACmRwMEAAAAAACYHg0QAAAAAABgejRAAAAAAACA6dEAAQAAAAAApkcDBAAAAAAAmB4NEAAAAAAAYHo0QAAAAAAAgOnRAAEAAAAAAKZHAwQAAAAAAJgeDRAAAAAAAGB6NEAAAAAAAIDp0QABAAAAAACmRwMEAAAAAACYHg0QAAAAAABgejRAAAAAAACA6dEAAQAAAAAApkcDBAAAAAAAmB4NEAAAAAAAYHo0QAAAAAAAgOnRAAEAAAAAAKZHAwQAAAAAAJgeDRAAAAAAAGB6NEAAAAAAAIDp0QABAAAAAACmRwMEAAAAAACYHg0QAAAAAABgejRAAAAAAACA6dEAAQAAAAAApkcDBAAAAAAAmB4NEAAAAAAAYHo0QAAAAAAAgOnRAAEAAAAAAKZHAwQAAAAAAJgeDRAAAAAAAGB6NEAAAAAAAIDp0QABAAAAAACmRwMEAAAAAACYHg0QAAAAAABgejRAAAAAAACA6dEAAQAAAAAApkcDBAAAAAAAmB4NEAAAAAAAYHo0QAAAAAAAgOnRAAEAAAAAAKZHAwQAAAAAAJgeDRAAAAAAAGB6NEAAAAAAAIDp0QABAAAAAACmRwMEAAAAAACYHg0QAAAAAABgejRAAAAAAACA6dEAAQAAAAAApkcDBAAAAAAAmB4NEAAAAAAAYHo0QAAAAAAAgOnRAAEAAAAAAKZHAwQAAAAAAJgeDRAAAAAAAGB6NEAAAAAAAIDp0QABAAAAAACmRwMEAAAAAACYHg0QAAAAAABgejRAAAAAAACA6dEAAQAAAAAApkcDBAAAAAAAmB4NEAAAAAAAYHo0QAAAAAAAgOnRAAEAAAAAAKZHAwQAAAAAAJgeDRAAAAAAAGB6NEAAAAAAAIDp0QABAAAAAACmRwMEAAAAAACYHg0QAAAAAABgejRAAAAAAACA6dEAAQAAAAAApkcDBAAAAAAAmB4NEAAAAAAAYHo0QAAAAAAAgOnRAAEAAAAAAKZHAwROKzo6WqNGjaqT/SQkJKh169Z1ciwAqC/IYQCof+pjdgN1hQbIRbBYLFX+tGjRwrbue++9J1dXV915552V9jN8+PAq9zNixIiLrvVsAfb777/LYrHom2++uehjmN2ePXt03333qVmzZvLw8FDjxo0VExOjL7/80rbOypUr9dJLL9V5bY8//rjat28vHx8f+fv7q0ePHvr000/rvA5nsHbtWlksFu3bt6/Sc8OHD1dMTIztcVW/tFu0aKHnnnuu1upEzSCHLy3OnMOnS0hIkMVioRFTTeT2pYfsxvl66KGH5OrqqldffdXRpeiNN95Qv379FBQUdNb3wNnem6WlpVXu+6OPPlL//v3VuHFjeXl5qUOHDnr55ZdlGMYZ1y8uLlaHDh14L54HGiAX4cCBA7afDz/8UJK0efNm27LMzEzbuvPnz9fEiRP1ySefKDc3124/L7/8st2+Kn7+8Y9/yMPDQw8++GCdjguVnTx5UjExMdq7d6/efvtt7dq1Sx9//LFuvPFGHTp0yLae1WqVn59fndfXoUMHvfrqq/rxxx/1/fffq0+fPrr11lu1adOmOq/FMAydPHmyzo+LSxM5fOlw9hyusGbNGi1dulSdOnU657rR0dFasmRJ7Rd1DuQ26hrZjdOdOHGiyuePHTumt956S1OmTNGCBQvqqKqzKy4u1vXXX68XXnihyvV69+5d6b3p5uZW5TZr167Vddddp1WrVumnn37SE088ocmTJ5/1WPHx8WrVqtUFj6UulJeXq6yszNFl2NAAuQiNGze2/VitVklSSEiIbVlISIgkKTs7W+vXr9djjz2m6OhopaSk2O3H39/fbl+NGzfW+vXrNXfuXC1atEjdu3ev03H98ssvGjBggHx8fOTj46NbbrlFu3fvtj2/ZMmSSv949+3bJ4vForVr10o69YfqhAkT1LRpU3l4eOiyyy7TPffcY7fNu+++qy5dusjT01MtWrTQhAkTdOzYsUr1TJ8+3fYa33vvvTp69KjtOcMw9OKLLyo8PFzu7u5q1aqV5syZU+X4SkpK9NBDD8nf31+BgYF66KGH9Oeff1a5zfbt27V7924lJyerd+/euvzyy3XttdfqySeftBvX6Z8SVHyiVdWnGrt379btt9+ugIAABQYG6sYbb9S2bduqrOVMRowYoX79+qlVq1Zq3769EhMT5evrW2UnuKK+f/3rX7r22mvl6empq666SmvWrLFb71w1Vrwfvv76a3Xt2lUeHh5KS0vTvn37dPvttys4OFienp4KDw/XrFmzbNsdOXJEDz74oEJCQuTh4aGIiAh98cUXtucrPllZsWKFBg4cKC8vL4WHhzvF/yzAeZDD/0MOn+KoHJakgwcP6t5779Wbb76pwMDAC9pHVchtmAXZ/T9mzO5z1RcdHa37779fzzzzjC677DI1b968yuO+8847atOmjZ5++mnt2bNH33///RnXadWqlTw9PdWjRw998sknlWZF1FTeP/LII3rqqafUr1+/Ktdzd3ev9P48l6SkJD3zzDO67rrrFB4eruHDh2vUqFFasWJFpXWXLl2qLVu22OX02axdu1aurq7au3ev3fJly5bJ39/fdn4OHjyo4cOHKyQkRL6+vurZs6cyMjJs6xuGoQceeECtWrVSw4YNFR4erilTpti9Dypm6r333ntq37693N3dtWvXLm3fvl033XSTAgIC5O3trSuuuEJvvvnmOWuvaTRA6sAbb7yhAQMGKCgoSMOHD9eCBQvOOo1JkrKysjRs2DBNmTJFQ4cOrcNKpePHj+vGG29USUmJ0tPTlZ6erqNHj+pvf/vbObuzp5s7d65WrFih5cuXKzs7Wx9//LHdL6ElS5booYce0mOPPaaff/5Zy5YtU1pamsaMGWO3nw8++EAFBQVau3at3n33XX3yySd6/vnnbc/PmzdPzzzzjCZNmqTt27friSee0KRJk7Ro0aKz1jZ58mR9+OGHWrZsmb777jt5e3ufczpdo0aN5OLiog8++KDar0OPHj3sOr7bt29XWFiY+vbtK+lUwPTq1UuNGjXSunXrtGHDBrVr107R0dHKy8uz7cdisSghIaFax5Sk0tJSvfnmmzp69Kh69+59zvUnTJigqVOnKisrS926ddMtt9yiAwcOnFeN5eXlmjhxol566SXt3LlTERERio+PV1FRkdLS0rRz504tWrRITZs2tW0zcuRIff7551q+fLm2bNminj17auDAgdq5c6ddfZMmTdK9996rrVu36p577tGoUaO0a9euar8egEQOk8O1n8Pl5eUaOnSoHnzwQfXq1ata9V0ochuXCrK7/mV3detbsWKF8vLy9NVXX9ldxngm8+fP1/Dhw+Xh4aF77rlH8+fPt3t+06ZNGjp0qAYPHqwff/xRTz75pB555BG7dWrr7+6q/PDDD2rcuLFatmyp22+/Xdu3b7+g/Rw+fFje3t52y3bs2KEnnnhC7777rjw8PM65j+joaLVp00aLFy+2W75gwQINGTJE3t7eOn78uPr27asjR47os88+U1ZWlvr3768bbrhBO3bskHSqAdKoUSO9/fbb2rFjh+bMmaOUlBTNnDnTbr/79+/XvHnztHTpUv38889q2rSpBg8erKCgIK1fv17btm3TSy+9VCsfFpyTgRrx9ddfG5KMvXv32i3/888/jZCQEOPjjz82DMMwjh8/bvj7+xtffvnlGfdz4MABo2nTpsYdd9xhlJeX11h9UVFRhpubm+Ht7W334+XlZUgy1q1bZxiGYSxcuNBo2LChkZeXZ9s2JyfH8PT0NJYuXWoYhmGkpKQYrq6udvvfu3evIcn4+uuvDcMwjPHjxxt9+/Y96xguv/xy47XXXrNblp6ebkgyCgoKbDV36tTJbp0xY8YY3bt3tz1u2rSp8cQTT9it88gjjxgtW7a0G/v9999vGIZhHD161PDw8DDeeOMNu22uueYao1WrVmestcJrr71meHt7G56enkaPHj2MJ5980vjhhx/s1jn9WKc7ceKEER0dbfTq1csoKSkxDMMwpk2bZnTr1s1uvfLyciM8PNxISkqyLWvXrp0xd+7cKmszDMP417/+ZXh7exsuLi5GYGCg8cknn1S5fsV7duHChbZlJ0+eNJo3b248/fTT1a4xJSXFkGRkZGTYrdepUydj2rRpZzx2dna2Icn49NNP7ZZ37drVGDFihGEYhvHbb78ZkozZs2fbni8tLTV8fHyM119//Zzj8vLyqvR+d3NzM/r162dbd9q0aYbFYqm0nre3t2GxWIzp06ef9ThwPuQwOfzXY52utnM4ISHBiI6ONsrKyqqs46+1pqSkVLnO6chtctuMyG5zZXd162vTpo0tL6uSlZVluLu7G/n5+YZhGMZ3331neHl5GYcPH7atM2TIEKNXr15227322mt256em/+42jP9lXsUxTvf2228bK1euNLZu3Wp8+eWXxk033WQ0bNjQ2LZtW7X2XeHrr7823NzcbP8ODMMwjh07ZnTo0MFYtGjROes43ezZs43mzZvbXvcdO3YYkozNmzcbhnHq/dmkSRPj5MmTdtv17dvX+Mc//nHW/b700ktG69atbY8rcnrPnj126/n5+Z3X77zawgyQWrZq1Sq5uLjo5ptvliR5enrq7rvvrtS5lE5NK7v11lsVGhqqpUuXymKxVLnvdevW2abY+fj4VOq8/dWgQYO0ZcsWu59///vfduts375dV155pYKDg23LQkND1a5du/PqWo4YMULbtm1T69atNWbMGH344Ye27ndeXp727NmjCRMm2NVf8RqdPlWwc+fOdvsNCwvTwYMHJUn//e9/tW/fPvXp08dunaioKP3+++8qLi6uVNd//vMf/fnnn+rRo4fd8up8WjdmzBjl5OToww8/1A033KD09HR169bNrpt+Ng899JD27t2r1NRUW5c2MzNTmzZtsnsNfH199fvvvys7O9u27c6dOzVu3LhzHqNv377asmWLNmzYoFGjRmnYsGHavHnzObe77rrrbP/t5uama6+91nauq1ujJEVGRto9fuSRRzRz5kx169ZNEydOtJs+9/PPP0tSpXPXp0+fSu+zLl262P7b1dVVjRo1sr0HqvL5559Xer///e9/r7Res2bNKq23ZcsWhYWFnfMYqB/IYXJYqt0czsjI0Lx587R8+XK5uJz9T6sxY8bYHWvdunWVlr311lvnHAu5TW5fCsju+pfd51PfNddcU2VeVpg/f74GDhyooKAgSVL37t3VtGlTLV++3LbOzz//XOlyp9NzUqr5v7vPZfDgwRo0aJA6duyomJgYffzxx2rSpImSk5MlVe89uGECj6roAAAgAElEQVTDBsXGxiohIUG33HKLbfn48ePVsWNHjRw58rxquu+++5Sbm6vPP/9ckrRw4UJdc8016tq1q6RTr1FOTo4CAgIq/a46/TVasGCBunXrptDQUPn4+Gjy5Mnas2eP3bFCQ0MrXdr0+OOPa9SoUYqOjlZCQkK1/j+lNlR9FxZctPnz5ys3N1eenp62ZYZhyNXVVbm5uWrUqJFt+ciRI7Vv3z5lZmbKy8vrnPuOiIjQli1bbI8rrqE8Gz8/v0p3Tj/XjXjO5Exh9debp3Xp0kW//fabvvzyS3399df6xz/+oWeeeUYbNmxQeXm5pFM3rqqYhny606fburu72z1nsVhs2zuCj4+P+vfvr/79+yshIUGjRo3S1KlT9eijj1aqtcILL7yglStX6rvvvrOFt3Rq+nG/fv30yiuvVNrG39//vGvz9va2nd/IyEj9+OOPeuGFF/Tuu++e977Ot0ZXV1e797h06hf43/72N61evVpff/21br75Zg0aNMjuF1Z1XOh7oEWLFnbvJUny9fVVUVGR3bIGDRqc8RsFLuTfBpwTOUwO13YOr1mzRnl5ebr88stty8rKypSRkaElS5Zoz549atKkiZ599lk9/vjjtnWGDh2q22+/XbfddpttWWhoaLWPeybkNsyC7K5/2X0+9f31ko4zqbj56bFjx+xe7/Lyci1YsEBjx461LTtX06um/+4+X+7u7oqIiNDvv/8u6dzvwbVr1+qWW27R5MmTNWXKFLvn0tLStHfvXr3//vt2y6Ojo9WvXz9bg+OvgoKCdMcdd2jBggXq16+fli1bZvfNWeXl5briiiu0atWqSttW/Lt6//33NXbsWCUmJioqKkp+fn56//339dRTT9mtf6bz+8wzz2jo0KFavXq11qxZo5kzZ+rJJ5+s82/v4jdFLcrOztbatWu1cuXKSqE5aNAgpaSkaOLEiZJO3aToo48+UkZGRrU/wWjYsGGNf+92hw4d9Prrrys/P9/WwT548KB++eUXPfbYY5JOXYddVlamgwcP2v5QO1MHz8fHR4MGDdKgQYM0ZcoUXXbZZUpPT9ctt9yiZs2a6ZdfftEDDzxwwbX6+fmpadOmysjI0MCBA23L09PT1bJlyzP+AmzVqpXc3d21fv16dejQwbb822+/vaAarrjiCp04cUJFRUW2G3adLjU1VVOnTtXq1avVrl07u+ciIiK0ZMkSNW3atNIfoTWhvLxcJSUl51xvw4YNuvLKKyWdun/IDz/8oGHDhtVIjZdddplGjBihESNGqH///ho8eLDmzZtne+0zMjLUv39/2/oZGRm2LjRQE8hhcrgucjg+Pl533HGH3bIRI0aoefPm+uc//2k7R40aNbL7n7aGDRuqUaNG5/0eIrdhdmR3/czu0NDQGqmvwjvvvCM3Nzdt2bLFrsFRUFCg6Ohoff/99+rWrZuuvPJKfffdd3bbbtiwwe5xbf/dfS5lZWX68ccfbTNTqnoPfvrpp7rzzjs1ffp023vndF988YXdfWX279+vm266SSkpKee8/9+DDz6ovn37av78+Tp+/LgGDx5sey4iIkLLli2Tn5+f3e+q01Vk/oQJE2zLKpo61REeHq74+HjFx8crMTFRs2bNogFiJm+88YbCw8MVGxtb6bk777xTCxYs0JNPPqmVK1dq2rRpSk5OVpMmTZSTk2O3rru7+zk70zVlyJAhevbZZ3X33Xdr1qxZMgxDjz/+uJo0aaK7775bknTttdfK19dXkyZN0pQpU/Sf//xHzz77rN1+Zs2apbCwMHXp0kVeXl5655135OrqqrZt20qSZsyYofvvv1+BgYG69dZb1aBBA+3YsUOfffbZGac2ns3kyZP12GOPqU2bNoqOjtaaNWv02muvnfVmet7e3hozZoyefvpp27TERYsW6ZdffjnrP3Tp1E21pk6dqmHDhunKK6+Ul5eXMjMz9cILL6hnz55n/KN7+/btiouLU0JCgtq3b287r66urgoJCdG4ceO0aNEi3XrrrXr66afVrFkz7du3T5999pkGDBhgm2LYvn17jRs37qzT8Q4ePKh58+bZvjP88OHDeuedd/TVV1/ZvlquKomJibYbNL300kvKy8tTfHy8JFW7xjMZN26c+vfvr3bt2qmkpEQrV65Us2bN5OvrKz8/P915552Kj4/X/Pnzdfnll+u1117TTz/9pLfffvucNQPVRQ6Tw3WRw39tbFSMMzAwUFdddVW1XsfzQW7D7Mju+pvdNVWfdGoWUMVlJH/VvXt3zZ8/X926ddOECRMUGRmpqVOnKi4uTjt37tTs2bMl/W9mSE3lvSTl5OQoJydH+/fvl3Tq0h4fHx/bN70cPXpUU6dO1e23364mTZooNzdXs2bN0q+//nrOGXXvv/++hg4dqkmTJmno0KGVfm9Jsr0XKvj4+EiSWrZsafctZ2fSq1cvtWvXTo8//rjuvfde+fr62p4bOnSokpKSNGDAAM2YMUNt27bVwYMHtWbNGl1xxRWKjY21nfePPvpIV111lT755BOtXLmyymNK0tGjRzVx4kTdfvvtatmypQ4fPqzVq1fbmvl1ypE3IDGTv97AqeLGTZMmTTrj+lu2bDEkGV9++aURHR1tSDrrT1RU1EXXd7absZ3ppjk7d+40br75ZttNngYMGGBkZ2fbbffJJ58Y7du3t92IbvXq1XY3cHr99deNq6++2vD19TW8vb2NiIgIIzU11W4fq1atMrp37240bNjQ8PX1NTp37mz885//rLLm6dOnG5dffrntcXl5ufHCCy8YLVq0MNzc3IyWLVva3cjoTPspLi42Ro8ebfj5+Rl+fn7GAw88YEyaNKnKm+/l5eUZjzzyiNG5c2fDz8/P8PLyMtq0aWM88cQTxqFDh854rIqbzP315/T6f//9d2PIkCFGcHCw4e7ubjRv3twYOnSo8euvv9rWkXTWm9IZhmEUFBQYt956q3HZZZcZDRo0MEJDQ42YmBjjs88+O+s2hvG/9+xHH31kXH311Ya7u7txxRVXGF988YXdeueq8Uw39DIMw4iPjzfatGljeHp6Glar1ejfv7/x008/2Z4vKioyRo8ebdvvNddcY3z++ee25892Q6dWrVpV+Xqc7WZqhmEY9913X6Wb6Z3tvF9++eXcTK+eIYfJ4b8eq65y+Exq8yao5Da5bSZkt/my+0Lq+6usrCxDkrF69eozPj9nzhy7m6G+/fbbRnh4uOHu7m50797deO+99wxJxsaNG23b1FTeT5s27Yzvt4rtiouLjZtuuskIDQ01GjRoYISFhRm33HKLsWnTpir3W/HanOv31l9V9yaoFebMmWNIqnQTccMwjPz8fGPMmDFGWFiYrfbY2FjbjVJPnDhhjB492ggMDDR8fX2NwYMHG3PnzjVObyucKaePHz9uDB482GjRooXh4eFhhISEGHfddZfxxx9/VKvmmmQxjCq+SwqAaa1du1Z9+/bV3r17K11zDQBwPuQ2AFTPsmXLNGLECB06dEgBAQGOLsepPPnkk/ryyy+VlZXl6FIcgktgAAAAAAD11osvvqi+ffvKarUqMzNTEydO1J133knz4zRFRUXatWuX3njjDdu30VyKaIAAAAAAAOqtrVu3avbs2SooKFCzZs0UFxenf/7zn44uy6nceuut+v7773XPPfcoLi7O0eU4DJfAAAAAAAAA02MGCAAAAGBS+/fvV1JSku1xbm6u7rrrLkVFRSkpKUl5eXkKCQnRo48+Kh8fHxmGoZSUFGVlZcnDw0Px8fEKDw934AgAoOYwAwQAAAC4BJSXl+vBBx/UzJkz9fnnn8vHx0exsbFKTU3V0aNHFRcXp82bN2v16tWaPHmysrOztWTJEs2cOdPRpQNAjbikZ4BUfHezswkODlZ+fr6jy6gRZhqLxHicnTOPJywszNEl1Cvkc90w03jMNBaJ8dSlSymft23bpsaNGyskJESZmZlKSEiQJEVFRSkhIUFxcXHauHGj+vTpI4vForZt2+rYsWMqLCxUYGBglfsmt+sG43FuZhqPM4/lYnLbpQbrAAAAAOCkvv32W/Xs2VPSqW+EqGhqBAQEqKioSJJUUFCg4OBg2zZBQUEqKCio+2IBoBZc0jNAAAAAgEtBaWmpNm3apCFDhlR6zmKxyGKxnNf+0tLSlJaWJklKTEy0a5o4Ezc3N6et7UIwHudmpvGYaSynowECAAAAmFxWVpZatmypgIAASZK/v7/t0pbCwkL5+flJkqxWq92090OHDslqtVbaX0xMjGJiYmyPnXWqvDNP478QjMe5mWk8zjwWLoEBAAAAcFanX/4iSREREUpPT5ckpaenKzIy0rY8IyNDhmFo165d8vLyOuf9PwCgvqABAgAAAJhYSUmJtm7dqm7dutmWxcbGauvWrRo/fry2bdum2NhYSVLXrl3VqFEjjR8/XvPnz9eoUaMcVTYA1DgugQEAAABMzNPTU4sXL7Zb5uvrq6lTp1Za12Kx0PQAYFrMAAEAAAAAAKZHAwQAAAAAAJgeDRAAAAAAAGB63AMEOA/Tp7uquNi31o/z2GNHav0YAGAm5DMA1D9kN+oaM0AAAAAAAIDp0QABAAAAAACmRwMEAAAAAACYHg0QAAAAAABgejRAAAAAAACA6fEtMACAatu/f7+SkpJsj3Nzc3XXXXcpKipKSUlJysvLU0hIiB599FH5+PjIMAylpKQoKytLHh4eio+PV3h4uANHAAAAgEsVM0AAANUWFhamWbNmadasWXr++efl7u6ua6+9VqmpqerYsaOSk5PVsWNHpaamSpKysrKUk5Oj5ORkjR49WgsXLnTwCAAAAHCpogECALgg27ZtU+PGjRUSEqLMzExFRUVJkqKiopSZmSlJ2rhxo/r06SOLxaK2bdvq2LFjKiwsdGTZAAAAuEQ55SUwTLEGAOf37bffqmfPnpKkoqIiBQYGSpICAgJUVFQkSSooKFBwcLBtm6CgIBUUFNjWBQAAAOqKUzZAKqZYS1J5ebkefPBBuynWsbGxSk1NVWpqquLi4uymWGdnZ2vhwoWaOXOmg0cBAOZVWlqqTZs2aciQIZWes1gsslgs57W/tLQ0paWlSZISExPtmibOxM3NzWlruxBmGo+Li4u8vLxq/TjBwR61fgzJXOdGMt94AAD1k1M2QE731ynWCQkJkk5NsU5ISFBcXNxZp1jzCSMA1I6srCy1bNlSAQEBkiR/f39b7hYWFsrPz0+SZLValZ+fb9vu0KFDslqtlfYXExOjmJgY2+PTt3EmwcHBTlvbhTDTeMrLQ1VcXFzrx8nPP1Lrx5DMdW4k5x5PWFiYo0sAANQRp78HyMVMsQYA1I7Ts1mSIiIilJ6eLklKT09XZGSkbXlGRoYMw9CuXbvk5eVFcxoAAAAO4dQzQJhiXf+ZaSwSU6ydndnG46xKSkq0detWjR492rYsNjZWSUlJWrNmje0eTZLUtWtXbd68WePHj5e7u7vi4+MdVTYAAAAucU7dAGGKdf1nprFITLF2ds48HjNNsfb09NTixYvtlvn6+mrq1KmV1rVYLBo1alRdlQYAAACclVNfAsMUawAAAAAAUBOctgFSMcW6W7dutmWxsbHaunWrxo8fr23btik2NlbSqSnWjRo10vjx4zV//nw+bQQAAAAAAHac9hIYplgDAAAAAICa4rQzQAAAAAAAAGoKDRAAAAAAAGB6NEAAAAAAAIDpOe09QAAAAABcvGPHjun111/X3r17ZbFY9NBDDyksLExJSUnKy8tTSEiIHn30Ufn4+MgwDKWkpCgrK0seHh6Kj49XeHi4o4cAADWCGSAAAACAiaWkpKhLly6aM2eOZs2apSZNmig1NVUdO3ZUcnKyOnbsqNTUVElSVlaWcnJylJycrNGjR2vhwoUOrh4Aag4NEAAAAMCkiouLtWPHDl1//fWSJDc3N3l7eyszM1NRUVGSpKioKGVmZkqSNm7cqD59+shisaht27Y6duyYCgsLHVY/ANQkLoEBAAAATCo3N1d+fn6aN2+e9uzZo/DwcA0fPlxFRUUKDAyUJAUEBKioqEiSVFBQoODgYNv2QUFBKigosK0LAPUZDRAAAADApMrKyvTbb79p5MiRatOmjVJSUmyXu1SwWCyyWCzntd+0tDSlpaVJkhITE+2aJs7Ezc3NaWu7EGYbj4uLi7y8vGr9OMHBHrV+DMlc58dMYzkdDRAAAADApIKCghQUFKQ2bdpIkrp3767U1FT5+/ursLBQgYGBKiwslJ+fnyTJarUqPz/ftv2hQ4dktVor7TcmJkYxMTG2x6dv40yCg4OdtrYLYbbxlJeHqri4uNaPk59/pNaPIZnr/DjzWMLCwi54W+4BAgAAAJhUQECAgoKCtH//fknStm3b1LRpU0VERCg9PV2SlJ6ersjISElSRESEMjIyZBiGdu3aJS8vLy5/AWAazAABAAAATGzkyJFKTk5WaWmpGjVqpPj4eBmGoaSkJK1Zs8b2NbiS1LVrV23evFnjx4+Xu7u74uPjHVw9ANQcGiAAAACAibVo0UKJiYmVlk+dOrXSMovFolGjRtVFWQBQ57gEBgAAAAAAmB4NEAAAAAAAYHo0QAAAAAAAgOnRAAEAAAAAAKZHAwQAAAAAAJgeDRAAAAAAAGB6fA0uAOC8HDt2TK+//rr27t0ri8Wihx56SGFhYUpKSlJeXp5CQkL06KOPysfHR4ZhKCUlRVlZWfLw8FB8fLzCw8MdPQQAAABcgpgBAgA4LykpKerSpYvmzJmjWbNmqUmTJkpNTVXHjh2VnJysjh07KjU1VZKUlZWlnJwcJScna/To0Vq4cKGDqwcAAMCligYIAKDaiouLtWPHDl1//fWSJDc3N3l7eyszM1NRUVGSpKioKGVmZkqSNm7cqD59+shisaht27Y6duyYCgsLHVY/AAAALl1OewkMU6wBwPnk5ubKz89P8+bN0549exQeHq7hw4erqKhIgYGBkqSAgAAVFRVJkgoKChQcHGzbPigoSAUFBbZ1AQAAgLritA2QiinWjz32mEpLS/Xnn39q1apV6tixo2JjY5WamqrU1FTFxcXZTbHOzs7WwoULNXPmTEcPAQBMp6ysTL/99ptGjhypNm3aKCUlxXa5SwWLxSKLxXJe+01LS1NaWpokKTEx0a5p4kzc3NyctrYLYabxuLi4yMvLq9aPExzsUevHkMx1biTzjQcAUD85ZQOkYor12LFjJZ36penm5qbMzEwlJCRIOjXFOiEhQXFxcWedYs0njABQs4KCghQUFKQ2bdpIkrp3767U1FT5+/vbcrewsFB+fn6SJKvVqvz8fNv2hw4dktVqrbTfmJgYxcTE2B6fvo0zCQ4OdtraLoSZxlNeHqri4uJaP05+/pFaP4ZkrnMjOfd4wsLCHF0CAKCOOGUDpLamWPMJY90z01gkPmF0dmYbjzMKCAhQUFCQ9u/fr7CwMG3btk1NmzZV06ZNlZ6ertjYWKWnpysyMlKSFBERodWrV6tnz57Kzs6Wl5cXzWkAAAA4hFM2QGprijWfMNY9M41F4hNGZ+fM4zHTJ4wjR45UcnKySktL1ahRI8XHx8swDCUlJWnNmjW2ezRJUteuXbV582aNHz9e7u7uio+Pd3D1AAAAuFQ5ZQOktqZYAwAuXosWLZSYmFhp+dSpUysts1gsGjVqVF2UBQAAAFTJKb8G9/Qp1pJsU6wjIiKUnp4uSZWmWGdkZMgwDO3atYsp1gAAAAAAwI5TzgCRmGINAAAAAABqjtM2QJhiDQAAAAAAaopTXgIDAAAAAABQk2iAAAAAAAAA06MBAgAAAAAATI8GCAAAAAAAMD0aIAAAAAAAwPSc9ltgAAAAAFy8sWPHytPTUy4uLnJ1dVViYqKOHj2qpKQk5eXlKSQkRI8++qh8fHxkGIZSUlKUlZUlDw8PxcfHKzw83NFDAIAaQQMEAAAAMLlp06bJz8/P9jg1NVUdO3ZUbGysUlNTlZqaqri4OGVlZSknJ0fJycnKzs7WwoULNXPmTAdWDgA1h0tgAAAAgEtMZmamoqKiJElRUVHKzMyUJG3cuFF9+vSRxWJR27ZtdezYMRUWFjqyVACoMcwAAQAAAExuxowZkqQbbrhBMTExKioqUmBgoCQpICBARUVFkqSCggIFBwfbtgsKClJBQYFtXQCoz2iAAAAAACY2ffp0Wa1WFRUV6bnnnlNYWJjd8xaLRRaL5bz2mZaWprS0NElSYmKiXdPEmbi5uTltbRfCbONxcXGRl5dXrR8nONij1o8hmev8mGksp6MBAgAAAJiY1WqVJPn7+ysyMlK7d++Wv7+/CgsLFRgYqMLCQtv9QaxWq/Lz823bHjp0yLb96WJiYhQTE2N7fPo2ziQ4ONhpa7sQZhtPeXmoiouLa/04+flHav0YkrnOjzOP5a9N3PPBPUAAAAAAkyopKdHx48dt/71161Y1b95cERERSk9PlySlp6crMjJSkhQREaGMjAwZhqFdu3bJy8uLy18AmAYzQAAAAACTKioq0osvvihJKisrU69evdSlSxe1atVKSUlJWrNmje1rcCWpa9eu2rx5s8aPHy93d3fFx8c7snwAqFE0QAAAAACTCg0N1axZsyot9/X11dSpUystt1gsGjVqVF2UBgB1jktgAAAAAACA6dEAAQAAAAAApkcDBAAAAAAAmB4NEAAAAAAAYHrcBBUAcF7Gjh0rT09Pubi4yNXVVYmJiTp69KiSkpKUl5dn+zYBHx8fGYahlJQUZWVlycPDQ/Hx8QoPD3f0EAAAAHAJogECADhv06ZNk5+fn+1xamqqOnbsqNjYWKWmpio1NVVxcXHKyspSTk6OkpOTlZ2drYULF2rmzJkOrBwAAACXKqdtgPAJIwDUH5mZmUpISJAkRUVFKSEhQXFxcdq4caP69Okji8Witm3b6tixYyosLFRgYKBjCwYAAMAlx2kbIBKfMAKAs5oxY4Yk6YYbblBMTIyKiopsTY2AgAAVFRVJkgoKChQcHGzbLigoSAUFBTRAAAAAUOecugHyV3zCCACON336dFmtVhUVFem5555TWFiY3fMWi0UWi+W89pmWlqa0tDRJUmJiol3TxJm4ubk5bW0XwkzjcXFxkZeXV60fJzjYo9aPIZnr3EjmGw8AoH5y6gYInzACgPOxWq2SJH9/f0VGRmr37t3y9/e3NZ4LCwtts/esVqvy8/Nt2x46dMi2/eliYmIUExNje3z6Ns4kODjYaWu7EGYaT3l5qIqLi2v9OPn5R2r9GJK5zo3k3OP5axMXAGBeTtsA4RNG56ztfJlpLBKfMDo7s43HGZWUlMgwDDVs2FAlJSXaunWr7rjjDkVERCg9PV2xsbFKT09XZGSkJCkiIkKrV69Wz549lZ2dLS8vL5rTAAAAcAinbYDwCaNz1na+zDQWiU8YnZ0zj8csnzAWFRXpxRdflCSVlZWpV69e6tKli1q1aqWkpCStWbPGdpNqSeratas2b96s8ePHy93dXfHx8Y4sHwAAAJcwp2yA8AkjADin0NBQzZo1q9JyX19fTZ06tdJyi8WiUaNG1UVpAAAAQJWcsgHCJ4wAAAAAAKAmOWUDhE8YAQAAAABATXKprR1nZmaqrKystnYPALhA5DMA1D9kNwBcvFprgKxYsUKjR4/WokWLlJ2dXVuHAQCcJ/IZAOofshsALl6tXQIza9Ys/f7771q3bp1mz54tDw8P9enTR71791ajRo1q67AAgHMgnwGg/iG7AeDi1eo9QFq0aKEWLVooLi5O27Zt05tvvqkVK1aoffv2iomJUc+ePeXiUmuTUAAAZ0E+A0D9Q3YDwMWp9Zug5uTkaN26dVq3bp0sFovuvvtuBQcHa/Xq1fr+++/1+OOP13YJAIAzIJ8BoP4huwHgwtVaA2T16tVat26dDhw4oB49emjcuHFq27at7flu3brxzS0A4ADkMwDUP2Q3AFy8WmuAbNmyRQMHDlRERIQaNGhQ6XkPDw861ADgAOQzANQ/ZDcAXLxaa4BMmDBBLi4ucnP73yFKS0tlGIYttDt37lxbhwcAnAX5DAD1D9kNABev1u6SNGPGDP366692y3799VfNmDGjtg4JAKgG8hkA6h+yGwAuXq3NANmzZ4/atGljt6x169bas2dPbR0SAFAN5DMA1D8Xm93l5eWaNGmSrFarJk2apNzcXM2ZM0dHjhxReHi4Hn74Ybm5uenkyZN65ZVX9Ouvv8rX11ePPPIIX7MLwDRqbQaIt7e3ioqK7JYVFRXJw8Ojtg4JAKgG8hkA6p+Lze5///vfatKkie3x8uXLNWDAAM2dO1fe3t5as2aNJGnNmjXy9vbW3LlzNWDAAL311ls1NwgAcLBaa4B069ZNL7/8sv744w/9+eef+uOPP/TKK6/ouuuuq61DAgCqgXwGgPrnYrL70KFD2rx5s/r16ydJMgxD27dvV/fu3SVJ0dHRyszMlCRt3LhR0dHRkqTu3bvrp59+kmEYtTMoAKhjtXYJzD333KNly5ZpypQpOnnypNzd3RUdHa3BgwfX1iEBANVAPgNA/XMx2b1kyRLFxcXp+PHjkqQjR47Iy8tLrq6ukiSr1aqCggJJUkFBgYKCgiRJrq6u8vLy0pEjR+Tn51dLIwOAulNrDRB3d3eNGjVK999/v44cOSJfX19ZLJbaOhwAoJrIZwCofy40uzdt2iR/f3+Fh4dr+/btNVZPWlqa0tLSJEmJiYkKDg6usX3XJDc3N6et7UKYbTwuLi7y8vKq9eMEB9fNZb5mOj9mGsvpaq0BIknFxcXav3+/SkpK7JZfddVVtXlYAMA5kM8AUP9cSHb/8ssv2rhxo7KysvT/2bvv6Cjq/f/jr82G9EIaoQuhKOZShCBIkQC5gGAJiF5B1NgQUQKiCBcLfAU1FooUpTdBUVRQ0Z9eOlcQpIqAoQiifAUhhB5q9vP7g5P9sgRCSLLZzfB8nMM57o7rSDIAACAASURBVOyUz2dn89rxPTOfOXv2rE6dOqVp06YpKytL2dnZstvtyszMVGRkpKQLV4McOnRIUVFRys7OVlZWlkJDQ3OtNykpSUlJSc7XGRkZRdTLohUdHe21bSsIq/XH4YhVVlaW27eTkXHc7duQrLV/vLkv5cuXL/CybiuALF26VJMnT1ZAQID8/Pyc0202m8aMGeOuzQIAroJ8BoCSp6DZ3bVrV3Xt2lWStGXLFn399ddKTU3V8OHDtWrVKjVt2lRLly5VQkKCJKlBgwZaunSpatasqVWrVik+Pp6rBAFYhtsKIB9//LH69u2rW265xV2bAAAUAPkMACVPUWf3gw8+qJEjR2r27NmqWrWqWrVqJUlq1aqVxowZo169eikkJER9+vQpku0BgDdwWwHE4XCobt267lo9AKCAyGcAKHmKIrvj4+MVHx8vSYqNjdWbb76Zax4/Pz/17du3UNsBAG/ltsfg3nPPPfr888/lcDjctQkAQAGQzwBQ8pDdAFB4brsC5JtvvtGRI0f01VdfKSQkxOW9Dz74wF2bBQBcRVHks8Ph0IABAxQZGakBAwbowIEDGjlypI4fP664uDj16tVLvr6+OnfunMaMGaNdu3YpNDRUffr0UZkyZdzRLQCwNI6tAaDw3FYA6dWrl7tWDQAohKLI52+//VYVKlTQqVOnJEkzZ85Uhw4d1LRpU02YMEGLFy9WmzZttHjxYgUHB2v06NFasWKFZs2apeeee67Q2weA6w3H1gBQeG4rgNx8882FWp6ziwDgHoXN50OHDmn9+vXq1KmT5s+fL2OMtmzZot69e0uSEhMTNWfOHLVp00Zr167VfffdJ0lq3LixpkyZImMMTxQAgGtU2OwGALhxDJBz587p448/1rPPPqtHHnlEkvTzzz/ru+++y9fyOWcXc+ScXRw9erSCg4O1ePFiSXI5u9ihQwfNmjWr6DsDABZS2HyeNm2aunXr5ixiHD9+XEFBQbLb7ZKkyMhIZWZmSpIyMzMVFRUlSbLb7QoKCtLx48eLuksAYHmFzW4AgBuvAJk+fboyMzOVmpqqN954Q5JUqVIlTZ8+Xe3atctzWc4uAoD7FCaf161bp/DwcMXFxWnLli1F1qaFCxdq4cKFkqS0tDRFR0cX2bqLkq+vr9e2rSCs1B8fHx8FBQW5fTvR0f5u34ZkrX0jWa8/nlCY7AYAXOC2AshPP/2kUaNGKSAgwFmMuPisYF5yzi7m3FtekLOLYWFh7ugWAJR4hcnnbdu2ae3atdqwYYPOnj2rU6dOadq0acrKylJ2drbsdrsyMzMVGRnpXO+hQ4cUFRWl7OxsZWVlKTQ0NNd6k5KSlJSU5HydkZFRRL0tWtHR0V7btoKwUn8cjlhlZWW5fTsZGcVzBZOV9o3k3f0pX768p5uQL4XJbgDABW4rgPj6+uZ6TNexY8cue+B7MXedXZQ4w+gJVuqLxBlGb2e1/rhLQfNZkrp27aquXbtKkrZs2aKvv/5aqampGj58uFatWqWmTZtq6dKlSkhIkCQ1aNBAS5cuVc2aNbVq1SrFx8dzhR4AFEBhshsAcIHbCiCNGzfWmDFjlJKSIkk6fPiwpk2bpiZNmuS5nLvOLkqcYfQEK/VF4gyjt/Pm/njTGcaC5nNeHnzwQY0cOVKzZ89W1apV1apVK0lSq1atNGbMGPXq1UshISHq06dPUXQBAK477shuALjeuK0A0rVrV82cOVPPP/+8zp49q9TUVLVu3do5Xkdey3F2EQDcp6D5fKn4+HjFx8dLkmJjY/Xmm2/mmsfPz099+/YtknYDwPWsqLIbAK5nbr0FJiUlRSkpKc7L8wpTmODsIgAUjaLOZwCA+5HdAFB4biuA/P333y6vcwY0lS6cKcwPzi4CQNErinwGABQvshsACs9tBZDU1NQrvvfJJ5+4a7MAgKsgnwGg5CG7AaDw3FYAuTSIjxw5ojlz5qhWrVru2iQAIB/IZwAoechuACg8n+LaUOnSpZWSkqKPPvqouDYJAMgH8hkASh6yGwCuXbEVQCTpr7/+0pkzZ4pzkwCAfCCfAaDkIbsB4Nq47RaYV1991WVk6jNnzujPP/9U586d3bVJAEA+kM8AUPKQ3QBQeG4rgOQ8pjZHQECAbrjhBpUrV85dmwQA5AP5DAAlD9kNAIXntgJIYmKiu1YNACgE8hkASh6yGwAKr9ieAnMl//rXv9zVBADAZZDPAFDykN0AUHhuK4Ds27dPq1evVvXq1RUdHa2MjAzt3LlTjRo1kp+fn7s2CwC4CvIZAEoeshsACs9tBRBJ6t27txo3bux8vXr1av3444/q2bOnOzcLALgK8hkASh6yGwAKx22Pwd2wYYNuvfVWl2kJCQnasGGDuzYJAMgH8hkASh6yGwAKz20FkLJly+q7775zmfaf//xHZcuWddcmAQD5QD4DQMlDdgNA4bntFpgePXro3Xff1VdffaXIyEhlZmbKbrfr+eefd9cmAQD5QD4DQMlT0Ow+e/asBg0apPPnzys7O1uNGzfW/fffrwMHDmjkyJE6fvy44uLi1KtXL/n6+urcuXMaM2aMdu3apdDQUPXp00dlypQppl4CgHu5rQBStWpVvffee9qxY4cOHz6s0qVLq2bNmvL1deuwIwCAqyCfAaDkKWh2lypVSoMGDVJAQIDOnz+vV199VfXq1dP8+fPVoUMHNW3aVBMmTNDixYvVpk0bLV68WMHBwRo9erRWrFihWbNm6bnnniumXgKAe7ntFphL3XzzzTp//rxOnz5dXJsEAOQD+QwAJU9+s9tmsykgIECSlJ2drezsbNlsNm3ZssU5oGpiYqLWrFkjSVq7dq0SExMlSY0bN9bmzZtljHFfRwCgGLntdN8ff/yht956S6VKldKhQ4fUpEkTbd26VcuWLaOKDAAeRD4DQMlTmOx2OBzq37+/9u/fr7Zt2yo2NlZBQUGy2+2S5LylRpIyMzMVFRUlSbLb7QoKCtLx48cVFhbmss6FCxdq4cKFkqS0tDRFR0cXdZeLhK+vr9e2rSCs1h8fHx8FBQW5fTvR0f5u34Zkrf1jpb5czG0FkIkTJ+pf//qXbr/9dj366KOSLlSqx48f765NAgDygXwGgJKnMNnt4+Ojd955RydPntS7776rv/76q9DtSUpKUlJSkvN1RkZGodfpDtHR0V7btoKwWn8cjlhlZWW5fTsZGcfdvg3JWvvHm/tSvnz5Ai/rtltg9u7dq+bNm7tMCwgI0NmzZ921SQBAPpDPAFDyFEV2BwcHKz4+Xtu3b1dWVpays7MlXbjqIzIyUtKFq0EOHTok6cItM1lZWQoNDS2iXgCAZ7mtABITE6Ndu3a5TNu5cyeP6gIADyOfAaDkKWh2Hzt2TCdPnpR04YkwmzZtUoUKFRQfH69Vq1ZJkpYuXaqEhARJUoMGDbR06VJJ0qpVqxQfHy+bzVbEvQEAz3DbLTD/+te/lJaWpn/+8586f/685s6dqwULFuipp55y1yYBAPlQmHzmcYoA4BkFze7Dhw9r7NixcjgcMsbotttuU4MGDVSxYkWNHDlSs2fPVtWqVdWqVStJUqtWrTRmzBj16tVLISEh6tOnT3F0DwCKhc24cVjn3bt3a9GiRTp48KCioqKUlJSkuLg4d23umhXF/Y/u4M33W10rK/VFkj74oHjuU3z+ee5TLAhv7k9h7lV0h4LmszFGZ86ccXmcYkpKiubPn69GjRo5H6dYpUoVtWnTRt9//7327Nmj7t27a8WKFfrpp5/yNdAq+Vw8rNQf8tm7eXN/vC2f8+LNx9bkdvGwWn/Ibu/lzX0pTG675QoQh8Oh3r17a/jw4XriiSeueXnOMAKAexQ2n/N6nGLv3r0lXXic4pw5c9SmTRutXbtW9913n6QLj1OcMmWKjDFcTg0A16Cw2Q0AuMAtY4D4+PjIx8dH586dK9DypUqV0qBBg/TOO+/o7bff1saNG7V9+3bNnDlTHTp00OjRoxUcHKzFixdLkhYvXqzg4GCNHj1aHTp00KxZs4qyOwBgGYXNZ+nCgXi/fv30xBNPqHbt2gV6nCIAIP+KIrsBAG4cA6R9+/YaMWKEOnbsqMjISJezfbGxsXkuyxlGAHCfwuSz5J7HKS5cuFALFy6UJKWlpXntc+d9fX29tm0FYaX++Pj4KCgoyO3biY72d/s2JGvtG8l6/fGEwmY3AMANBZAjR46odOnSmjJliiRp06ZNueb55JNPrroeh8Oh/v37a//+/Wrbtm2BzjCGhYW5rJMD7OJnpb5IHGB7O6v1p6gVVT7nuNzjFO12+2UfpxgVFZXn4xSTkpKUlJTkfO2t95x68/2wBWGl/jgcxXMfeUYG95EXhDf3x9vHACnq7AaA61mRF0B69+6t6dOnO4P4nXfeUb9+/a55Pe44w8gBdvGzUl8kDrC9nTf3xxsOsIsin48dOya73a7g4GDn4xTvuece5+MUmzZtetnHKdasWZPHKQJAARTVsTUAwA0FkEsfKrN169ZCra8ozzACwPWsKPKZxykCQPEq6mNrALieFXkBpCjO7HGGEQCKXlHk4g033KC333471/TY2Fi9+eabuab7+fmpb9++hd4uAFyvOKYFgKJT5AWQ7Oxsbd682fna4XC4vJakf/zjH3mugzOMAFD0iiKfAQDFi+wGgKJT5AWQ8PBwffDBB87XISEhLq9tNpvGjBmT5zo4wwgARa8o8hkAULzIbgAoOkVeABk7dmxRrxIAUATIZwAoechuACg6Pp5uAAAAAAAAgLtRAAEAAAAAAJZHAQQAAAAAAFgeBRAAAAAAAGB5FEAAAAAAAIDlUQABAAAAAACWRwEEAAAAAABYHgUQAAAAAABgeRRAAAAAAACA5VEAAQAAAAAAlkcBBAAAAAAAWB4FEAAAAAAAYHkUQAAAAAAAgOX5eroBAAAAANwjIyNDY8eO1ZEjR2Sz2ZSUlKT27dvrxIkTGjFihA4ePKiYmBg999xzCgkJkTFGU6dO1YYNG+Tv76+ePXsqLi7O090AgCLBFSAAAACARdntdj300EMaMWKEXn/9dX3//ffau3ev5s2bp9q1a2vUqFGqXbu25s2bJ0nasGGD9u/fr1GjRql79+6aNGmSh3sAAEWHAggAAABgUREREc4rOAIDA1WhQgVlZmZqzZo1atGihSSpRYsWWrNmjSRp7dq1uv3222Wz2VSzZk2dPHlShw8f9lj7AaAoUQABAAAArgMHDhzQ7t27Vb16dR09elQRERGSpNKlS+vo0aOSpMzMTEVHRzuXiYqKUmZmpkfaCwBFjTFAAAAAAIs7ffq0hg0bppSUFAUFBbm8Z7PZZLPZrml9Cxcu1MKFCyVJaWlpLkUTb+Lr6+u1bSsIq/XHx8cn1/fRHaKj/d2+Dcla+8dKfbkYBRAAQL4xmB4AlDznz5/XsGHD1Lx5czVq1EiSFB4ersOHDysiIkKHDx9WWFiYJCkyMlIZGRnOZQ8dOqTIyMhc60xKSlJSUpLz9cXLeJPo6GivbVtBWK0/DkessrKy3L6djIzjbt+GZK394819KV++fIGX9coCCAfYAOCdcgbTi4uL06lTpzRgwADVqVNHS5cuVe3atZWcnKx58+Zp3rx56tatm8tgejt27NCkSZP0xhtveLobAHDdMMZo3LhxqlChgu68807n9ISEBC1btkzJyclatmyZGjZs6Jz+3XffqWnTptqxY4eCgoKct8oAQEnnlWOAMFo1AHgnBtMDgJJl27ZtWr58uTZv3qx+/fqpX79+Wr9+vZKTk7Vp0yalpqbql19+UXJysiTplltuUZkyZZSamqrx48friSee8HAPAKDoeOUVIBEREc5K86UH2IMHD5Z04QB78ODB6tat2xUPsKlWA4D7FGYwPfIZAIrHTTfdpE8//fSy77366qu5ptlsNooeACzLKwsgF+MAGwC8D4PpWYOV+sNAet7Nav0BAJRMXl0A4QC75LNSXyQOsL2d1frjrRhMzzvbVhBW6g8D6Xk3b+5PYQbTAwCULF5bAOEA2zvbdq2s1BeJA2xv5839scoBNoPpAQAAoKTyykFQr3aALSnXAfby5ctljNH27ds5wAYAN2EwPQAAAJRUXnkFSM4BduXKldWvXz9JUpcuXZScnKwRI0Zo8eLFzsfgShcOsNevX6/U1FT5+fmpZ8+enmw+AFgWg+kBAACgpPLKAggH2AAAAAAAoCh55S0wAAAAAAAARYkCCAAAAAAAsDwKIAAAAAAAwPIogAAAAAAAAMujAAIAAAAAACyPAggAAAAAALA8CiAAAAAAAMDyKIAAAAAAAADLowACAAAAAAAsjwIIAAAAAACwPAogAAAAAADA8iiAAAAAAAAAy6MAAgAAAAAALI8CCAAAAAAAsDwKIAAAAAAAwPIogAAAAAAAAMujAAIAAAAAACyPAggAAAAAALA8X083AAAAAID7vP/++1q/fr3Cw8M1bNgwSdKJEyc0YsQIHTx4UDExMXruuecUEhIiY4ymTp2qDRs2yN/fXz179lRcXJyHewAARYMrQAAAAAALS0xM1MCBA12mzZs3T7Vr19aoUaNUu3ZtzZs3T5K0YcMG7d+/X6NGjVL37t01adIkTzQZANyCAggAIN/ef/99PfHEE3r++eed006cOKEhQ4YoNTVVQ4YM0YkTJyRJxhhNmTJFvXr10gsvvKBdu3Z5qtkAcF27+eabFRIS4jJtzZo1atGihSSpRYsWWrNmjSRp7dq1uv3222Wz2VSzZk2dPHlShw8fLvY2A4A7eOUtMFymBwDeKTExUe3atdPYsWOd03LOIiYnJ2vevHmaN2+eunXr5nIWcceOHZo0aZLeeOMND7YeAJDj6NGjioiIkCSVLl1aR48elSRlZmYqOjraOV9UVJQyMzOd8+ZYuHChFi5cKElKS0tzWcab+Pr6em3bCsJq/fHx8VFQUJDbtxMd7e/2bUjW2j9W6svFvLIAwgE2AHinm2++WQcOHHCZtmbNGg0ePFjShbOIgwcPVrdu3a54FvHSg2gAgGfZbDbZbLZrWiYpKUlJSUnO1xkZGUXdrCIRHR3ttW0rCKv1x+GIVVZWltu3k5Fx3O3bkKy1f7y5L+XLly/wsl55CwyX6QFAyXGtZxEBAJ4XHh7uPGY+fPiwwsLCJEmRkZEu/9Nz6NAhRUZGeqSNAFDUvPIKkMsp7GV6EpfqeYKV+iJxmZ63s1p/SqKCnEWUyGdPsVJ/yGfvZrX+WEFCQoKWLVum5ORkLVu2TA0bNnRO/+6779S0aVPt2LFDQUFBXLkHwDJKTAHkYgU9wOZSveJnpb5IXKbn7by5P4W5VM/b5ZxFjIiIKPBZRPLZM6zUH/LZu3lzf6yczzlGjhyprVu36vjx4+rRo4fuv/9+JScna8SIEVq8eLFzfD1JuuWWW7R+/XqlpqbKz89PPXv29HDrAaDolJgCSFEcYAMAih5nEQHAu/Xp0+ey01999dVc02w2m5544gl3NwkAPMIrxwC5nJwDbEm5DrCXL18uY4y2b9/OATYAuNHIkSP18ssv66+//lKPHj20ePFiJScna9OmTUpNTdUvv/yi5ORkSRfOIpYpU0apqakaP348B9QAAADwKK+8AoTL9ADAO3EWEQAAACWVVxZAOMAGAAAAAABFqcTcAgMAAAAAAFBQFEAAAAAAAIDlUQABAAAAAACWRwEEAAAAAABYHgUQAAAAAABgeRRAAAAAAACA5VEAAQAAAAAAlkcBBAAAAAAAWJ6vpxsAAAAAAIC7DBsWWizbefPNYtkMCoErQAAAAAAAgOVRAAEAAAAAAJZHAQQAAAAAAFgeBRAAAAAAAGB5FEAAAAAAAIDlUQABAAAAAACWx2NwAQCAWxXH4weDgty+CQC4bhTXY2PJbhQ3rgABAAAAAACWRwEEAAAAAABYHrfAwBKsdplecfXnzTeLZTMAYBnkMwAAJRdXgAAAAAAAAMuzzBUgGzdu1NSpU+VwONS6dWslJyd7ukkAAJHPAFASkd0ArMgSV4A4HA5NnjxZAwcO1IgRI7RixQrt3bvX080CgOse+QwAJQ/ZDcCqLHEFyM6dO1W2bFnFxsZKkpo0aaI1a9aoYsWKHm4ZAFzfyGcAKHnIbu81ZIhdWVnFMxYRrp2V9o9Vx6KyRAEkMzNTUVFRztdRUVHasWOHB1sEAJDIZwAoiayU3Vb6H1Kp+AbkB6zKEgWQ/Fq4cKEWLlwoSUpLS1P58uU93KIr8+a2Xavi6MuwYW7fxEWs8yMqWeu7JlmvP9cL8tlzrJXR5LM3s1p/rnclJbeHDJGslg30x9tZpz/e+nddGJYYAyQyMlKHDh1yvj506JAiIyNzzZeUlKS0tDSlpaUVZ/Ou2YABAzzdhCJjpb5I9MfbWa0/VkA+ezcr9cdKfZHoDzwrP9lNbnsG/fFuVuqPlfpyMUsUQKpVq6Z9+/bpwIEDOn/+vFauXKmEhARPNwsArnvkMwCUPGQ3AKuyxC0wdrtdjz32mF5//XU5HA61bNlSlSpV8nSzAOC6Rz4DQMlDdgOwKvvgwYMHe7oRRaFcuXK644471L59e9WqVcvTzSm0uLg4TzehyFipLxL98XZW648VkM/ezUr9sVJfJPoDz7JSdlvtu0d/vJuV+mOlvuSwGWOMpxsBAAAAAADgTpYYAwQAAAAAACAvlhgDxKq+/vprffjhh5o0aZLCwsI83ZwC+/DDD7Vu3Tr5+voqNjZWPXv2VHBwsKebdc02btyoqVOnyuFwqHXr1kpOTvZ0kwokIyNDY8eO1ZEjR2Sz2ZSUlKT27dt7ulmF5nA4NGDAAEVGRlp21Gp4FytkNPnsfayY0eQzvIUVcluyRnaT297PqtlNAcRLZWRkaNOmTYqOjvZ0UwqtTp066tq1q+x2u2bOnKm5c+eqW7dunm7WNXE4HJo8ebJefvllRUVF6d///rcSEhJUsWJFTzftmtntdj300EOKi4vTqVOnNGDAANWpU6dE9uVi3377rSpUqKBTp055uim4Dlglo8ln72PFjCaf4Q2skttSyc9ucrtksGp2cwuMl5o+fboefPBB2Ww2Tzel0OrWrSu73S5JqlmzpjIzMz3comu3c+dOlS1bVrGxsfL19VWTJk20Zs0aTzerQCIiIpwDGgUGBqpChQolcp9c7NChQ1q/fr1at27t6abgOmGVjCafvY/VMpp8hrewSm5LJT+7yW3vZ+XspgDihdasWaPIyEhVqVLF000pcosXL1a9evU83YxrlpmZqaioKOfrqKioEh9sknTgwAHt3r1b1atX93RTCmXatGnq1q2bJQ5q4P2smtHks/exQkaTz/AGVs1tqWRmN7nt/ayc3dwC4yFDhgzRkSNHck1/4IEHNHfuXL388sseaFXB5dWfhg0bSpK++OIL2e12NW/evLibh8s4ffq0hg0bppSUFAUFBXm6OQW2bt06hYeHKy4uTlu2bPF0c2ARVspo8rlkskJGk88oTlbKbYnsLomskNuS9bObx+B6mT/++EOvvfaa/P39JV24/CgiIkJvvvmmSpcu7eHWFdzSpUu1YMECvfrqq86+lSTbt2/XnDlz9NJLL0mS5s6dK0nq2LGjJ5tVYOfPn9dbb72lunXr6s477/R0cwrlo48+0vLly2W323X27FmdOnVKt956q1JTUz3dNFiQFTOafPY+Vslo8hnewIq5LZXs7Ca3vZvls9vAq/Xs2dMcPXrU080olA0bNpg+ffqU6H6cP3/ePPPMM+bvv/82586dMy+88IL5448/PN2sAnE4HGb06NFm6tSpnm5Kkdu8ebN58803Pd0MXEdKekaTz97HqhlNPsNblPTcNqbkZze5XXJYMbu5BQZuN3nyZJ0/f15DhgyRJNWoUUPdu3f3cKuujd1u12OPPabXX39dDodDLVu2VKVKlTzdrALZtm2bli9frsqVK6tfv36SpC5duqh+/foebhmA4kY+ex8yGsDVlPTsJrfhSdwCAwAAAAAALI+nwAAAAAAAAMujAAIAAAAAACyPAggAAAAAALA8CiAAAAAAAMDyKIAAAAAAAADLowACTZgwQZ999pnz9X/+8x89+eSTeuihh3T8+HGlp6crNTVVDz30kH766ScPttT6Bg8erEWLFnm6GUVuy5Yt6tGjh6ebAZQ45LP3IJ8B5Ae57T3IbVyOr6cbAPd65plndOTIEdntdvn4+KhixYq6/fbblZSUJB+fC/Wvi58bfv78eU2fPl2vv/66qlSpIkn69NNP1a5dO7Vv394TXSgxPv30U+3fv1+pqameborXe+aZZ/TUU0+pTp06nm4K4DHkc/Ehn/OPfAaujNwuPuR2/pHb14YCyHWgf//+qlOnjrKysrR161ZNnTpVO3fuVM+ePXPNe/ToUZ07d06VKlVyTjt48KAqVqxYoG1nZ2fLbrcXuO1WYoyRMcb5A+mN2F9A8SKfvQP5DCC/yG3vQG6joCiAXEeCgoKUkJCg0qVL66WXXtKdd96pypUra+zYsYqKitLtt9+u/v37S5JSUlJUvXp1ZWRk6MCBA3rrrbfk4+OjKVOm6Ny5c5o+fbo2bNggm82mli1b6v7775ePj4+WLl2qRYsWqVq1alq+fLnatGmje++9Vx9//LF+/PFHnT9/Xg0bNlRKSor8/Py0ZcsWjR49Wh06dNCXX34pHx8fdenSRS1btpQknT17VrNnz9aqVat08uRJVa5cWa+88or8/Py0fft2zZgxQ3v37lVMTIxSUlIUHx+fr88iIyND06ZN06+//ipjjJo2barHH39cDodDc+fO1aJFi3T27FnVq1dPjz32mIKCgnTgwAE9++yz6tmzpz755BOdPXtWHTp0UKdOnbRx40bNnTtXkrRmzRqVLVtW77zzjgYPHqwbb7xRW7du1a5duzRs2DAdPXpU06ZN019//aXy5csrJSVFN954Y57tzczMVK9evTR+/HiFhIRIknbv3q2hqoFYYwAAIABJREFUQ4dq/PjxysjI0AcffKDff/9dvr6++sc//qHnnnvuqp/Dte6vY8eO6f3331d6erpsNpsqVaqkwYMHy8fHR/fff79GjRqlsmXLSpLze/XAAw+4bHP06NHKyMhwfqc6d+6se+65J1/7DbAq8vn/kM8XkM+AdyO3/w+5fQG5XTJQALkOVa9eXZGRkUpPT1flypWd08uXL69hw4bp2Wef1bRp05wVy0svqxo5cqTCw8M1atQonTlzRmlpaYqKitI///lPSdKOHTvUpEkTTZw4UdnZ2Zo1a5b+/vtvvfPOO7Lb7Xrvvff02WefqWvXrpKkI0eOKCsrS+PGjdOmTZs0fPhwNWzYUCEhIc4gHjp0qEqXLq0dO3bIZrMpMzNTaWlpevbZZ1WvXj1t3rxZw4YN08iRIxUWFqZ58+YpPT1dAwYMyNV/h8Oht956S/Hx8Ro7dqx8fHy0a9cuSReCa+nSpRo0aJDCw8M1ZswYTZ48Wb169XIun56ervfee09//fWXBg4cqFtvvVX16tVTx44dL3up3vLlyzVw4ECVL19ex48f17///W89+uijatq0qX788UelpaVp1KhRCg0NveI+i4yMVM2aNbVq1SolJSVJkn744Qc1atRIvr6+mj17turWratBgwbp/Pnzzv7kx7Xsr/nz5ysyMlKTJk1yLmuz2fK9LUnq1auX0tPTuVQPuAzymXy+GPkMeD9ym9y+GLnt/bz3miG4VWRkpE6cOHHNyx05ckQbNmxQSkqKAgICFB4erg4dOmjlypXOeSIiInTHHXfIbrerVKlSWrRokR555BGFhIQoMDBQnTp10ooVK5zz2+12de7cWb6+vqpfv74CAgL0119/yeFwaMmSJUpJSVFkZKR8fHx04403qlSpUlq+fLluueUW1a9fXz4+PqpTp46qVaum9evXS5KSk5MvG9KStHPnTmVmZuqhhx5SQECA/Pz8dNNNN0m6EH533nmnYmNjFRAQoK5du2rlypXKzs52Ln/ffffJz89PVapU0Q033KA9e/bk+ZklJiaqUqVKstvt2rRpk8qWLavbb79ddrtdzZo1U/ny5bVu3bqrfvbNmjVzfm7GGK1cuVLNmjWTJPn6+urgwYM6fPiwS3/y41r2l91u15EjR5SRkSFfX1/VqlXrmoMaQN7IZ/I5B/kMlAzkNrmdg9z2flwBcp3KzMx0XvJ1LTIyMpSdne0ywJMxRlFRUc7X0dHRzv8+duyYzpw54xKaxhg5HA7n69DQUJf74/z9/XX69GkdP35c586dc176dWk7Vq1a5RJw2dnZ+bpULyMjQzExMZe9J+/w4cOKiYlx6Ut2draOHj3qnFa6dOlcbc3LxZ9NZmamy/olKSYmRpmZmVdtd6NGjTRlyhQdPnxY+/btk81mU61atSRJ3bp10+zZszVw4EAFBwfrzjvvVKtWra66zpw+5rja/rr77rs1Z84cDR06VJKUlJSk5OTkfG0HQP6Qz+TzxX3MQT4D3ovcJrcv7mMOcts7UQC5DuVUaq+lmpkjKipKvr6+mjx5cr4G9QkNDZWfn5+GDx+uyMjIa9pWaGioSpUqpf379ztHzr64Hc2bNy/QI6Cio6OdPziX9iEiIkIHDx50vs7IyJDdbld4eLgOHTqU53qvVLG9eHpkZKRWr17t8n5GRobq1at31XaHhISobt26Wrlypf73f/9XTZo0ca67dOnSzs8iPT1dQ4YM0c0333zZH7m8XG1/BQYG6uGHH9bDDz+sP/74Q6+99pqqVaum2rVry9/fX2fOnHHOe+TIEZcfKQBXRz6Tz1dCPgPeidwmt6+E3PZO3AJzHcnKytK6dev03nvvqXnz5i73KeZXRESE6tatqxkzZigrK0sOh0P79+/X1q1bLzu/j4+PWrdurWnTpjmrvZmZmdq4ceNVt+Xj46OWLVtqxowZyszMlMPh0Pbt23Xu3Dk1b95c69at08aNG+VwOHT27Flt2bLlqmEqXbhXMyIiQrNmzdLp06d19uxZpaenS5KaNm2qb775RgcOHNDp06f18ccf67bbbsvXj1J4eLgOHjzoUoW/1C233KJ9+/bphx9+UHZ2tlauXKm9e/eqfv36V12/dOFyveXLl2vVqlXOy/Qk6ccff3T2PTg4WNKVfzjycrX9tW7dOu3fv1/GGAUFBcnHx8e5nSpVquiHH36Qw+HQxo0br/idkC78sBw4cOCa2wdYFfl8Afl8ZeQz4F3I7QvI7Ssjt70TV4BcB9566y3Z7XbZbDZVrFhRHTp0UJs2bQq8vmeffVazZs1S3759derUKcXGxuY52vCDDz6ozz77TC+99JKOHz+uyMhI/fOf/8xXdfbhhx/WRx99pH//+986ffq0qlSpopdeeknR0dF68cUXNXPmTL333nvy8fFR9erV9eSTT0qSvvjiC6Wnp2vgwIG51unj46P+/ftrypQp6tmzp2w2m5o2baqbbrpJLVu21OHDhzVo0CCdPXtWdevW1WOPPZavz+W2227Tf//7Xz3++OMqU6aM3nrrrVzzhIaGasCAAZo6daomTpyosmXLasCAAQoLC8vXNhISEjRu3DhFR0e7VO9/++03TZs2TVlZWSpdurQeffRRxcbGSpL69u2rjh07qnnz5vnaRl77a9++fZoyZYqOHTum4OBgtWnTRv/4xz8kXRjhfOzYsfr+++/VsGFDNWzY8IrbSE5O1pQpUzRz5kx16tRJd999d77aBlgN+eyKfM4b+Qx4HrntitzOG7ntfWzGGOPpRgAAAAAAALgTt8AAAAAAAADLowACAAAAAAAsjwIIAAAAAACwPAogAAAAAADA8iiAAAAAAAAAy6MAAgAAAAAALI8CCAAAAAAAsDwKIAAAAAAAwPIogAAAAAAAAMujAAIAAAAAACyPAggAAAAAALA8CiAAAAAAAMDyKIAAAAAAAADLowACAAAAAAAsjwIIAAAAAACwPAogAAAAAADA8iiAAAAAAAAAy6MAAgAAAAAALI8CCAAAAAAAsDwKIAAAAAAAwPIogAAAAAAAAMujAAIAAAAAACyPAggAAAAAALA8CiAAAAAAAMDyKIAAAAAAAADLowACAAAAAAAsjwIIAAAAAACwPAogAAAAAADA8iiAAAAAAAAAy6MAAgAAAAAALI8CCAAAAAAAsDwKIAAAAAAAwPIogAAAAAAAAMujAAIAAAAAACyPAggAAAAAALA8CiAAAAAAAMDyKIAAAAAAAADLowACAAAAAAAsjwIIAAAAAACwPAogAAAAAADA8iiAAAAAAAAAy6MAAgAAAAAALI8CCAAAAAAAsDwKIAAAAAAAwPIogAAAAAAAAMujAAIAAAAAACyPAggAAAAAALA8CiAAAAAAAMDyKIAAAAAAAADLowACAAAAAAAsjwIIAAAAAACwPAogAAAAAADA8iiAAAAAAAAAy6MAAgAAAAAALI8CCAAAAAAAsDwKIAAAAAAAwPIogAAAAAAAAMujAAIAAAAAACyPAggAAAAAALA8CiAAAAAAAMDyKIAAAAAAAADLowACAAAAAAAsjwIIAAAAAACwPAogAAAAAADA8iiAAAAAAAAAy6MAAgAAAAAALI8CCAAAAAAAsDwKIAAAAAAAwPIogAAAAAAAAMujAAIAAAAAACyPAggAAAAAALA8CiAAAAAAAMDyKIAAAAAAAADLowACAAAAAAAsjwIIAAAAAACwPAogAAAAAADA8iiAAAAAAAAAy6MAAgAAAAAALI8CCAAAAAAAsDwKIAAAAAAAwPIogAAAAAAAAMujAAIAAAAAACyPAgi8QmJiop544oliWc/gwYNVvXr1Qm8LAK4H5DMAWAN5DlAAyTebzZbnvypVqjjn/eSTT2S323XfffflWk9KSkqe63n00UcL3dYrhdLvv/8um82mH374odDbwNU9/fTTstvtGjt2rEfbceTIEfXp00fx8fEKDg5W2bJlde+99yo9Pd1lvit9N8+fP5/n+pcuXXrZ5SZNmnTZ+bOyshQfH893EUWGfMa18pZ8li58Jy79rlWsWNFlnoLmsyRlZ2crLS1NN954o/z9/VWmTBk9/fTTl52XfIankee4Vt6U5wXxyy+/6O6771bp0qUVFBSkOnXq6KeffnK+X5j8x+VRAMmnffv2Of99/vnnkqT169c7p61Zs8Y57/jx49W/f3/Nnz9fBw4ccFnPe++957KunH+9e/eWv7+/nnrqqWLtFwrm7Nmzeb5/8uRJzZo1SwMHDtTEiROLqVWXt2/fPu3evVuvvfaa1q9fr2+++UZZWVlq1aqVDh8+7DJv8+bNc303fX1987Wdi/8e9u3bpwcffPCy8/Xs2VPVqlUrdL/cyeFwKDs729PNQD6Rz7hYScrnHF27dnX5zm3YsCHXPAXN55SUFE2aNElvvvmmfv31Vy1YsEDt2rW77LzkMzyNPMfFSlqe//HHH9c0/88//6ymTZsqLi5OixYt0pYtW/Tuu+8qIiLCZb7CHJ8Xt6vtM29AASSfypYt6/wXGRkpSYqJiXFOi4mJkSTt2LFDK1eu1PPPP6/ExERNnTrVZT3h4eEu6ypbtqxWrlyp0aNHa/LkyWrcuHGx9mvbtm3q0KGDQkJCFBISorvuuks7d+50vj9t2rRcf2B79+6VzWbT0qVLJUnnzp1T3759VbFiRfn7+6tcuXJ64IEHXJaZPXu26tWrp4CAAFWpUkV9+/bVyZMnc7VnyJAhzs/44Ycf1okTJ5zvGWP07rvvKi4uTn5+fqpWrZpGjhyZZ/9Onz6tp59+WuHh4YqIiNDTTz+tM2fO5Jrvau1LTEzU448/rldeeUXlypVT5cqV89zuxx9/rBo1aujll1/Wnj17tHr16svOU61aNQUEBKhJkyaaP39+rjMGO3fu1L333qvSpUsrIiJCbdq00S+//JLnti9Vq1Ytffnll7r33nt14403qkGDBpo5c6b27duX6+yEn59fru9nfl3891C2bFkFBgbmmmf69OnauHGj3nnnnauub+nSpbLb7frzzz9dps+YMUPh4eHO/fP3338rJSVFMTExCg0NVdOmTbV8+XLn/MYYPfnkk6pWrZoCAwMVFxengQMHunwPci7T/OSTT3TTTTfJz89P27dv15YtW9S2bVuVLl1awcHBqlWrlj788MN8fyYoHuTz/yGfS1Y+5wgMDHT53uV8Zy9WkHxesmSJPv74Y3355Zfq1KmT4uLiVLduXd1zzz255iWf4Q3I8/9Dnpe8PH/kkUd00003aejQodq9e/dV509NTVWHDh00cuRINWjQQFWrVlWbNm1Uo0YNl/muNf8TExPVvXt3l2nGGFWrVk1DhgxxTrva/liwYIESExMVGRmp8PBwtWjRwuXqFOnCVVujRo1S165dFR4eroceekiS9MYbbyguLk7+/v6KiYlR27ZtderUqat+JsXC4JotWbLESDJ//vlnrvdeeOEF06lTJ2OMMbNnzzbVqlUzDofjiutav369CQoKMi+//HKRta9Fixbm8ccfzzV99+7dRpL573//a4wxJisry1SuXNm0atXKrF271qxdu9YkJiaaatWqmTNnzhhjjJk6daqx2+0u6/nzzz+NJLNkyRJjjDHDhg0zFSpUMEuWLDF79uwxP/30kxkxYoRz/qlTp5rSpUubGTNmmN9++80sW7bM1K5d23Tr1s2lzeHh4aZPnz7m119/Nd9//72JiIhw+VzGjBljAgICzPjx48327dvNBx98YPz9/c2kSZOu2Pc+ffqYmJgYM2/ePPPrr7+a559/3oSGhppq1apdc/tCQkLMU089ZbZs2WI2bdqU5z5ISEgwo0aNMsYY06NHD/Poo4+6vL927Vpjs9nMSy+9ZNLT083cuXNNtWrVXPbP/v37TWxsrOnRo4fZtGmTSU9PN88++6yJjIw0Bw4ccK5Lkhk0aFCe7bnUb7/9ZiSZRYsWOac98sgjJjQ01MTGxpoqVaqYTp06mc2bN191XTl/DzfccIOJiYkxt912m5k2bVqu7/3WrVtNTEyM+fXXX3N9F6/kxhtvNIMHD3aZ1qxZM9OjRw9jzIXvcK1atUynTp3MmjVrzI4dO8zQoUONn5+f2bp1qzHGmOzsbDNw4ECzatUqs3v3bvPll1+asmXLmldffdW5zkGDBpnAwEBz++23m1WrVplt27aZY8eOmdq1a5suXbqYLVu2mN9++818++235uuvv77qZwLPIZ/J55KWzy1atDCRkZEmOjra1KhRwzzyyCNmz549LvMUNJ+feeYZU6NGDTNy5EhTrVo1U7FiRXPfffflWj/5DG9EnpPnJS3PDx48aMaOHWuaNm1qfHx8TNOmTc0HH3xgDh06dNl5JZmhQ4eaO+64w0RHR5v69eub8ePHu8xXkPz/6KOPTEhIiDl+/Lhz2sKFC43dbjf/+7//a4zJ3/744osvzCeffGLS09PN5s2bzeOPP24iIiJMRkaGy+cSGRlpRo8ebXbu3Gm2b99uPv/8cxMaGmq++uors2fPHrNhwwYzYsQIk5WVlWe7iwsFkAK4UiCfOXPGxMTEmK+++soYY8ypU6dMeHi4WbBgwWXXs2/fPlOxYkXTuXPnPEP7WrVo0cL4+vqa4OBgl39BQUEuf/CTJk0ygYGB5uDBg85l9+/fbwICAsz06dONMfkL5NTUVNOyZcsr9uGGG24wH3zwgcu0ZcuWGUkmMzPT2eY6deq4zNOjRw/TuHFj5+uKFSuafv36uczTp08fU7VqVZe+5wTyiRMnjL+/v5kwYYLLMg0aNHAJ5Py2r0aNGiY7O/uyfbzYhg0bjJ+fnzMcfvzxRxMUFGSOHDninKdr166mWbNmLst98MEHLvtn0KBBplGjRi7zOBwOExcX5/KDd+ONN5rRo0dftV05zp8/b9q2bWsaNmzo0p+PPvrIfPHFF2bTpk1mwYIFpm3btiYwMND88ssvea4vPT3djB071qxevdqsWbPGvPbaa8bPz8/lx/TkyZMmPj7eTJ482RiT++DgSoYNG2YqV67sbOevv/5qJJn169cbYy58PytUqGDOnTvnslzLli1N7969r7je4cOHm+rVqztfDxo0yNhstlz/UxAWFmamTp2aZxvhXchn8jkv3pjP48aNM99884355ZdfzPz5882tt95qYmJizL59+5zzFDSf27VrZ/z9/U39+vXN4sWLzYoVK5z/43Xq1CljDPkM70Wek+d58cY8v9ju3bvN66+/buLj442fn5+55557zJw5c5xFr1WrVhlJJjAw0KSlpZkNGzaYsWPH5vosC5L/p0+fNtHR0WbixInOaQ888IC5++67na/zsz8ulZ2dbUqXLm1mzpzpnCbJPPbYYy7zDR8+3NSoUcOcPXs2H59U8aMAUgBXCuTZs2eb2NhYlx/77t27m86dO+dax6lTp8ytt95qGjRoYE6ePHnVbS5fvtwlXF9//fUrztuiRQtz3333mR07drj8W7p0qcsf/HPPPWcaNGiQa/m6deuaF1980RiTv0DesGGDiY6ONnFxceapp54yn332mfOP+8CBA84/7sv9OPz000/ONj/00EMu23nttdecYXv06FEjKdfZnblz5xqbzeb8DC8O5J9//tlIylUl7d27tzOQr6V9DzzwwBU/84v16NHDeVYiR82aNc2YMWOcr+vVq2deeOEFl3k2btzosn/at29/2R9WHx8f07Nnz3y15VLnz583Xbt2NVWrVr3sGZWLnTlzxlSvXt08+eSTxphr+w6++uqrJjg42Bl8jz/+uMvnl98D7IyMDBMQEGC+/fZbY4wxzz//vMt3tmfPnsZut+f6jHx9fU379u2d802YMMHceuutpkyZMiY4ONj4+/ubUqVKOd8fNGiQKVu2bK7tv/baa8Zut5sWLVqYQYMGmXXr1uXZXnge+Uw+58Wb8zlHZmamCQ8Pz/N7lN98btOmTa7P+e+//zY+Pj7m888/N8aQz/Be5Dl5npeSkOc55s2bZ2JiYlz258qVK42kXN/bZ555xtSuXfuK67o0/6/khRdeMLfeeqsx5kJe+/v7O/drfvfHrl27TLdu3Uy1atVMaGioCQ4ONjabzeXvQpIZN26cy7b37t1rqlSpYsqVK2ceeeQRM2PGDHPs2LH8fVjFwDtHTymhxo8frwMHDiggIMA5zRgju92uAwcOqEyZMs7pjz32mPbu3as1a9YoKCjoqutOSEjQxo0bna9z7ou8krCwsFyPnirIYDk+PrmHiTl37pzL63r16mn37t1asGCBlixZot69e+uVV17RqlWr5HA4JF0YjKply5a51nXxSPd+fn4u79lsNufy7nIt7QsODr7q+nIGYzp58qTL5+1wODRx4kQ988wzzmk2m+2qbWvdurXGjBmT673w8PCrtuVSZ8+eVZcuXfTzzz9r2bJluZ4ycCk/Pz8lJCTo999/l3Rt38EmTZrotdde08GDB1W+fHktXLhQf/75p+bMmeMyX2Jiolq3bq3vv//+suuJiopS586dNXHiRLVu3VozZszQ0KFDne87HA7VqlVLc+fOzbVszt/VnDlz9MwzzygtLU0tWrRQWFiY5syZo5deesll/svt31deeUUPPvigvvvuOy1evFhvvPGGXnzxRZc2oGQgn8lnb87ni0VERKhWrVrO7L2c/OZzuXLlZLPZVKtWLed7ZcqUUXR0tPbs2SNJ5DNKHPKcPC8JeX7w4EF9+umn+uijj7R69Wq1aNFC3bp1U6NGjSRdyGdJio+Pd1kuPj4+z/GMLs3/K3nqqac0bNgwbdq0SYsXL1ZMTIzuuOMOSfnfH3feeaeio6M1duxYVapUSX5+fmrWrFmugU4v3WcVKlRQenq6lixZosWLF2vIkCHq37+/Vq9erUqVKuXZ7uJAAaSI7NixQ0uXLtUXX3yRKwg7duyoqVOnqn///pIuDDz05Zdfavny5Spfvny+1h8YGFjkz9KOj4/XuHHjlJGRoejoaEkXBizbtm2bnn/+eUkXDpSys7P1999/KzY2VtKF0bgvFRISoo4dO6pjx44aOHCgypUrp2XLlumuu+5SpUqVtG3bNj355JMFbmtYWJgqVqyo5cuX684773ROX7ZsmapWrXrZH7Vq1arJz89PK1eudAmXFStWOP87Nja2SNqX4+OPP5avr682btzoEriZmZlKTEzU6tWr1ahRI91888368ccfXZZdtWqVy+uEhARNmzZNFStWdPmRL4isrCx16tRJe/bsyff3Ljs7Wz///LNuu+02Sdf2HVy/fr0CAwOd36v//Oc/LmH5119/qW3btpo6daqaN2+e57qeeuoptWzZUuPHj9epU6fUpUsX53sJCQmaMWOGwsLCXA54LrZ8+XLdcsst6tu3r3Pa1X40LhYXF6eePXuqZ8+eSktL0zvvvMMBdglDPpPPkvfm86VOnDih7du3q3379lecJ7/53Lx5c02fPl3bt2/XTTfdJEk6dOiQMjIynI8TJZ9RkpDn5LnkvXl+4sQJzZs3T7NmzdLChQt18803q1u3bvr0009VoUIFl3lvuOEGVapUSenp6S7Tt23b5vK450tdmv9XUr16dbVq1UoTJ07UkiVL9Nhjj8lut0vK3/44dOiQtm7dqm+//VZt27aVdGFg3kufuHQl/v7+ateundq1a6chQ4YoNjZW8+bNU69evfK1vFt5+AqUEulyl+S98MILLve5Xezf//63c3Cmzz77zNhsNjN69Gizb9++XP8uN0jOtSrIoEzr1q277KBMhw4dMqGhoSYlJcVs377d/L//9/9MnTp1XC7hevvtt83MmTPN5s2bza5du8zrr79u7Ha7SU9PN8YYM2PGDFOqVCkzdOhQ88svvzgHIerevXuebR4yZIi54YYbnK/Hjh1rAgICzIQJE8z27dvNuHHjrjooU2pqqilTpoz58ssvTXp6uunXr1+uQZkK2r7LSUhIyHUfXI7bbrvNOThTzqBMr7zyitm2bZv58ssvTY0aNYwk88MPPxhjLtwfWq5cOdOmTRuzfPlys3v3bvPf//7XDBw40KxYscK53qvdk3js2DHTrFkzU6VKFfPzzz+7fN9yBiM6fvy4ee6558wPP/xgdu/ebVavXm06d+5s/P39r3pZ8fDhw81nn31mfv31V5Oenm7ee+89ExgYmOuSw4vl9xLrHDn3Tz7xxBMu00+dOmXi4+NNQkKC+f77783u3bvNqlWrzBtvvGHmzp1rjDFm9OjRJjAw0MybN8/s3LnTjBw50kRFRZmL42/QoEG5/n6PHz9uevbsaRYtWmR27dpl1q9fb1q0aJHrXlJ4F/KZfL4Sb8znnTt3mldffdWsXr3a/P7772bZsmWmZcuWJiIiwvkdLkw+nzx50lStWtXcdtttZs2aNebnn3827dq1MzVr1nSOAXIp8hnegjwnz6/EG/PcGGNatWplKlWqZF588cWrjtFkjDHvv/++sdvtZsyYMWbnzp1m+vTpJjAw0EyZMsUYU7j8N8aYTz/91Pj5+RkfHx/zxx9/uLx3tf2RnZ1tYmJiTMeOHc22bdvMypUrTbNmzUxQUJDLYLCSzIcffuiy7kmTJpkJEyaYjRs3mt9//91MnjzZ+Pj4mIULF161zcWBAkgBXBrIOYMxDRgw4LLz59xrtmDBApOYmGgkXfFfixYtCt2+/AayMRcGsLzjjjuc93516NDB7Nixw2W5+fPnm5tuuskEBASYJk2amO+++84lkMeNG2fq16/vvDcsISHBzJs3z2Udc+fONY0bNzaBgYEmNDTU1K1b1/zP//xPnm2+NJAdDod5++23TZUqVYyvr6+pWrWqy+BEl1tPVlaW6d69uwkLCzNhYWHmySefNAMGDMj141mQ9l1qw4YNRpL57rvvLvv+yJEjXQZn+uijj0xcXJzx8/MzjRs3Np988omRZNauXetc5vfffzddu3Y10dHRxs/Pz1SuXNk8+OCDZteuXc55dJVRqXOGXNTXAAAgAElEQVS+r5f7lzOAXFZWlmnbtq2JjY01pUqVMuXLlzd33XVXvsL17bffNjVr1jSBgYEmLCzM1K9f30yYMCHPAayu9QB75MiRLvckXiwjI8P06NHDlC9f3tn25ORk50B8Z8+eNd27dzcREREmNDTUdOnSxYwePfqqB9inTp0yXbp0MVWqVDH+/v4mJibG3H///bl+QOBdyGfy+XK8NZ//+OMPk5iYaKKjo02pUqVM5cqVTdeuXV32c2Hy2ZgLT/266667THBwsImJiTGdO3fOM8fIZ3gL8pw8vxxvzfP/z979x1Vd3/0ff55zEAhB4HAUh1qGxkrDHwVpmaJGXlt2LWr9VNrMObdRUFots33VzSyaGYbar6nYD1erNrk2t5vbiEtslQ0VL8vmxMvWj8sMDwcJRVM45/uHN48yfwGHw/mcN4/7X50PfM77/fKwl/jc+/3++HzHDoNu60G7xcXFvtTUVF90dLRv8ODBLQ4uDbT/HzlyxNezZ88W5y6d7Fyfx/r1631DhgzxRUVF+dLS0nxvvvmmb8CAAecMQH7729/6rrzySl9CQoLvvPPO8w0ePLhFgBZqNp/P52v/+hEAHeWll17SXXfdpdraWiUkJIR6Opby05/+VH/9619VVVUV6qkA6ILoz2dGfwYQTrpSP6+trVXfvn312muv6YYbbgj1dCyDM0CAEHnyySc1btw4OZ1OVVZW6qGHHtItt9xifDNui/r6eu3cuVMvvPCCiouLQz0dAF0E/fnc6M8AwkFX7OdHjx5VbW2t5s2bpz59+ug///M/Qz0lSyEAAUJk27ZtWrRokTwej/r166fc3Fz9/Oc/D/W0LOWGG27Q+++/r9tvv125ubmhng6ALoL+fG70ZwDhoCv283feeUfjxo3ThRdeqJdffvm0TxnqytgCAwAAAAAAjEccBAAAAAAAjEcAAgAAAAAAjNelzwDZs2dPqKdwWi6XS263O9TT6BAm1SJRj9VZuZ6UlJRQTyGs0J87h0n1mFSLRD2dif7cMejbnYN6rM2keqxcSyB9mxUgAAAAAADAeAQgAAAAAADAeAQgAAAAAADAeAQgAAAAAADAeAQgAAAAAADAeF36KTAAgLbZs2ePioqK/K9ramp06623KisrS0VFRdq3b5969uypGTNmKDY2Vj6fTyUlJaqqqlJUVJTy8vKUmpoawgoAAADQVbECBADQaikpKVq4cKEWLlyoJ554QpGRkbriiitUWlqq9PR0FRcXKz09XaWlpZKkqqoq7d27V8XFxZo+fbqWL18e4goAAADQVRGAAADa5YMPPlDv3r3Vs2dPVVZWKisrS5KUlZWlyspKSdKmTZs0ZswY2Ww2paWl6eDBg6qrqwvltAEAANBFsQUGANAu77zzjkaNGiVJqq+vV2JioiQpISFB9fX1kiSPxyOXy+W/JykpSR6Px/+9x5WVlamsrEySVFhY2OIeK4mIiLDs3NrDpHpMqkWiHnQcti4CwAkEIEAbzJ/vUGNjXNDHuf/+hqCPAQSiqalJmzdv1qRJk075ms1mk81ma9P7ZWdnKzs72//a7XYHPMdgcLlclp1be5hUz7PPJqux8eugj9NZ/dmkz0aydj0pKSmhnkJQHd+6KEler1c/+tGPWmxdzMnJUWlpqUpLS5Wbm9ti62J1dbWWL1+uxx57LMRVwFT8bo3OxhYYAECbVVVV6cILL1RCQoIkKT4+3r+1pa6uTj169JAkOZ3OFv/oqa2tldPp7PwJAwDYugigyyMAAQC02cnbXyQpIyNDFRUVkqSKigplZmb6r2/YsEE+n087d+5UTEzMKdtfAACdI5CtiwBgArbAAADa5PDhw9q2bZumT5/uv5aTk6OioiKVl5f795JL0vDhw7VlyxYVFBQoMjJSeXl5oZo2AHRpHb11kbObQsO0eux2u2JiYoI+jssVFfQxJLM+H5NqORkBCACgTaKjo7Vy5coW1+Li4jRnzpxTvtdms2natGmdNTUAwBmcaetiYmJiu7YucnZTaJhWj9ebrMbGxqCP43ZzflNbWbmWQM5uYgsMAAAAYDi2LgIAAQgAAABgtONbF0eMGOG/lpOTo23btqmgoEAffPCBcnJyJB3butirVy8VFBTo+eefZxUfAKOwBQYAAAAwGFsXAeAYVoAAAAAAAADjEYAAAAAAAADjEYAAAAAAAADjEYAAAAAAAADjEYAAAAAAAADjEYAAAAAAAADjEYAAAAAAAADjEYAAAAAAAADjRYR6Amdy8OBBPffcc/rss89ks9n0k5/8RCkpKSoqKtK+ffvUs2dPzZgxQ7GxsfL5fCopKVFVVZWioqKUl5en1NTUUJcAAAAAAAAswrIrQEpKSjRs2DAtXrxYCxcuVJ8+fVRaWqr09HQVFxcrPT1dpaWlkqSqqirt3btXxcXFmj59upYvXx7i2QMAAAAAACuxZADS2Niof/zjHxo/frwkKSIiQt27d1dlZaWysrIkSVlZWaqsrJQkbdq0SWPGjJHNZlNaWpoOHjyourq6kM0fAAAAAABYiyW3wNTU1KhHjx565pln9Mknnyg1NVVTpkxRfX29EhMTJUkJCQmqr6+XJHk8HrlcLv/9SUlJ8ng8/u8FAAAAAABdmyUDkObmZn388ceaOnWqLrroIpWUlPi3uxxns9lks9na9L5lZWUqKyuTJBUWFrYITawkIiLCsnNrK5NqkSS73a6YmJigj+NyRQV9DMm8z8e0egAAAAB0HEsGIElJSUpKStJFF10kSRo5cqRKS0sVHx+vuro6JSYmqq6uTj169JAkOZ1Oud1u//21tbVyOp2nvG92drays7P9r0++x0pcLpdl59ZWJtUiSV5vshobG4M+jtvdEPQxJPM+HyvXk5KSEuopAAAAAF2aJc8ASUhIUFJSkvbs2SNJ+uCDD9S3b19lZGSooqJCklRRUaHMzExJUkZGhjZs2CCfz6edO3cqJiaG7S8AAAAAAMDPkitAJGnq1KkqLi5WU1OTevXqpby8PPl8PhUVFam8vNz/GFxJGj58uLZs2aKCggJFRkYqLy8vxLMHAAAAAABWYtkApH///iosLDzl+pw5c065ZrPZNG3atM6YFgAAAAAACEOW3AIDAAAAAADQkQhAAAAAAACA8Sy7BQYAYE0HDx7Uc889p88++0w2m00/+clPlJKSoqKiIu3bt89/RlNsbKx8Pp9KSkpUVVWlqKgo5eXlKTU1NdQlAAAAoAtiBQgAoE1KSko0bNgwLV68WAsXLlSfPn1UWlqq9PR0FRcXKz09XaWlpZKkqqoq7d27V8XFxZo+fbqWL18e4tkDAACgqyIAAQC0WmNjo/7xj39o/PjxkqSIiAh1795dlZWVysrKkiRlZWWpsrJSkrRp0yaNGTNGNptNaWlpOnjwoOrq6kI2fwAAAHRdbIEBALRaTU2NevTooWeeeUaffPKJUlNTNWXKFNXX1ysxMVGSlJCQoPr6ekmSx+ORy+Xy35+UlCSPx+P/XgBA8LF1EQCOIQABALRac3OzPv74Y02dOlUXXXSRSkpK/NtdjrPZbLLZbG1637KyMpWVlUmSCgsLW4QmVhIREWHZubWHSfXY7XbFxMQEfRyXKyroY0hmfTaSefWEm+NbF++//341NTXp66+/1po1a5Senq6cnByVlpaqtLRUubm5LbYuVldXa/ny5XrsscdCXQIAdAgCEABAqyUlJSkpKUkXXXSRJGnkyJEqLS1VfHy86urqlJiYqLq6OvXo0UOS5HQ65Xa7/ffX1tbK6XSe8r7Z2dnKzs72vz75HitxuVyWnVt7mFSP15usxsbGoI/jdjcEfQzJrM9GsnY9KSkpoZ5CUB3funj33XdLOhZGRUREqLKyUvPmzZN0bOvivHnzlJube8ati6zcA2ACzgABALRaQkKCkpKStGfPHknSBx98oL59+yojI0MVFRWSpIqKCmVmZkqSMjIytGHDBvl8Pu3cuVMxMTH8Eg0AnejkrYs//elP9dxzz+nw4cNt3roIACZgBQgAoE2mTp2q4uJiNTU1qVevXsrLy5PP51NRUZHKy8v9e8klafjw4dqyZYsKCgoUGRmpvLy8EM8eALoWti6atf3KtHrYvmhdJtVyMgIQAECb9O/fX4WFhadcnzNnzinXbDabpk2b1hnTAgCcBlsXrbv9qj1Mq4fti9Zl5VoC2brIFhgAAADAUGxdBIATWAECAAAAGIytiwBwDAEIAAAAYDC2LgLAMWyBAQAAAAAAxiMAAQAAAAAAxiMAAQAAAAAAxiMAAQAAAAAAxiMAAQAAAAAAxiMAAQAAAAAAxiMAAQAAAAAAxiMAAQAAAAAAxiMAAQAAAAAAxiMAAQAAAAAAxiMAAQAAAAAAxosI9QTO5O6771Z0dLTsdrscDocKCwt14MABFRUVad++ferZs6dmzJih2NhY+Xw+lZSUqKqqSlFRUcrLy1NqamqoSwAAAAAAABZh2QBEkubOnasePXr4X5eWlio9PV05OTkqLS1VaWmpcnNzVVVVpb1796q4uFjV1dVavny5HnvssRDOHAAAAAAAWElYbYGprKxUVlaWJCkrK0uVlZWSpE2bNmnMmDGy2WxKS0vTwYMHVVdXF8qpAgAAAAAAC7H0CpAFCxZIkq699lplZ2ervr5eiYmJkqSEhATV19dLkjwej1wul/++pKQkeTwe//ceV1ZWprKyMklSYWFhi3usJCIiwrJzayuTapEku92umJiYoI/jckUFfQzJvM/HtHoAAAAAdBzLBiDz58+X0+lUfX29Hn30UaWkpLT4us1mk81ma9N7ZmdnKzs72//a7XZ3yFw7msvlsuzc2sqkWiTJ601WY2Nj0MdxuxuCPoZk3udj5Xr+vYcBAAAA6FyW3QLjdDolSfHx8crMzNSuXbsUHx/v39pSV1fnPx/E6XS2+EdPbW2t/34AAAAAAABLBiCHDx/WoUOH/P+9bds2nX/++crIyFBFRYUkqaKiQpmZmZKkjIwMbdiwQT6fTzt37lRMTMwp218AAAAAAEDXZcktMPX19XryySclSc3Nzbr66qs1bNgwDRgwQEVFRSovL/c/BleShg8fri1btqigoECRkZHKy8sL5fQBAAAAAIDFWDIASU5O1sKFC0+5HhcXpzlz5pxy3Wazadq0aZ0xNQAAAAAAEIYsGYAAAKzr7rvvVnR0tOx2uxwOhwoLC3XgwAEVFRVp3759/hV6sbGx8vl8KikpUVVVlaKiopSXl6fU1NRQlwAAAIAuiAAEANBmc+fO9R9ELUmlpaVKT09XTk6OSktLVVpaqtzcXFVVVWnv3r0qLi5WdXW1li9frsceeyyEMwcAAEBXRQACAAhYZWWl5s2bJ0nKysrSvHnzlJubq02bNmnMmDGy2WxKS0vTwYMHVVdXx0HVANCJWLkHAMcQgAAA2mzBggWSpGuvvVbZ2dmqr6/3hxoJCQmqr6+XJHk8HrlcLv99SUlJ8ng8pwQgZWVlKisrkyQVFha2uMdKIiIiLDu39jCpHrvdrpiYmKCP43JFBX0MyazPRjKvnnDEyj0AIAABALTR/Pnz5XQ6VV9fr0cffVQpKSktvm6z2WSz2dr0ntnZ2crOzva/drvdHTLXjuZyuSw7t/YwqR6vN1mNjY1BH8ftbgj6GJJZn41k7Xr+vYd1FazcA9AVEYAAANrE6XRKkuLj45WZmaldu3YpPj7e/wtyXV2d//9ldDqdLf7RU1tb678fANB5OnrlHgCEIwIQAECrHT58WD6fT+edd54OHz6sbdu26eabb1ZGRoYqKiqUk5OjiooKZWZmSpIyMjK0bt06jRo1StXV1YqJieGXaADoZMFYucfWxdAwrR62L1qXSbWcjAAEANBq9fX1evLJJyVJzc3NuvrqqzVs2DANGDBARUVFKi8v9x+mJ0nDhw/Xli1bVFBQoMjISOXl5YVy+gDQJQVj5R5bF0PDtHrYvmhdVq4lkK2LBCAAgFZLTk7WwoULT7keFxenOXPmnHLdZrNp2rRpnTE1AMBpsHIPAE4gAAEAAAAMxco9ADiBAAQAAAAwFCv3AOAEe6gnAAAAAAAAEGwEIAAAAAAAwHgEIAAAAAAAwHgEIAAAAAAAwHgEIAAAAAAAwHgEIAAAAAAAwHgEIAAAAAAAwHhBC0AqKyvV3NwcrLcHALQT/RkAwg+9GwACF7QA5PXXX9f06dO1YsUKVVdXB2sYAEAb0Z8BIPzQuwEgcBHBeuOFCxfqX//6l95++20tWrRIUVFRGjNmjEaPHq1evXoFa1gAwDnQnwEg/NC7ASBwQQtAJKl///7q37+/cnNz9cEHH+jll1/W66+/rosvvljZ2dkaNWqU7HaOIQGAzkZ/BoDwQ+8GgMAENQCRpL179+rtt9/W22+/LZvNpttuu00ul0vr1q3T+++/rwceeCDYUwAAnAb9GQDCD70bANovaAHIunXr9Pbbb+uLL77QVVddpXvuuUdpaWn+r48YMULTpk0L1vAAgDOgPwNA+KF3A0DgghaAbN26Vddff70yMjLUrVu3U74eFRV11oTa6/Vq1qxZcjqdmjVrlmpqarR48WI1NDQoNTVV+fn5ioiI0NGjR7V06VLt3r1bcXFxuu+++9gHCQBnEWh/BgB0Pno3AAQuaJsEZ86cqczMzBYNuqmpSUePHvW/Hjp06Bnv/9Of/qQ+ffr4X7/yyiuaOHGilixZou7du6u8vFySVF5eru7du2vJkiWaOHGiVq9eHYRqAMAcgfZnAEDno3cDQOCCFoAsWLBAu3fvbnFt9+7dWrBgwTnvra2t1ZYtW3TNNddIknw+n7Zv366RI0dKksaOHavKykpJ0qZNmzR27FhJ0siRI/Xhhx/K5/N1YCUAYJZA+jMAIDTo3QAQuKAFIJ988okuuuiiFtcGDhyoTz755Jz3rlq1Srm5ubLZbJKkhoYGxcTEyOFwSJKcTqc8Ho8kyePxKCkpSZLkcDgUExOjhoaGjiwFAIwSSH8GAIQGvRsAAhe0M0C6d++u+vp6JSQk+K/V19crKirqrPdt3rxZ8fHxSk1N1fbt2zt0TmVlZSorK5MkFRYWyuVydej7d5SIiAjLzq2tTKpFkux2u2JiYoI+jst19v+ddBTTPh/T6gmW9vZnAEDo0LsBIHBBC0BGjBihp59+WnfddZeSk5P15Zdf6sUXX9SVV1551vv++c9/atOmTaqqqtKRI0d06NAhrVq1So2NjWpubpbD4ZDH45HT6ZR0bDVIbW2tkpKS1NzcrMbGRsXFxZ32vbOzs5Wdne1/7Xa7O67gDuRyuSw7t7YyqRZJ8nqT1djYGPRx3O7OWcVk2udj5XpSUlJCPQW/9vZnAEDo0LsBIHBBC0Buv/12vfTSS5o9e7aOHj2qyMhIjR07VnfcccdZ75s0aZImTZokSdq+fbv+8Ic/qKCgQE899ZQ2btyoUaNGaf369crIyJAkXX755Vq/fr3S0tK0ceNGDR482L91BgBwqvb2ZwBA6NC7ASBwQQtAIiMjNW3aNP3gBz9QQ0OD4uLiAgomJk+erMWLF+u1117ThRdeqPHjx0uSxo8fr6VLlyo/P1+xsbG67777OqoEADBSR/RnHlUOAJ2ro3+3BoCuKGgBiCQ1NjZqz549Onz4cIvrl156aavuHzx4sAYPHixJSk5O1uOPP37K90RGRmrmzJmBTxYAupBA+/PxR5UfOnRI0olHlY8aNUovvPCCysvLNWHChBaPKn/nnXe0evVqzZgxo8PrAYCuINDeDQBdXdACkPXr12vFihWKjo5WZGSk/7rNZtPSpUuDNSwA4BwC7c/HH1V+0003ae3atf5Hld97772Sjj2q/I033tCECRO0adMm3XLLLZKOPap85cqV8vl8/L+WANBGgfZuVu4BQBADkFdffVUzZ87U8OHDgzUEAKAdAu3Pxx9Vfnz1R3seVd6jR48OqAQAuo5Aezcr9wAgiAGI1+vV0KFDg/X2AIB2CqQ/B+tR5TymPDRMqofHlFubafWEQiC9m5V7AHBM0AKQG264Qb/97W/13e9+V3a7PVjDAADaKJD+HKxHlfOY8tAwqR4eU25tVq7HSo8pP5tAejcr9wDgmKAFIH/84x+1f/9+/f73v1dsbGyLrz377LPBGhYAcA6B9GceVQ4AodHe3s3KPbNWH5lWD6v3rMukWk4WtAAkPz8/WG8NAAhAMPozjyoHgOBqb+9m5Z51Vx+1h2n1sHrPuqxcSyAr94IWgAwaNChYbw0ACEBH9WceVQ4Anae9vZuVewBwQtAO5zh69KheffVV3XPPPfr+978vSfqf//kfrVu3LlhDAgBagf4MAOGno3v35MmTtXbtWuXn5+vAgQMtVu4dOHBA+fn5Wrt2rSZPntxhNQBAqAUtAHnxxRf12WefqaCgwJ8a9+vXT3/5y1+CNSQAoBXozwAQfjqidw8ePFizZs2SdGLl3pIlSzRz5kx169ZN0omVe0uWLNHjjz+u5OTkji8GAEIkaFtg/v73v6u4uFjR0dH+Jn3yCdMAgNCgPwNA+KF3A0DggrYCJCIiQl6vt8W1r7766rSHKAEAOg/9GQDCD70bAAIXtABk5MiRWrp0qWpqaiRJdXV1WrFiha666qpgDQkAaAX6MwCEH3o3AAQuaAHIpEmT1KtXL91///1qbGxUQUGBEhMTdcsttwRrSABAK9CfASD80LsBIHBBOwMkIiJCU6ZM0ZQpU/zL83iEFgCEHv0ZAMIPvRsAAhe0AOTLL79s8frQoUP+/+Y0aQAIHfozAIQfejcABC5oAUhBQcEZv/ab3/wmWMMCAM6B/gwA4YfeDQCBC1oA8u+NeP/+/XrjjTd0ySWXBGtIAEAr0J8BIPzQuwEgcEE7BPXfJSQkaMqUKfr1r3/dWUMCAFqB/gwA4YfeDQBt12kBiCTt2bNHX3/9dWcOCQBoBfozAIQfejcAtE3QtsDMmTOnxcnUX3/9tT777DPdfPPNwRoSANAK9GcACD/0bgAIXNACkPHjx7d4HR0drQsuuEDf+MY3gjUkAKAV6M8AEH7o3QAQuKAFIGPHjg3WWwMAAkB/BoDwQ+8GgMB12lNgzuS2224L1hQAAKdBfwaA8EPvBoDABS0A+eKLL/T+++9r4MCBcrlccrvd2rVrl0aMGKHIyMhgDQsAOAf6MwCEH3o3AAQuaAGIJN17770aOXKk//X777+v9957T3l5eWe978iRI5o7d66amprU3NyskSNH6tZbb1VNTY0WL16shoYGpaamKj8/XxERETp69KiWLl2q3bt3Ky4uTvfdd5969eoVzNIAIKy1tz8DAEKH3g0AgQnaY3Crqqp0xRVXtLiWkZGhqqqqc97brVs3zZ07VwsXLtQvf/lLbd26VTt37tQrr7yiiRMnasmSJerevbvKy8slSeXl5erevbuWLFmiiRMnavXq1UGpCQBMEEh/BgCEBr0bAAIXtACkd+/eWrduXYtrf/nLX9S7d+9z3muz2RQdHS1Jam5uVnNzs2w2m7Zv3+5PvceOHavKykpJ0qZNm/wHQ40cOVIffvihfD5fB1YDAOYIpD8DAEKD3g0AgQvaFpgf//jHevLJJ/X73/9eTqdTHo9HDodD999/f6vu93q9euihh7R37179x3/8h5KTkxUTEyOHwyFJ/veUJI/Ho6SkJEmSw+FQTEyMGhoa1KNHj+AUBwBhLND+DADofPRuAAhc0AKQCy+8UE8//bSqq6tVV1enhIQEpaWlKSKidUPa7XYtXLhQBw8e1JNPPqk9e/YEPKeysjKVlZVJkgoLC+VyuQJ+z2CIiIiw7NzayqRapGM/lzExMUEfx+WKCvoYknmfj2n1BEug/RkA0Pno3QAQuE7rmIMGDdLhw4fV1NTk397SGt27d9fgwYO1c+dONTY2qrm5WQ6HQx6PR06nU9Kx1SC1tbVKSkpSc3OzGhsbFRcXd8p7ZWdnKzs72//a7XYHXlgQHD/Z2wQm1SJJXm+yGhsbgz6O290Q9DEk8z4fK9eTkpIS6imcUVv6M4dUA4A1tPd3awDoyoJ2Bsinn36qe++9V88//7yeffZZSdJHH33k/++z+eqrr3Tw4EFJx37Z3rZtm/r06aPBgwdr48aNkqT169crIyNDknT55Zdr/fr1kqSNGzdq8ODBstlsQagKAMJfIP2ZQ6oBIDQC6d0AgGOCFoD86le/0m233abFixf7l+YNGjRIO3bsOOe9dXV1+vnPf64HHnhADz/8sIYMGaLLL79ckydP1tq1a5Wfn68DBw5o/PjxkqTx48frwIEDys/P19q1azV58uRglQUAYS+Q/swh1QAQGu3t3UeOHNHDDz+sBx98UDNnztTrr78uSaqpqdHs2bOVn5+voqIiNTU1SZKOHj2qoqIi5efna/bs2aqpqQluYQDQiYK2Bebzzz/X6NGjW1yLjo7WkSNHznnvBRdcoF/+8penXE9OTtbjjz9+yvXIyEjNnDmz/ZMFgC4kkP4scUg1AIRCe3v38ZV70dHRampq0pw5czRs2DCtXbtWEydO1KhRo/TCCy+ovLxcEyZMaLFy75133tHq1as1Y8aMYJYGAJ0maAFIz549tXv3bg0YMMB/bdeuXTyqCwBCLND+zCHV1pxbe5hUD4dUW5tp9YRCe3v32Vbu3XvvvZKOrdx74403NGHCBG3atEm33HKLpGMr91auXCmfz8f2cgBGCFoActttt6mwsFDXXnutmpqatGbNGv31r3/Vj370o2ANCQBohY7qzxxSHf5MqodDqq3NyvVY+ZDqkwXSu1m5BwDHBC0AufzyyzV79my99dZbGjRokPbt26cHHnhAqampwRoSANAKgfTnr776Sg6HQ927d/cfUn3DDTf4D6keNWrUaQ+pTktL45BqAAhAIL2blXvWnFt7mFYPq/esy6RaThaUAMTr9eree+/VU089pWnTpgVjCABAOwTan+vq6rRs2TJ5vV75fD5debbFZdYAACAASURBVOWVuvzyy9W3b18tXrxYr732mi688MIWh1QvXbpU+fn5io2N1X333dfRJQGA8Trqd2tW7oU/0+ph9Z51WbmWQFbuBSUAsdvtstvtOnr0qLp16xaMIQAA7RBof+aQagDofIH0blbuAcAJQdsCc91116moqEg33nijnE5ni8aZnJwcrGEBAOdAfwaA8NPe3s3KPQA4ocMDkP379yshIUErV66UJG3btu2U7/nNb37T0cMCAM6B/gwA4SfQ3s3KPQA4ocMDkHvvvVcvvviivxEvXLhQDz74YEcPAwBoI/ozAIQfejcAdBx7R7+hz+dr8fqjjz7q6CEAAO1AfwaA8EPvBoCO0+EBCIckAYA10Z8BIPzQuwGg43T4Fpjm5mZ9+OGH/tder7fFa0m69NJLO3pYAMA50J8BIPzQuwGg43R4ABIfH69nn33W/zo2NrbFa5vNpqVLl3b0sACAc6A/A0D4oXcDQMfp8ABk2bJlHf2WAIAOQH8GgPBD7waAjtPhZ4AAAAAAAABYDQEIAAAAAAAwHgEIAAAAAAAwHgEIAAAAAAAwHgEIAAAAAAAwHgEIAAAAAAAwHgEIAAAAAAAwHgEIAAAAAAAwHgEIAAAAAAAwHgEIAAAAAAAwHgEIAAAAAAAwXkSoJ3A6brdby5Yt0/79+2Wz2ZSdna3rrrtOBw4cUFFRkfbt26eePXtqxowZio2Nlc/nU0lJiaqqqhQVFaW8vDylpqaGugwAAAAAAGARllwB4nA4dOedd6qoqEgLFizQn//8Z33++ecqLS1Venq6iouLlZ6ertLSUklSVVWV9u7dq+LiYk2fPl3Lly8PcQUAAAAAAMBKLBmAJCYm+ldwnHfeeerTp488Ho8qKyuVlZUlScrKylJlZaUkadOmTRozZoxsNpvS0tJ08OBB1dXVhWz+AAAAAADAWiwZgJyspqZGH3/8sQYOHKj6+nolJiZKkhISElRfXy9J8ng8crlc/nuSkpLk8XhCMl8AAAAAAGA9ljwD5LjDhw9r0aJFmjJlimJiYlp8zWazyWazten9ysrKVFZWJkkqLCxsEZpYSUREhGXn1lYm1SJJdrv9lJ/FYHC5ooI+hmTe52NaPVbEGU0AAAAIV5YNQJqamrRo0SKNHj1aI0aMkCTFx8errq5OiYmJqqurU48ePSRJTqdTbrfbf29tba2cTucp75mdna3s7Gz/65PvsRKXy2XZubWVSbVIktebrMbGxqCP43Y3BH0MybzPx8r1pKSkhHoKHeL4GU2pqak6dOiQZs2apSFDhmj9+vVKT09XTk6OSktLVVpaqtzc3BZnNFVXV2v58uV67LHHQl0GAHQZBNcAcIIlt8D4fD4999xz6tOnj66//nr/9YyMDFVUVEiSKioqlJmZ6b++YcMG+Xw+7dy5UzExMf6tMgCAjsMZTQAQXni4AACcYMkA5J///Kc2bNigDz/8UA8++KAefPBBbdmyRTk5Odq2bZsKCgr0wQcfKCcnR5I0fPhw9erVSwUFBXr++ec1bdq0EFcAAObjjCYAsD6CawA4wZJbYC6++GK9/vrrp/3anDlzTrlms9kIPQCgE3FGkxlMqoczmqzNtHrCVSDBNaurAZjAkgEIAMC6OKPJmnNrD5Pq4Ywma7NyPaac0XQuBNdmMK0ewmvrMqmWkxGAAABa7VxnNOXk5JxyRtO6des0atQoVVdXc0YTAIQAwbU159YeptVDeG1dVq4lkODakmeAAACsiTOaACC88HABADiBFSAAgFbjjCYACC/Hg+vzzz9fDz74oCTpjjvuUE5OjoqKilReXu5/DK50LLjesmWLCgoKFBkZqby8vFBOHwA6FAEIAAAAYCiCawA4gS0wAAAAAADAeAQgAAAAAADAeAQgAAAAAADAeAQgAAAAAADAeAQgAAAAAADAeAQgAAAAAADAeAQgAAAAAADAeAQgAAAAAADAeAQgAAAAAADAeAQgAAAAAADAeAQgAAAAAADAeAQgAAAAAADAeAQgAAAAAADAeAQgAAAAAADAeAQgAAAAAADAeAQgAAAAAADAeAQgAAAAAADAeAQgAAAAAADAeAQgAAAAAADAeAQgAAAAAADAeBGhnsDpPPPMM9qyZYvi4+O1aNEiSdKBAwdUVFSkffv2qWfPnpoxY4ZiY2Pl8/lUUlKiqqoqRUVFKS8vT6mpqSGuAAAAAAAAWIklV4CMHTtWs2fPbnGttLRU6enpKi4uVnp6ukpLSyVJVVVV2rt3r4qLizV9+nQtX748FFMGgC7hmWee0bRp03T//ff7rx04cEDz589XQUGB5s+frwMHDkiSfD6fVq5cqfz8fD3wwAPavXt3qKYNAAAAWDMAGTRokGJjY1tcq6ysVFZWliQpKytLlZWVkqRNmzZpzJgxstlsSktL08GDB1VXV9fpcwaAroCAGgDCD+E1ABxjyS0wp1NfX6/ExERJUkJCgurr6yVJHo9HLpfL/31JSUnyeDz+7z1ZWVmZysrKJEmFhYUt7rOSiIgIy86trUyqRZLsdrtiYmKCPo7LFRX0MSTzPh/T6rGiQYMGqaampsW1yspKzZs3T9KxgHrevHnKzc09Y0B9uv4MAAiesWPH6lvf+paWLVvmv3Y8vM7JyVFpaalKS0uVm5vbIryurq7W8uXL9dhjj4Vw9gDQccImADmZzWaTzWZr833Z2dnKzs72v3a73R05rQ7jcrksO7e2MqkWSfJ6k9XY2Bj0cdzuhqCPIZn3+Vi5npSUlFBPIWg6IqAGAAQP4TUAHBM2AUh8fLy/+dbV1alHjx6SJKfT2eIfPLW1tXI6naGaJgB0ae0NqFmhFxom1cMKPWszrR4TEF4D6IrCJgDJyMhQRUWFcnJyVFFRoczMTP/1devWadSoUaqurlZMTAwNGgA6UUcE1KzQCw2T6mGFnrVZuR6TV+i1VnvCa4Lr0DCtHsJr6zKplpNZMgBZvHixPvroIzU0NOjHP/6xbr31VuXk5KioqEjl5eX+x+BK0vDhw7VlyxYVFBQoMjJSeXl5IZ49AHQtBNQAEH4CDa8JrkPDtHoIr63LyrUEElxbMgC57777Tnt9zpw5p1yz2WyaNm1asKcEABABNQCYgvAaQFdkyQAEAGBNBNQAEH4IrwHgGAIQAAAAwGCE1wBwjD3UEwAAAAAAAAg2AhAAAAAAAGA8AhAAAAAAAGA8AhAAAAAAAGA8AhAAAAAAAGA8AhAAAAAAAGA8AhAAAAAAAGA8AhAAAAAAAGC8iFBPAOgIixbFdco4MTGdMgwAAAAAoIOxAgQAAAAAABiPAAQAAAAAABiPLTCABXXWlp7HH++UYQAAAAAg5FgBAgAAAAAAjMcKEAAAEFSdsaqNQ6oBAMC5sAIEAAAAAAAYjxUgAAAArcQZTQAQfujdOI4VIAAAAAAAwHisAAEAAAAA+HXWignOb0JnYwUIAAAAAAAwHgEIAAAAAAAwHgEIAAAAAAAwHgEIAAAAAAAwnjGHoG7dulUlJSXyer265pprlJOTE+opAQBEfwaAcETvBmAiIwIQr9erFStW6Gc/+5mSkpL08MMPKyMjQ3379g311ABLmz/focbG4J/yff/9DUEfA9ZEfwaA8EPvBmAqIwKQXbt2qXfv3kpOTpYkXXXVVaqsrKRJW0Bn/QMb1tZ5j1Ij0LEa+rO10aMBnA6927ro20BgjAhAPB6PkpKS/K+TkpJUXV0dwhkFxqTGxrO9ga6N/tw+hGww7WfNtHpMZ1LvNun3aonfra3OpF5nUi0nMyIAaa2ysjKVlZVJkgoLC5WSkhLiGZ3e/PmSZE6jNqsWiXqsrjPqMe3PLPToz/+uc37G+PvG6vhZazvTfgasi74dStRjbWb0OlP7thFPgXE6naqtrfW/rq2tldPpPOX7srOzVVhYqMLCws6cXpvNmjUr1FPoMCbVIlGP1ZlWjwnoz9ZmUj0m1SJRD0KrNb2bvh0a1GNtJtVjUi0nMyIAGTBggL744gvV1NSoqalJ7777rjIyMkI9LQDo8ujPABB+6N0ATGXEFhiHw6GpU6dqwYIF8nq9GjdunPr16xfqaQFAl0d/BoDwQ+8GYCrHvHnz5oV6Eh3hG9/4hr797W/ruuuu0yWXXBLq6QQsNTU11FPoMCbVIlGP1ZlWjwnoz9ZmUj0m1SJRD0LLpN5t2s8e9VibSfWYVMtxNp/P5wv1JAAAAAAAAILJiDNAAAAAAAAAzsaIM0BM9Yc//EEvv/yyli9frh49eoR6Ou328ssva/PmzYqIiFBycrLy8vLUvXv3UE+rzbZu3aqSkhJ5vV5dc801ysnJCfWU2sXtdmvZsmXav3+/bDabsrOzdd1114V6WgHzer2aNWuWnE6nsadWw1pM6NH0Z+sxsUfTn2EVJvRtyYzeTd+2PlN7NwGIRbndbm3btk0ulyvUUwnYkCFDNGnSJDkcDr3yyitas2aNcnNzQz2tNvF6vVqxYoV+9rOfKSkpSQ8//LAyMjLUt2/fUE+tzRwOh+68806lpqbq0KFDmjVrloYMGRKWtZzsT3/6k/r06aNDhw6FeiroAkzp0fRn6zGxR9OfYQWm9G0p/Hs3fTs8mNq72QJjUS+++KImT54sm80W6qkEbOjQoXI4HJKktLQ0eTyeEM+o7Xbt2qXevXsrOTlZERERuuqqq1RZWRnqabVLYmKi/0Cj8847T3369AnLz+RktbW12rJli6655ppQTwVdhCk9mv5sPab1aPozrMKUvi2Ff++mb1ufyb2bAMSCKisr5XQ61b9//1BPpcOVl5dr2LBhoZ5Gm3k8HiUlJflfJyUlhX1jk6Samhp9/PHHGjhwYKinEpBVq1YpNzfXiF9qYH2m9mj6s/WY0KPpz7ACU/u2FJ69m75tfSb3brbAhMj8+fO1f//+U67ffvvtWrNmjX72s5+FYFbtd7Z6MjMzJUm/+93v5HA4NHr06M6eHk7j8OHDWrRokaZMmaKYmJhQT6fdNm/erPj4eKWmpmr79u2hng4MYVKPpj+HJxN6NP0Zncmkvi3Ru8ORCX1bMr938xhci/n000/1i1/8QlFRUZKOLT9KTEzU448/roSEhBDPrv3Wr1+vv/71r5ozZ46/tnCyc+dOvfHGG3rkkUckSWvWrJEk3XjjjaGcVrs1NTXpiSee0NChQ3X99deHejoB+fWvf60NGzbI4XDoyJEjOnTokK644goVFBSEemowkIk9mv5sPab0aPozrMDEvi2Fd++mb1ub8b3bB0vLy8vz1dfXh3oaAamqqvLdd999YV1HU1OT7+677/Z9+eWXvqNHj/oeeOAB36effhrqabWL1+v1LVmyxFdSUhLqqXS4Dz/80Pf444+HehroQsK9R9OfrcfUHk1/hlWEe9/2+cK/d9O3w4eJvZstMAi6FStWqKmpSfPnz5ckXXTRRZo+fXqIZ9U2DodDU6dO1YIFC+T1ejVu3Dj169cv1NNql3/+85/asGGDzj//fD344IOSpDvuuEOXXXZZiGcGoLPRn62HHg3gXMK9d9O3EUpsgQEAAAAAAMbjKTAAAAAAAMB4BCAAAAAAAMB4BCAAAAAAAMB4BCAAAAAAAMB4BCAAAAAAAMB4BCDQCy+8oDfffNP/+i9/+Yt++MMf6s4771RDQ4N27NihgoIC3Xnnnfr73/8ewpmab968eXrrrbdCPY0Ot337dv34xz8O9TSAsEN/tg76M4DWoG9bB30bpxMR6gkguO6++27t379fDodDdrtdffv21ZgxY5SdnS27/Vj+dfJzw5uamvTiiy9qwYIF6t+/vyTp9ddf17e+9S1dd911oSghbLz++uvau3evCgoKQj0Vy7v77rv1ox/9SEOGDAn1VICQoT93Hvpz69GfgTOjb3ce+nbr0bfbhgCkC3jooYc0ZMgQNTY26qOPPlJJSYl27dqlvLy8U763vr5eR48eVb9+/fzX9u3bp759+7Zr7ObmZjkcjnbP3SQ+n08+n8//F6QV8XkBnYv+bA30ZwCtRd+2Bvo22osApAuJiYlRRkaGEhIS9Mgjj+j666/X+eefr2XLlikpKUljxozRQw89JEmaMmWKBg4cKLfbrZqaGj3xxBOy2+1auXKljh49qhdffFFVVVWy2WwaN26cbr31Vtntdq1fv15vvfWWBgwYoA0bNmjChAn67ne/q1dffVXvvfeempqalJmZqSlTpigyMlLbt2/XkiVLNHHiRP3Xf/2X7Ha77rjjDo0bN06SdOTIEb322mvauHGjDh48qPPPP1//7//9P0VGRmrnzp166aWX9Pnnn6tnz56aMmWKBg8e3Ko/C7fbrVWrVukf//iHfD6fRo0apR/84Afyer1as2aN3nrrLR05ckTDhg3T1KlTFRMTo5qaGt1zzz3Ky8vTb37zGx05ckQTJ07UTTfdpK1bt2rNmjWSpMrKSvXu3VsLFy7UvHnz9M1vflMfffSRdu/erUWLFqm+vl6rVq3Snj17lJKSoilTpuib3/zmWefr8XiUn5+v559/XrGxsZKkjz/+WI8++qief/55ud1uPfvss/rXv/6liIgIXXrppZoxY8Y5/xza+nl99dVXeuaZZ7Rjxw7ZbDb169dP8+bNk91u16233qri4mL17t1bkvw/V7fffnuLMZcsWSK32+3/mbr55pt1ww03tOpzA0xFfz6B/nwM/RmwNvr2CfTtY+jb4YEApAsaOHCgnE6nduzYofPPP99/PSUlRYsWLdI999yjVatW+RPLf19WtXjxYsXHx6u4uFhff/21CgsLlZSUpGuvvVaSVF1drauuukq/+tWv1NzcrNWrV+vLL7/UwoUL5XA49PTTT+vNN9/UpEmTJEn79+9XY2OjnnvuOW3btk1PPfWUMjMzFRsb62/Ejz76qBISElRdXS2bzSaPx6PCwkLdc889GjZsmD788EMtWrRIixcvVo8ePVRaWqodO3Zo1qxZp9Tv9Xr1xBNPaPDgwVq2bJnsdrt2794t6VjjWr9+vebOnav4+HgtXbpUK1asUH5+vv/+HTt26Omnn9aePXs0e/ZsXXHFFRo2bJhuvPHG0y7V27Bhg2bPnq2UlBQ1NDTo4Ycf1l133aVRo0bpvffeU2FhoYqLixUXF3fGz8zpdCotLU0bN25Udna2JOlvf/ubRowYoYiICL322msaOnSo5s6dq6amJn89rdGWz2vt2rVyOp1avny5/16bzdbqsSQpPz9fO3bsYKkecBr0Z/rzyejPgPXRt+nbJ6NvW5911wwhqJxOpw4cONDm+/bv36+qqipNmTJF0dHRio+P18SJE/Xuu+/6vycxMVHf/va35XA41K1bN7311lv6/ve/r9jYWJ133nm66aab9M477/i/3+Fw6Oabb1ZERIQuu+wyRUdHa8+ePfJ6vfrv//5vTZkyRU6nU3a7Xd/85jfVrVs3bdiwQcOHD9dll10mu92uIUOGaMCAAdqyZYskKScn57RNWpJ27dolj8ejO++8U9HR0YqMjNTFF18s6Vjzu/7665WcnKzo6GhNmjRJ7777rpqbm/3333LLLYqMjFT//v11wQUX6JNPPjnrn9nYsWPVr18/ORwObdu2Tb1799aYMWPkcDh09dVXKyUlRZs3bz7nn/3VV1/t/3Pz+Xx69913dfXVV0uSIiIitG/fPtXV1bWopzXa8nk5HA7t379fbrdbERERuuSSS9rcqAGcHf2Z/nwc/RkID/Rt+vZx9G3rYwVIF+XxePxLvtrC7Xarubm5xQFPPp9PSUlJ/tcul8v/31999ZW+/vrrFk3T5/PJ6/X6X8fFxbXYHxcVFaXDhw+roaFBR48e9S/9+vd5bNy4sUWDa25ubtVSPbfbrZ49e552T15dXZ169uzZopbm5mbV19f7ryUkJJwy17M5+c/G4/G0eH9J6tmzpzwezznnPWLECK1cuVJ1dXX64osvZLPZdMkll0iScnNz9dprr2n27Nnq3r27rr/+eo0fP/6c73m8xuPO9Xl95zvf0RtvvKFHH31UkpSdna2cnJxWjQOgdejP9OeTazyO/gxYF32bvn1yjcfRt62JAKQLOp7UtiXNPC4pKUkRERFasWJFqw71iYuLU2RkpJ566ik5nc42jRUXF6du3bpp7969/pOzT57H6NGj2/UIKJfL5f8L599rSExM1L59+/yv3W63HA6H4uPjVVtbe9b3PVNie/J1p9Op999/v8XX3W63hg0bds55x8bGaujQoXr33Xf1f//3f7rqqqv8752QkOD/s9ixY4fmz5+vQYMGnfYvubM51+d13nnn6Xvf+56+973v6dNPP9UvfvELDRgwQOnp6YqKitLXX3/t/979+/e3+EsKwLnRn+nPZ0J/BqyJvk3fPhP6tjWxBaYLaWxs1ObNm/X0009r9OjRLfYptlZiYqKGDh2ql156SY2NjfJ6vdq7d68++uij036/3W7XNddco1WrVvnTXo/Ho61bt55zLLvdrnHjxumll16Sx+OR1+vVzp07dfToUY0ePVqbN2/W1q1b5fV6deTIEW3fvv2czVQ6tlczMTFRq1ev1uHDh3XkyBHt2LFDkjRq1Cj98Y9/VE1NjQ4fPqxXX31VV155Zav+UoqPj9e+fftapPD/bvjw4friiy/0t7/9Tc3NzXr33Xf1+eef67LLLjvn+0vHlutt2LBBGzdu9C/Tk6T33nvPX3v37t0lnfkvjrM51+e1efNm7d27Vz6fTzExMbLb7f5x+vfvr7/97W/yer3aunXrGX8mpGN/sdTU1LR5foCp6M/H0J/PjP4MWAt9+xj69pnRt62JFSBdwBNPPCGHwyGbzaa+fftq4sSJmjBhQrvf75577tHq1as1c+ZMHTp0SMnJyWc9bXjy5Ml688039cgjj6ihoUFOp1PXXnttq9LZ733ve/r1r3+thx9+WIcPH1b//v31yCOPyOVy6ac//aleeeUVPf3007Lb7Ro4cKB++MMfSpJ+97vfaceOHZo9e/Yp72m32/XQQw9p5cqVysvLk81m06hRo3TxxRdr3Lhxqqur09y5c3XkyBENHTpUU6dObdWfy5VXXqm3335bP/jBD9SrVy898cQTp3xPXFycZs2apZKSEv3qV79S7969NWvWLPXo0aNVY2RkZOi5556Ty+Vqkd7/7//+r1atWqXGxkYlJCTorrvuUnJysiRp5syZuvHGGzV69OhWjXG2z+uLL77QypUr9dVXX6l79+6aMGGCLr30UknHTjhftmyZ/vznPyszM1OZmZlnHCMnJ0crV67UK6+8optuuknf+c53WjU3wDT055boz2dHfwZCj77dEn377Ojb1mPz+Xy+UE8CAAAAAAAgmNgCAwAAAAAAjEcAAgAAAAAAjEcAAgAAAAAAjEcAAgAAAAAAjEcAAgAAAAAAjEcAAgAAAAAAjEcAAgAAAAAAjEcAAgAAAAAAjEcAAgAAAAAAjEcAAgAAAAAAjEcAAgAAAAAAjEcAAgAAAAAAjEcAAgAAAAAAjEcAAgAAAAAAjEcAAgAAAAAAjEcAAgAAAAAAjEcAAgAAAAAAjEcAAgAAAAAAjEcAAgAAAAAAjEcAAgAAAAAAjEcAAgAAAAAAjEcAAgAAAAAAjEcAAgAAAAAAjEcAAgAAAAAAjEcAAgAAAAAAjEcAAgAAAAAAjEcAAgAAAAAAjEcAAgAAAAAAjEcAAgAAAAAAjEcAAgAAAAAAjEcAAgAAAAAAjEcAAgAAAAAAjEcAAgAAAAAAjEcAAgAAAAAAjEcAAgAAAAAAjEcAAgAAAAAAjEcAAgAAAAAAjEcAAgAAAAAAjEcAAgAAAAAAjEcAAgAAAAAAjEcAAgAAAAAAjEcAAgAAAAAAjEcAAgAAAAAAjEcAAgAAAAAAjEcAAgAAAAAAjEcAAgAAAAAAjEcAAgAAAAAAjEcAAgAAAAAAjEcAAgAAAAAAjEcAAgAAAAAAjEcAAgAAAAAAjEcAAgAAAAAAjEcAAgAAAAAAjEcAAgAAAAAAjEcAAgAAAAAAjEcAAgAAAAAAjEcAAgAAAAAAjEcAAgAAAAAAjEcAAgAAAAAAjEcAAgAAAAAAjEcAAgAAAAAAjEcAAgAAAAAAjEcAAgAAAAAAjEcAAgAAAAAAjEcAAgAAAAAAjEcAAgAAAAAAjEcAAgAAAAAAjEcAAvx/9u48rKpy7//4ZwMyi0yCoTmgWWk4FJppiifJShtoNM3KymNmiZpZ5snhZAMdMzwOlWbRoI1anI6VHTkm+tiEgmlaSpmZT5oiiAOOcP/+8Md+3IKKbDasvXq/rovraq+91rrv797wCb/ca20AAAAAgO3RAAEAAAAAALZHAwQAAAAAANgeDRAAAAAAAGB7NEAAAAAAAIDt0QABAAAAAAC2RwMEAAAAAADYHg0QAAAAAABgezRAAAAAAACA7dEAAQAAAAAAtkcDBAAAAAAA2B4NEAAAAAAAYHs0QAAAAAAAgO3RAAEAAAAAALZHAwS1rmfPnho8eHCtnGfSpElq1aqV22PZ1apVq3TOOefowIEDNX7uY8eO6d5771VUVJQcDoeWLVtW42PUlWeffVY333xzXU8DqDJy1xocDofza//+/XU9HUh655131KlTJxlj6noqgAty2xrIbetxN7dpgFTixG/0yr6aN2/u3Pe9996Tr6+vbr311grnGTRo0GnPc88997g911OF2pYtW+RwOPQ///M/bo9hd82bN9dTTz1V19OoE6NGjdKjjz6qkJCQ0+7ncDg0b968szr3woUL9fbbb+vf//63tm/frq5du1bYZ926dbrzzjvVvHlzBQYGqkWLFho5cqT27Nnjst/TTz+t7t27KywsTA6HQ9u2bXN5fs+ePRo5cqTatm2rkJAQNWrUSDfffLN+/PFHl/0KCgp0//3369xzz1VQUJA6d+5coTHTvHnzSn9e27Zt69xnxIgRWr58OT9fNYjc/XP5M+fuzJkztX37dmfuemsOnkn5z+KJ73NV53iqn+NjmzZy6wAAIABJREFUx4459zlw4IDGjh2r+Ph4BQYGKiEhQQsWLHA5z+eff67LLrtM0dHRCgwMVMuWLfXEE0/oyJEjzn1uv/12lZSUaP78+VWuDceR238u5Pb2Sn9fLisrU69evSr8rrx161bdf//9Ou+88xQUFKQmTZronnvu0f/+7/+6HN+zZ88K3/NNmjRx2acquf3WW2/pkksuUUREhIKCgnThhRfqhRdeOGOTYPPmzbrlllsUExOjkJAQdezYUe++++5Zz/Gjjz7SNddco0aNGp3y3w1lZWV68skn1apVKwUFBalp06ZKTU11+UPs66+/XmkOZGVlOfdxN7dpgFRi+/btzq+FCxdKknJzc53bcnJynPvOnj1bjz32mBYtWqSdO3e6nOef//yny7nKv0aMGKGAgADdf//9tVoXcKKcnBzl5ORo0KBBHjl/fn6+GjdurK5du6pRo0by9/evsE9ubq5CQ0M1d+5cbdiwQbNnz9Ynn3yi/v37u+x3+PBhXX/99frb3/5W6Vjbt2/XL7/8oieffFK5ubn65JNPVFJSoiuuuEJFRUWSJGOMbrzxRq1evVrvvfee1q5dq969e+vqq6/W999/7zxXTk6Oy89rfn6+goKCdPvttzv3CQ4OVv/+/TVt2rSaeKkgchd/Hg0aNHD+gih5bw6ezuuvv65169YpLi7urOdYrnv37hV+jv38/JzPDxkyRB988IFmz56t9evXa8iQIerfv7/+85//OPcJCwvTiBEjtGzZMm3cuFFTp07VnDlz9Nhjjzn3cTgcuu+++8jzaiC38Wdxcm6f6Mknn6y0MbJx40YdOHBA06ZN0/fff693331X69ev19VXX63S0lKXfQcMGODyvZ+Xl+d8rqq5HRMTo/Hjx+vLL7/U+vXrNXbsWI0fP17Tp08/bW3XXXedCgoK9Nlnn2ndunW66aabNGDAAH355ZdVnqMk7d+/X507d9bLL798yrGmTp2q559/Xs8995x++OEHvfLKK1qwYIEefvhhl/18fX0r5EGPHj2cz7ud2wan9cUXXxhJ5rfffqvw3KZNm0xAQIApKCgwV199tUlLSzvj+RYuXGh8fHzMvHnzamR+SUlJ5r777quw/ZdffjGSzIoVK5zbfvzxR9OnTx8TEhJiQkJCzLXXXmvy8/Odz2dkZBhfX1+X8/z2229Gkvniiy+MMcYcOXLEjBo1yjRu3Nj4+/ubRo0amX79+rkc884775j27dubgIAA06xZMzNq1Cizf//+CnN+8sknTWxsrImIiDB33nmn2bdvn3OfsrIyM2XKFNOiRQtTr149Ex8fb9LT009b+8GDB83QoUNNWFiYCQ8PN0OHDjVjx441LVu2PO1r2KxZMzN58mSXx+PHjzepqakmIiLCxMTEmJEjR5qjR4+6HDdz5kxz4YUXGn9/f9OwYUNz0003OZ/bu3evGTJkiImOjjb+/v7mkksuMZ9//rnz+fL3Z/78+aZ3794mKCjInH/++WbZsmVm27Zt5pprrjHBwcHmwgsvNMuXL3cZNz8/39x0002mQYMGJjw83Fx55ZVm7dq1p62xMiNGjDBXXnlllfaVZN566y2Xx7NmzTIDBw40oaGhpnHjxuaZZ55xPp+UlGQkOb+aNWtW5XktXLjQOBwOU1xcXOG50/08nqygoMBIMh9//LEx5vjrJsl89dVXLvu1a9fO3HXXXac8z5w5c4yfn5/5/fffXbYvXbrU+Pn5mb1791alLJwFcpfctWvunpylp+ItOViZ9evXm9jYWLNp06YK73NV5miMMXfffbfp1avXKY85ePCg8fPzM++8847L9uuvv9706NHjtOONHDnSdOjQwWXb5s2bjSTzww8/nPZYnBq5TW7/GXP7v//9rzn33HOdOXamfF+9erWR5DKPU31vnlhHdXLbGGNSUlJMSkrKKZ8vKiqqkL/GGBMZGWmmTZtW5Tme7FSvxQ033ODy/htjzMMPP+ySyZX9fFXGndxmBYgb5syZo759+yoqKkqDBg3SK6+8ctplRnl5ebrzzjs1btw43XHHHbU4U+ngwYPq3bu3Dh06pOzsbGVnZ2v//v26+uqrXZaCnsmMGTP0/vvva968ecrPz9fHH3+sLl26OJ9//fXX9cADD2j06NHasGGD3nzzTWVlZWno0KEu51mwYIEKCwu1bNkyvfvuu1q0aJGee+455/Mvvviixo8fr7Fjx2r9+vUaM2aMxo4dq1dfffWUc3v88ce1cOFCvfnmm/rqq68UEhKiWbNmncWr5FrnOeeco2+++UYzZszQzJkz9cYbbzifnzhxoh577DENGzZM69at0+LFi3XxxRc7n7/33nv1+eefa968eVqzZo26deuma6+9tsIy3/Hjx+uBBx7QmjVrdOGFF+r222/X3Xffrb/+9a/Ky8tTmzZtNGDAAB09elSS9Mcff+jyyy9XTEyMVqxYoa+//lrnn3++evbsqV27djnP63A4NGnSpNPWmJ2drc6dO1fr9ZGkv//97+rRo4fWrFmjxx9/XOPGjdN///tfSdKHH36o0aNHq3nz5hX+CnQme/bskb+/v8tf+qqjuLhYkpxd+UOHDkmSAgMDXfYLCgrS8uXLT3me2bNn67rrrtM555zjsr1z584qLS1l2WwtI3fJXW/O3arylhw8WUlJiW677TZNmTJF5513XrXmWO7bb79Vo0aN1KJFC918881av36987mjR4+qtLS00jq+/vpr53t3sh9//FGfffaZ/vKXv7hsb9GihWJiYvTFF19Uac44O+Q2uW3H3P7jjz9011136c0331RUVFSVjim/tDE4ONhl+0cffaSGDRuqdevWGjRokLZu3ep8rjq5bYzRt99+q5UrV1bIuxOFh4froosu0vz581VcXKyysjK9++67KikpUa9evao8x6q6/PLLtXLlSq1du1bS8ctvPv30U/Xt29dlv9LSUsXHx+ucc85Rz549tWjRogrnciu3z7pl8idzqo724cOHTcOGDZ0ds4MHD5oGDRqYJUuWVHqe7du3myZNmphbbrnFlJWV1dj8kpKSjJ+fn7NLXf4VHBzs0tGeO3euCQoKMrt27XIeu2PHDhMYGGjeeOMNY0zVOtqpqanmL3/5yylraNasmXnppZdctmVnZxtJprCw0Dnndu3auewzdOhQ06VLF+fjJk2amDFjxrjsM3LkSNOiRQuX2su7kfv37zcBAQFmzpw5Lsdccskl1epoX3fddS77XH311eb22293jhUYGGimTJlS6fnKO7WffPKJy/aOHTuae+65xxjzfx3tE7v03377rZFknn/+eee23NxcI8msW7fOGGPMxIkTzaWXXupy3rKysgod//PPP9/MmDHjtHU3aNDAvPjii6fdp5wqWQEyfPhwl30uuOACM3bsWOfjiRMnnvG1P1n5z8no0aMrfb6qf/k8duyYueqqq0ynTp1MaWmpMcaYo0ePmhYtWpg+ffqYP/74wxw9etRkZGQYh8Nh/P39Kz1PTk6OkWQWL15c6fMRERFm5syZZ1EhqoLcJXeNsWfunpyllfG2HDzRoEGDzJ133ul8fKYVIJXN0Rhj3n77bfPhhx+atWvXmiVLlpirrrrKBAUFOd8TY4y5/PLLTWJiovnll19MaWmp+fTTT01gYKCRVGGlSvlf4SWZoUOHuoxVrmPHjuaRRx45Y42oHLlNbhvz58nt0tJS06tXLzN+/PjT7neiffv2mfbt25ubb77ZZfvLL79sPvnkE7Nu3TqzaNEi07lzZ9OwYUOzfft2Y8zZ5faePXtMSEiIqVevnvH19TVPPvnkaWsz5vj3d48ePYwk4+fnZ8LCwiq8J2eaY1VeM2OOvweTJ082vr6+xs/Pz0gyf/3rX11+Tr788kvz2muvmdWrV5svv/zSjBo1ykgyc+fOrXC+6uY2K0Cq6aOPPpKPj4+uueYaSce7cv369dPs2bMr7Hvo0CHdcMMNio2N1RtvvFHp9WMnWrFihUJDQ51fzzzzzGn3v/HGG7VmzRqXr08//dRln/Xr16tNmzaKjo52bouNjdX555/v8leVM7nnnnu0bt06tWrVSkOHDtXChQudHfFdu3bp119/1cMPP+wy//LX6KeffnKep3379i7njYuL0x9//CFJ2rt3r7Zt2+ZyrZckJSUlacuWLSopKakwr59//lmHDx+ucKPNyy+/vMq1nahDhw6nnN/69et16NAh9e7du9JjN2zYIEkV5t+jR48Kr/WJr0OjRo0kSe3atauwrfx62ZycHK1evdrl9a1fv762bNmi/Px853E//vijHnroodPWePDgwQrd5LZt2zrPe6ab3Z3uNaqOnTt3qnfv3mrXrp2effbZap+ntLRUd911lzZt2qQPP/xQPj7HY87Pz08fffSRdu7cqdjYWAUGBmrOnDm64447nPucbPbs2WrRosUp3+vAwEAdPHiw2nPF2SF3yV1vz90z8cYcLDd//nytXLlSL774oltzlKT+/fvrxhtvVEJCgpKTk/Xxxx+rcePGLteyz5s3T+Hh4YqPj5e/v78eeeQR500uT65lxYoVys3N1VtvvaWPP/5Yf//73yvMhzz3DHKb3LZjbj/zzDM6fPiwJk6cWKX9Dxw4oOuvv15+fn4VVufcf//96tOnjy666CL17dtXixcv1pEjR/Taa69JOrvcrl+/vtasWaNVq1Zp5syZeuGFF067GsgYowcffFC+vr5atmyZcnJyNGLECN1+++1avXp1ledYVQsWLNCLL76ojIwM5ebm6oMPPtBnn32mJ554wrnPZZddpnvuuUcXX3yxLrvsMr3wwgu66667XFY+latubru3tvJPbPbs2dq5c6fLPyCNMfL19dXOnTsVExPj3H7vvfdq27ZtysnJqbDkqTKJiYlas2aN83FkZORp9w8LC6vw0VXVWTZb2S8/Jy8j7dChg3755RctWbJEX3zxhUaMGKHx48fr66+/VllZmaTjN7OqbLnViXcLPvmGmA6Hw3m8FdTW/OrVq+cyxqm2lY9dfqfpmTNnVjhXgwYNzmrshg0bqrCw0GXbp59+6nzPT5xHZWryNdq2bZuuvPJKtWrVSgsWLDjj2Kdy5MgR9e/fX999952ys7Mr3KG6ffv2ysnJ0b59+1RSUqLY2FjddtttatmyZYVz7d27V++8846eeOKJU/4SVlhYqIYNG1Zrrjh75C65WxPqMndPx1tzsNySJUv0008/KTw83LmttLRUEydO1FNPPeVcxl2VOZ7M399fiYmJ2rJli3Nbs2bNtGTJEpWUlGjPnj2Ki4vTo48+qrCwsAq53KJFC0nHm/y+vr4aOHBghU9AI889g9wmt2uC1XI7KytLX375pQICAly233333XrqqadcLuEpLi5W3759dfToUWVlZZ1x/IiICF144YUueVfV3Pbx8XF+j7dr105FRUX629/+pvvuu6/Ssb744gstXLhQ27dvdzaROnTooJUrVyo9Pf2UnwBZ2RyrYvTo0RoxYoTuvPNOSVJCQoIOHjyoe++9V+PHj6/wh9lyXbt21TvvvFNhe3VzmxUg1ZCfn69ly5bpww8/dOkif/fdd2rWrJkyMjKc+06ePFn/+te/9PHHH1e4G/qpBAUFqVWrVs6vMwV6VbRt21YbNmxQQUGBc9sff/yhjRs36qKLLpJ0/O7BpaWlLn/Fz83NrXCu0NBQ3XjjjZo+fbpWrVqlH374QdnZ2YqNjdW5556rjRs3usy//OtU39QnCwsLU5MmTSpc15adna0WLVpU+j/Fli1byt/fv8Idi1euXFmlMc9GmzZtFBgY6HKn+ROVr5w4ef7Lly93vtbVlZiYqPXr16tJkyYVXt+zDYCLL764Qoe9WbNmzvM1a9bMrblW1c8//6zu3burTZs2+vDDDyv8z6SqSkpKdP3112vDhg1avny5zj333FPuW79+fcXGxmr37t36/PPPdfPNN1fYZ968eTpy5MgpP34vPz9fhw8fVmJiYrXmi7ND7pK7dsjdU/HWHDzR008/rbVr17r8fMbFxenBBx90+Uvi2cyxXGlpqb777rtK9w0ODlZcXJyOHDmiBQsWKCUl5ZSrWaTj/zAqKytzuZ9DSUmJfv75Z/K8hpHb5LZdczsjI0Pfffedy/e1dDwH//3vfzv3KygocDa5lixZ4tIgPpX9+/dr06ZNleZdVXL7RGVlZS7N55OVf/ysr6+vy3ZfX9/T3qfndHM8nQMHDlTI5/KxTjdebm5uhbHcyW1WgFTDnDlzFB8fr5SUlArP3XrrrXrllVf06KOP6sMPP9TEiRM1ffp0NW7cWDt27HDZ19/fv0bCuioGDBigJ598Uv369dOUKVNkjNEjjzyixo0bq1+/fpKO39Sxfv36Gjt2rMaNG6eff/5ZTz75pMt5pkyZori4OHXo0EHBwcF655135Ovrq9atW0s6/oN/3333KSIiQjfccIPq1aunH374QZ999lmlyx1P5fHHH9fo0aN13nnnqWfPnlq6dKleeumlU96kKSQkREOHDtUTTzzhXKr46quvauPGjS5/XagJoaGhGj16tCZNmqSgoCBdeeWVOnjwoD799FM9/vjjatmypW699VYNGzZMs2fPVrNmzfTSSy/p+++/19tvv+3W2A899JBeffVV3XDDDXriiSd07rnnatu2bfrss8/Ut29f55LGCy64QA899NBpl/X16dNHzz//vFvzcdeGDRuUnJysdu3aafr06dq9e7fzuYYNGzoDeevWrSosLHQuCy3/5aRp06aKjIzUvn371KdPH23btk3/+te/5OPj4/x5a9CggYKCgiRJCxcudC6Z3rhxo8aMGaPGjRtrzJgxFeY2e/ZspaSkKDY2ttK5L1u2TM2aNTvjpUKoGeQuuWuH3K2MN+fgiRo3bqzGjRu7bKtXr55iYmKcOVmVOe7fv18TJkzQzTffrMaNG2vnzp2aMmWKNm/e7PLXyCVLlujIkSO68MIL9dtvv2nChAk6ePCgy2UQU6dO1QUXXKDWrVvL4XBo1apVevTRR3X99dcrIiLCud/KlSsVEBCgpKSkM9aJqiO3yW275nb5qrKTNWnSxHkD6O3bt6tXr14KCgrSG2+8oZKSEudlSZGRkfL399fPP/+sN998U3379lVsbKx+/fVXTZo0ScYYl8ZzVXJ74sSJ6t69u+Lj43X06FEtX75czz333Gkb2F27dlXDhg01aNAgTZ48WWFhYfrwww+VlZWl999/X5KqPMfCwkKXG6Nu3bpVa9asUWRkpJo2bSpJSklJ0fPPP69WrVqpY8eO2rhxo5544gldc801zv9HTZo0SZ07d1br1q11+PBhLViwQHPnzq3wcb5u5fZZ3zXkT+bkmzqV38zpxJs9nmjNmjVGklmyZInp2bOny0eBnvyVlJTk9vzO9mO9rrnmGueNn/r27evysV7GGLNo0SJzwQUXmMDAQNO1a1ezePFil5s6vfzyy+biiy829evXNyEhISYxMdFkZma6nOOjjz4yXbp0MUFBQaZ+/fqmffv25u9///tp5zx58mSXj0otKysz//jHP0zz5s2Nn5+fadGixRk/1qukpMQMGTLEhIWFmbCwMPPXv/612h/rdfJN2+677z6X96usrMxMmzbNtG7d2tSrV8/ExMSYW265xfl8cXFxlT7W68T35+QbaBlz/GZg5d9P5bZs2WIGDBjgPHfTpk3NHXfcYTZv3uzcR5KZOHHiaeveu3evqV+/vlm5cuVp9ys/38k3QT355ka9evUyd999t/NxZTdBzcjIMJLML7/84tznVD8f5fsYc/wjESvbJyMjwxjzfz+np9vHmOMfxda0aVNTr14906hRIzN06FCXG52V++qrr4wkk5WVdcrXpEePHi4f/YuaQ+6Su8bYM3cry05vzcHy8U587U528vtalTmWlJSYq666ysTGxpp69eqZuLg4c91115nVq1e7nHvBggWmVatWxt/f30RGRpr+/fubLVu2uOzz7LPPmjZt2pjg4GATGhpq2rZta55++mlz4MABl/3uuusuM2TIkFPWgTMjt8ltY/48uV2V/cp/563sq3zuW7duNT179jTR0dGmXr16pmnTpmbAgAEVvt+qktsjR440LVu2NIGBgSY8PNxcfPHFZubMmebYsWPOfSrL7by8PNOnTx8THR1tQkJCTPv27c1rr73mfL6qczxVvSf+22D//v3mkUceMS1atDABAQHm3HPPNQ888IDZvXu3c59Ro0aZ5s2bm8DAQBMREWEuu+wys2DBggqvtzu57TDmNOtNANja5MmTtXr1amVmZtbKeBMmTNDChQv13Xffuf3xjnXp22+/1fXXX69NmzYpLCysrqcDwEs4HA699dZbGjhwYF1PxW2vvfaaHn/8cW3cuLFKy7qt6rffflO7du20Zs2aWrv0E4D3ILetx93c5h4gwJ/YmDFjdMkllzivAfS0RYsWadasWV7d/JCOXw88b948mh8AztrgwYMVGhpaa7nrKYsWLdJzzz3n1b9ES9KWLVv0yiuv0PwAcErktrW4m9usAAEAAKgFJ368ZcuWLc/4ySoAgLpFbtsPDRAAAAAAAGB7XAIDAAAAAABsjwYIAAAAAACwPRogAAAAAADA9rz7oxjc9Pvvv9f1FCoVHR2tgoKCup5GjbBTLRL1WJ2V64mLi6vrKXgV8rl22KkeO9UiUU9tIp9rBrldO6jH2uxUj5VrcSe3WQECAAAAAABsjwYIAAAAAACwPRogAAAAAADA9miAAAAAAAAA26MBAgAAAAAAbI8GCAAAAAAAsD0aIAAAAAAAwPZogAAAAAAAANujAQIAAAAAAGzPr64nAHiTyZN9VVJS3+PjjB69z+NjAICdkM9A5X7//Xelp6c7H+/cuVO33XabkpKSlJ6erl27dqlhw4YaNWqUQkNDZYxRRkaG8vLyFBAQoGHDhik+Pr4OK4Cdkd2obawAAQAAAGwqLi5OU6ZM0ZQpU/Tcc8/J399fnTt3VmZmphISEjR9+nQlJCQoMzNTkpSXl6cdO3Zo+vTpGjJkiObOnVvHFQBAzaEBAgAAAPwJrFu3To0aNVLDhg2Vk5OjpKQkSVJSUpJycnIkSatWrVKPHj3kcDjUunVrHThwQEVFRXU5bQCoMZa8BIalegBgTeQzAHivlStXqlu3bpKk4uJiRURESJLCw8NVXFwsSSosLFR0dLTzmKioKBUWFjr3BQBvZskGSPlSPUkqKyvT/fff77JULyUlRZmZmcrMzNTAgQNdlurl5+dr7ty5euaZZ+q4CgCwH/IZALzTsWPHtHr1ag0YMKDCcw6HQw6H46zOl5WVpaysLElSWlqaS9PESvz8/Cw7t+qwWz0+Pj4KDg72+DjR0QEeH0Oy1/tjp1pOZMkGyIlOXqo3adIkSceX6k2aNEkDBw485VI9OtUA4DnkMwB4j7y8PLVo0ULh4eGSpAYNGjjzuKioSGFhYZKkyMhIFRQUOI/bvXu3IiMjK5wvOTlZycnJzscnHmMl0dHRlp1bdditnrKyWJWUlHh8nIKC2rkJqp3eHyvXEhcXV+1jLd8AqcmlenSqa5+dapHoUlud3eqxOvLZ+9mpHvLZ2uxWjzc6MbMlKTExUdnZ2UpJSVF2drY6derk3L548WJ169ZN+fn5Cg4OpmkNwDYs3QCp6aV6dKprn51qkehSW52V63GnU21F5LM92Kke8tnarFyP3fK5MocOHdLatWs1ZMgQ57aUlBSlp6dr6dKlzns3SVLHjh2Vm5ur1NRU+fv7a9iwYXU1bQCocZZugNT0Uj0AQM0gnwHAewQGBuq1115z2Va/fn1NmDChwr4Oh0ODBw+urakBQK2y9MfgnmqpnqQKS/WWL18uY4w2bdrEUj0A8DDyGQAAAN7Gsg2Q8qV6l156qXNbSkqK1q5dq9TUVK1bt04pKSmSji/Vi4mJUWpqqmbPnk3XGgA8iHwGAACAN7LsJTAs1QMAayKfAQAA4I0suwIEAAAAAACgptAAAQAAAAAAtkcDBAAAAAAA2B4NEAAAAAAAYHs0QAAAAAAAgO3RAAEAAAAAALZHAwQAAAAAANgeDRAAAAAAAGB7NEAAAAAAAIDt0QABAAAAAAC2RwMEAAAAAADYHg0QAAAAAABgezRAAAAAAACA7dEAAQAAAAAAtkcDBAAAAAAA2B4NEAAAAAAAYHs0QAAAAAAAgO3RAAEAAAAAALZHAwQAAAAAANieX11PAAAAAIDnHDhwQC+//LJ+++03ORwOPfDAA4qLi1N6erp27dqlhg0batSoUQoNDZUxRhkZGcrLy1NAQICGDRum+Pj4ui4BAGoEK0AAAAAAG8vIyFCHDh00bdo0TZkyRY0bN1ZmZqYSEhI0ffp0JSQkKDMzU5KUl5enHTt2aPr06RoyZIjmzp1bx7MHgJpj2RUgdKoBwJrIZwDwHiUlJfrhhx/04IMPSpL8/Pzk5+ennJwcTZo0SZKUlJSkSZMmaeDAgVq1apV69Oghh8Oh1q1b68CBAyoqKlJEREQdVgEANcOyDZDyTvXo0aN17NgxHT58WB999JESEhKUkpKizMxMZWZmauDAgS6d6vz8fM2dO1fPPPNMXZcAALZEPgOA99i5c6fCwsL04osv6tdff1V8fLwGDRqk4uJiZ1MjPDxcxcXFkqTCwkJFR0c7j4+KilJhYSENEAC2YMkGCJ1qALAm8hkAvEtpaal++eUX3XvvvTrvvPOUkZHhvNylnMPhkMPhOKvzZmVlKSsrS5KUlpbm0jSxEj8/P8vOrTrsVo+Pj4+Cg4M9Pk50dIDHx5Ds9f7YqZYTWbIBQqcaAKyJfAYA7xIVFaWoqCidd955kqQuXbooMzNTDRo0cDaki4qKFBYWJkmKjIxUQUGB8/jdu3crMjKywnmTk5OVnJzsfHziMVYSHR1t2blVh93qKSuLVUlJicfHKSjY5/ExJHu9P1auJS4urtrHWrIBQqfaPt2J+gXlAAAgAElEQVQ2O9Ui0aW2OrvVY0Xks72+x+xUD/lsbXarx5uEh4crKipKv//+u+Li4rRu3To1adJETZo0UXZ2tlJSUpSdna1OnTpJkhITE7V48WJ169ZN+fn5Cg4OpmkNwDYs2QChU23dbtvZslMtEl1qq7NyPe50qq2EfLbu91h12Kke8tnarFyPXfL5dO69915Nnz5dx44dU0xMjIYNGyZjjNLT07V06VLnzaslqWPHjsrNzVVqaqr8/f01bNiwOp49ANQcSzZA6FQDgDWRzwDgfZo3b660tLQK2ydMmFBhm8Ph0ODBg2tjWgBQ6yzZAJHoVAOAVZHPAAAA8EaWbYDQqQYAayKfAQAA4I186noCAAAAAAAAnkYDBAAAAAAA2B4NEAAAAAAAYHs0QAAAAAAAgO3RAAEAAAAAALZHAwQAAAAAANgeDRAAAAAAAGB7NEAAAAAAAIDt0QABAAAAAAC2RwMEAAAAAADYHg0QAAAAAABgezRAAAAAAACA7dEAAQAAAAAAtkcDBAAAAAAA2B4NEAAAAAAAYHs0QAAAAAAAgO3RAAEAAAAAALZHAwQAAAAAANgeDRAAAAAAAGB7NEAAAAAAAIDt+dX1BAAAAAB4zoMPPqjAwED5+PjI19dXaWlp2r9/v9LT07Vr1y41bNhQo0aNUmhoqIwxysjIUF5engICAjRs2DDFx8fXdQkAUCMs2wAhqAHAmshnAPA+EydOVFhYmPNxZmamEhISlJKSoszMTGVmZmrgwIHKy8vTjh07NH36dOXn52vu3Ll65pln6nDmAFBzLH0JzMSJEzVlyhSlpaVJ+r+gnj59uhISEpSZmSlJLkE9ZMgQzZ07ty6nDQC2Rz4DgHfLyclRUlKSJCkpKUk5OTmSpFWrVqlHjx5yOBxq3bq1Dhw4oKKiorqcKgDUGEs3QE5GUAOANZHPAGBtTz/9tB577DFlZWVJkoqLixURESFJCg8PV3FxsSSpsLBQ0dHRzuOioqJUWFhY+xMGAA+w7CUw0vGglqQrr7xSycnJZx3U5fsCAGoW+QwA3mPy5MmKjIxUcXGxnnrqKcXFxbk873A45HA4zuqcWVlZzmZKWlqaS9ZbiZ+fn2XnVh12q8fHx0fBwcEeHyc6OsDjY0j2en/sVMuJLNsAIaitObezZadaJELa6uxWj1WRz9acW3XYqR7y2drsVo+3iYyMlCQ1aNBAnTp10k8//aQGDRqoqKhIERERKioqct4fJDIyUgUFBc5jd+/e7Tz+RMnJyUpOTnY+PvEYK4mOjrbs3KrDbvWUlcWqpKTE4+MUFOzz+BiSvd4fK9dy8u+eZ8OyDRCC2ppzO1t2qkUipK3OyvW4E9RWQz5bc27VYad6yGdrs3I9dsrnyhw6dEjGGAUFBenQoUNau3atbrnlFiUmJio7O1spKSnKzs5Wp06dJEmJiYlavHixunXrpvz8fAUHB7NqD4BtWPIeIIcOHdLBgwed/7127Vo1bdrUGdSSKgT18uXLZYzRpk2bCGoA8BDyGQC8S3FxsSZMmKAxY8Zo3Lhxuvjii9WhQwelpKRo7dq1Sk1N1bp165SSkiJJ6tixo2JiYpSamqrZs2dr8ODBdVwBANQcS64AKS4u1vPPPy9JKi0t1eWXX64OHTqoZcuWSk9P19KlS50fsygdD+rc3FylpqbK399fw4YNq8vpA4Btkc8A4F1iY2M1ZcqUCtvr16+vCRMmVNjucDhoegCwLUs2QAhqALAm8hkAAADeypKXwAAAAAAAANQkGiAAAAAAAMD2aIAAAAAAAADbowECAAAAAABsz2MNkJycHJWWlnrq9ACAaiKfAcD7kN0A4D6PNUDef/99DRkyRK+++qry8/M9NQwA4CyRzwDgfchuAHCfxz4Gd8qUKdqyZYtWrFihqVOnKiAgQD169FD37t0VExPjqWEBAGdAPgOA9yG7AcB9HmuASFLz5s3VvHlzDRw4UOvWrdNbb72l999/XxdccIGSk5PVrVs3+fhwGxIAqG3kMwB4H7IbANzj0QaIJO3YsUMrVqzQihUr5HA41K9fP0VHR2vx4sX65ptv9Mgjj3h6CgCASpDPAOB9yG4AqD6PNUAWL16sFStWaPv27erataseeughtW7d2vn8pZdeqsGDB3tqeADAKZDPAOB9yG4AcJ/HGiBr1qzRtddeq8TERNWrV6/C8wEBAXSoAaAOkM8A4H3IbgBwn8caIA8//LB8fHzk5/d/Qxw7dkzGGGdot2/f3lPDAwBOgXwGAO9DdgOA+zx2l6Snn35amzdvdtm2efNmPf30054aEgBQBeQzAHgfshsA3OexBsivv/6q8847z2Vbq1at9Ouvv3pqSABAFZDPAOB9yG4AcJ/HGiAhISEqLi522VZcXKyAgABPDQkAqALyGQC8D9kNAO7zWAPk0ksv1T//+U9t3bpVhw8f1tatWzVz5kxddtllnhoSAFAF5DMAeB+yGwDc57GboN5+++168803NW7cOB09elT+/v7q2bOn+vfv76khAQBVQD4DgPchuwHAfR5rgPj7+2vw4MG67777tG/fPtWvX18Oh8NTwwEAqoh8BgDvQ3YDgPs81gCRpJKSEv3+++86dOiQy/aLLrrIk8MCAM6AfAYA70N2A4B7PNYAWbZsmV599VUFBgbK39/fud3hcGjmzJmeGhYAcAbkMwB4H7IbANznsQbIO++8o4cfflgdO3b01BAAgGognwHA+5DdAOA+jzVAysrK1L59e0+dHgBQTeQzAHgfd7O7rKxMY8eOVWRkpMaOHaudO3dq2rRp2rdvn+Lj4zV8+HD5+fnp6NGjmjlzpjZv3qz69etr5MiRiomJqcFKAKDueOxjcG+44QYtXLhQZWVl1Tq+rKxMjz76qNLS0iRJO3fu1Lhx4zR8+HClp6fr2LFjkqSjR48qPT1dw4cP17hx47Rz584aqwEA7MjdfJbIaACobe5m96effqrGjRs7H8+bN099+/bVjBkzFBISoqVLl0qSli5dqpCQEM2YMUN9+/bV/Pnza2T+AGAFHlsB8sknn2jPnj36+OOPFRoa6vLcSy+9dMbjy0P64MGDkv4vpLt166Y5c+Zo6dKl6t27t0tIr1y5UvPnz9eoUaM8UhMA2IG7+SyR0QBQ29zJ7t27dys3N1c33XSTFi1aJGOM1q9frxEjRkiSevbsqQ8++EC9e/fWqlWrdOutt0qSunTpotdee03GGD5xBoAteKwBMnz48GofS0gDgOe4k88SGQ0AdcGd7H799dc1cOBAZ9N63759Cg4Olq+vryQpMjJShYWFkqTCwkJFRUVJknx9fRUcHKx9+/YpLCzM5ZxZWVnKysqSJKWlpSk6Orra8/MkPz8/y86tOuxWj4+Pj4KDgz0+TnR0gMfHkOz1/tiplhN5rAHSpk2bah/riZCWCOq6YKdaJELa6uxWj6e4k88Sv0hbdW7VYad6yGdrs1s9daG62b169Wo1aNBA8fHxWr9+fY3NJzk5WcnJyc7HBQUFNXbumhQdHW3ZuVWH3eopK4tVSUmJx8cpKNjn8TEke70/Vq4lLi6u2sd6rAFy9OhRLViwQCtXrtS+ffv0xhtv6LvvvtP27dt19dVXn/I4T4W0RFDXBTvVIhHSVmfletwJ6ppW3XyW+EXayt9j1WGneshna7NyPVbK59OpbnZv3LhRq1atUl5eno4cOaKDBw/q9ddfV0lJiUpLS+Xr66vCwkJFRkZKOt7E3r17t6KiolRaWqqSkhLVr1+/tsoEAI/y2E1Q33jjDf32229KTU11LnU+99xz9Z///Oe0x5WH9IMPPqhp06bp+++/dwlpSZWGtCRCGgCqoLr5LJHRAFBXqpvdAwYM0Msvv6xZs2Zp5MiRuuiii5Samqq2bdvq66+/liQtW7ZMiYmJkqRLLrlEy5YtkyR9/fXXatu2LZctArANjzVAvv32W6Wmpqp169bO0DxxWfSpENIA4FnVzWeJjAaAuuJOdlfmjjvu0KJFizR8+HDt379fV1xxhSTpiiuu0P79+zV8+HAtWrRId9xxR43VAAB1zWOXwPj5+VX4mK69e/dW+y9/d9xxh6ZNm6Z3331XLVq0cAnpmTNnavjw4QoNDdXIkSPdnjsA2FlN57NERgOAp9VEdrdt21Zt27aVJMXGxurZZ5+tsI+/v78efvhh9yYLABblsQZIly5dNHPmTA0aNEiSVFRUpNdff11du3at8jkIaQCoeTWRzxIZDQC1qaayGwD+zDx2CcyAAQMUExOj0aNHq6SkRKmpqYqIiHB+HCIAoG6QzwDgfchuAHCfRy+BGTRokAYNGuRcnsd13wBQ98hnAPA+ZDcAuM9jDZA//vjD5fHBgwed/x0bG+upYQEAZ0A+A4D3IbsBwH0ea4Ckpqae8rn33nvPU8MCAM6AfAYA70N2A4D7PNYAOTmI9+zZow8++EAXXnihp4YEAFQB+QwA3ofsBgD3eewmqCcLDw/XoEGD9Pbbb9fWkACAKiCfAcD7kN0AcPZqrQEiSb///rsOHz5cm0MCAKqAfAYA70N2A8DZ8dglMBMmTHC5M/Xhw4f122+/6ZZbbvHUkACAKiCfAcD7kN0A4D6PNUCuuOIKl8eBgYFq1qyZzjnnHE8NCQCoAvIZALwP2Q0A7vNYA6Rnz56eOjUAwA3kMwB4H7IbANxXa58Ccyr9+vXz1BQAAJUgnwHA+5DdAOA+jzVAtm/frm+++UatWrVSdHS0CgoK9NNPP+nSSy+Vv7+/p4YFAJwB+QwA3ofsBgD3eawBIkkjRoxQly5dnI+/+eYbffXVVxo2bJgnhwUAnAH5DADeh+wGAPd47GNw8/Ly1LlzZ5dtiYmJysvL89SQAIAqIJ8BwPuQ3QDgPo81QBo1aqTFixe7bPvPf/6jRo0aeWpIAEAVkM8A4H3IbgBwn8cugRk6dKief/55ffzxx4qMjFRhYaF8fX01evRoTw0JAKgC8hkAvA/ZDQDu81gDpEWLFvrnP/+p/Px8FRUVKTw8XK1bt5afn0dvOwIAOAPyGQC8D9kNAO7z2CUwJ2vTpo2OHTumQ4cO1daQAIAqIJ8BwPuQ3QBw9jzWMt66dauee+451atXT7t371bXrl21YcMGZWdna9SoUZ4aFgBwBuQzAHgfshsA3OexFSCvvPKK+vXrp2nTpjmX5rVp00Y//vijp4YEAFQB+QwA3ofsBgD3eWwFyLZt29S9e3eXbYGBgTpy5IinhgQAVAH5DADep7rZfeTIEU2cOFHHjh1TaWmpunTpottuu007d+7UtGnTtG/fPsXHx2v48OHy8/PT0aNHNXPmTG3evFn169fXyJEjFRMT48nSAKDWeKwB0rBhQ23evFktW7Z0bvvpp5+q9FFdBDUAeA75DADep7rZXa9ePU2cOFGBgYE6duyYJkyYoA4dOmjRokXq27evunXrpjlz5mjp0qXq3bu3li5dqpCQEM2YMUMrV67U/PnzucQGgG147BKYfv36KS0tTe+//76OHTumjz76SC+88IJuv/32Mx5bHtRTpkzRP/7xD61Zs0abNm3SvHnz1LdvX82YMUMhISFaunSpJLkEdd++fTV//nxPlQUAXo98BgDvU93sdjgcCgwMlCSVlpaqtLRUDodD69evV5cuXSRJPXv2VE5OjiRp1apV6tmzpySpS5cu+v7772WM8VxhAFCLPNYAueSSSzRu3Djt3btXbdq00a5du/TII4+offv2ZzyWoAYAzyGfAcD7uJPdZWVlGjNmjAYPHqyEhATFxsYqODhYvr6+kqTIyEgVFhZKkgoLCxUVFSVJ8vX1VXBwsPbt2+e5wgCgFnnkEpiysjKNGDFCL7zwggYPHlztczz22GPasWOHrrrqqmoFdVhYWM0UBAA2QT4DgPdxN7t9fHw0ZcoUHThwQM8//7x+//13t+eUlZWlrKwsSVJaWpqio6PdPqcn+Pn5WXZu1WG3enx8fBQcHOzxcaKjAzw+hmSv98dOtZzIIw0QHx8f+fj46OjRo6pXr161z0FQez871SIR0lZnt3o8gXx2j92+x+xUD/lsbXarp7bVRHZLUkhIiNq2batNmzappKREpaWl8vX1VWFhoSIjIyUdb2Lv3r1bUVFRKi0tVUlJierXr1/hXMnJyUpOTnY+LigoqPa8PCk6Otqyc6sOu9VTVharkpISj49TUFA7q5js9P5YuZa4uLhqH+uxm6D26dNH6enpuvHGGxUZGSmHw+F8LjY2tsrnIai9m51qkQhpq7NyPe4EdU0jn6vPyt9j1WGneshna7NyPVbK59Opbnbv3btXvr6+CgkJ0ZEjR7R27VrdcMMNatu2rb7++mt169ZNy5YtU2JioqTjl9osW7ZMrVu31tdff622bdu6jAUA3qzGGyB79uxReHi4XnvtNUnS2rVrK+zz3nvvnfYcBDUA1DzyGQC8j7vZXVRUpFmzZqmsrEzGGF122WW65JJL1KRJE02bNk3vvvuuWrRooSuuuEKSdMUVV2jmzJkaPny4QkNDNXLkSM8UBgB1oMYbICNGjNAbb7zhDOIpU6ZozJgxZ3UOghoAah75DADex93sbtasmf7xj39U2B4bG6tnn322wnZ/f389/PDD1Z8wAFhYjTdATr67/4YNG876HAQ1ANQ88hkAvE9NZDcA4Lga/xhcljYDgDWRzwDgfchuAKg5Nb4CpLS0VN9//73zcVlZmctjSbroootqelgAwBmQzwDgfchuAKg5Nd4AadCggV566SXn49DQUJfHDodDM2fOrOlhAQBnQD4DgPchuwGg5tR4A2TWrFk1fUoAQA0gnwHA+5DdAFBzavweIAAAAAAAAFZDAwQAAAAAANgeDRAAAAAAAGB7NEAAAAAAAIDt0QABAAAAAAC2RwMEAAAAAADYHg0QAAAAAABgezRAAAAAAACA7dEAAQAAAAAAtkcDBAAAAAAA2B4NEAAAAAAAYHs0QAAAAAAAgO3RAAEAAAAAALZHAwQAAAAAANgeDRAAAAAAAGB7NEAAAAAAAIDt0QABAAAAAAC251fXEwAAAADgGQUFBZo1a5b27Nkjh8Oh5ORk9enTR/v371d6erp27dqlhg0batSoUQoNDZUxRhkZGcrLy1NAQICGDRum+Pj4ui4DAGqEJRsgBDUAWBP5DADexdfXV3feeafi4+N18OBBjR07Vu3atdOyZcuUkJCglJQUZWZmKjMzUwMHDlReXp527Nih6dOnKz8/X3PnztUzzzxT12UAQI2w5CUw5UGdnp6up59+Wp9//rm2bdumzMxMJSQkaPr06UpISFBmZqYkuQT1kCFDNHfu3DquAADsiXwGAO8SERHhbDwHBQWpcePGKiwsVE5OjpKSkiRJSUlJysnJkSStWrVKPXr0kMPhUOvWrXXgwAEVFRXV2fwBoCZZsgFCUAOANZHPAOC9du7cqV9++UWtWrVScXGxIiIiJEnh4eEqLi6WJBUWFio6Otp5TFRUlAoLC+tkvgBQ0yx5CcyJ3Anq8n3LZWVlKSsrS5KUlpbmcoyV+Pn5WXZuZ8tOtUiSj4+PgoODPT5OdHSAx8eQ7Pf+2K0eqyOfvZ+d6iGfrc1u9XijQ4cOaerUqRo0aFCFnxWHwyGHw3FW5yO364bd6iG7rctOtZzI0g2Qmg7q5ORkJScnOx8XFBTUyDxrWnR0tGXndrbsVIsklZXFqqSkxOPjFBTs8/gYkv3eHyvXExcXV9dTqFHksz3YqR7y2dqsXI/d8rkyx44d09SpU9W9e3ddeumlkqQGDRqoqKhIERERKioqUlhYmCQpMjLS5b3avXu3IiMjK5yT3K4bdquH7LYuK9fiTm5b8hIY6fRBLalaQQ0AcB/5DADewxijl19+WY0bN9a1117r3J6YmKjs7GxJUnZ2tjp16uTcvnz5chljtGnTJgUHB1dYtQcA3sqSDRCCGgCsiXwGAO+yceNGLV++XN9//73GjBmjMWPGKDc3VykpKVq7dq1SU1O1bt06paSkSJI6duyomJgYpaamavbs2Ro8eHAdVwAANceSl8CUB3XTpk01ZswYSVL//v2VkpKi9PR0LV261Pkxi9LxoM7NzVVqaqr8/f01bNiwupw+ANgW+QwA3uWCCy7Q+++/X+lzEyZMqLDN4XDQ9ABgW5ZsgBDUAGBN5DMAAAC8lSUvgQEAAAAAAKhJNEAAAAAAAIDt0QABAAAAAAC2RwMEAAAAAADYHg0QAAAAAABgezRAAAAAAACA7dEAAQAAAAAAtkcDBAAAAAAA2B4NEAAAAAAAYHs0QAAAAAAAgO3RAAEAAAAAALZHAwQAAAAAANgeDRAAAAAAAGB7NEAAAAAAAIDt0QABAAAAAAC2RwMEAAAAAADYHg0QAAAAAABgezRAAAAAAACA7dEAAQAAAAAAtkcDBAAAAAAA2B4NEAAAAAAAYHt+dT2Byrz44ovKzc1VgwYNNHXqVEnS/v37lZ6erl27dqlhw4YaNWqUQkNDZYxRRkaG8vLyFBAQoGHDhik+Pr6OKwAAeyKfAcD7kN0AcJwlV4D07NlT48aNc9mWmZmphIQETZ8+XQkJCcrMzJQk5eXlaceOHZo+fbqGDBmiuXPn1sWUAeBPgXwGAO9DdgPAcZZsgLRp00ahoaEu23JycpSUlCRJSkpKUk5OjiRp1apV6tGjhxwOh1q3bq0DBw6oqKio1ucMAH8G5DMAeB+yGwCOs+QlMJUpLi5WRESEJCk8PFzFxcWSpMLCQkVHRzv3i4qKUmFhoXNfAIBnkc8A4H3cze6srCxlZWVJktLS0lyOsRI/Pz/Lzq067FaPj4+PgoODPT5OdHSAx8eQ7PX+2KmWE3lNA+REDodDDofjrI8jqGufnWqRCGmrs1s93oh89i52qod8tja71WM31cnu5ORkJScnOx8XFBTU9LRqRHR0tGXnVh12q6esLFYlJSUeH6egYJ/Hx5Ds9f5YuZa4uLhqH+s1DZAGDRqoqKhIERERKioqUlhYmCQpMjLS5Y3ZvXu3IiMjKz0HQV377FSLREhbnZXrcSeorY589l52qod8tjYr12PnfD6dmshuAPA2lrwHSGUSExOVnZ0tScrOzlanTp2c25cvXy5jjDZt2qTg4GCWVwNALSKfAcD7kN0A/owsuQJk2rRp2rBhg/bt26ehQ4fqtttuU0pKitLT07V06VLnR3VJUseOHZWbm6vU1FT5+/tr2LBhdTx7ALAv8hkAvA/ZDQDHWbIBMnLkyEq3T5gwocI2h8OhwYMHe3pKAACRzwDgjchuADjOay6BAQAAAAAAqC4aIAAAAAAAwPZogAAAAAAAANujAQIAAAAAAGyPBggAAAAAALA9GiAAAAAAAMD2aIAAAAAAAADbowECAAAAAABsjwYIAAAAAACwPRogAAAAAADA9miAAAAAAAAA26MBAgAAAAAAbI8GCAAAAAAAsD0aIAAAAAAAwPZogAAAAAAAANvzq+sJAAAAe5s6tb7HxwgO9vgQAADAy9EAASyoNv6xIEnPPlsrwwAAAMCL1NbvorXVvOZ3a5TjEhgAAAAAAGB7NEAAAAAAAIDtcQkMAABAFbGMGgAA70UDBLZgt+sUAQAAAAA1i0tgAAAAAACA7dlmBciaNWuUkZGhsrIy9erVSykpKXU9JQCAyGcA8EZkNwA7ssUKkLKyMr366qsaN26c0tPTtXLlSm3btq2upwUAf3rkMwB4H7IbgF3ZYgXITz/9pEaNGik2NlaS1LVrV+Xk5KhJkyZ1PDNMnuyrkpLauT8HAOshn4Hqqa3/f44evc/jY8D7kN0A7MoWDZDCwkJFRUU5H0dFRSk/P7/CfllZWcrKypIkpaWlKS4urtbmeLasPLezMXmyJNmtAWKveuzyvVbObvV4O/LZ+mqjnqlTPT7E/2evfK6demrvNbPbz46dVSW7ye26Y6/cluyW3Xb6frNTLeVscQlMVSUnJystLU1paWl1PZXTGjt2bF1PocbYqRaJeqzObvX8mZDPdcNO9dipFol6YH3kdt2gHmuzUz12quVEtmiAREZGavfu3c7Hu3fvVmRkZB3OCAAgkc8A4I3IbgB2ZYsGSMuWLbV9+3bt3LlTx44d05dffqnExMS6nhYA/OmRzwDgfchuAHblO2nSpEl1PQl3+fj4qFGjRpoxY4YWL16s7t27q0uXLnU9LbfEx8fX9RRqjJ1qkajH6uxWj7cjn63PTvXYqRaJelB37Jbddvveox5rs1M9dqqlnMMYY+p6EgAAAAAAAJ5ki0tgAAAAAAAATocGCAAAAAAAsD2/up4ATu3f//633nrrLc2dO1dhYWF1PZ1qe+utt7R69Wr5+fkpNjZWw4YNU0hISF1P66ytWbNGGRkZKisrU69evZSSklLXU6qWgoICzZo1S3v27JHD4VBycrL69OlT19NyW1lZmcaOHavIyEjbfmwXrMUOGU0+W48dM5p8hlXYIbcle2Q3uW19ds1uGiAWVVBQoLVr1yo6Orqup+K2du3aacCAAfL19dX/Y+/Ow6qq9j+Ofw4HAZlHUUDFOUe01CxnpVErtTm1zAbLgatZTg2aZllmGmo5a6XNqd1rZmmmVGYXp8dyQJyyUkNEcUBFYf3+8Oe5nhgEFc9h+349D8/D3mfvvb5rb/juw5e19pk7d64WLFigbt26uTqsYsnNzdXMmTP1wgsvKCwsTEOHDlXjxo0VExPj6tCKzW63q3v37qpatapOnDihIUOGqEGDBqWyL+dbvHixoqOjdeLECVeHgquAVXI0+dn9WDFHk5/hDqySt6XSn7vJ26WDVXM3U2Dc1HvvvaeuXbvKZrO5OpRLFhcXJ7vdLkmqWbOmMjIyXBxR8W3fvl3ly5dXZGSkPD09deONNyo5OdnVYV2UkJAQxxOdy5Ytq+jo6FJ5Tc538OBBrVu3Tu3bt3d1KLhKWCVHk5/dj9VyNPkZ7sIqeVsq/bmbvO3+rJy7KYC4oeTkZD0sF5UAACAASURBVIWGhio2NtbVoVx2y5cvV8OGDV0dRrFlZGQoLCzMsRwWFlbqE5skpaWladeuXapevbqrQ7kkc+bMUbdu3Szxpgbuz6o5mvzsfqyQo8nPcAdWzdtS6czd5G33Z+XczRQYFxk1apQOHz6cZ/0DDzygBQsW6IUXXnBBVBevsP40adJEkjR//nzZ7Xa1bNnySoeHfJw8eVLjxo1Tjx495Ovr6+pwLtratWsVFBSkqlWratOmTa4OBxZhpRxNfi6drJCjyc+4kqyUtyVyd2lkhbwtWT9324wxxtVB4H/27NmjkSNHytvbW9LZ4UchISF67bXXFBwc7OLoLt6KFSu0dOlSvfTSS46+lSbbtm3TZ599pueff16StGDBAklS586dXRnWRTtz5oxef/11xcXFqWPHjq4O55J8+OGHSkpKkt1uV3Z2tk6cOKGmTZsqISHB1aHBgqyYo8nP7scqOZr8DHdgxbwtle7cTd52b5bP3QZurXfv3iYzM9PVYVyS9evXm/79+5fqfpw5c8b06dPH/P333+b06dPm2WefNXv27HF1WBclNzfXTJw40cyePdvVoVx2v/32m3nttddcHQauIqU9R5Of3Y9VczT5Ge6itOdtY0p/7iZvlx5WzN1MgUGJmzlzps6cOaNRo0ZJkmrUqKEnn3zSxVEVj91uV8+ePTV69Gjl5uaqbdu2qlixoqvDuigpKSlKSkpSpUqV9Nxzz0mSHnzwQV177bUujgzAlUZ+dj/kaAAXUtpzN3kbrsQUGAAAAAAAYHl8CgwAAAAAALA8CiAAAAAAAMDyKIAAAAAAAADLowACAAAAAAAsjwIIAAAAAACwPAog0LRp0/T55587lr/99ls98cQT6t69u44ePaqtW7cqISFB3bt313//+18XRmp9I0aM0HfffefqMC67TZs26amnnnJ1GECpQ352H+RnAEVB3nYf5G3kx9PVAaBk9enTR4cPH5bdbpeHh4diYmLUqlUrxcfHy8PjbP3r/M8NP3PmjN577z2NHj1asbGxkqRPP/1Ut956q26//XZXdKHU+PTTT7V//34lJCS4OhS316dPH/Xq1UsNGjRwdSiAy5Cfrxzyc9GRn4GCkbevHPJ20ZG3i4cCyFVg8ODBatCggbKysrR582bNnj1b27dvV+/evfNsm5mZqdOnT6tixYqOdQcOHFBMTMxFtZ2TkyO73X7RsVuJMUbGGMcN0h1xvYAri/zsHsjPAIqKvO0eyNu4WBRAriK+vr5q3LixgoOD9fzzz6tjx46qVKmSJk+erLCwMLVq1UqDBw+WJPXo0UPVq1dXenq60tLS9Prrr8vDw0OzZs3S6dOn9d5772n9+vWy2Wxq27at7rvvPnl4eGjFihX67rvvVK1aNSUlJenmm2/W3XffrY8++kg///yzzpw5oyZNmqhHjx7y8vLSpk2bNHHiRHXo0EFffvmlPDw89OCDD6pt27aSpOzsbH388cdavXq1jh8/rkqVKunFF1+Ul5eXtm3bpvfff19//vmnIiIi1KNHD9WtW7dI5yI9PV1z5szRli1bZIxR8+bN9dhjjyk3N1cLFizQd999p+zsbDVs2FA9e/aUr6+v0tLS1LdvX/Xu3VuffPKJsrOz1aFDB3Xp0kUbNmzQggULJEnJyckqX768xo4dqxEjRqhWrVravHmzdu7cqXHjxikzM1Nz5szR3r17FRUVpR49eqhWrVqFxpuRkaF+/fpp6tSp8vf3lyTt2rVLr7zyiqZOnar09HS9++672r17tzw9PVWvXj0NGDDgguehuNfryJEjeuedd7R161bZbDZVrFhRI0aMkIeHh+677z4lJiaqfPnykuT4uXrggQec2pw4caLS09MdP1P33HOP7rrrriJdN8CqyM//Q34+i/wMuDfy9v+Qt88ib5cOFECuQtWrV1doaKi2bt2qSpUqOdZHRUVp3Lhx6tu3r+bMmeOoWP5zWNWECRMUFBSkxMREnTp1SmPGjFFYWJhuuukmSVJqaqpuvPFGTZ8+XTk5OZo3b57+/vtvjR07Vna7XW+//bY+//xzPfTQQ5Kkw4cPKysrS1OmTNHGjRv11ltvqUmTJvL393ck4ldeeUXBwcFKTU2VzWZTRkaGxowZo759+6phw4b67bffNG7cOE2YMEGBgYFauHChtm7dqiFDhuTpf25url5//XXVrVtXkydPloeHh3bu3CnpbOJasWKFhg8frqCgIE2aNEkzZ85Uv379HPtv3bpVb7/9tvbu3athw4apadOmatiwoTp37pzvUL2kpCQNGzZMUVFROnr0qIYOHapHH31UzZs3188//6wxY8YoMTFRAQEBBV6z0NBQ1axZU6tXr1Z8fLwk6ccff9T1118vT09Pffzxx4qLi9Pw4cN15swZR3+KojjXa9GiRQoNDdWMGTMc+9pstiK3JUn9+vXT1q1bGaoH5IP8TH4+H/kZcH/kbfL2+cjb7s99xwyhRIWGhurYsWPF3u/w4cNav369evToIR8fHwUFBalDhw5atWqVY5uQkBDddtttstvtKlOmjL777js98sgj8vf3V9myZdWlSxf99NNPju3tdrvuueceeXp66tprr5WPj4/27t2r3Nxcff/99+rRo4dCQ0Pl4eGhWrVqqUyZMkpKSlKjRo107bXXysPDQw0aNFC1atW0bt06SVKnTp3yTdKStH37dmVkZKh79+7y8fGRl5eXrrnmGklnk1/Hjh0VGRkpHx8fPfTQQ1q1apVycnIc+997773y8vJSbGysKleurN9//73Qc9amTRtVrFhRdrtdGzduVPny5dWqVSvZ7Xa1aNFCUVFRWrt27QXPfYsWLRznzRijVatWqUWLFpIkT09PHThwQIcOHXLqT1EU53rZ7XYdPnxY6enp8vT0VO3atYudqAEUjvxMfj6H/AyUDuRt8vY55G33xwiQq1RGRoZjyFdxpKenKycnx+kBT8YYhYWFOZbDw8Md3x85ckSnTp1ySprGGOXm5jqWAwICnObHeXt76+TJkzp69KhOnz7tGPr1zzhWr17tlOBycnKKNFQvPT1dERER+c7JO3TokCIiIpz6kpOTo8zMTMe64ODgPLEW5vxzk5GR4XR8SYqIiFBGRsYF477++us1a9YsHTp0SPv27ZPNZlPt2rUlSd26ddPHH3+sYcOGyc/PTx07dlS7du0ueMxzfTznQtfrzjvv1GeffaZXXnlFkhQfH69OnToVqR0ARUN+Jj+f38dzyM+A+yJvk7fP7+M55G33RAHkKnSuUlucauY5YWFh8vT01MyZM4v0UJ+AgAB5eXnprbfeUmhoaLHaCggIUJkyZbR//37Hk7PPj6Nly5YX9RFQ4eHhjhvOP/sQEhKiAwcOOJbT09Nlt9sVFBSkgwcPFnrcgiq2568PDQ3VL7/84vR6enq6GjZseMG4/f39FRcXp1WrVumvv/7SjTfe6Dh2cHCw41xs3bpVo0aNUp06dfK9yRXmQterbNmyevjhh/Xwww9rz549GjlypKpVq6b69evL29tbp06dcmx7+PBhp5sUgAsjP5OfC0J+BtwTeZu8XRDytntiCsxVJCsrS2vXrtXbb7+tli1bOs1TLKqQkBDFxcXp/fffV1ZWlnJzc7V//35t3rw53+09PDzUvn17zZkzx1HtzcjI0IYNGy7YloeHh9q2bav3339fGRkZys3N1bZt23T69Gm1bNlSa9eu1YYNG5Sbm6vs7Gxt2rTpgslUOjtXMyQkRPPmzdPJkyeVnZ2trVu3SpKaN2+ur776SmlpaTp58qQ++ugj3XDDDUW6KQUFBenAgQNOVfh/atSokfbt26cff/xROTk5WrVqlf78809de+21Fzy+dHa4XlJSklavXu0YpidJP//8s6Pvfn5+kgq+cRTmQtdr7dq12r9/v4wx8vX1lYeHh6Od2NhY/fjjj8rNzdWGDRsK/JmQzt5Y0tLSih0fYFXk57PIzwUjPwPuhbx9Fnm7YORt98QIkKvA66+/LrvdLpvNppiYGHXo0EE333zzRR+vb9++mjdvnp555hmdOHFCkZGRhT5tuGvXrvr888/1/PPP6+jRowoNDdVNN91UpOrsww8/rA8//FBDhw7VyZMnFRsbq+eff17h4eEaNGiQ5s6dq7ffflseHh6qXr26nnjiCUnS/PnztXXrVg0bNizPMT08PDR48GDNmjVLvXv3ls1mU/PmzXXNNdeobdu2OnTokIYPH67s7GzFxcWpZ8+eRTovN9xwg3744Qc99thjKleunF5//fU82wQEBGjIkCGaPXu2pk+frvLly2vIkCEKDAwsUhuNGzfWlClTFB4e7lS937Fjh+bMmaOsrCwFBwfr0UcfVWRkpCTpmWeeUefOndWyZcsitVHY9dq3b59mzZqlI0eOyM/PTzfffLPq1asn6ewTzidPnqxvvvlGTZo0UZMmTQpso1OnTpo1a5bmzp2rLl266M477yxSbIDVkJ+dkZ8LR34GXI+87Yy8XTjytvuxGWOMq4MAAAAAAAAoSUyBAQAAAAAAlkcBBAAAAAAAWB4FEAAAAAAAYHkUQAAAAAAAgOVRAAEAAAAAAJZHAQQAAAAAAFgeBRAAAAAAAGB5FEAAAAAAAIDlUQABAAAAAACWRwEEAAAAAABYHgUQAAAAAABgeRRAAAAAAACA5VEAAQAAAAAAlkcBBAAAAAAAWB4FEAAAAAAAYHkUQAAAAAAAgOVRAAEAAAAAAJZHAQQAAAAAAFgeBRAAAAAAAGB5FEAAAAAAAIDlUQABAAAAAACWRwEEAAAAAABYHgUQAAAAAABgeRRAAAAAAACA5VEAAQAAAAAAlkcBBAAAAAAAWB4FEAAAAAAAYHkUQAAAAAAAgOVRAAEAAAAAAJZHAQQAAAAAAFgeBRAAAAAAAGB5FEAAAAAAAIDlUQABAAAAAACWRwEEAAAAAABYHgUQAAAAAABgeRRAAAAAAACA5VEAAQAAAAAAlkcBBAAAAAAAWB4FEAAAAAAAYHkUQAAAAAAAgOVRAAEAAAAAAJZHAQQAAAAAAFgeBRAAAAAAAGB5FEAAAAAAAIDlUQABAAAAAACWRwEEAAAAAABYHgUQAAAAAABgeRRAAAAAAACA5VEAAQAAAAAAlkcBBAAAAAAAWB4FEAAAAAAAYHkUQAAAAAAAgOVRAAEAAAAAAJZHAQQAAAAAAFgeBRAAAAAAAGB5FEAAAAAAAIDlUQABAAAAAACWRwEEAAAAAABYHgUQAAAAAABgeRRAAAAAAACA5VEAAQAAAAAAlkcBBAAAAAAAWB4FEAAAAAAAYHkUQAAAAAAAgOVRAAEAAAAAAJZHAQQAAAAAAFgeBRAAAAAAAGB5FEAAAAAAAIDlUQABAAAAAACWRwEEAAAAAABYHgUQAAAAAABgeRRAAAAAAACA5VEAAQAAAAAAlkcBBAAAAAAAWB4FEAAAAAAAYHkUQAAAAAAAgOVRAAEAAAAAAJZHAQQAAAAAAFgeBRAAAAAAAGB5FEAAAAAAAIDlUQABAAAAAACWRwEEV0SbNm30+OOPX5HjjBgxQtWrV7/ktqzIZrM5vo4dO+bqcEqlM2fOqGfPngoLC5PNZtOKFSvUq1cvDRw40NWhAaXa5bpPlBSbzaa5c+de9uPml1NK0j/7ERsbq1deeaVE2wTgnq7WvOsOJk6cqJiYGHl4eGjEiBEl2tY/r3OPHj0UHx9fom26Mwog/+/8Pwzz+4qNjXVs+8knn8hut+vee+/Nc5wePXoUepxHH330kmMtKFnt3r1bNptNP/744yW3YXVX8xu+SZMmad++ffLz83OsW79+vW655RaFhoYqMDBQzZs319KlS532i42NzfPz3KJFC6dtpk2bpvbt2zveyOf3s5iVlaUBAwaoUqVKKlu2rKpVq6bhw4crJyfHsc2IESPy/f3Zvn37ZT0XF3Nj/eKLL/Thhx/qP//5j/bt26cbb7xRL730kqZMmaKdO3de1vhgLaXpPnPw4EElJCSoSpUq8vb2VkREhFq2bKmPPvrIsU18fLx69OhxyW2VtOrVq5f4m8tLkV9OKUn79u3TPffcU6JtAO6CvOsa7p53XW3v3r3q37+/hg4dqr/++kvPPvtsibY3f/58vfXWWyXaRmlCAeT/7du3z/H1xRdfSJLWrVvnWJecnOzYdurUqRo8eLAWLVqktLQ0p+O8/fbbTsc69/Wvf/1L3t7e6tWr1xXtF/BPQUFBKl++vGw2m6SzBYmbb75ZQUFB+uGHH7RmzRo1bNhQd9xxh3bv3u207+DBg51+rv/97387vZ6VlaV27drpjTfeKLD95557Tp999plmzJihLVu26PXXX9dbb72VZ5/Y2Ng8v0dVqlQpVl9tNluePlyq1NRURUdH68Ybb1T58uXl5eWl6OhotW/fXu+8885lbQvWUpruM3fffbeSkpI0depUbdu2TUuWLNGDDz6ogwcPXvKx4Sy/nFKSypcvLx8fnxJtA3AX5F24o507dyo3N1d33nmnKlSoIH9//xJt79w/OPH/DPL4/vvvjSTzxx9/5Hlt27Ztxtvb26Snp5tbb73VjBkz5oLH++KLL4yHh4eZO3fuZYmvdevW5rHHHsuzfteuXUaS+eGHHxzrtm7dam6//Xbj5+dn/Pz8TMeOHU1qaqrj9dmzZxu73e50nD/++MNIMt9//70xxpjs7GwzYMAAEx0dbby8vEz58uXN/fff77TPRx99ZOLi4oy3t7epXLmyGTBggDl27FiemEeOHGkiIyNNSEiI6d69uzl69Khjm9zcXDN27FhTpUoVU6ZMGVO1alUzfvz4Qvt+4sQJ89RTT5nAwEATHBxsnnrqKTNkyBBTrVq1Qs9h5cqVzahRo5yWX3zxRZOQkGBCQkJMuXLlTP/+/c3p06ed9ps0aZKpXbu28fLyMhEREaZLly6O144cOWKefPJJEx4ebry8vMx1111nvvnmG8fr567PvHnzzM0332zKli1ratWqZVasWGH+/PNPc9tttxlfX19Tu3Ztk5SU5NRuamqq6dKliwkKCjLBwcHmpptuMhs3biy0j/mRZD744AOndevXrzeSnI535MgRI8ksXLiwwHNWmPx+Fs+Ji4szzzzzjNO6Ll26mE6dOjmWhw8ffsFrWBSSzK5duwp9/fzzIclMnjzZdOvWzfj7+5vo6Gjz6quvOl5v3bq1keT4qly5suO1WbNmmfLly19yzLg6uPN95tChQ0aS+c9//lPgNo888ojT78K5e0ZBv/vVqlUzw4cPdyzv3r3b3HLLLcbHx8fExMSYxMTEPPk9OzvbDB8+3MTGxhpvb29Tp04dM2XKFKfjFvd39lxOKMp97Z8kmQkTJpguXboYX19fExUVZSZMmOB0Tm666aY8+7Vt29b07Nkz32MWlFO+/fZb07p1axMSEmICAwNNq1atzC+//JInnsTERHPfffcZX19fU7FiRfPZZ5+Zw4cPm4ceesj4+/ubKlWqmM8//zzPfufnvfNz+/Dhw03NmjXzxPnoo4+adu3aFXp+AHdH3iXvnlOU9/3Z2dlm8ODBJioqypQpU8bUrl3bzJs3r1jnIj/Dhw/P9/zs3LnTdO7c2VSoUMGULVvW1KtXz7z//vtO+7Zu3dr07NnTPP/88yYiIsIEBQWZYcOGmZycHPPyyy+bcuXKmfDwcDNs2LA8+51/nR955BHTvn17Y8zZ3wsPDw+zZ88ep33ee+89ExgY6PT3nFVQAMlHYQny2WefdfzR+/HHH5tq1aqZ3NzcAo+1bt064+vra1544YXLFl9RCyBZWVmmUqVKpl27dmbNmjVmzZo1pk2bNqZatWrm1KlTxpiiFUDGjRtnoqOjzffff29+//1389///tepMDF79mwTHBxs3n//fbNjxw6zcuVKU79+fdOtWzenmIOCgkz//v3Nli1bzDfffGNCQkKczsukSZOMj4+PmTp1qtm2bZt59913jbe3t5kxY0aBfe/fv7+JiIgwCxcuNFu2bDEDBw40AQEBF1UACQ4ONq+99prZtm2b+eSTT4ynp6dT2y+99JLx8/MzEydONCkpKWbt2rXmlVdecbx+zz33mMqVK5slS5aYzZs3m4SEBFOmTBmzZcsWp+tTtWpVs2DBApOSkmI6depkypcvb9q3b2/mz59vUlJSzN13321iYmJMdna2McaY/fv3m8jISPPUU0+ZjRs3mq1bt5q+ffua0NBQk5aW5mhfktONLj/5FUCOHTtmIiMjzYABA0xWVpbJzs42b7zxhgkNDTV///230zmKjIw0oaGhpk6dOqZfv34mPT0933YKK4D06dPH1K5d2+zcudMYc7YAU65cOTN9+nTHNsOHDzfe3t4mOjraREdHm1tvvdX89NNPhfatoP4WtwBSrlw5M23aNLN9+3YzadIkI8ksW7bMGGPMwYMHzcCBA01sbKzZt2+f0/nftGmTkWQ2b95c7Dhx9XHn+8zp06dNQECAefzxxwt843P48GHTsmVLc99995l9+/aZffv2mVOnThXpjXhubq5p1KiRady4sVm9erVZv369iY+PNwEBAXneoNWvX9988803ZufOnebjjz82QUFBTnm5KL+zsbGxZuDAgY44z5w5c8H7Wn4kmZCQEJOYmGhSUlLMhAkTjN1udxSKV61aZWw2myO3GXO2eG2z2czq1avzPWZBOWX+/Pnmk08+MVu3bjW//fabeeyxx0xISIhTzpVkIiMjzZw5c0xqaqp5+umnjY+Pj7n11lvN7NmzTWpqqunbt6/x9fXNs19BBZA//vjD2O12s2LFCsfrR44cMX5+fubjjz8u9PwA7o68S949pyjv+5999lkTGhpqPv30U5OSkmJGjx5tbDabo59FORf5OXr0qPniiy+MJLNu3TrH+dm4caOZOHGi2bBhg9m+fbtJTEw0drvdLF++3LFv69atTWBgoBk0aJBJSUkxM2fONJLMrbfeap577jmTkpJi5syZYySZxYsXO+1XUAHEGGNq1aplRowY4RRnixYtzFNPPVVgP0ozCiD5KChBnjp1ykRERJh///vfxpizow+CgoLM0qVL8z3Ovn37TExMjLnnnnsKTaLF1bp1a+Pp6ekY1XHuy9fX1ykBzpgxw5QtW9YcOHDAse/+/fuNj4+Pee+994wxRSuAJCQkmLZt2xbYh8qVK5t3333Xad3KlSuNJJORkeGIuUGDBk7bPPXUU6ZZs2aO5ZiYGPPcc885bdO/f39TpUoVp76f+wU+duyY8fb2NtOmTXPa57rrrruoAsgdd9zhtM2tt95qHnjgAUdbPj4+ZuzYsfkeLzU11UgyX331ldP6Ro0amUcffdQY87+iwPnJ/r///a+RZN58803HunXr1hlJ5tdffzXGnC0GXH/99U7Hzc3NzTNCplatWmbixImF9ju/AogxxqSkpJh69eoZm81m7Ha7qVChgklOTnba5s033zRLly41GzduNJ9++qmpWbOmqVmzpsnKyspzvMIKINnZ2aZPnz5GkvH09DQ2m82MHDnSaZuvvvrKfPjhh2bDhg0mKSnJdO3a1Xh4eJhvv/220P7l19/iFkD69evntM0111xjhgwZ4lguaHRKZmamkWQWLVpUrBhxdXL3+8z8+fNNWFiYKVOmjLnuuutMQkKC+e6775y2ad++vXnkkUec1hXljfjSpUuNJJOSkuJ4PS0tzfj4+Djy+86dO43NZnMUkM95+eWXTVxcnGO5KL+z//wvqDEXvq/lR5JTYd8YYx588EHTokULx3L9+vXN888/71geMmRInnvfPxVlxFtOTo4JDg52+k+zJPOvf/3LsZyWlmYkmb59+zrWZWRk5PmvcmEFEGOMueOOO0zXrl0dy1OmTDHh4eGOf5wApRV5l7x7zoXe9x8/ftx4eXmZyZMnO23TqVMn07ZtW6f4LnQu8lNYMe58d955p3n88ccdy61bt3a6FsYYU6dOHVOvXj2ndQ0aNDADBw502q+wAsi4ceNMpUqVTE5OjjHGmC1btjgKNFbEM0CKYcGCBfLw8NBtt90mSfLx8dH999+vqVOn5tn25MmTuuuuuxQZGan33nvP8byFgvzwww/y9/d3fL366quFbt+5c2dt2LDB6Wvx4sVO22zatEl16tRReHi4Y11kZKRq1aqlTZs2FbXbevTRR/Xrr7+qevXqeuqpp/TFF18oOztbknTgwAH9/vvveuaZZ5ziP3eOzn9oZVxcnNNxo6Ki9Pfff0uSjhw5oj///FOtWrVy2qZ169bavXu3srKy8sS1Y8cOnTp1Ks8D4/75YM6iatiwYYHxbdq0SSdPntTNN9+c776bN2+WpDzxt2rVKs+5Pv88lC9fXpLUoEGDPOvOzT9NTk7W2rVrnc5vQECAdu/erdTUVMd+W7duVd++fYve4f934sQJ9ezZU7Vr19aqVav0yy+/6I477tAdd9yhPXv2OLYbOHCg4uPjVb9+fd177736+uuvlZqaqgULFhSrvXfeeUdff/21vvjiC61bt06zZs3SW2+9pWnTpjm2uf322/Xggw8qLi5OLVu21Ny5c9WyZUuNHTu20GPXrVvX6Tzlt+78PuWnsJ+DwpybU3/ixIkLbgsUxF3uM507d9Zff/2lJUuW6O6779bmzZvVvn179enT59I6qLP5Mjw8XDVr1nSsi4iIUK1atRzLa9askTFGjRs3zhPz+XlPurjf2cLua4W54YYbnJabN2/ulON79eql2bNnKycnR2fOnNGcOXP0xBNPXPC4/7Rr1y51795d1atXV2BgoAIDA5WZmanff//dabvz7ycRERGy2+1O95OQkBB5eXnleZ5BYXr16qUvvvhChw4dkiRNnz5djzzySIk/mwRwFfLuWVdb3i2sD9u3b1d2dna+f5f88319YceZN2+e07mcN29egfFkZWVpyJAhqlu3rkJDQ+Xv76/FixcXmvels383nJ/3z60rTt5/5JFHlJaWpm+++AR1YAAAIABJREFU+UaSNGPGDF133XVq1KhRkY9Rmni6OoDSZOrUqUpLS3N6eJgxRna7XWlpaSpXrpxjfc+ePfXnn38qOTlZvr6+Fzx248aNtWHDBsdyaGhoodsHBgbm+ahXT8/iX04Pj7w1sNOnTzstN2zYULt27dLSpUv1/fff61//+pdefPFFrV69Wrm5uZLOPhyqbdu2eY4VExPj+P6fb55sNptjf3dwpeIrU6aMUxsFrTvXdm5urtq3b69JkyblOVZQUNAlx/PRRx9p48aN+v777x1xTJ06Vd99952mTZtW4KflVK1aVZGRkcV6yOjJkyc1aNAgvf/+++rSpYskqX79+vrjjz80cuRIPfnkkwXue8MNNzgeYFaQxYsXO/381qhRQ4sXL1Z0dLRjXVRUVKHHuNifg4yMDEln31AAF8ud7jPe3t5q166d2rVrp6FDh+qVV17Riy++qOeee87pkxPOd+6eYoxxWv/P+8qFnPudW7VqVZ6+/fMPjov5nS3svnYpD4rr3r27Bg8erK+++kq5ubnKzMxUt27din2cjh07Kjw8XJMnT1bFihXl5eWlFi1a5Plj4fx7R0Hrinsvu+2221SuXDl98MEHatWqldauXVvom3agtCPvnnW15d3L9b6/sOPceeeduv766x2vRUZGFnic5557Tl9++aXeeust1apVS35+fho4cKAyMzOdtssvx19q3g8LC9M999yj6dOnq3379nr//fct/WmZFECKKDU1VStWrND8+fPzFB46d+6s2bNna/DgwZKkUaNG6csvv1RSUtIF/9g6p2zZsnmOe6nq1q2rKVOmKD093TEK5O+//1ZKSooGDhwoSSpXrpxycnL0999/O34p161bl+dY/v7+6ty5szp37qxhw4apQoUKWrlype644w5VrFhRKSkpF/VfrnMCAwMVExOjpKQkdezY0bF+5cqVqlKlSr43mWrVqsnLy0urVq1S3bp1Het/+umni46jIHXq1JGPj4++/fbbPFVWSY72k5KSdPvttzvWJyUlXXL1tHHjxpozZ45iYmJK5Mn9x48fl81my1MMs9vteW6m5/vrr7+UlpamihUrFrmt7OxsnT59uthtSWd/Li/UVuXKlfNdV9Cbhsvp119/ld1ut2y1HCXP3e8ztWvXlnR25F9sbKy8vLycPr5a+l8BcO/evY51aWlp+uuvvxzLderUUXp6ulJTU1WjRg1JUnp6ulJSUtS4cWNJ0nXXXSdJ2rNnj9M94WLkF6dU+H2tIKtXr1bv3r0dy6tWrVKdOnUcy4GBgXrggQc0ffp05ebm6t5771VwcHCx4j148KA2b96sxYsX65ZbbpEk/fnnn8X6b96l8PDw0BNPPKHp06crJSVFrVq1cvovMWAl5F3ybn6qV68ub29vJSUlqV69eo71K1eudFq+kICAAAUEBBRp26SkJHXt2lX33XefpLMFqW3bthVaNLmcevXqpbZt22rq1Kk6ceKEHnzwwSvSritQACmiadOmqWrVqurUqVOe1+69915Nnz5dgwYN0vz58zV8+HAlJiYqOjpa+/fvd9rWy8vrgtXfy+Whhx7SyJEjdf/992vs2LEyxujZZ59VdHS07r//fklS06ZNFRAQoCFDhmjYsGHasWOHRo4c6XScsWPHKioqSg0bNpSvr68++ugj2e12xzC60aNH67HHHlNISIjuuusulSlTRlu2bNHXX3+d7/DBggwdOlQDBw5UjRo11KZNGy1fvlzvvvuuJk+enO/2fn5+euqpp/TCCy84pvbMnDlTKSkpTtX6y8Hf318DBw7UiBEjVLZsWd100006ceKEFi9erKFDh6patWq699571bt3b02dOlWVK1fWu+++q99++00ffvjhJbXdt29fzZw5U3fddZdeeOEFVaxYUX/++ae+/vprdejQwTEF6JprrlHfvn2LPQ3mlltu0aBBg/TYY4/pueeek6enp6ZOnaodO3bozjvvlCT9/PPP+umnn9SuXTuFhYVp69atGjJkiCpVqqTOnTs7jrV//37t37/fcRPevn27/P39Vb58eZUvX16BgYFq27atnn/+eQUHB6tGjRpau3atxo0bp4ceeshxnGeeeUYdO3ZUbGysjhw5ounTp2vp0qX68ssvL+lclqQVK1aoRYsWfMwYLpq73GcOHjyou+++W48++qji4uIUHBys3377TUOHDlWVKlUcw32rVKmi77//Xjt27FBQUJCCgoJUtmxZNW/eXG+88YauueYanTlzRs8//7y8vb0dx2/fvr3i4uLUrVs3TZw4UV5eXho8eLDTf7CqV6+unj176oknntAbb7yhG264QcePH9fatWt14MABxx8kRVGlShX99NNP2rNnj3x9fRUaGqpx48YVel8ryKJFizRp0iTdcsstWrJkiT755BN99tlnTtv06tXLMWR75cqVRY7znJCQEEVERGj69OmqVq2aDh48qEGDBqls2bLFPtbFeuyxx/Tyyy9r27ZtmjVr1hVrF7jSyLvk3fz4+voqISFBL774oiIiIhQXF6fPP/9cX375pZYuXXrJx89PrVq19OWXX+ruu++Wv7+/3nrrLe3du/eKFUBatGihWrVq6dlnn9XDDz9c5MJNacQzQIogOztb7733nu699958X7///vu1Y8cOfffdd5o0aZKMMerXr58qVKiQ5+vcsP8roWzZsvr222/l7e2tVq1aqXXr1vLz89OSJUscw7VCQ0P10UcfafXq1WrQoIFGjRqlN954w+k4gYGBeuutt3TDDTeofv36WrBggb744gvHf4S6d++uTz/9VIsWLVLTpk3VpEkTjRgxwmnaQVE8/fTTGjlypF599VXVqVNHr7/+usaMGaPHHnuswH3GjBmjTp06qXv37mratKkOHz58WeZK5mfUqFEaPXq0EhMTVa9ePd18881Oo2VmzJihW265Rd26dVNcXJx++uknLVq0SNdcc80ltRsZGamff/5Z4eHh6tKli2rVqqWuXbvq999/V4UKFRzbpaSkKD09vdjHr1mzpr7++mvt3r1bLVq0UNOmTbVq1SotWLDAMWzP29tb8+fPV3x8vGrWrKnevXurWbNm+vnnn50+u3zKlClq1KiROnToIOnsfM9GjRppypQpjm0+/vhjtWnTRj179tQ111yjQYMGqVevXk4/d/v27dPDDz+s2rVr6+abb1ZKSoqWLVvm9B+CFStWyGazacWKFcXu8+VmjNGHH36oXr16uToUlFLudJ/x9/fXjTfeqMmTJ6tdu3aqXbu2EhIS1K5dO61cudLxhnngwIEKDw9XXFycIiIiHKPvZs2a5TjGAw88oCeffNIpV9lsNi1cuFBBQUFq1aqVOnbsqNtvv13XXnutUxzTpk3TgAEDNHr0aNWpU0ft27fXe++9p6pVqxarPy+//LIOHz6sWrVqKSIiQnv27Lngfa0gL730kpYtW6a4uDi9+uqreuONN5yKwJLUpEkT1a9fX7Vq1VLz5s2LFat0dgTGZ599ph07dqhBgwbq0aOH+vfv73QOS1qFChXUsWNH+fv765577rli7QJXEnmXvFuY0aNH64knnlD//v1Vr149zZ07V3PnzlX79u0vy/H/afz48apcubLatm2r9u3bKzo6+orn3yeeeELZ2dmFTkm3Apu50LhzAJZhs9n0wQcfXNScdHcza9YsDR06VCkpKZc81PFSffrppxo1apQ2bNggu93u0lgAuNbp06cVGxurQYMG6V//+perw7loTZs2VfPmzTV+/HhXhwIAhbJK3nW1QYMGaenSpVq/fr2rQylRjAABrjKPP/64/P39dfz4cVeHckkWLVqk119/3eXFD0k6deqUZs+eTfEDuIrl5uYqLS1NY8aM0fHjx/Xoo4+6OqSLkp6erjlz5mjdunXq16+fq8MBgAJZJe+6WmZmppKTkx0jgKyOZ4AAV5HzP8asKE8vd2fz5893dQgO3bt3d3UIAFxsz549qlKliipUqKBZs2aV2ucBRUREKCQkRImJicUe9g4AV5JV8q6r3XXXXfrll1/0wAMPWGKU+IUwBQYAAAAAAFgeU2AAAAAAAIDlUQABAAAAAACWd1U/A2Tv3r2uDiFf4eHhF/Vxpu7ISn2R6I+7c+f+REVFuTqEUoX8fGVYqT9W6otEf64k8vPlQd6+MuiPe7NSf9y5L5eStxkBAgAAAAAALI8CCAAAAAAAsDwKIAAAAAAAwPIogAAAAAAAAMujAAIAAAAAACyPAggAAAAAALA8CiAAAAAAAMDyKIAAAAAAAADLowACAAAAAAAsz9PVAQClyahRdmVlBZR4OwMHHi3xNgDASsjPQMGOHz+uKVOm6I8//pDNZtPTTz+tqKgojR8/XgcOHFBERIQGDBggf39/GWM0e/ZsrV+/Xt7e3urdu7eqVq3q6i7AosjduNIYAQIAAABY2OzZs9WwYUNNmDBBY8eOVXR0tBYuXKj69esrMTFR9evX18KFCyVJ69ev1/79+5WYmKgnn3xSM2bMcHH0AHD5UAABAAAALCorK0tbtmxRu3btJEmenp7y8/NTcnKyWrduLUlq3bq1kpOTJUlr1qxRq1atZLPZVLNmTR0/flyHDh1yWfwAcDm55RSYvXv3avz48Y7ltLQ03XfffWrdujVD9QAAAIAiSktLU2BgoN555x39/vvvqlq1qnr06KHMzEyFhIRIkoKDg5WZmSlJysjIUHh4uGP/sLAwZWRkOLY9Z9myZVq2bJkkacyYMU77uBNPT0+3je1iWK0/Hh4e8vX1LfF2wsO9S7wNyVrXx0p9OZ9bFkCioqI0duxYSVJubq569eqlpk2bOobqderUSQsXLtTChQvVrVs3p6F6qampmjFjhl599VUX9wIAAABwrZycHO3atUs9e/ZUjRo1NHv2bMd0l3NsNptsNluxjhsfH6/4+HjHcnp6+mWJ93ILDw9329guhtX6k5sbqaysrBJvJz39yjwDxErXx537EhUVddH7uv0UmF9//VXly5dXREQEQ/UAAACAYggLC1NYWJhq1KghSWrWrJl27dqloKAgx/vlQ4cOKTAwUJIUGhrq9EfPwYMHFRoaeuUDB4AS4JYjQM73008/qXnz5pLEUL1SyEp9kRim5+6s1h8AAC5VcHCwwsLCtHfvXkVFRenXX39VTEyMYmJitHLlSnXq1EkrV65UkyZNJEmNGzfWkiVL1Lx5c6WmpsrX1zfPe2oAKK3cugBy5swZrV27Vg899FCe1xiqVzpYqS8Sw/TcnTv351KG6gEAcCl69uypxMREnTlzRuXKlVPv3r1ljNH48eO1fPlyx7P1JKlRo0Zat26dEhIS5OXlpd69e7s4egC4fNy6ALJ+/XpVqVJFwcHBkuQYqhcSEsJQPQAAAKAIYmNjNWbMmDzrX3rppTzrbDabHn/88SsRFgBccW79DJDzp79IZ4fkrVy5UpLyDNVLSkqSMUbbtm1jqB4AAAAAAHDitgWQkydPauPGjbr++usd6zp16qSNGzcqISFBv/76qzp16iTp7FC9cuXKKSEhQVOnTqVqDQAAAAAAnLjtFBgfHx/NmjXLaV1AQABD9QAAAAAAQLG57QgQAAAAAACAy4UCCAAAAAAAsDwKIAAAAAAAwPIogAAAAAAAAMujAAIAAAAAACyPAggAAAAAALA8CiAAAAAAAMDyKIAAAAAAAADLowACAAAAAAAsjwIIAAAAAACwPAogAAAAAADA8iiAAAAAAAAAy/N0dQAAgNInNzdXQ4YMUWhoqIYMGaK0tDRNmDBBR48eVdWqVdWvXz95enrq9OnTmjRpknbu3KmAgAD1799f5cqVc3X4AAAAuAoxAgQAUGyLFy9WdHS0Y3nu3Lnq0KGDJk6cKD8/Py1fvlyStHz5cvn5+WnixInq0KGD5s2b56qQAQAAcJWjAAIAKJaDBw9q3bp1at++vSTJGKNNmzapWbNmkqQ2bdooOTlZkrRmzRq1adNGktSsWTP99ttvMsa4JG4AAABc3ZgCAwAoljlz5qhbt246ceKEJOno0aPy9fWV3W6XJIWGhiojI0OSlJGRobCwMEmS3W6Xr6+vjh49qsDAQKdjLlu2TMuWLZMkjRkzRuHh4VeqO8Xi6enptrFdDCv1x8PDQ76+viXeTni4d4m3IVnr2kjW6w8AoHSiAAIAKLK1a9cqKChIVatW1aZNmy7bcePj4xUfH+9YTk9Pv2zHvpzCw8PdNraLYaX+5OZGKisrq8TbSU8/WuJtSNa6NpJ79ycqKsrVIQAArhAKIACAIktJSdGaNWu0fv16ZWdn68SJE5ozZ46ysrKUk5Mju92ujIwMhYaGSjo7GuTgwYMKCwtTTk6OsrKyFBAQ4OJeAAAA4GrEM0AAAEX20EMPacqUKZo8ebL69++vevXqKSEhQXXr1tXq1aslSStWrFDjxo0lSdddd51WrFghSVq9erXq1q0rm83mqvABAABwFaMAAgC4ZF27dtWiRYvUr18/HTt2TO3atZMktWvXTseOHVO/fv20aNEide3a1cWRAgAA4GrFFBgAwEWpW7eu6tatK0mKjIzUa6+9lmcbLy8vPfPMM1c6NAAAACAPty2AHD9+XFOmTNEff/whm82mp59+WlFRURo/frwOHDigiIgIDRgwQP7+/jLGaPbs2Vq/fr28vb3Vu3dvVa1a1dVdAAAAAAAAbsJtp8DMnj1bDRs21IQJEzR27FhFR0dr4cKFql+/vhITE1W/fn0tXLhQkrR+/Xrt379fiYmJevLJJzVjxgwXRw8AAAAAANyJWxZAsrKytGXLFsccck9PT/n5+Sk5OVmtW7eWJLVu3VrJycmSpDVr1qhVq1ay2WyqWbOmjh8/rkOHDrksfgAAAAAA4F7ccgpMWlqaAgMD9c477+j3339X1apV1aNHD2VmZiokJESSFBwcrMzMTElSRkaGwsPDHfuHhYUpIyPDsS0AAABwterTp498fHzk4eEhu92uMWPG6NixY0wtB3DVccsCSE5Ojnbt2qWePXuqRo0amj17tmO6yzk2m63YH6W4bNkyLVu2TJI0ZswYp6KJO/H09HTb2IrLSn2RJA8PD/n6+pZ4O+Hh3iXehmS962O1/gAAcLkMHz5cgYGBjuVzU8s7deqkhQsXauHCherWrZvT1PLU1FTNmDFDr776qgsjB4DLxy0LIGFhYQoLC1ONGjUkSc2aNdPChQsVFBSkQ4cOKSQkRIcOHXIk8dDQUKWnpzv2P3jwoEJDQ/McNz4+XvHx8Y7l8/dxJ+Hh4W4bW3FZqS+SlJsbqaysrBJvJz39aIm3IVnv+rhzf6KiolwdAgAADsnJyRoxYoSks1PLR4wYoW7duhU4tZyR1QCswC0LIMHBwQoLC9PevXsVFRWlX3/9VTExMYqJidHKlSvVqVMnrVy5Uk2aNJEkNW7cWEuWLFHz5s2VmpoqX19fkjQAAADw/0aPHi1JuummmxQfH3/JU8sZWe0aVusPo6vdl5X6cj63LIBIUs+ePZWYmKgzZ86oXLly6t27t4wxGj9+vJYvX+6YqyhJjRo10rp165SQkCAvLy/17t3bxdEDAAAA7mHUqFEKDQ1VZmamXnnllTyjEi9majkjq13Dav1hdLX7cue+XMrIarctgMTGxmrMmDF51r/00kt51tlsNj3++ONXIiwAAACgVDk3NTwoKEhNmjTR9u3bL3lqOQCURm75MbgAAAAALt3Jkyd14sQJx/cbN25UpUqV1LhxY61cuVKS8kwtT0pKkjFG27ZtY2o5AEtx2xEgAAAAAC5NZmam3nzzTUlnP2mxRYsWatiwoapVq8bUcgBXHQogAAAAgEVFRkZq7NixedYHBAQwtRzAVYcpMAAAAAAAwPIogAAAAAAAAMujAAIAAAAAACyPAggAAAAAALA8CiAAAAAAAMDyKIAAAAAAAADLowACAAAAAAAsjwIIAAAAAACwPAogAAAAAADA8iiAAAAAAAAAy6MAAgAAAAAALI8CCAAAAAAAsDwKIAAAAAAAwPIogAAAAAAAAMujAAIAAAAAACyPAggAAAAAALA8CiAAAAAAAMDyKIAAAAAAAADLowACAAAAAAAsz9PVARSkT58+8vHxkYeHh+x2u8aMGaNjx45p/PjxOnDggCIiIjRgwAD5+/vLGKPZs2dr/fr18vb2Vu/evVW1alVXdwEAAAAAALgJty2ASNLw4cMVGBjoWF64cKHq16+vTp06aeHChVq4cKG6deum9evXa//+/UpMTFRqaqpmzJihV1991YWRAwAAAAAAd1KqpsAkJyerdevWkqTWrVsrOTlZkrRmzRq1atVKNptNNWvW1PHjx3Xo0CFXhgoAAAAAANyIW48AGT16tCTppptuUnx8vDIzMxUSEiJJCg4OVmZmpiQpIyND4eHhjv3CwsKUkZHh2PacZcuWadmyZZKkMWPGOO3jTjw9Pd02tuKyUl8kycPDQ76+viXeTni4d4m3IVnv+litPwAAAAAuH7ctgIwaNUqhoaHKzMzUK6+8oqioKKfXbTabbDZbsY4ZHx+v+Ph4x3J6evplifVyCw8Pd9vYistKfZGk3NxIZWVllXg76elHS7wNyXrXx537888cBgAAAODKctspMKGhoZKkoKAgNWnSRNu3b1dQUJBjasuhQ4cczwcJDQ11+qPn4MGDjv0BAAAAAADcsgBy8uRJnThxwvH9xo0bValSJTVu3FgrV66UJK1cuVJNmjSRJDVu3FhJSUkyxmjbtm3y9fXNM/0FAAAAAABcvdxyCkxmZqbefPNNSVJOTo5atGihhg0bqlq1aho/fryWL1/u+BhcSWrUqJHWrVunhIQEeXl5qXfv3q4MHwAAAAAAuBm3LIBERkZq7NixedYHBATopZdeyrPeZrPp8ccfvxKhAcBVLTs7W8OHD9eZM2eUk5OjZs2a6b777lNaWpomTJigo0ePqmrVqurXr588PT11+vRpTZo0STt37lRAQID69++vcuXKubobAHDVyc3N1ZAhQxQaGqohQ4aQtwFcldxyCgwAwD2VKVNGw4cP19ixY/XGG29ow4YN2rZtm+bOnasOHTpo4sSJ8vPz0/LlyyVJy5cvl5+fnyZOnKgOHTpo3rx5Lu4BAFydFi9erOjoaMcyeRvA1YgCCACgyGw2m3x8fCSdnaKYk5Mjm82mTZs2qVmzZpKkNm3aKDk5WZK0Zs0atWnTRpLUrFkz/fbbbzLGuCR2ALhaHTx4UOvWrVP79u0lScYY8jaAq5JbToEBALiv3NxcDR48WPv379ctt9yiyMhI+fr6ym63Szr7yVwZGRmSpIyMDIWFhUmS7Ha7fH19dfToUceneJ2zbNkyLVu2TJI0ZswYhYeHX8EeFZ2np6fbxnYxrNQfDw8P+fr6lng74eHeJd6GZK1rI1mvP6XNnDlz1K1bN8eHDBw9epS8XUpZrT/kbvdlpb6cjwIIAKBYPDw8NHbsWB0/flxvvvmm9u7de8nHjI+PV3x8vGP5/I82dyfh4eFuG9vFsFJ/cnMjlZWVVeLtpKcfLfE2JGtdG8m9+xMVFeXqEErU2rVrFRQUpKpVq2rTpk2X7bjkbdewWn/I3e7LnftyKXm7xAogycnJuvbaax2VZQCAe7hc+dnPz09169bVtm3blJWVpZycHNntdmVkZCg0NFTS2f8qHjx4UGFhYcrJyVFWVpYCAgIuRzcA4Kpysbk7JSVFa9as0fr165Wdna0TJ05ozpw55G0AV6USewbIp59+qieffFIzZ85UampqSTUDACimS8nPR44c0fHjxyWd/USYjRs3Kjo6WnXr1tXq1aslSStWrFDjxo0lSdddd51WrFghSVq9erXq1q0rm812+ToDAFeJi83dDz30kKZMmaLJkyerf//+qlevnhISEsjbAK5KJTYCZOzYsdq9e7d++OEHjRs3Tt7e3mrVqpVatmzJR2kBgAtdSn4+dOiQJk+erNzcXBljdMMNN+i6665TTEyMJkyYoI8//lhVqlRRu3btJEnt2rXTpEmT1K9fP/n7+6t///5XoosAYDmX+711165dydsArjo2cwUe62yM0a+//qoPPvhAe/bs0TXXXKP4+Hg1b95cHh6u+yCayzFvvSS483yr4rJSXyTp3XevzDzFgQOZp3gx3Lk/7jrHnPxcPO78M3YxrNQf8rN7c+f+uGt+Low75m7y9pVhtf6Qu92XO/fFLZ8Bcs7+/fv1ww8/6IcffpDNZtP999+v8PBwLVmyRL/88oueffbZkg4BAJAP8jMAlD7kbgC4eCVWAFmyZIl++OEH7du3TzfeeKP69u2rmjVrOl6//vrr9fjjj5dU8wCAApCfAaD0IXcDwKUrsQLIhg0b1LFjRzVu3FhlypTJ87q3tzcVagBwAfIzAJQ+5G4AuHQlVgB55pln5OHhIU/P/zVx5swZGWMcSTsuLq6kmgcAFID8DAClD7kbAC5diT0lafTo/2Pv3qOirvM/jr+GQcQBBYZRDDQNzUzzVph28dpsW+rZsForV4stczuUZJa/zPqpW+tPSglvbJr3Nsus3dj71pIr/FqzRYVMXbPWNtdVF4cZEEVCmPn94XF+El6AYZiZL8/HOZ7jfJnvfN5vh16w7/1+PzNfBw8erHPs4MGDmj9/vr+WBAA0APkMAKGH7AYA3/ltAPLNN9/o6quvrnOsZ8+e+uabb/y1JACgAchnAAg9ZDcA+M5vA5CoqCiVl5fXOVZeXq62bdv6a0kAQAOQzwAQeshuAPCd3wYgQ4YM0ZIlS3To0CF9++23OnTokJYvX66bbrrJX0sCABqAfAaA0EN2A4Dv/LYJ6v3336833nhDs2fP1pkzZxQREaGRI0fqgQce8NeSAIAGIJ8BIPSQ3QDgO78NQCIiIjRlyhQ98sgjqqioUPv27WUymfy1HACggchnAAg9ZDcA+M5vAxBJqqys1JEjR1RVVVXn+HXXXefPZQEAl0E+A0DoIbtLUOKfAAAgAElEQVQBwDd+G4Bs3bpVa9asUWRkpCIiIrzHTSaTli9f7q9lAQCXQT4DQOghuwHAd34bgLz99tuaMWOGBg0a5K8lAABNQD4DQOghuwHAd34bgLjdbg0YMMCn82fNmiWr1apZs2appKREixcvVkVFhZKTkzVt2jSFh4frzJkzWr58uQ4ePKj27dtr+vTp6tSpUzN2AgDG4ms+AwBaHtkNAL7z28fg3nXXXfrlL38pt9vdpPP/8Ic/KCkpyfv4zTff1NixY7Vs2TJFRUVpy5YtkqQtW7YoKipKy5Yt09ixY7Vx48ZmqR8AjMrXfAYAtDyyGwB857crQH7/+9+rrKxMv/nNbxQdHV3na6+99tolzy0tLdWuXbt0991363e/+508Ho/27t2rJ598UpI0cuRIvfvuu7r99tu1Y8cO/fCHP5QkDR06VGvXrpXH42FXbAC4CF/yGQAQGGQ3APjObwOQadOmNfnc9evXa9KkSTp9+rQkqaKiQhaLRWazWZJktVrldDolSU6nU/Hx8ZIks9ksi8WiiooKdejQwccOAMCYfMlnAEBgkN0A4Du/DUD69OnTpPN27typmJgYJScna+/evc1aU15envLy8iRJmZmZstlszfr6zSU8PDxoa2ssI/UiSWFhYbJYLH5fx2Zr6/c1JOO9P0brx1+ams8AgMAhuwHAd34bgJw5c0bvvfee/vrXv6qiokIbNmzQZ599pqNHj+qOO+646HlffPGFduzYoaKiIlVXV+v06dNav369KisrVVtbK7PZLKfTKavVKuns1SClpaWKj49XbW2tKisr1b59+wu+tt1ul91u9z52OBzN23QzsdlsQVtbYxmpF0lyuxNUWVnp93Ucjgq/ryEZ7/0J5n4SExMDXYJXU/MZABA4ZDcA+M5vm6Bu2LBB//rXv5SRkeHdj6Nr16768MMPL3nexIkTtWLFCuXk5Gj69Om67rrrlJGRob59+2r79u2Szn4OekpKiiTphhtu0NatWyVJ27dvV9++fdn/AwAuoan5DAAIHLIbAHzntytA/va3v2np0qWKjIz0hvT5e3c01o9+9CMtXrxYmzZt0lVXXaXRo0dLkkaPHq3ly5dr2rRpio6O1vTp05utBwAwoubOZwCA/5HdAOA7vw1AwsPD631M14kTJy56e8qF9O3bV3379pUkJSQkaMGCBfWeExERoRkzZvhWLAC0Is2RzwCAlkV2A4Dv/HYLzNChQ7V8+XKVlJRIklwul9asWaObb77ZX0sCABqAfAaA0EN2A4Dv/DYAmThxojp16qSnn35alZWVysjIUFxcnH74wx/6a0kAQAOQzwAQeshuAPCdX2+BSUtLU1pamvfyPDYnBYDAI58BIPSQ3QDgO78NQP7zn//UeXz69Gnv3xMSEvy1LADgMshnAAg9ZDcA+M5vA5CMjIyLfu2dd97x17IAgMsgnwEg9JDdAOA7vw1AvhvEZWVlevfdd3Xttdf6a0kAQAOQzwAQepqa3dXV1Zo7d65qampUW1uroUOHasKECSopKdHixYtVUVGh5ORkTZs2TeHh4Tpz5oyWL1+ugwcPqn379po+fbo6derkz9YAoMX4bRPU74qNjVVaWpreeuutlloSANAA5DMAhJ6GZnebNm00d+5cLVy4UK+88oqKi4t14MABvfnmmxo7dqyWLVumqKgobdmyRZK0ZcsWRUVFadmyZRo7dqw2btzYEu0AQItosQGIJB05ckTffvttSy4JAGgA8hkAQk9DsttkMikyMlKSVFtbq9raWplMJu3du1dDhw6VJI0cOVKFhYWSpB07dmjkyJGSzn707p49e+TxePzXBAC0IL/dAjNnzpw6O1N/++23+te//qV7773XX0sCABqAfAaA0ONLdrvdbj377LM6duyYvv/97yshIUEWi0Vms1mSZLVa5XQ6JUlOp1Px8fGSJLPZLIvFooqKCnXo0MEPXQFAy/LbAGT06NF1HkdGRqpbt2664oor/LUkAKAByGcACD2+ZHdYWJgWLlyoU6dOadGiRTpy5IjP9eTl5SkvL0+SlJmZKZvN5vNr+kN4eHjQ1tYURusnLCxMFovF7+vYbG39voZkrPfHSL2cz28DkHOXzgEAggv5DAChpzmyOyoqSn379tWBAwdUWVmp2tpamc1mOZ1OWa1WSWevBiktLVV8fLxqa2tVWVmp9u3b13stu90uu93ufexwOHyuzx9sNlvQ1tYURuvH7U5QZWWl39dxOCr8voZkrPcnmHtJTExs8rkt9ikwF3Pffff5qwQAwAWQzwAQepqa3SdOnJDZbFZUVJSqq6u1e/du3XXXXerbt6+2b9+uW265RVu3blVKSook6YYbbtDWrVvVq1cvbd++XX379q1z6w0AhDK/DUCOHj2qTz/9VD179vROj7766isNGTJEERER/loWAHAZ5DMAhJ6mZrfL5VJOTo7cbrc8Ho9uuukm3XDDDerSpYsWL16sTZs26aqrrvLeYjN69GgtX75c06ZNU3R0tKZPn95SLQKA3/ltACJJTz75pHd3aUn69NNP9cknnyg9Pd2fywIALoN8BoDQ05Ts7tatm1555ZV6xxMSErRgwYJ6xyMiIjRjxozmKRgAgozfPga3qKhIN954Y51jKSkpKioq8teSAIAGIJ8BIPSQ3QDgO78NQDp37qw//elPdY59+OGH6ty5s7+WBAA0APkMAKGH7AYA3/ntFpjHHntMixYt0m9+8xvvZ4ubzWY9/fTT/loSANAA5DMAhB6yGwB857cByFVXXaUlS5boyy+/lMvlUmxsrHr16qXwcL9uOwIAuAxf8tnhcCgnJ0dlZWUymUyy2+0aM2aMTp48qezsbB0/flwdO3bUU089pejoaHk8Hq1bt05FRUVq27at0tPTlZyc3AJdAoCx8Ls1APjOb7fAfFefPn1UU1OjqqqqlloSANAAjclns9msyZMnKzs7W/Pnz9cHH3ygw4cPKzc3V/369dPSpUvVr18/5ebmSjp7z/qxY8e0dOlSTZ06VatXr/Z3OwDQKvC7NQA0nt8GIIcOHdKTTz6plStX6rXXXpMk7du3z/t3AEBg+JLPcXFx3is42rVrp6SkJDmdThUWFmrEiBGSpBEjRqiwsFCStGPHDg0fPlwmk0m9evXSqVOn5HK5/NQZABgXv1sDgO/8NgBZtWqV7rvvPi1evNh7aV6fPn20f/9+fy0JAGiA5srnkpISff311+rZs6fKy8sVFxcnSYqNjVV5ebkkyel0ymazec+Jj4+X0+lspk4AoPXgd2sA8J3fbho8fPiwhg0bVudYZGSkqqur/bUkAKABmiOfq6qqlJWVpbS0NFksljpfM5lMMplMjaopLy9PeXl5kqTMzMw6Q5NgEh4eHrS1NYWR+gkLC6v3vegPNltbv68hGeu9kYzXTyDwuzUA+M5vA5COHTvq4MGD6tGjh/fYV1991aCP6qqurtbcuXNVU1Oj2tpaDR06VBMmTFBJSYkWL16siooKJScna9q0aQoPD9eZM2e0fPlyHTx4UO3bt9f06dPVqVMnf7UGACHNl3yWpJqaGmVlZWnYsGEaMmSIJCkmJkYul0txcXFyuVzq0KGDJMlqtcrhcHjPLS0tldVqrfeadrtddrvd+/j8c4KJzWYL2tqawkj9uN0Jqqys9Ps6DkeF39eQjPXeSMHdT2JiYqBLaBBfsxsA4MdbYO677z5lZmZq8+bNqqmp0fvvv69XX31V999//2XPbdOmjebOnauFCxfqlVdeUXFxsQ4cOKA333xTY8eO1bJlyxQVFaUtW7ZIkrZs2aKoqCgtW7ZMY8eO1caNG/3VFgCEPF/y2ePxaMWKFUpKStK4ceO8x1NSUpSfny9Jys/P1+DBg73HCwoK5PF4dODAAVksFu+tMgCAhvMluwEAZ/ltAHLDDTdo9uzZOnHihPr06aPjx4/rmWee0YABAy57rslkUmRkpCSptrZWtbW1MplM2rt3r4YOHSpJGjlyZJ1N9kaOHClJGjp0qPbs2SOPx+OfxgAgxPmSz1988YUKCgq0Z88ezZw5UzNnztSuXbuUmpqq3bt3KyMjQ59//rlSU1MlSYMGDVKnTp2UkZGhlStXasqUKf5uDwAMyZfsBgCc5ZdbYNxut5588km9+uqrTf5l1+1269lnn9WxY8f0/e9/XwkJCbJYLDKbzZLOXlZ9biM9p9Op+Ph4SWc/otFisaiiosJ7CfY53GPe8ozUi8Q95sHOaP34g6/53Lt3b23evPmCX5szZ069YyaTiaEHAPioOX63BgD4aQASFhamsLAwnTlzRm3atGnyayxcuFCnTp3SokWLdOTIEZ/r4h7zlmekXiTuMQ92wdxPsNxj3hz5DABoWWQ3ADQPv22COmbMGGVnZ2v8+PGyWq11PhEgISGhwa8TFRWlvn376sCBA6qsrFRtba3MZrOcTqd3Iz2r1arS0lLFx8ertrZWlZWVat++fbP3BABG0Fz5DABoOWQ3APiu2QcgZWVlio2N1dq1ayVJu3fvrvecd95555KvceLECZnNZkVFRam6ulq7d+/WXXfdpb59+2r79u265ZZbtHXrVqWkpEg6e0/k1q1b1atXL23fvl19+/Zt9EcwAoDRNUc+AwBaFtkNAM2n2QcgTz75pDZs2OAN4oULF2rmzJmNeg2Xy6WcnBy53W55PB7ddNNNuuGGG9SlSxctXrxYmzZt0lVXXaXRo0dLkkaPHq3ly5dr2rRpio6O1vTp05u7LQAIec2RzwCAlkV2A0DzafYByHc/fWXfvn2Nfo1u3brplVdeqXc8ISFBCxYsqHc8IiJCM2bMaPQ6ANCaNEc+AwBaFtkNAM2n2T8Gl1tPACA4kc8AEHrIbgBoPs1+BUhtba327Nnjfex2u+s8lqTrrruuuZcFAFwG+QwAoYfsBoDm0+wDkJiYGL322mvex9HR0XUem0wmLV++vLmXBQBcBvkMAKGH7AaA5tPsA5CcnJzmfkkAQDMgnwEg9JDdANB8mn0PEAAAAAAAgGDDAAQAAAAAABgeAxAAAAAAAGB4zb4HCAAAwPmystr7fQ2Lxe9LAACAEMcVIAAAAAAAwPAYgAAAAAAAAMPjFhgAAADAoBwOh3JyclRWViaTySS73a4xY8bo5MmTys7O1vHjx9WxY0c99dRTio6Olsfj0bp161RUVKS2bdsqPT1dycnJgW4DAJoFV4AAAAAABmU2mzV58mRlZ2dr/vz5+uCDD3T48GHl5uaqX79+Wrp0qfr166fc3FxJUlFRkY4dO6alS5dq6tSpWr16dYA7AIDmwwAEAAAAMKi4uDjvFRzt2rVTUlKSnE6nCgsLNWLECEnSiBEjVFhYKEnasWOHhg8fLpPJpF69eunUqVNyuVwBqx8AmhMDEAAAAKAVKCkp0ddff62ePXuqvLxccXFxkqTY2FiVl5dLkpxOp2w2m/ec+Ph4OZ3OgNQLAM2NPUAAAAAAg6uqqlJWVpbS0tJk+c7nRptMJplMpka9Xl5envLy8iRJmZmZdYYmwSQ8PDxoa2sKo/UTFhZW7/vRH2y2tn5fQzLW+2OkXs7HAAQAAAAwsJqaGmVlZWnYsGEaMmSIJCkmJkYul0txcXFyuVzq0KGDJMlqtcrhcHjPLS0tldVqrfeadrtddrvd+/j8c4KJzWYL2tqawmj9uN0Jqqys9Ps6DkeF39eQjPX+BHMviYmJTT6XW2AAAAAAg/J4PFqxYoWSkpI0btw47/GUlBTl5+dLkvLz8zV48GDv8YKCAnk8Hh04cEAWi8V7qwwAhDquAAEAAAAM6osvvlBBQYGuvPJKzZw5U5L0wAMPKDU1VdnZ2dqyZYv3Y3AladCgQdq1a5cyMjIUERGh9PT0QJYPAM2KAQgAAABgUL1799bmzZsv+LU5c+bUO2YymTRlyhR/lwUAAcEtMAAAAAAAwPAYgAAAAAAAAMMLyltgHA6HcnJyVFZWJpPJJLvdrjFjxujkyZPKzs7W8ePHvfcqRkdHy+PxaN26dSoqKlLbtm2Vnp6u5OTkQLcBAAAAAACCRFBeAWI2mzV58mRlZ2dr/vz5+uCDD3T48GHl5uaqX79+Wrp0qfr166fc3FxJUlFRkY4dO6alS5dq6tSpWr16dYA7AAAAAAAAwSQoByBxcXHeKzjatWunpKQkOZ1OFRYWasSIEZKkESNGqLCwUJK0Y8cODR8+XCaTSb169dKpU6fkcrkCVj8AAAAAAAguQTkAOV9JSYm+/vpr9ezZU+Xl5d7PIY+NjVV5ebkkyel0ymazec+Jj4+X0+kMSL0AAAAAACD4BOUeIOdUVVUpKytLaWlpslgsdb5mMplkMpka9Xp5eXnKy8uTJGVmZtYZmgST8PDwoK2tsYzUiySFhYXV+170B5utrd/XkIz3/hitHwAAAADNJ2gHIDU1NcrKytKwYcM0ZMgQSVJMTIxcLpfi4uLkcrnUoUMHSZLVapXD4fCeW1paKqvVWu817Xa77Ha79/H55wQTm80WtLU1lpF6kSS3O0GVlZV+X8fhqPD7GpLx3p9g7icxMTHQJQAAAACtWlDeAuPxeLRixQolJSVp3Lhx3uMpKSnKz8+XJOXn52vw4MHe4wUFBfJ4PDpw4IAsFov3VhkAAAAAAICgvALkiy++UEFBga688krNnDlTkvTAAw8oNTVV2dnZ2rJli/djcCVp0KBB2rVrlzIyMhQREaH09PRAlg8AAAAAAIJMUA5Aevfurc2bN1/wa3PmzKl3zGQyacqUKf4uCwAAAAAAhKigvAUGAAAAAACgOTEAAQAAAAAAhscABAAAAAAAGB4DEAAAAAAAYHhBuQkqACA4/fznP9euXbsUExOjrKwsSdLJkyeVnZ2t48ePez+hKzo6Wh6PR+vWrVNRUZHatm2r9PR0JScnB7gDAAAAtFZcAQIAaLCRI0dq9uzZdY7l5uaqX79+Wrp0qfr166fc3FxJUlFRkY4dO6alS5dq6tSpWr16dSBKBgAAACQxAAEANEKfPn0UHR1d51hhYaFGjBghSRoxYoQKCwslSTt27NDw4cNlMpnUq1cvnTp1Si6Xq8VrBgAAACQGIAAAH5WXlysuLk6SFBsbq/LyckmS0+mUzWbzPi8+Pl5OpzMgNQIAAADsAQIAaDYmk0kmk6nR5+Xl5SkvL0+SlJmZWWdwEkzCw8ODtramaKl+LBaz39cICwuTxWLx+zo2W1u/ryHxvQYAgD8wAAEA+CQmJkYul0txcXFyuVzq0KGDJMlqtcrhcHifV1paKqvVesHXsNvtstvt3sfnnxdMbDZb0NbWFC3VT2Vle7+vYbFYVFlZ6fd1HI4Kv68h8b3WkhITEwNdAgCghXALDADAJykpKcrPz5ck5efna/Dgwd7jBQUF8ng8OnDggCwWi/dWGQAAAKClcQUIAKDBFi9erH379qmiokKPPfaYJkyYoNTUVGVnZ2vLli3ej8GVpEGDBmnXrl3KyMhQRESE0tPTA1w9AAAAWjMGIACABps+ffoFj8+ZM6feMZPJpClTpvi7JAAAAKBBGIAAAAA0UFaW//czkaQFC1pkGQAAWhX2AAEAAAAAAIbHAAQAAAAAABget8AAAAAABvbzn/9cu3btUkxMjLKysiRJJ0+eVHZ2to4fP+7dwDo6Oloej0fr1q1TUVGR2rZtq/T0dCUnJwe4AwBoHlwBAgAAABjYyJEjNXv27DrHcnNz1a9fPy1dulT9+vVTbm6uJKmoqEjHjh3T0qVLNXXqVK1evToQJQOAXzAAAQAAAAysT58+io6OrnOssLBQI0aMkCSNGDFChYWFkqQdO3Zo+PDhMplM6tWrl06dOiWXy9XiNQOAPzAAAQAAAFqZ8vJyxcXFSZJiY2NVXl4uSXI6nbLZbN7nxcfHy+l0BqRGAGhu7AECAAAAtGImk0kmk6lR5+Tl5SkvL0+SlJmZWWdoEkzCw8ODtramMFo/YWFhslgsfl/HZmvr9zUkY70/RurlfAxAAAAAgFYmJiZGLpdLcXFxcrlc6tChgyTJarXK4XB4n1daWiqr1VrvfLvdLrvd7n18/jnBxGazBW1tTWG0ftzuBFVWVvp9HYejwu9rSMZ6f4K5l8TExCafG5QDEHaqBgAAAPwnJSVF+fn5Sk1NVX5+vgYPHuw9/qc//Um33HKLvvzyS1ksFu+tMgAQ6oJyDxB2qgYAAACax+LFi/XCCy/oyJEjeuyxx7RlyxalpqZq9+7dysjI0Oeff67U1FRJ0qBBg9SpUydlZGRo5cqVmjJlSoCrB4DmE5RXgPTp00clJSV1jhUWFmrevHmSzu5UPW/ePE2aNOmiO1UzqQYAAACk6dOnX/D4nDlz6h0zmUwMPQAYVlAOQC6ksTtVX2gAwmZNLc9IvUhs1BTsjNYPAAAAgOYTMgOQ8zVlp2qJzZoCwUi9SGzUFOyCuR9fNmsCAAAA4Lug3APkQs7tVC2pSTtVAwAAAACA1itkBiDndqqWVG+n6oKCAnk8Hh04cICdqgEAAAAAQD1BeQvM4sWLtW/fPlVUVOixxx7ThAkTlJqaquzsbG3ZssX7MbjS2Z2qd+3apYyMDEVERCg9PT3A1QMAAAAAgGATlAMQdqoGAAAAAADNKWRugQEAAAAAAGgqBiAAAAAAAMDwGIAAAAAAAADDYwACAAAAAAAMjwEIAAAAAAAwvKD8FBgAAOB/L71kVmVl+0CXAQAA0CK4AgQAAAAAABgeV4AAAAAAALyyslrm6kCLpUWWAby4AgQAAAAAABgeAxAAAAAAAGB4DEAAAAAAAIDhMQABAAAAAACGxwAEAAAAAAAYHp8CAwAAEGReesmsykr/fwrD009X+H0NAACCBVeAAAAAAAAAw+MKEAAAAACAYWVl+f+KOklasKBFloEPGIAAQYiQBgAAAIDmxS0wAAAAAADA8LgCBIbQUldMWCwtsgwAAAAAoJkxAAEAAACAENBSnxAFGBW3wAAAAAAAAMMzzBUgxcXFWrdundxut2677TalpqYGuiQAgMhnAAhFRsnulrpi4umnK/y+BgDfGWIA4na7tWbNGr3wwguKj4/Xc889p5SUFHXp0iXQpQFAq0Y+A0DoaYnsNtr+bUbrB8GtJb7fLBZjDg8NMQD56quv1LlzZyUkJEiSbr75ZhUWFvILNgAEGPkMAKGH7Aaahj1agp8hBiBOp1Px8fHex/Hx8fryyy8DWJFvWuI/nJaatBECwY3LQuFv5HNw4/9JRMv9v9b8vAklRstuADjHEAOQhsrLy1NeXp4kKTMzU4mJiQGu6MJeekmS/P1LQsv8wtMyvbQ0+gnONc4K1v+ucWnkcyAZqR8j9SLRT7CuAcn33M7K8kdVF2O07wv6CW5G6sd4uW2IT4GxWq0qLS31Pi4tLZXVaq33PLvdrszMTGVmZrZkeY02a9asQJfQbIzUi0Q/wc5o/RgB+RzcjNSPkXqR6AeB1ZDsJrcDg36Cm5H6MVIv5zPEAKRHjx46evSoSkpKVFNTo23btiklJSXQZQFAq0c+A0DoIbsBGJUhboExm816+OGHNX/+fLndbo0aNUpdu3YNdFkA0OqRzwAQeshuAEZlnjdv3rxAF9EcrrjiCt15550aM2aMrr322kCX47Pk5ORAl9BsjNSLRD/Bzmj9GAH5HNyM1I+RepHoB4FlpOw22vce/QQ3I/VjpF7OMXk8Hk+giwAAAAAAAPAnQ+wBAgAAAAAAcCmG2APEqH7729/qF7/4hVavXq0OHToEupwm+8UvfqGdO3cqPDxcCQkJSk9PV1RUVKDLarTi4mKtW7dObrdbt912m1JTUwNdUpM4HA7l5OSorKxMJpNJdrtdY8aMCXRZPnO73Zo1a5asVqthd61GcDFCRpPPwceIGU0+I1gYIbclY2Q3uR38jJrdDECClMPh0O7du2Wz2QJdis/69++viRMnymw2680339T777+vSZMmBbqsRnG73VqzZo1eeOEFxcfH67nnnlNKSoq6dOkS6NIazWw2a/LkyUpOTtbp06c1a9Ys9e/fPyR7Od8f/vAHJSUl6fTp04EuBa2AUTKafA4+Rsxo8hnBwCi5LYV+dpPbocGo2c0tMEFqw4YN+tGPfiSTyRToUnw2YMAAmc1mSVKvXr3kdDoDXFHjffXVV+rcubMSEhIUHh6um2++WYWFhYEuq0ni4uK8Gxq1a9dOSUlJIfmenK+0tFS7du3SbbfdFuhS0EoYJaPJ5+BjtIwmnxEsjJLbUuhnN7kd/Iyc3QxAglBhYaGsVqu6d+8e6FKa3ZYtWzRw4MBAl9FoTqdT8fHx3sfx8fEhH2ySVFJSoq+//lo9e/YMdCk+Wb9+vSZNmmSIX2oQ/Iya0eRz8DFCRpPPCAZGzW0pNLOb3A5+Rs5uboEJkJdeekllZWX1jt9///16//339cILLwSgqqa7VD+DBw+WJP3qV7+S2WzWsGHDWro8XEBVVZWysrKUlpYmi8US6HKabOfOnYqJiVFycrL27t0b6HJgEEbKaPI5NBkho8lntCQj5bZEdociI+S2ZPzs5mNwg8yhQ4f04osvqm3btpLOXn4UFxenBQsWKDY2NsDVNd3WrVv15z//WXPmzPH2FkoOHDigd999V88//7wk6f3335ckjR8/PpBlNVlNTY1efvllDRgwQOPGjQt0OT556623VFBQILPZrOrqap0+fVo33nijMjIyAl0aDMiIGU0+Bx+jZDT5jGBgxNyWQju7ye3gZvjs9iCopaene8rLywNdhk+Kioo806dPD+k+ampqPI8//rjnP//5j+fMmTOeZ555xnPo0KFAl9Ukbrfbs2zZMs+6desCXUqz27Nnj2fBggWBLgOtSKhnNPkcfIya0eQzgkWo57bHE/rZTW6HDiNmN7fAwO/WrFmjmpoavfTSS5Kkq6++WlOnTg1wVY1jNpv18MMPa/78+XK73Ro1apS6du0a6LKa5IsvvlBBQYGuvPJKzYDeRDMAACAASURBVJw5U5L0wAMP6Prrrw9wZQBaGvkcfMhoAJcT6tlNbiOQuAUGAAAAAAAYHp8CAwAAAAAADI8BCAAAAAAAMDwGIAAAAAAAwPAYgAAAAAAAAMNjAAIAAAAAAAyPAQj0+uuv67333vM+/vDDD/Xoo49q8uTJqqio0P79+5WRkaHJkyfrb3/7WwArNb558+bpo48+CnQZzW7v3r167LHHAl0GEHLI5+BBPgNoCHI7eJDbuJDwQBcA/3r88cdVVlYms9mssLAwdenSRcOHD5fdbldY2Nn51/mfG15TU6MNGzZo/vz56t69uyRp8+bNuuOOOzRmzJhAtBAyNm/erGPHjikjIyPQpQS9xx9/XD/5yU/Uv3//QJcCBAz53HLI54Yjn4GLI7dbDrndcOR24zAAaQWeffZZ9e/fX5WVldq3b5/WrVunr776Sunp6fWeW15erjNnzqhr167eY8ePH1eXLl2atHZtba3MZnOTazcSj8cjj8fj/QEZjHi/gJZFPgcH8hlAQ5HbwYHcRlMxAGlFLBaLUlJSFBsbq+eff17jxo3TlVdeqZycHMXHx2v48OF69tlnJUlpaWnq2bOnHA6HSkpK9PLLLyssLExr167VmTNntGHDBhUVFclkMmnUqFGaMGGCwsLCtHXrVn300Ufq0aOHCgoKdPvtt+uee+7R22+/rU8++UQ1NTUaPHiw0tLSFBERob1792rZsmUaO3asfv3rXyssLEwPPPCARo0aJUmqrq7Wpk2btH37dp06dUpXXnml/vu//1sRERE6cOCA3njjDR0+fFgdO3ZUWlqa+vbt26B/C4fDofXr1+vvf/+7PB6PbrnlFj3yyCNyu916//339dFHH6m6uloDBw7Uww8/LIvFopKSEj3xxBNKT0/XO++8o+rqao0dO1Z33323iouL9f7770uSCgsL1blzZy1cuFDz5s3TNddco3379ungwYPKyspSeXm51q9fryNHjigxMVFpaWm65pprLlmv0+nUtGnTtHLlSkVHR0uSvv76a/3sZz/TypUr5XA49Nprr+mf//ynwsPDdd111+mpp5667L9DY9+vEydO6Oc//7n2798vk8mkrl27at68eQoLC9OECRO0dOlSde7cWZK831f3339/nTWXLVsmh8Ph/Z669957dddddzXofQOMinz+f+TzWeQzENzI7f9Hbp9FbocGBiCtUM+ePWW1WrV//35deeWV3uOJiYnKysrSE088ofXr13snlt+9rGrx4sWKiYnR0qVL9e233yozM1Px8fH63ve+J0n68ssvdfPNN2vVqlWqra3Vxo0b9Z///EcLFy6U2WzWkiVL9N5772nixImSpLKyMlVWVmrFihXavXu3Xn31VQ0ePFjR0dHeIP7Zz36m2NhYffnllzKZTHI6ncrMzNQTTzyhgQMHas+ePcrKytLixYvVoUMH5ebmav/+/Zo1a1a9/t1ut15++WX17dtXOTk5CgsL08GDByWdDa6tW7dq7ty5iomJ0fLly7VmzRpNmzbNe/7+/fu1ZMkSHTlyRLNnz9aNN96ogQMHavz48Re8VK+goECzZ89WYmKiKioq9Nxzz+nHP/6xbrnlFn3yySfKzMzU0qVL1b59+4u+Z1arVb169dL27dtlt9slSR9//LGGDBmi8PBwbdq0SQMGDNDcuXNVU1Pj7achGvN+/e53v5PVatXq1au955pMpgavJUnTpk3T/v37uVQPuADymXw+H/kMBD9ym9w+H7kd/IL3miH4ldVq1cmTJxt9XllZmYqKipSWlqbIyEjFxMRo7Nix2rZtm/c5cXFxuvPOO2U2m9WmTRt99NFHeuihhxQdHa127drp7rvv1l//+lfv881ms+69916Fh4fr+uuvV2RkpI4cOSK3262//OUvSktLk9VqVVhYmK655hq1adNGBQUFGjRokK6//nqFhYWpf//+6tGjh3bt2iVJSk1NvWBIS9JXX30lp9OpyZMnKzIyUhEREerdu7eks+E3btw4JSQkKDIyUhMnTtS2bdtUW1vrPf+HP/yhIiIi1L17d3Xr1k3ffPPNJf/NRo4cqa5du8psNmv37t3q3Lmzhg8fLrPZrFtvvVWJiYnauXPnZf/tb731Vu+/m8fj0bZt23TrrbdKksLDw3X8+HG5XK46/TREY94vs9mssrIyORwOhYeH69prr210UAO4NPKZfD6HfAZCA7lNbp9Dbgc/rgBppZxOp/eSr8ZwOByqra2ts8GTx+NRfHy897HNZvP+/cSJE/r222/rhKbH45Hb7fY+bt++fZ3749q2bauqqipVVFTozJkz3ku/vlvH9u3b6wRcbW1tgy7Vczgc6tix4wXvyXO5XOrYsWOdXmpra1VeXu49FhsbW6/WSzn/38bpdNZ5fUnq2LGjnE7nZeseMmSI1q5dK5fLpaNHj8pkMunaa6+VJE2aNEmbNm3S7NmzFRUVpXHjxmn06NGXfc1zPZ5zuffrBz/4gd5991397Gc/kyTZ7XalpqY2aB0ADUM+k8/n93gO+QwEL3Kb3D6/x3PI7eDEAKQVOjepbcw085z4+HiFh4drzZo1DdrUp3379oqIiNCrr74qq9XaqLXat2+vNm3a6NixY96ds8+vY9iwYU36CCibzeb9gfPdHuLi4nT8+HHvY4fDIbPZrJiYGJWWll7ydS82sT3/uNVq1aefflrn6w6HQwMHDrxs3dHR0RowYIC2bdumf//737r55pu9rx0bG+v9t9i/f79eeukl9enT54I/5C7lcu9Xu3bt9OCDD+rBBx/UoUOH9OKLL6pHjx7q16+f2rZtq2+//db73LKysjo/pABcHvlMPl8M+QwEJ3Kb3L4Ycjs4cQtMK1JZWamdO3dqyZIlGjZsWJ37FBsqLi5OAwYM0BtvvKHKykq53W4dO3ZM+/btu+Dzw8LCdNttt2n9+vXeaa/T6VRxcfFl1woLC9OoUaP0xhtvyOl0yu1268CBAzpz5oyGDRumnTt3qri4WG63W9XV1dq7d+9lw1Q6e69mXFycNm7cqKqqKlVXV2v//v2SpFtuuUW///3vVVJSoqqqKr399tu66aabGvRDKSYmRsePH68zhf+uQYMG6ejRo/r4449VW1urbdu26fDhw7r++usv+/rS2cv1CgoKtH37du9lepL0ySefeHuPioqSdPEfHJdyufdr586dOnbsmDwejywWi8LCwrzrdO/eXR9//LHcbreKi4sv+j0hnf3BUlJS0uj6AKMin88iny+OfAaCC7l9Frl9ceR2cOIKkFbg5ZdfltlslslkUpcuXTR27FjdfvvtTX69J554Qhs3btSMGTN0+vRpJSQkXHK34R/96Ed677339Pzzz6uiokJWq1Xf+973GjSdffDBB/XWW2/pueeeU1VVlbp3767nn39eNptN//Vf/6U333xTS5YsUVhYmHr27KlHH31UkvSrX/1K+/fv1+zZs+u9ZlhYmJ599lmtXbtW6enpMplMuuWWW9S7d2+NGjVKLpdLc+fOVXV1tQYMGKCHH364Qf8uN910k/73f/9XjzzyiDp16qSXX3653nPat2+vWbNmad26dVq1apU6d+6sWbNmqUOHDg1aIyUlRStWrJDNZqszvf/HP/6h9evXq7KyUrGxsfrxj3+shIQESdKMGTM0fvx4DRs2rEFrXOr9Onr0qNauXasTJ04oKipKt99+u6677jpJZ3c4z8nJ0QcffKDBgwdr8ODBF10jNTVVa9eu1Ztvvqm7775bP/jBDxpUG2A05HNd5POlkc9A4JHbdZHbl0ZuBx+Tx+PxBLoIAAAAAAAAf+IWGAAAAAAAYHgMQAAAAAAAgOExAAEAAAAAAIbHAAQAAAAAABgeAxAAAAAAAGB4DEAAAAAAAIDhMQABAAAAAACGxwAEAAAAAAAYHgMQAAAAAABgeAxAAAAAAACA4TEAAQAAAAAAhscABAAAAAAAGB4DEAAAAAAAYHgMQAAAAAAAgOExAAEAAAAAAIbHAAQAAAAAABgeAxAAAAAAAGB4DEAAAAAAAIDhMQABAAAAAACGxwAEAAAAAAAYHgMQAAAAAABgeAxAAAAAAACA4TEAAQAAAAAAhscABAAAAAAAGB4DEAAAAAAAYHgMQAAAAAAAgOExAAEAAAAAAIbHAAQAAAAAABgeAxAAAAAAAGB4DEAAAAAAAIDhMQABAAAAAACGxwAEAAAAAAAYHgMQAAAAAABgeAxAAAAAAACA4TEAAQAAAAAAhscABAAAAAAAGB4DEAAAAAAAYHgMQAAAAAAAgOExAAEAAAAAAIbHAAQAAAAAABgeAxAAAAAAAGB4DEAAAAAAAIDhMQABAAAAAACGxwAEAAAAAAAYHgMQAAAAAABgeAxAAAAAAACA4TEAAQAAAAAAhscABAAAAAAAGB4DEAAAAAAAYHgMQAAAAAAAgOExAAEAAAAAAIbHAAQAAAAAABgeAxAAAAAAAGB4DEAAAAAAAIDhMQABAAAAAACGxwAEAAAAAAAYHgMQAAAAAABgeAxAAAAAAACA4TEAAQAAAAAAhscABAAAAAAAGB4DEAAAAAAAYHgMQAAAAAAAgOExAAEAAAAAAIbHAAQAAAAAABgeAxAAAAAAAGB4DEAAAAAAAIDhMQABAAAAAACGxwAEAAAAAAAYHgMQAAAAAABgeAxAAAAAAACA4TEAAQAAAAAAhscABAAAAAAAGB4DEAAAAAAAYHgMQAAAAAAAgOExAAEAAAAAAIbHAAQAAAAAABgeAxAAAAAAAGB4DEAAAAAAAIDhMQABAAAAAACGxwAEAAAAAAAYHgMQAAAAAABgeAxAAAAAAACA4TEAQdAxmUyX/NO9e3dJ0siRI73H2rRpo+7du2vatGkqKyur95pVVVWyWq2KioqS0+m84Lp79+7V5MmTlZSUpLZt26pbt24aP368/vKXv2jr1q2XrSstLc2nvt1utxYtWqTrrrtOUVFRio2N1YABA/TCCy94n7N+/foLrv3YY4/5tDYAXE5rzeZ58+bJZDLp+uuvr/e1zz77zLvO4cOHJUn//Oc/L1hH7969faoDABqDzG5cZn/88ccXfK2ePXv6VA+CT3igCwC+6+jRo96/b9u2Tffcc4927dqlK664QpJkNpu9X584caKysrJUU1OjPXv26JFHHlFpaaneeuutOq+5efNmXXXVVUpISNCGDRv01FNP1fn6Bx98oNTUVN18881avXq1evXqpVOnTumPf/yjfvKTn2jPnj116lq0aJF++ctf6pNPPvEea9eunU99v/jii1qyZImWLVumm266SVVVVdqzZ4+2b99e53lms9kb2udYLBaf1gaAy2mt2SxJHTt21P79+7Vr1646v1SvXLlS3bp10zfffFPvnF//+te68cYbvY/Dw/mVC0DLIbMbl9loPfhpjKDTuXNn79+tVquks0F2/vFz2rVr5z3epUsX3X///Vq/fn29573++utKS0tTp06d9NOf/rROYFdWVurBBx/UyJEj9cc//rHOef3799fUqVMVERFRZ/3o6GiZzeYL1tRUubm5euSRRzRp0iTvsb59++q+++6r99zmXBcAGqK1ZrMkdejQQXfccYdWrVql1157zVvfxo0b9cwzz2jOnDn1zrFarWQ1gIAhsxuX2Wg9uAUGhvHVV1/pD3/4gyIiIuoc37t3rwoLCzVx4kTdddddOnr0qAoKCrxf//DDD1VSUqLnn3/+gq8bFxfn17rPueKKK5Sfn69///vfLbIeALSEUM/mc6ZOnaq33npLlZWVkqRNmzYpMTFRw4YNa9E6AMCfyGwYHQMQhLQNGzYoOjpakZGRuvrqq7V//37Nnj27znNef/11jRs3TvHx8YqMjNR9992n119/3fv1AwcOSJL69OnTorV/V3Z2tk6fPq2uXbvqmmuu0UMPPaSNGzeqpqamzvNqa2sVHR1d58/BgwcDVDUA1GekbD7n1ltvVZcuXfTOO+9IOlv/o48+etHn33777XVyesOGDS1VKgA0CpldP7Ojo6P1P//zPy1VLloQAxCEtPHjx6u4uFiffvqpHn30Ud199916/PHHvV+vqqrSL37xizobKj300EN67733vJs3eTwev9Z4fpDeeeedF31e79699fnnn2vnzp164oknVF1drSlTpmjo0KE6ffq093lms1nFxcV1/nTt2tWvPQBAYxgpm8/36KOPatWqVdq9e7eKi4v14IMPXvS569atq5PT48ePb67SAaBZkdn1M7u4uJgPGTAo9gBBSOvQoYN3d+bXX39dt956qxYsWOC9/G7z5s1yuVz1fvGsra31bt50zTXXSJL27dunW2+9tdlrLC4u9v79chs7mUwmDRo0SIMGDdK0adP08ccfa9iwYdq8ebMeeugh7/PYkRpAMDNaNp/z4IMP6rnnntOMGTM0fvx42Wy2iz43KSmJrAYQEsjsC2f2ub1TYCxcAQJD+elPf6r58+d799E4t1nTdye6Tz/9tFatWiXp7CVvnTp10vz58y/4mi6Xy6eaevbs6f2TlJTUqHOvvfZaSVJJSYlPNQBAIBklm61Wq+6991599NFHl7yUGgBCGZkNI2MAAkO57bbb1Lt3b7344ovau3ev/vrXv+rhhx/WddddV+fP1KlT9fe//10FBQWyWCxav369/vKXv8hut+uPf/yjDh48qM8//1yLFi3S0KFDW6T2e+65R1lZWfrkk0/0zTffaNu2bZo8ebLatGmjsWPHtkgNAOAPoZzN37Vq1SodP35co0ePDsj6AOBvZDaMjFtgYDjPPPOMHnroIR0+fFiJiYkXvAyvV69eGjhwoF5//XUNHz5cd955pwoLC5WZmalHHnlEDodDnTt3VkpKiney7W933HGHNm/erEWLFsnpdMpms2nw4MHKz88Pmg2lAKCpQjWbvysyMlKRkZEBWRsAWgqZDaMyefy9Yw0AAAAAAECAcQsMAAAAAAAwPAYgAAAAAADA8BiAAAAAAAAAw2MAAgAAAAAADI8BCAAAAAAAMDwGIAAAAAAAwPDCA11AIB05ciTQJVyQzWaTw+EIdBnNwki9SPQT7IK5n8TExECXEFLI55ZhpH6M1ItEPy2pNedzdXW15s6dq5qaGtXW1mro0KGaMGGCcnJytG/fPlksFknS448/ru7du1/ytcjtlkE/wc1I/QRzL77kdqsegAAAAACtVZs2bTR37lxFRkaqpqZGc+bM0cCBAyVJkydP1tChQwNcIQA0L26BAQAAAFohk8mkyMhISVJtba1qa2tlMpkCXBUA+A8DEAAAAKCVcrvdmjlzpqZMmaJ+/frp6quvliS9/fbbeuaZZ7R+/XqdOXMmwFUCQPPgFhgAAACglQoLC9PChQt16tQpLVq0SIcOHdLEiRMVGxurmpoarVy5Ur/+9a9177331jkvLy9PeXl5kqTMzEzZbLZAlH9Z4eHhQVtbU9BPcDNSP0bq5XwMQAAAAIBWLioqSn379lVxcbF+8IMfSDq7R8ioUaP029/+tt7z7Xa77Ha793GwbpYYzBs5NgX9BDcj9RPMvfiyCSq3wAAAAACt0IkTJ3Tq1ClJZz8RZvfu3UpKSpLL5ZIkeTweFRYWqmvXroEsEwCaDVeAAAAAAK2Qy+VSTk6O3G63PB6PbrrpJt1www366U9/qhMnTkiSunXrpqlTpwa4UgBoHgxAAAAAgFaoW7dueuWVV+odnzt3bgCqAQD/4xYYAAAAAABgeFwBAjTCSy+ZVVnZ3u/rPP10hd/XAAAjIZ8BIPSQ3WhpXAECAAAAAAAMjwEIAAAAAAAwPAYgAAAAAADA8BiAAAAAAAAAw2MAAgAAAAAADI8BCAAAAAAAMLyg+Bhch8OhnJwclZWVyWQyyW63a8yYMTp58qSys7N1/PhxdezYUU899ZSio6Prnb9161b96le/kiTdfffdGjlyZAt3AAAAAAAAgllQDEDMZrMmT56s5ORknT59WrNmzVL//v21detW9evXT6mpqcrNzVVubq4mTZpU59yTJ0/qvffeU2ZmpiRp1qxZSklJueCgBAAAAAAAtE5BcQtMXFyckpOTJUnt2rVTUlKSnE6nCgsLNWLECEnSiBEjVFhYWO/c4uJi9e/fX9HR0YqOjlb//v1VXFzcovUDAAAAAIDgFhRXgJyvpKREX3/9tXr27Kny8nLFxcVJkmJjY1VeXl7v+U6nU/Hx8d7HVqtVTqfzgq+dl5envLw8SVJmZqZsNpsfOvBdeHh40NbWWEbqRZLCwsJksVj8vo7N1tbva0jGe3+M1g8AAACA5hNUA5CqqiplZWUpLS2t3v/INJlMMplMPr2+3W6X3W73PnY4HD69nr/YbLagra2xjNSLJLndCaqsrPT7Og5Hhd/XkIz3/gRzP4mJiYEuAQAAAGjVguIWGEmqqalRVlaWhg0bpiFDhkiSYmJi5HK5JEkul0sdOnSod57ValVpaan3sdPplNVqbZmiAQAAAABASAiKAYjH49GKFSuUlJSkcePGeY+npKQoPz9fkpSfn6/BgwfXO3fgwIH67LPPdPLkSZ08eVKfffaZBg4c2GK1AwAAAACA4BcUt8B88cUXKigo0JVXXqmZM2dKkh544AGlpqYqOztbW7Zs8X4MriT94x//0J///Gc99thjio6O1j333KPnnntOknTvvffyCTAAAAAAAKCOoBiA9O7dW5s3b77g1+bMmVPvWI8ePdSjRw/v49GjR2v06NF+qw8AAAAAAIS2oBiAAABCm8PhUE5OjsrKymQymWS32zVmzBidPHlS2dnZOn78uPdKPq7SAwAAQCAwAAEA+MxsNmvy5MlKTk7W6dOnNWvWLPXv319bt25Vv379lJqaqtzcXOXm5mrSpEmBLhcAAACtUFBsggoACG1xcXFKTk6WJLVr105JSUlyOp0qLCzUiBEjJEkjRoxQYWFhIMsEAABAK8YABADQrEpKSvT111+rZ8+eKi8vV1xcnCQpNjZW5eXlAa4OAAAArRW3wAAAmk1VVZWysrKUlpYmi8VS52smk0kmk+mC5+Xl5SkvL0+SlJmZKZvN5vdamyI8PDxoa2sKI/UTFhZW73vOH2y2tn5fQzLWeyMZrx8AQGhiAAIAaBY1NTXKysrSsGHDNGTIEElSTEyMXC6X4uLi5HK51KFDhwuea7fbZbfbvY8dDkeL1NxYNpstaGtrCiP143YnqLKy0u/rOBwVfl9DMtZ7IwV3P4mJiYEuAQDQQhiAAAB85vF4tGLFCiUlJWncuHHe4ykpKcrPz1dqaqry8/M1ePDgAFYJADhfdXW15s6dq5qaGtXW1mro0KGaMGGCSkpKtHjxYlVUVCg5Ofn/2Lvz6Kjq+//jr5kJSQgJSSYJwbDIVgsRATGIsgYIlAI/jJaiUNEUrVJQBJGyqIAFaiikLBKEKqtgBS1gW3sUAwVURFMWEShI6lYLGIYsBEOAZOb3B4f5kiaBCbNfno9zOIe5c+d+3p/M5EV4537u1ZNPPqmQEP7bACD4kWQAALcdPXpUO3fuVNOmTTVx4kRJ0rBhw5Senq758+dr27ZtztvgAgACQ506dTR9+nSFh4ervLxc06ZNU4cOHfS3v/1NAwcOVNeuXfXHP/5R27ZtU79+/fxdLgC4jQYIAMBtrVu31oYNG6p9btq0aT6uBgDgCpPJpPDwcElSRUWFKioqZDKZdOjQIT311FOSpNTUVL355ps0QAAYAg0QAAAA4AZlt9s1adIknTx5Uj/5yU+UmJioiIgIWSwWSZLValVBQYGfqwQAz6ABAgAAANygzGaz5s6dqx9++EHz5s3T8ePHXXodd+/yD6PNhzt4BS4jzeVKNEAAAACAG1y9evV066236osvvlBpaakqKipksVhUUFAgq9VaZX/u3uUfRpsPd/AKXIE8F3fu3mX2YB0AAAAAgsSZM2f0ww8/SLp0R5gDBw6oUaNGuvXWW7V7925J0vbt25WSkuLPMgHAYzgDBAAAALgBFRYWKjs7W3a7XQ6HQ3fffbfuuOMONW7cWAsWLNAbb7yh5s2bq3fv3v4uFQA8ggYIAAAAcAO6+eab9fvf/77K9sTERL344ot+qAgAvIslMAAAAAAAwPBogAAAAAAAAMMLiCUwS5Ys0d69exUdHa2srCxJ0vz585234SotLVVERITmzp1b5bVjxoxReHi4zGazLBaLMjMzfVo7AAAAAAAIfAHRAElNTVX//v2VnZ3t3DZ+/Hjn39esWXPV+0NPnz5d9evX92qNAAAAAAAgeAXEEpjk5GRFRkZW+5zD4dDHH3+srl27+rgqAAAAAABgFAFxBsjV/Otf/1J0dLRuuummGveZPXu2JKlv375KS0vzVWkAAAAAACBIBHwD5KOPPrrq2R8zZ86U1WpVcXGxZs2apaSkJCUnJ1e7b05OjnJyciRJmZmZio+P90rN7goJCQnY2mrLSHORJLPZfNXlWJ4SHx/m9TEk470/RpsPAAAAAM8J6AZIRUWFPv3006te2NRqtUqSoqOj1alTJ+Xl5dXYAElLS6t0hojNZvNswR4SHx8fsLXVlpHmIkl2e6JKS0u9Po7NVuL1MSTjvT+BPJ+kpCR/lwAAAADc0ALiGiA1+fzzz5WUlKS4uLhqny8rK9O5c+ecfz9w4ICaNm3qyxIBAAAAAEAQCIgzQBYsWKDDhw+rpKREo0aN0tChQ9W7d+9ql78UFBRo2bJlmjJlioqLizVv3jxJl84W6datmzp06OCPKQAAAAAAgAAWEA2QcePGVbt9zJgxVbZZrVZNmTJFkpSYmKi5c+d6tTYAAAAAABD8AnoJDAAAAAAAgCfQAAEAAAAAAIZHAwQAAAAAABgeDRAAAAAAAGB4NEAAAAAAAIDh0QABAAAAAACGRwMEAAAAAAAYHg0QAAAAAABgeDRAAAAAAACA4dEAAQAAAAAAhkcDBAAAAAAAGB4NEAAAAAAAYHg0QAAAAAAAgOGF+LsAPB6mHQAAIABJREFUAAAAAL5ls9mUnZ2toqIimUwmpaWlacCAAdqwYYO2bt2q+vXrS5KGDRumjh07+rlaAPAMGiAAAADADcZisWjEiBFq0aKFzp07p8mTJ6tdu3aSpIEDB2rw4MF+rhAAPI8GCAAAAHCDiY2NVWxsrCSpbt26atSokQoKCvxcFQB4Fw0QAAAA4AaWn5+vr776Sq1atdKRI0f03nvvaefOnWrRooUeeughRUZGVnlNTk6OcnJyJEmZmZmKj4/3ddkuCQkJCdjarofR5mM2mxUREeH1ceLjw7w+hmSs98dIc7lSwDRAlixZor179yo6OlpZWVmS5PIaxP3792vlypWy2+3q06eP0tPTfVo7AAAAEIzKysqUlZWljIwMRUREqF+/fhoyZIgkaf369VqzZo1Gjx5d5XVpaWlKS0tzPrbZbD6ruTbi4+MDtrbrYbT52O2JKi0t9fo4NluJ18eQjPX+BPJckpKSrvu1AdMASU1NVf/+/ZWdnV1p+7XWINrtdi1fvlzPPfec4uLiNGXKFKWkpKhx48beLhkAAAAIWuXl5crKylL37t3VuXNnSVJMTIzz+T59+mjOnDn+Kg8APC5gboObnJxc7el115KXl6eGDRsqMTFRISEh6tKli3Jzc71QIQAAAGAMDodDS5cuVaNGjTRo0CDn9sLCQuffP/30UzVp0sQf5QGAVwTMGSA1udYaxIKCAsXFxTkfx8XF6dixY74uEwAAAAgaR48e1c6dO9W0aVNNnDhR0qXl5h999JG+/vprmUwmJSQk6LHHHvNzpQDgOQHdAHF1DaKruFiT7xlpLhIXagp0RpsPAADe0rp1a23YsKHK9uqutwcARhHQDRBX1iBarVadPn3a+fj06dOyWq3VHo+LNfmekeYicaGmQBfI83HnYk0AAAAA3Bcw1wCpjitrEFu2bKkTJ04oPz9f5eXl2rVrl1JSUnxZJgAAAAAACHABcwbIggULdPjwYZWUlGjUqFEaOnSoDh06VO0axIKCAi1btkxTpkyRxWLRyJEjNXv2bNntdvXq1YuLNQGAj7lzK3MAAADAFwKmATJu3Lgq23r37l3tvlarVVOmTHE+7tixIz9UA4AfXe+tzAEAAABfCeglMACA4HC9tzIHAAAAfCVgzgABABjPtW5lDgAAAPgKDRAAgFfU5lbm3KbcP4w0H25THtiMNh8AQHCiAQIA8ApXbmV+Gbcp9w8jzYfblAe2QJ4PtykHgBsH1wABAHiFK7cyBwAAAHyFM0AAAG6rza3MAQAAAH+gAQIAcFttbmUOAAAA+ANLYAAAAAAAgOHRAAEAAAAAAIbnsQZIbm6uKioqPHU4AICPkeMAEHzIbgBwnccaIBs2bNBjjz2m5cuX69ixY546LADAR8hxAAg+ZDcAuM5jF0GdO3euvv76a33wwQfKyspSWFiYevTooe7du6tBgwaeGgYA4CXkOAAEH7IbAFzn0bvANGvWTM2aNdODDz6ozz//XK+99po2bNig1q1bKy0tTV27dpXZzGVHACBQkeMAEHzIbgBwjcdvg3vy5El98MEH+uCDD2QymXT//fcrPj5e7777rj755BM988wznh4SAOBB5DgABB+yGwCuzWMNkHfffVcffPCBTpw4oS5duuiJJ57QLbfc4ny+c+fOevTRRz01HADAw8hxAAg+ZDcAuM5jDZD9+/dr0KBBSklJUZ06dao8HxYWRucZAAIYOQ4AwYfsBgDXeawB8vTTT8tsNisk5P8OWV5eLofD4Qzj9u3be2o4AICHkeMAEHzIbgBwnceuhjR79mx9+eWXlbZ9+eWXmj179jVfu2TJEj366KOaMGGCc9trr72mcePG6ZlnntHcuXP1ww8/VPvaMWPGaMKECZo4caImT57s3iQA4AbmTo4DAPyD7AYA13nsDJBvvvlGP/rRjypta9Wqlb755ptrvjY1NVX9+/dXdna2c1u7du00fPhwWSwWrV27Vps2bdKDDz5Y7eunT5+u+vXruzcBALjBuZPjAAD/ILsBwHUea4DUq1dPxcXFiomJcW4rLi5WWFjYNV+bnJys/Pz8StuuPFXvlltu0e7duz1VKgCgGu7kOADAP9zJbpvNpuzsbBUVFclkMiktLU0DBgzQ2bNnNX/+fJ06dUoJCQkaP368IiMjvTkNAPAJjy2B6dy5sxYuXKhvv/1W58+f17fffqvFixfr7rvvdvvY27ZtU4cOHWp8fvbs2Zo0aZJycnLcHgsAblTezHEAgHe4k90Wi0UjRozQ/PnzNXv2bL333nv67rvvtHnzZt12221atGiRbrvtNm3evNkHMwEA7/PYGSAPPPCA1qxZo6lTp+rixYsKDQ1Vamqqhg0b5tZxN27cKIvFou7du1f7/MyZM2W1WlVcXKxZs2YpKSlJycnJ1e6bk5PjbJJkZmYqPj7erdq8JSQkJGBrqy0jzUWSzGazIiIivD5OfLxvfuNutPfHaPPxNW/lOADAe9zJ7tjYWMXGxkqS6tatq0aNGqmgoEC5ubmaMWOGJKlnz56aMWNGjUvRASCYeKwBEhoaqkcffVSPPPKISkpKFBUVJZPJ5NYxt2/frj179mjatGk1HstqtUqSoqOj1alTJ+Xl5dXYAElLS1NaWprzsc1mc6s+b4mPjw/Y2mrLSHORJLs9UaWlpV4fx2Yr8foYkvHen0CeT1JSkr9LuCZv5DgAwLs8ld35+fn66quv1KpVKxUXFzsbIzExMSouLq6yP79Y9A+jzYdfLgYuI83lSh5rgEhSaWmpjh8/rrKyskrb27ZtW+tj7d+/X2+//bZeeOGFGtcwlpWVyeFwqG7duiorK9OBAwc0ZMiQ66odAODZHAcA+Ia72V1WVqasrCxlZGRU+c+oyWSqtqHCLxb9w2jz4ZeLgSuQ5+LOLxY91gDZvn27li9frvDwcIWGhjq3m0wmLV68+KqvXbBggQ4fPqySkhKNGjVKQ4cO1aZNm1ReXq6ZM2dKkn70ox/pscceU0FBgZYtW6YpU6aouLhY8+bNkyRVVFSoW7duV71WCACgZu7kOADAP9zN7vLycmVlZal79+7q3LmzpEtnVhcWFio2NlaFhYXcbRGAYXisAfKnP/1JTz/9tG6//fZav3bcuHFVtvXu3bvafa1Wq6ZMmSJJSkxM1Ny5c2s9HgCgKndyHADgH+5kt8Ph0NKlS9WoUSMNGjTIuT0lJUU7duxQenq6duzYoU6dOnmyZADwG481QOx2e6Vb1wIAggs5DgDBx53sPnr0qHbu3KmmTZtq4sSJkqRhw4YpPT1d8+fP17Zt25y3wQUAI/BYA+See+7Rn//8Z/3sZz+T2eyxu+sCAHyEHAeA4ONOdrdu3VobNmyo9rlp06Z5ojwACCgea4C88847Kioq0l/+8hdFRkZWeu7ll1/21DAAAC8hxwEg+JDdAOA6jzVAnnzySU8dCgDgB+Q4AAQfshsAXOexBkhycrKnDgUA8ANyHACCD9kNAK7zWAPk4sWLeuutt/TRRx+ppKREq1ev1meffaYTJ06of//+nhoGAOAl5DgABB+yGwBc57Gr3K1evVr/+c9/NHbsWJlMJklSkyZNtGXLFk8NAQDwInIcAIIP2Q0ArvPYGSCffvqpFi1apPDwcGf4Wq1WFRQUeGoIAIAXkeMAEHzIbgBwncfOAAkJCZHdbq+07cyZM4qKivLUEAAALyLHASD4kN0A4DqPNUDuuusuLV68WPn5+ZKkwsJCLV++XF26dPHUEAAALyLHASD4kN0A4DqPNUCGDx+uBg0aaMKECSotLdXYsWMVGxurn//8554aAgDgReQ4AAQfshsAXOexa4CEhIQoIyNDGRkZztPuLq9DBFA7WVm+OW31xRd9MgyCBDkOAMGH7AYA13msAfL9999Xenzu3Dnn3xMTEz01DADAS8hxAAg+ZDcAuM5jDZCxY8fW+Nz69es9NQwAwEvIcQAIPmQ3ALjOYw2Q/w3YoqIivfnmm2rTpo2nhgAAeBE5DgDBh+wGANd57CKo/ysmJkYZGRl6/fXXvTUEAMCLyHEACD5kNwDUzGsNEEk6fvy4zp8/780hAABeRI4DQPAhuwGgeh5bAjNt2rRKV5w+f/68/vOf/2jIkCEuvX7JkiXau3evoqOjlZWVJUk6e/as5s+fr1OnTikhIUHjx49XZGRklddu375dGzdulCTdd999Sk1NdX9CAHCDcTfHAQC+R3YDgOs81gDp3bt3pcfh4eG6+eabddNNN7n0+tTUVPXv31/Z2dnObZs3b9Ztt92m9PR0bd68WZs3b9aDDz5Y6XVnz57VW2+9pczMTEnS5MmTlZKSUm2jBABQM3dzHADge2Q3ALjOYw0Qd8+6SE5OVn5+fqVtubm5mjFjhiSpZ8+emjFjRpUGyP79+9WuXTtnw6Ndu3bav3+/unXr5lY9AHCj4ew5AAg+ZDcAuM5rd4Gpyf333+/yMYuLixUbGyvp0gWdiouLq+xTUFCguLg452Or1aqCggKXxwAAXOKNHAcAeBfZDQCu81gD5MSJE/rkk0/UqlUrxcfHy2azKS8vT507d1ZoaKjbxzeZTJXWN16PnJwc5eTkSJIyMzMVHx/vdl3eEBISErC11ZaR5iJJZrNZERER/i7DY0JCTIZ6f4z2efM1b+c4AMDzyG4AcJ3HGiCS9NRTT+muu+5yPv7kk0/08ccfa/To0dd1vOjoaBUWFio2NlaFhYWqX79+lX2sVqsOHz7sfFxQUKDk5ORqj5eWlqa0tDTnY5vNdl11edvlf7yMwEhzkSS7PVGlpaX+LsNjysvDDPX+BPLnLSkpyd8luMSdHHfnYtYAgOvn6Z/BAcCoPHYb3H379unOO++stC0lJUX79u277mOmpKRox44dkqQdO3aoU6dOVfbp0KGDPvvsM509e1Znz57VZ599pg4dOlz3mABwo3I3x1NTUzV16tRK2y5fzHrRokW67bbbtHnzZo/VCwDwzs/gAGBUHmuANGzYUO+++26lbVu2bFHDhg1dev2CBQv03HPP6fjx4xo1apS2bdum9PR0HThwQGPHjtXnn3+u9PR0SdK///1vLV26VJIUGRmpn/3sZ5oyZYqmTJmiIUOG8NtFALgO7uZ4cnJylfzNzc1Vz549JV26mHVubq5nigUASHI/uwHgRuKxJTCjRo3SvHnz9Je//MV5IVKLxaIJEya49Ppx48ZVu33atGlVtrVs2VItW7Z0Pu7du3eVW4ABAGrH3RyvjisXswYAXD93sru6pYsbNmzQ1q1bnUvPhw0bpo4dO3p1DgDgKx5rgDRv3lwLFy7UsWPHVFhYqJiYGN1yyy0KCfHoZUYAAF7i7Ry/2sWsuUi1f/hqPjNnWrw+hq8uUh0fH+b1MSQ+a3CdO9mdmpqq/v37Kzs7u9L2gQMHavDgwd4qGQD8xmvdieTkZJWVlam8vFzh4eHeGgYA4CWeyHFXLmYtcZFqf/HVfEpLo7w+RkREhE8uUm2zlXh9DInPmi8Fy0WqXVWb7E5OTlZ+fr6PKgMA//NYA+Tbb7/VnDlzVKdOHZ0+fVpdunTR4cOHtWPHDo0fP95TwwAAvMQbOX75Ytbp6ek1XswaAHD9vJHd7733nnbu3KkWLVrooYce4vp6AAzDYw2QV155Rffff7969OihX/7yl5IudZWXLVvmqSEAAF7kbo4vWLBAhw8fVklJiUaNGqWhQ4cqPT1d8+fP17Zt25y3wQUAeI6nfwbv16+fhgwZIklav3691qxZU+3tdFm66B9Gmw/LFwOXkeZyJY81QL777jt179690rbw8HBduHDBU0MAALzI3RyvzcWsAQCe4emfwWNiYpx/79Onj+bMmVPtfixd9A+jzcduT2T5YoAK5Lm4s3TRY7fBTUhI0JdffllpW15eHrfgAoAgQY4DQPDxdHYXFhY6//7pp5+qSZMmbtUHAIHEY2eA3H///crMzFTfvn1VXl6uTZs26f3339fjjz/uqSEAAF5EjgNA8HEnu6tbunjo0CF9/fXXMplMSkhI0GOPPeaDWQCAb3isAXLHHXdo6tSp2rp1q5KTk3Xq1Ck988wzatGihaeGAAB4ETkOAMHHneyubuli7969vVEmAAQEjzRA7Ha7nnrqKf3hD3/Qo48+6olDAgB8iBwHgOBDdgNA7XjkGiBms1lms1kXL170xOEAAD5GjgNA8CG7AaB2PLYEZsCAAZo/f77uvfdeWa1WmUwm53OJiYmeGgYA4CXkOAAEH7IbAFzndgOkqKhIMTExWrFihSTpwIEDVfZZv369u8MAALyEHAeA4EN2A0Dtud0Aeeqpp7R69WpnwM6dO1cTJ050uzAAgG+Q4wAQfMhuAKg9t68B4nA4Kj0+fPiwu4cEAPgQOQ4AwYfsBoDac7sBcuU6QwBA8CHHASD4kN0AUHtuL4GpqKjQwYMHnY/tdnulx5LUtm1bd4cBAHgJOQ4AwYfsBoDac7sBEh0drZdfftn5ODIystJjk8mkxYsXuzsMAMBLyHEACD5kNwDUntsNkOzsbE/UAQDwE3IcAIIP2Q0Ated2A8Tbjh8/rvnz5zsf5+fna+jQoRo4cKBz26FDh/T73/9eDRo0kCR17txZQ4YM8XmtAAAAAAAgMAV8AyQpKUlz586VdGlt4+OPP64777yzyn5t2rTR5MmTfV0eAAAAAAAIAm7fBcaXPv/8czVs2FAJCQn+LgUAAAAAAASRgD8D5EofffSRunbtWu1zX3zxhSZOnKjY2FiNGDFCTZo0qbJPTk6OcnJyJEmZmZmKj4/3ar3XKyQkJGBrqy0jzUWSzGazIiIi/F2Gx4SEmAz1/hjt8wYAAADAc4KmAVJeXq49e/Zo+PDhVZ5r3ry5lixZovDwcO3du1dz587VokWLquyXlpamtLQ052ObzebVmq9XfHx8wNZWW0aaiyTZ7YkqLS31dxkeU14eZqj3J5A/b0lJSf4uAQAAALihBc0SmH379ql58+aKiYmp8lxERITCw8MlSR07dlRFRYXOnDnj6xIBAAAAAECACpoGyNWWvxQVFcnhcEiS8vLyZLfbFRUV5cvyAAAAAABAAAuKJTBlZWU6cOCAHnvsMee2LVu2SJL69eun3bt3a8uWLbJYLAoNDdW4ceNkMpn8VS4AAAAAAAgwQdEACQ8P14oVKypt69evn/Pv/fv3V//+/X1dFgAAAAAACBJBswQGAAAAAADgetEAAQAAAAAAhkcDBAAAAAAAGB4NEAAAAAAAYHhBcRFUAAAAAJ61ZMkS7d27V9HR0crKypIknT17VvPnz9epU6eUkJCg8ePHKzIy0s+VAoBncAYIAAAAcANKTU3V1KlTK23bvHmzbrvtNi1atEi33XabNm/e7KfqAMDzaIAAAAAAN6Dk5OQqZ3fk5uaqZ8+ekqSePXsqNzfXH6UBgFfQAAEAAAAgSSouLlZsbKwkKSYmRsXFxX6uCAA8h2uAAAAAAKjCZDLJZDJV+1xOTo5ycnIkSZmZmYqPj/dlaS4LCQkJ2Nquh9HmYzabFRER4fVx4uPDvD6GZKz3x0hzuRINEAAAAACSpOjoaBUWFio2NlaFhYWqX79+tfulpaUpLS3N+dhms/mqxFqJj48P2Nquh9HmY7cnqrS01Ovj2GwlXh9DMtb7E8hzSUpKuu7XsgQGAAAAgCQpJSVFO3bskCTt2LFDnTp18nNFAOA5nAECAAAA3IAWLFigw4cPq6SkRKNGjdLQoUOVnp6u+fPna9u2bc7b4AKAUdAAAQAAAG5A48aNq3b7tGnTfFwJAPgGS2AAAAAAAIDh0QABAAAAAACGRwMEAAAAAAAYHg0QAAAAAABgeEFxEdQxY8YoPDxcZrNZFotFmZmZlZ53OBxauXKl9u3bp7CwMI0ePVotWrTwU7UAAAAAACDQBEUDRJKmT5+u+vXrV/vcvn37dPLkSS1atEjHjh3Tq6++qt/97nc+rhAAAAAAAASqoGmAXM0///lP9ejRQyaTSbfccot++OEHFRYWKjY21t+lAcAN71pn8QEAAAC+EDQNkNmzZ0uS+vbtq7S0tErPFRQUKD4+3vk4Li5OBQUFVRogOTk5ysnJkSRlZmZWek0gCQkJCdjaastIc5Eks9msiIgIf5fhMSEhJkO9P0b7vBnJ1c7iAwAAAHwhKBogM2fOlNVqVXFxsWbNmqWkpCQlJyfX+jhpaWmVmic2m82TZXpMfHx8wNZWW0aaiyTZ7YkqLS31dxkeU14eZqj3J5A/b0lJSf4uAQAAALihBUUDxGq1SpKio6PVqVMn5eXlVWqAWK3WSv/pOX36tPM1AAD/u9pZfAAAAIAvBHwDpKysTA6HQ3Xr1lVZWZkOHDigIUOGVNonJSVF7777rrp27apjx44pIiKC638AQIBw5Sw+lij6h6/mExFh8foYvlqiGB8f5vUxJD5rAAB4Q8A3QIqLizVv3jxJUkVFhbp166YOHTpoy5YtkqR+/frp9ttv1969ezV27FiFhoZq9OjR/iwZAHCFa53FJ7FE0V98NZ/S0iivjxEREeGTJYo2W4nXx5D4rPkSSxQB4MYR8A2QxMREzZ07t8r2fv36Of9uMpn06KOP+rIsAIALXDmLDwAAAPCFgG+AAACCV01n8QEAAAC+RgMEAOA1NZ3FBwAAAPia2d8FAAAAAAAAeBsNEAAAAAAAYHg0QAAAAAAAgOHRAAEAAAAAAIZHAwQAAAAAABgeDRAAAAAAAGB4NEAAAAAAAIDh0QABAAAAAACGRwMEAAAAAAAYXoi/CwAAAAAQWMaMGaPw8HCZzWZZLBZlZmb6uyQAcBsNEAAAAABVTJ8+XfXr1/d3GQDgMSyBAQAAAAAAhscZIAAAAACqmD17tiSpb9++SktLq/RcTk6OcnJyJEmZmZmKj4/3eX2uCAkJCdjarofR5mM2mxUREeH1ceLjw7w+hmSs98dIc7kSDRAYQlZWlE/G8UE+AwAA+N3MmTNltVpVXFysWbNmKSkpScnJyc7n09LSKjVFbDabP8q8pvj4+ICt7XoYbT52e6JKS0u9Po7NVuL1MSRjvT+BPJekpKTrfi1LYAAAAABUYrVaJUnR0dHq1KmT8vLy/FwRALgvoM8Asdlsys7OVlFRkUwmk9LS0jRgwIBK+xw6dEi///3v1aBBA0lS586dNWTIEH+UCwAADM5XZxy++KJPhgGqVVZWJofDobp166qsrEwHDhzg52sAhhDQDRCLxaIRI0aoRYsWOnfunCZPnqx27dqpcePGlfZr06aNJk+e7KcqAQAAAOMoLi7WvHnzJEkVFRXq1q2bOnTo4OeqAMB9Ad0AiY2NVWxsrCSpbt26atSokQoKCqo0QAAAAAB4RmJioubOnevvMgDA4wK6AXKl/Px8ffXVV2rVqlWV57744gtNnDhRsbGxGjFihJo0aVLtMbhate/5ai4RERavjyH57krVvhISYjLMZ00y1vcOAAAAAM8KigZIWVmZsrKylJGRUeU/n82bN9eSJUsUHh6uvXv3au7cuVq0aFG1x+Fq1b7nq7mUlvrqLjARPrlSta+Ul4cZ5rMmBfb3jjtXqwYAAADgvoC/C0x5ebmysrLUvXt3de7cucrzERERCg8PlyR17NhRFRUVOnPmjK/LBAAAAAAAASygGyAOh0NLly5Vo0aNNGjQoGr3KSoqksPhkCTl5eXJbrcrKso3ZwMAAAAAAIDgENBLYI4ePaqdO3eqadOmmjhxoiRp2LBhzlPc+/Xrp927d2vLli2yWCwKDQ3VuHHjZDKZ/Fk2AAAAAAAIMAHdAGndurU2bNhw1X369++v/v37+6giAAAAAAAQjAJ6CQwAAAAAAIAn0AABAAAAAACGRwMEAAAAAAAYHg0QAAAAAABgeDRAAAAAAACA4dEAAQAAAAAAhkcDBAAAAAAAGB4NEAAAAAAAYHg0QAAAAAAAgOHRAAEAAAAAAIZHAwQAAAAAABgeDRAAAAAAAGB4NEAAAAAAAIDh0QABAAAAAACGF+LvAgAAAAAAgSMrK8on40RE+GQYwIkzQAAAAAAAgOHRAAEAAAAAAIYXFEtg9u/fr5UrV8put6tPnz5KT0+v9PzFixe1ePFiffnll4qKitK4cePUoEEDP1ULALjStTIcABB4yG4ARhTwZ4DY7XYtX75cU6dO1fz58/XRRx/pu+++q7TPtm3bVK9ePb300ksaOHCg1q1b56dqAQBXciXDAQCBhewGYFQB3wDJy8tTw4YNlZiYqJCQEHXp0kW5ubmV9vnnP/+p1NRUSdJdd92lgwcPyuFw+KFaAMCVXMlwAEBgIbsBGFXAN0AKCgoUFxfnfBwXF6eCgoIa97FYLIqIiFBJSYlP6wQAVOVKhgMAAgvZDcCoguIaIJ6Sk5OjnJwcSVJmZqaSkpL8XFHNArm22vLFXLKyvD7EFXxzWzBfMdJnTTLefG4U5LP/GCujyedAZrT53OjIbf8xVm5Lvslu3/37YKTPm5HmclnAnwFitVp1+vRp5+PTp0/LarXWuE9FRYVKS0sVFVX1Q56WlqbMzExlZmZ6t2g3TZ482d8leIyR5iIxn0BntPkYgSsZLpHP/mKk+RhpLhLzgX+5kt3ktn8wn8BmpPkYaS5XCvgGSMuWLXXixAnl5+ervLxcu3btUkpKSqV97rjjDm3fvl2StHv3bt16660ymUx+qBYAcCVXMhwAEFjIbgBGFfBLYCwWi0aOHKnZs2fLbrerV69eatKkidavX6+WLVsqJSVFvXv31uLFi/Xkk08qMjJS48aN83fZAADVnOEAgMBFdgMwqoBvgEhSx44d1bFjx0rb7r//fuffQ0ND9fTTT/u6LK9JS0vzdwkeY6S5SMwn0BltPkZRXYYHK6N9xow0HyPNRWI+8D+jZLfRPnvMJ7AZaT5GmsuVTA7uFwsAAAAAAAwu4K8BAgAAAAAA4K6gWAJzo/rrX/+q1157Ta+++qrq16/v73Ku22uvvaYkGjuJAAAgAElEQVQ9e/YoJCREiYmJGj16tOrVq+fvsmpt//79Wrlypex2u/r06aP09HR/l3RdbDabsrOzVVRUJJPJpLS0NA0YMMDfZbnNbrdr8uTJslqthr1qNQKLETKafA48Rsxo8hmBwgi5LRkju8ntwGfU7KYBEqBsNpsOHDig+Ph4f5fitnbt2mn48OGyWCxau3atNm3apAcffNDfZdWK3W7X8uXL9dxzzykuLk5TpkxRSkqKGjdu7O/Sas1isWjEiBFq0aKFzp07p8mTJ6tdu3ZBOZcr/f3vf1ejRo107tw5f5eCG4BRMpp8DjxGzGjyGYHAKLktBX92k9vBwajZzRKYALV69Wr94he/MMTtfNu3by+LxSJJuuWWW1RQUODnimovLy9PDRs2VGJiokJCQtSlSxfl5ub6u6zrEhsbqxYtWkiS6tatq0aNGgXle3Kl06dPa+/everTp4+/S8ENwigZTT4HHqNlNPmMQGGU3JaCP7vJ7cBn5OymARKAcnNzZbVa1axZM3+X4nHbtm1Thw4d/F1GrRUUFCguLs75OC4uLuiDTZLy8/P11VdfqVWrVv4uxS2rVq3Sgw8+aIgfahD4jJrR5HPgMUJGk88IBEbNbSk4s5vcDnxGzm6WwPjJzJkzVVRUVGX7Aw88oE2bNum5557zQ1XX72rz6dSpkyRp48aNslgs6t69u6/LQzXKysqUlZWljIwMRURE+Luc67Znzx5FR0erRYsWOnTokL/LgUEYKaPJ5+BkhIwmn+FLRsptiewORkbIbcn42c1tcAPMt99+q9/+9rcKCwuTdOn0o9jYWL344ouKiYnxc3XXb/v27Xr//fc1bdo059yCyRdffKE333xTzz77rCRp06ZNkqR7773Xn2Vdt/Lycs2ZM0ft27fXoEGD/F2OW15//XXt3LlTFotFFy5c0Llz53TnnXdq7Nix/i4NBmTEjCafA49RMpp8RiAwYm5LwZ3d5HZgM3x2OxDQRo8e7SguLvZ3GW7Zt2+fY9y4cUE9j/LycseYMWMc33//vePixYuOZ555xvHtt9/6u6zrYrfbHS+99JJj5cqV/i7F4w4ePOh48cUX/V0GbiDBntHkc+AxakaTzwgUwZ7bDkfwZze5HTyMmN0sgYHXLV++XOXl5Zo5c6Yk6Uc/+pEee+wxP1dVOxaLRSNHjtTs2bNlt9vVq1cvNWnSxN9lXZejR49q586datq0qSZOnChJGjZsmDp27OjnygD4GvkceMhoANcS7NlNbsOfWAIDAAAAAAAMj7vAAAAAAAAAw6MBAgAAAAAADI8GCAAAAAAAMDwaIAAAAAAAwPBogAAAAAAAAMOjAQL98Y9/1FtvveV8vGXLFv3qV7/SiBEjVFJSoiNHjmjs2LEaMWKEPv30Uz9WanwzZszQ1q1b/V2Gxx06dEijRo3ydxlA0CGfAwf5DMAV5HbgILdRnRB/FwDvGjNmjIqKimSxWGQ2m9W4cWP16NFDaWlpMpsv9b+uvG94eXm5Vq9erdmzZ6tZs2aSpA0bNqh///4aMGCAP6YQNDZs2KCTJ09q7Nix/i4l4I0ZM0aPP/642rVr5+9SAL8hn32HfHYd+QzUjNz2HXLbdeR27dAAuQFMmjRJ7dq1U2lpqQ4fPqyVK1cqLy9Po0ePrrJvcXGxLl68qCZNmji3nTp1So0bN76usSsqKmSxWK67diNxOBxyOBzOfyADEe8X4Fvkc2AgnwG4itwODOQ2rhcNkBtIRESEUlJSFBMTo2effVaDBg1S06ZNlZ2drbi4OPXo0UOTJk2SJGVkZKhVq1ay2WzKz8/XnDlzZDabtWLFCl28eFGrV6/Wvn37ZDKZ1KtXLw0dOlRms1nbt2/X1q1b1bJlS+3cuVP9+vXTz372M/3pT3/Sxx9/rPLycnXq1EkZGRkKDQ3VoUOH9NJLL2ngwIF6++23ZTabNWzYMPXq1UuSdOHCBb3xxhvavXu3fvjhBzVt2lTPP/+8QkND9cUXX2jNmjX67rvvlJCQoIyMDN16660ufS1sNptWrVqlf/3rX3I4HOrataseeeQR2e12bdq0SVu3btWFCxfUoUMHjRw5UhEREcrPz9cTTzyh0aNHa/369bpw4YIGDhyo++67T/v379emTZskSbm5uWrYsKHmzp2rGTNm6Mc//rEOHz6sL7/8UllZWSouLtaqVat0/PhxJSUlKSMjQz/+8Y+vWm9BQYGefPJJLVu2TJGRkZKkr776SrNmzdKyZctks9n08ssv6+uvv1ZISIjatm2r8ePHX/PrUNv368yZM1qyZImOHDkik8mkJk2aaMaMGTKbzRo6dKgWLVqkhg0bSpLzc/XAAw9UGvOll16SzWZzfqaGDBmie+65x6X3DTAq8vn/kM+XkM9AYCO3/w+5fQm5HRxogNyAWrVqJavVqiNHjqhp06bO7UlJScrKytITTzyhVatWOTuW/3ta1YIFCxQdHa1Fixbp/PnzyszMVFxcnPr27StJOnbsmLp06aJXXnlFFRUVWrdunb7//nvNnTtXFotFCxcu1FtvvaXhw4dLkoqKilRaWqqlS5fqwIED+sMf/qBOnTopMjLSGcSzZs1STEyMjh07JpPJpIKCAmVmZuqJJ55Qhw4ddPDgQWVlZWnBggWqX7++Nm/erCNHjmjy5MlV5m+32zVnzhzdeuutys7Oltls1pdffinpUnBt375d06dPV3R0tBYvXqzly5frySefdL7+yJEjWrhwoY4fP66pU6fqzjvvVIcOHXTvvfdWe6rezp07NXXqVCUlJamkpERTpkzRL3/5S3Xt2lUff/yxMjMztWjRIkVFRdX4nlmtVt1yyy3avXu30tLSJEkffvihOnfurJCQEL3xxhtq3769pk+frvLycud8XFGb9+tvf/ubrFarXn31VedrTSaTy2NJ0pNPPqkjR45wqh5QDfKZfL4S+QwEPnKb3L4SuR34AvecIXiV1WrV2bNna/26oqIi7du3TxkZGQoPD1d0dLQGDhyoXbt2OfeJjY3VT3/6U1ksFtWpU0dbt27Vww8/rMjISNWtW1f33XefPvroI+f+FotFQ4YMUUhIiDp27Kjw8HAdP35cdrtd//jHP5SRkSGr1Sqz2awf//jHqlOnjnbu3Knbb79dHTt2lNlsVrt27dSyZUvt3btXkpSenl5tSEtSXl6eCgoKNGLECIWHhys0NFStW7eWdCn8Bg0apMTERIWHh2v48OHatWuXKioqnK//+c9/rtDQUDVr1kw333yzvvnmm6t+zVJTU9WkSRNZLBYdOHBADRs2VI8ePWSxWNStWzclJSVpz5491/zad+vWzfl1czgc2rVrl7p16yZJCgkJ0alTp1RYWFhpPq6ozftlsVhUVFQkm82mkJAQtWnTptZBDeDqyGfy+TLyGQgO5Da5fRm5Hfg4A+QGVVBQ4DzlqzZsNpsqKioqXeDJ4XAoLi7O+Tg+Pt759zNnzuj8+fOVQtPhcMhutzsfR0VFVVofFxYWprKyMpWUlOjixYvOU7/+t47du3dXCriKigqXTtWz2WxKSEiodk1eYWGhEhISKs2loqJCxcXFzm0xMTFVar2aK782BQUFlY4vSQkJCSooKLhm3Z07d9aKFStUWFioEydOyGQyqU2bNpKkBx98UG+88YamTp2qevXqadCgQerdu/c1j3l5jpdd6/0aPHiw3nzzTc2aNUuSlJaWpvT0dJfGAeAa8pl8vnKOl5HPQOAit8ntK+d4GbkdmGiA3IAud2pr0828LC4uTiEhIVq+fLlLF/WJiopSaGio/vCHP8hqtdZqrKioKNWpU0cnT550Xjn7yjq6d+9+XbeAio+Pd/6D879ziI2N1alTp5yPbTabLBaLoqOjdfr06aset6aO7ZXbrVarPvnkk0rP22w2dejQ4Zp1R0ZGqn379tq1a5f++9//qkuXLs5jx8TEOL8WR44c0cyZM5WcnFztP3JXc633q27dunrooYf00EMP6dtvv9Vvf/tbtWzZUrfddpvCwsJ0/vx5575FRUWV/pECcG3kM/lcE/IZCEzkNrldE3I7MLEE5gZSWlqqPXv2aOHCherevXuldYquio2NVfv27bVmzRqVlpbKbrfr5MmTOnz4cLX7m81m9enTR6tWrXJ2ewsKCrR///5rjmU2m9WrVy+tWbNGBQUFstvt+uKLL3Tx4kV1795de/bs0f79+2W323XhwgUdOnTommEqXVqrGRsbq3Xr1qmsrEwXLlzQkSNHJEldu3bVO++8o/z8fJWVlelPf/qT7r77bpf+UYqOjtapU6cqdeH/1+23364TJ07oww8/VEVFhXbt2qXvvvtOHTt2vObxpUun6+3cuVO7d+92nqYnSR9//LFz7vXq1ZNU8z8cV3Ot92vPnj06efKkHA6HIiIiZDabneM0a9ZMH374oex2u/bv31/jZ0K69A9Lfn5+resDjIp8voR8rhn5DAQWcvsScrtm5HZg4gyQG8CcOXNksVhkMpnUuHFjDRw4UP369bvu4z3xxBNat26dnn76aZ07d06JiYlXvdrwL37xC7311lt69tlnVVJSIqvVqr59+7rUnX3ooYf0+uuva8qUKSorK1OzZs307LPPKj4+Xr/5zW+0du1aLVy4UGazWa1atdKvfvUrSdLGjRt15MgRTZ06tcoxzWazJk2apBUrVmj06NEymUzq2rWrWrdurV69eqmwsFDTp0/XhQsX1L59e40cOdKlr8vdd9+tDz74QI888ogaNGigOXPmVNknKipKkydP1sqVK/XKK6+oYcOGmjx5surXr+/SGCkpKVq6dKni4+Mrde///e9/a9WqVSotLVVMTIx++ctfKjExUZL09NNP695771X37t1dGuNq79eJEye0YsUKnTlzRvXq1VO/fv3Utm1bSZeucJ6dna333ntPnTp1UqdOnWocIz09XStWrNDatWt13333afDgwS7VBhgN+VwZ+Xx15DPgf+R2ZeT21ZHbgcfkcDgc/i4CAAAAAADAm1gCAwAAAAAADI8GCAAAAAAAMDwaIAAAAAAAwPBogAAAAAAAAMOjAQIAAAAAAAyPBggAAAAAADA8GiAAAAAAAMDwaIAAAAAAAADDowECAAAAAAAMjwYIAAAAAAAwPBogAAAAAADA8GiAAAAAAAAAw6MBAgAAAAAADI8GCAAAAAAAMDwaIAAAAAAAwPBogAAAAAAAAMOjAQIAAAAAAAyPBggAAAAAADA8GiAAAAAAAMDwaIAAAAAAAADDowECAAAAAAAMjwYIAAAAAAAwPBogAAAAAADA8GiAAAAAAAAAw6MBAgAAAAAADI8GCAAAAAAAMDwaIAAAAAAAwPBogAAAAAAAAMOjAQIAAAAAAAyPBggAAAAAADA8GiAAAAAAAMDwaIAAAAAAAADDowECAAAAAAAMjwYIAAAAAAAwPBogAAAAAADA8GiAAAAAAAAAw6MBAgAAAAAADI8GCAAAAAAAMDwaIAAAAAAAwPBogAAAAAAAAMOjAQIAAAAAAAyPBggAAAAAADA8GiAAAAAAAMDwaIAAAAAAAADDowECAAAAAAAMjwYIAAAAAAAwPBogAAAAAADA8GiAAAAAAAAAw6MBAgAAAAAADI8GCAAAAAAAMDwaIAAAAAAAwPBogAAAAAAAAMOjAQIAAAAAAAyPBggAAAAAADA8GiAAAAAAAMDwaIAAAAAAAADDowECAAAAAAAMjwYIAAAAAAAwPBogAAAAAADA8GiAAAAAAAAAw6MBAgAAAAAADI8GCAAAAAAAMDwaIAAAAAAAwPBogAAAAAAAAMOjAQIAAAAAAAyPBggAAAAAADA8GiAAAAAAAMDwaIAAAAAAAADDowECAAAAAAAMjwYIAAAAAAAwPBogAAAAAADA8GiAAAAAAAAAw6MBAgAAAAAADI8GCAAAAAAAMDwaIAAAAAAAwPBogAAAAAAAAMOjAQIAAAAAAAyPBggAAAAAADA8GiAAAAAAAMDwaIAAAAAAAADDowECAAAAAAAMjwYIAACo0YwZM9SqVSufHGf79u0ymUz67rvv3B7PU1JTU/Xoo4/6u4yg1axZM82aNcvfZQA3HLKb7HaHyWTS2rVr/V2GV9AAgd+YTKar/mnWrJmkSwF2eVudOnXUrFkzPfnkkyoqKqpyzLKyMlmtVtWrV08FBQXVjnvo0CGNGDFCjRo1UlhYmG6++Wbde++9+sc//uEM8Kv9ycjIcGveM2bMcB7LYrEoNjZWd955p6ZNmyabzebWsYFgcSN//9f0gyT/Uby2FStWqE6dOiopKam0vX379jVuHzlypC9L9LmLFy/qN7/5jW666SbVrVtX3bp10549e/xdll/U5vurpv8cff311zKZTPrwww+9VmcwI7urIruvjeyuavbs2erevbvq168fcM0jX8vIyFBaWlq1z/1vI6am77faNOFogMBvTpw44fzz5z//WZK0d+9e57bc3FznvsOHD9eJEyf01VdfaenSpdq4caNGjx5d5ZgbNmxQ8+bN1bNnT61evbrK8++9955SUlJ0/Phxvfrqqzp8+LD++te/6q677tLjjz+uLl26VKprwoQJatasWaVtCxcudHvul4/53XffadeuXRozZoz+/Oc/q23btjp69KjbxwcC3Y38/Y/r16dPH5WXl2vnzp3ObadOndLBgwd10003Vdn++eef1/hD1bVcvHjR7XprcuHCBY8da+LEiVq+fLmWLVum3NxctWjRQmlpaTp58qTHxrgenpyjL4+NqyO7cT3I7qrOnz+vwYMH69lnn/XYMT3Bm/nqzfemNmiAwG8aNmzo/GO1WiVJCQkJzm0JCQnOfevWrauGDRuqcePG6t+/vx544AG99957VY75xz/+URkZGXr44Yf1yiuvVHqutLRUDz30kFJTU7V161b99Kc/VcuWLdWuXTtNmjRJn3zyiUJDQyvVFRkZKYvFUmlbdHS023O/fMybbrpJbdq00cMPP6zdu3crMjJSo0aNcu5XXUd07dq1MplMzseXfyvx+uuvq0WLFgoPD1ffvn319ddfu10n4C038ve/q0pKSvT4448rISFBYWFhSklJ0ZYtW5zP1/Sb6latWmnGjBnOx6+++qratGmj8PBwWa1W9ejRo9JvSPbs2aN+/fopMjJSCQkJuu+++/TNN99Uqeftt99W69atVa9ePaWmpurYsWOVnv/73/+uO+64Q2FhYWrQoIFGjx6tH3744apzfOmll9S4cWNFREToJz/5ib799tur7n/zzTerZcuW2rp1q3Pbtm3b1LZtW91zzz1VtjscDvXp08el+i7n7UsvvaRmzZopLCxM586dq1LD/v37lZSUpAkTJsjhcOjixYuaMWOGmjdvrvDwcN16661atmxZpdeYTCYtWrRIw4cPV3R0tEaMGCFJ+t3vfqcWLVooLCxMCQkJ+slPflLtmDU5c+aMli5dqhdffFGDBw9W27ZttXLlSoWFhWnp0qU1vq579+6VfuiePn26TCaTcnJynNu6du2qKVOmOB+vXr1aycnJCg0NVePGjfXcc8+pvLzc+XxqaqoeeeQRPf/887rpppvUtGnTasfOyclRTEyMFixYIEk6e/asnnrqKTVq1EgRERG6/fbbtXHjRuf+lz/n69at04ABA1SvXj09//zzLn+N4Flk97WR3VWR3VX99re/1cSJE9W5c2eXX9OkSZNK3yMPP/ywTCaT8vLynNsaN27snIfD4dC8efPUokULhYaGqmXLls7svaxZs2Z67rnnNHr0aMXFxal79+7Vjr127VpFRUXpzTfflCR9//33ysjIUEJCgqKiotS1a9dKjazLZ2S888476tatm8LDw/Xqq6+6PFdvogGCoJOXl6e///3vCg0NrbT90KFDys3N1fDhw3XPPffoxIkTlb4Rt2zZovz8/Bo7rbGxsV6t+1qioqL061//Wjt27NCpU6dq9doTJ05oyZIl2rBhgz744AOdOXNG9913nxwOh5eqBfzDqN//1Rk5cqTee+89rV27Vvv371fXrl01aNAgHTlyxOVj7NmzR6NGjdKUKVN09OhR7dixQw899JDz+cOHD6tnz566++679c9//lPbtm2TxWJR3759VVZW5tzvxIkTevnll7Vu3Trt2rVLJSUllU5PPnDggAYPHqwePXros88+0+rVq/W3v/2tUkP3f7399tsaP368nn76ae3fv19Dhw7VxIkTrzmnPn36VPpheevWrerdu7d69epVZXvbtm2VmJjocn2ffvqptm3bprffflufffZZlc/Z1q1blZqaqgkTJigrK0smk0m/+tWvtHHjRi1btkz/+te/NG3aNE2aNEnLly+v9NoXXnhBXbp00d69ezVr1ixt3LhRmZmZWrhwoY4dO6b3339fP/3pT537X/5P0qpVq2r8WuzZs0fnz59X//79ndsuv39XW8LRq1cvbdu2zfl427ZtSkhIcG47e/ascnNz1bt3b0nSO++8o5EjR2rEiBE6ePCgsrKylJ2drRdeeKHScTds2KBTp05p69atev/996uMu27dOt17771aunSpxo0bJ4fDof/3//6fPvvsM61fv14HDx7Ur3/9az3wwAOV3ktJmjRpkn7xi1/o4MGDV/1cITCR3WQ32e2+/83uf/zjH5Wy++jRo/rvf//rzO4lS5bo+eef1+TJk3Xo0CFNnDhRkydPrjLHRYsWqUGDBvr/7N17WJR1/v/x1zAjICIIjFLgEQ8Z5mEVVzMVxdGvl7WttUab6WZta6zumq35S71arcyNVIJ1hWrLtbJ20++WtO12cJHEvnZCiTTJPHdYawlBQgEN5v790TrLBJrCnLh5Pq7L62Luue/5vN8zw9vhPffnc7/99ttav359o3FXrlypX/3qV/rb3/6mG264QTU1NRo/fryqqqr06quv6v3339eUKVM0ceJEffTRR27HLliwQPfcc48++ugj/ehHP/L0U9I8BhAA3njjDUOS8dlnnzW6Lzk52bDZbEaHDh2MkJAQQ5IhyVizZo3bfvPmzTOuv/561+077rjDuPnmm123H374YUOScfz48QuOa9myZUbv3r2bkVHzHvPVV181JBnvvvuuYRiGccsttxgTJkxw22fDhg1Gw1/dZcuWGZKMAwcOuLZ9/PHHhiQjLy/Po7ED3tDWfv8tFovRoUOHRv8sFouxfPlywzAM48CBA4Yk4x//+Ifb8T/4wQ+MW2+91TAMwzhy5IghyXjzzTfd9undu7exbNkywzAM48UXXzQiIiKMysrKJuO55ZZbjBtvvNFtW21trdG+fXtj8+bNrpitVqtRWlrq2uf55583LBaLUVNTYxiGYcyYMcMYPny42+Pk5uYaFovFOHr0qOtxGj6fV111lTF9+nS3YxYsWHDO98JZGzduNCwWi/HVV1+58n3ppZeMsrIyw2q1um2fP3/+Bcd3yy23GJGRkUZVVZXbfsnJycbPf/5z47nnnjM6dOhgPPvss677Dh8+bFgsFuOjjz5yO+b+++83Bg8e7Lotybjtttvc9nnkkUeMvn37GmfOnGkyz88//9y47LLLjBdffPGcz8Vzzz1nSDJOnz7ttv3uu+82EhMTz3ncG2+8YdhsNuPrr782Tp06ZQQHBxurV682RowYYRiGYbzyyitGcHCwUV1dbRiGYYwePdq44YYb3B4jKyvLCA0NdY2dnJxs9O3b16ivr3fbr0ePHsby5cuNVatWGREREW7/L73xxhtGSEiIceLECbdjbr31VuPHP/6xYRj/fZ8/8MAD58znrAv9/Tob79na0vBfWFhYk79XaIzaTe0+i9r9XxdSuxs63+/Rd61fv97o0qWLYRiGsX//fqN9+/bGAw884Hov5OTkGN26dXPt37VrV2PhwoVujzF//nyjV69erts9evQwUlJSGo0lyXj66aeNefPmGZdeeqlRXFzsFkd8fLzxzTffuB0zfvx4484773TL65lnnvnevG655RbDarU2+fslydiwYYNbvMHBwY32Cw0NveDn0eb9FgvQctddd51+97vf6dSpU8rOztbx48c1d+5c1/21tbXasGGD29zRW265RePHj9eaNWsUHR3t9bMhwsPDXT+PGTNGr7766kU/xtkYG05xuRCdO3d2W5yrX79+stvt2rt3r+sUQqC1Mtvvf7du3Rp9uy19O4XgrJKSEknS2LFj3fYZO3as3n777QuOa+LEiUpISFCvXr00ceJEpaSk6Prrr5fdbpckFRYW6uDBg27xS98+pw1Pk46Li3M7tT0uLk6GYai0tFTdu3fX3r17Xd84nZWcnCzDMFRSUqIePXo0iq2kpEQ33XST27bRo0crIyPjvDmdHSc/P18jRozQ0aNHlZycrMjISF1xxRWu7YcOHXLVvwuN7/LLL2/0XEjSa6+9pvXr1+ull17SNddc49q+c+dOGYahpKQkt/3r6upktVrdtv3whz90u52amqo1a9aoR48emjRpkiZMmKCpU6eqY8eOkqT4+PiL+sb4Ylx55ZWy2WwqKChQu3bt1KNHD82cOVOLFy9WVVWV8vPzNXLkSLVv317St8/fjTfe6PYYycnJqq2t1aFDh3T55ZdLkoYNG6agoMYnF//xj39UaWmpduzYoWHDhrm2FxYW6syZM4qPj3fb/8yZM+rbt6/btu8+f+dyIb9fZ52tLQ3961//anJfXDxq939Ru6ndnjB+/HiVlpbqww8/1I4dOzR69GhNnjxZa9eulfTtczt+/HhJ306R/Pzzzxu9F5OTk/X73/9e1dXVCgsLazLHs+69917V1NSosLDQtcCx9O3778svv1SnTp3c9j99+rTr/42zLrR2jxgxosk1gL77f4EkzZ07t9F6Qu+++65mzJhxQWPRAEGrEBER4foD/49//KNGjx6thx56yHVK5KZNm1RRUaHrrrvO7bj6+no9/fTTuuuuu3TZZZdJ+rZwjx492uMxFhcXu37+7i//hTKhM0QAACAASURBVNq7d68sFot69eolSQoKCmr0n3+gLCAE+IrZfv/btWvX5NUEbLaL+y/57B+a56sR4eHh2rlzp3bs2KG8vDw99thj+n//7/9p69atGjZsmJxOp2bOnKlFixY1evyYmBjXz989nfhsk9bpdF5UzJ5gt9s1ePBgbd26VSdPntTQoUNd8/vPnkp98uRJ2Ww2JScnX9Rjd+jQocntV1xxhUJDQ/XEE09o0qRJrufjbP5vvfWW64PkWd9tZH/3sc9+SH7jjTeUn5+v5cuXu9Y06Nat2wXFe+mll0qSvvzyS7c1N/7973+77mtKSEiIRo0apa1btyo4OFgpKSnq0qWLLrvsMhUUFCg/P1/XXnvtBcVwvhzPuvLKK5Wfn69169Zp6NChbu+fyMhIt4Uzz/rue+5cj/1dF/P71bC2nG8/NA+1u2nUbmp3c/Xo0UMJCQnaunWr3nrrLaWkpGjo0KE6ffq09uzZo23btmn16tUX/bjnev4cDoc2btyo559/3u295nQ6dfnll2vz5s2Njvnu83mhtbt9+/YXfNnm6OjoRvtezFV0WAMErdL999+vFStW6F//+pek/y6gVVxc7PZvwYIFrsWCJk2apC5dumjFihVNPmZFRUWLYurTp4/r33e/zboQVVVVevTRRzVu3DhXh79Lly46duyY235FRUWNjv3qq6906NAh1+39+/errKxMiYmJFx0HEOjM+Pv/XQMGDJAkt7nwZ29fccUVkuT6Vq9hjSgtLXU9L2dZrVaNHTtWDzzwgHbt2qVLL71Uf/7znyVJSUlJ2r17t3r37u2WQ58+fS5qbv2AAQMaxVpQUCCLxeLK5bsSExP11ltvuW3bsWPHBY13di752TnkZ539EL1161aNGDHC9Y1cc+JrqGvXriooKNC+fft03XXX6fTp05LkOpvh008/bfT89e7d+3sfNyQkRJMnT9bKlSu1Z88eVVdXKzc394Keg7Pjh4SEuC0s6XQ6lZeX971/LJ6dS56fn+/6tjUlJUUvvPCCiouL3Z7Xcz1/7du3v6A8Bw4cqG3btunFF1/U7NmzXX/4JSUl6cSJE6qtrW30/J1rEVW0XtRuaje1u+XOPlfbtm3ThAkTZLValZycrKysLJWVlbme14iICHXt2rXJ569Xr16NGhVNSUlJ0SuvvKIHH3xQy5cvd21PSkrS4cOHXU3Ohv/i4uI8m7AX0ABBqzRhwgT1799fDzzwgPbu3asdO3botttu0xVXXOH2b/bs2froo4+0fft2hYWF6amnntIbb7whh8OhV199VYcPH9aePXu0evVqjRw50mfx19fX68svv9QXX3yhffv26ZlnntHIkSN16tQpPfroo679HA6H9u3bp+zsbB06dEhPPPGENm3a1OjxwsLCdOutt2rnzp3auXOnbrnlFg0ZMoTpLzCl1v77fyF69+6tG264QXPmzNHrr7+uffv26c4779SHH37oWmyuffv2uuqqq7Ry5Up98MEH2rVrl372s58pJCTE9TgvvfSSMjMztWvXLn366afKzc3VZ5995mqOLlmyRB999JFmzJih9957T0eOHNEbb7yhO++8U4cPH77geBcuXKiioiLddddd2rdvn1577TX9+te/1s0333zOP2QXLFigjRs3uhaSW79+vTZs2HBB402YMEGHDh3Syy+/7PYheuzYsTpy5Ihefvllt/rXnPi+Kz4+XgUFBTp69KiuvfZa1dTUqE+fPrrtttv0i1/8Qhs2bNDBgwf1wQcf6E9/+pMefvjh8z7eunXr9MQTT+iDDz7QJ598oueee05VVVWu1+Zf//qX+vfv3+Q3bGdFREQoLS1NS5Ys0d///nft3btXt912m2pqanTHHXecd/yUlBTt2bNHxcXFrlOmU1JS9Oyzzyo0NNTtd2Lx4sV64YUXlJ6erv3792vTpk267777tGDBgkbfMJ/LgAEDtG3bNr3yyiu69dZb5XQ6lZKSIofDoeuvv165ubk6fPiwdu3apT/84Q+NrgaC1o/aTe2mdv/Xp59+quLiYtcVXEpKSlRcXKzy8vLzHpeSkqJXX31Vp0+f1tChQ13bnnnmGfXp08ftLJTFixe76umBAwf0+OOP69FHH9WSJUu+93k7Kzk5Wa+//rpWrVqlpUuXSpJuvvlm9erVS1dffbW2bNmio0eP6t1339VDDz3ks0ZQi3zvKiGAD3zfQlo///nPG21/7rnnDJvNZkyZMsWIi4sznE5nk489ZMgQtwW1du/ebUyfPt249NJLjXbt2hndunUzrrvuOqOgoKDRsd5aSEv/WQwsKCjIiIyMNJKSkozf/va3rgWgGnrwwQeNuLg4o0OHDsZPf/pTY+3atY0WQe3du7exYcMGo0ePHkZISIiRkpJiHD582KNxA97S1n7/z/WYZxeLPKuystKYPXu2YbfbjeDgYGPYsGHG66+/7nbMxx9/bIwdO9YICwsz+vTpY7zwwgtuC+kVFBQY48ePN+x2uxESEmL06dPHeOihh9weY/fu3ca1115rdOrUyQgNDTV69+5t/OIXv3AtOthUzG+++aYhyThy5Ihr2z/+8Q9j6NChRnBwsGG32420tDTj5MmT5809KyvLiIuLM0JDQ40JEyYYTz311AUtYnby5EmjXbt2RnBwsHHq1Cm3+4YNG2ZIMrZv3+62/fvia2rRacNo/B4sLS01Bg0aZKSkpBinTp0y6urqjIcffti47LLLjHbt2hkxMTHG2LFjjU2bNrmO0XcWcTMMw3jhhReMK6+80ujUqZPRvn17Y8CAAcaTTz7puv/sQonr168/73Nx5swZY+HChUZsbKwREhJijBo1yigsLDzvMWePCw8PNwYNGuTaVlFRYVitVmPSpEmN9n/qqaeM/v37G+3atTPi4uKMJUuWuC2Ad67f1e++rw8cOGB069bNuPnmm426ujqjurrauOeee4yePXsa7dq1M2JjY43/+Z//MbZu3er2PFzIoqQX8/t1rngvZry2jtr9LWo3tbs5tfuWW25x/T3Q8N/3HXfs2DFDknHttde6tu3evduQZMyePdttX6fTaaxcudLo2bOnYbPZjF69ehmZmZlu+3z3/Xuu3N955x0jMjLSuOeeewzDMIyysjIjLS3NiIuLc/2/MHXqVKOoqMgwjItb3PVcr2FTcZwr3osZz/KfBwbQSt1333169tln3a4BDgAAAABwxxQYAAAAAABgejRAAAAAAACA6TEFBgAAAAAAmB5ngAAAAAAAANOjAQIAAAAAAEyPBggAAAAAADA9m78D8Kdjx475O4Qm2e12lZWV+TsMjzBTLhL5BLpAzicuLs7fIbQq1GffMFM+ZspFIh9foj57BnXbN8gnsJkpn0DOpSV1mzNAAAAAAACA6dEAAQAAAAAApkcDBAAAAAAAmB4NEAAAAAAAYHo0QAAAAAAAgOm1qqvAnDlzRsuWLVNdXZ3q6+s1cuRIpaamKjs7WyUlJQoLC5MkzZ07Vz179vRvsAAAAIAflJWVKTs7WydOnJDFYpHD4dCUKVN08uRJZWZm6quvvlLnzp111113KTw8vNHx27Zt04svvihJuv766zVu3DgfZwAA3tGqGiDt2rXTsmXLFBoaqrq6Oi1dulRDhgyRJM2cOVMjR470c4QAAACAf1mtVs2cOVMJCQmqqanRokWLNGjQIG3btk0DBw7U1KlTlZubq9zcXM2YMcPt2JMnT+qvf/2r0tPTJUmLFi1SUlJSk40SAGhtWtUUGIvFotDQUElSfX296uvrZbFY/BwVAAAAEDiioqKUkJAgSWrfvr3i4+NVXl6uwsJCJScnS5KSk5NVWFjY6Nji4mINGjRI4eHhCg8P16BBg1RcXOzT+AHAW1pVA0SSnE6nFi5cqNtvv10DBw5U3759JUl/+ctfdPfdd+upp57SN9984+coAQAAAP8rLS3VkSNH1KdPH1VWVioqKkqS1KlTJ1VWVjbav7y8XDExMa7b0dHRKi8v91m8AOBNrWoKjCQFBQVp1apVOnXqlFavXq1PP/1U06dPV6dOnVRXV6fHH39cL730kqZNm9bo2Ly8POXl5UmS0tPTZbfbfR3+BbHZbAEb28UyUy6StGJFOzmdsV4f57e/rff6GJL5Xh+z5QOg7Vq+3Krq6o5eH2fBgiqvjwH/qa2tVUZGhmbNmuVaK+8si8XSojOp+VztH2bLh8/WgctMuTTU6hogZ3Xo0EEDBgxQcXGxrr32WknfrhEyfvx4vfzyy00e43A45HA4XLfLysp8EuvFstvtARvbxTJTLpLkdMaqurra6+OUlfnmA6nZXp9AzicuLs7fIQAA2pC6ujplZGRozJgxGjFihCQpMjJSFRUVioqKUkVFhSIiIhodFx0drZKSEtft8vJyJSYmNtqPz9X+YbZ8+GwduAI5l5Z8rm5VU2C+/vprnTp1StK3V4TZvXu34uPjVVFRIUkyDEOFhYXq1q2bP8MEAAAA/MYwDD322GOKj4/XNddc49qelJSkgoICSVJBQYGGDx/e6NghQ4bogw8+0MmTJ3Xy5El98MEHrosOAEBr16rOAKmoqFB2dracTqcMw9CVV16pYcOG6f7779fXX38tSerRo4dmz57t50gBAAAA//j444+1fft2de/eXQsXLpQk3XTTTZo6daoyMzOVn5/vugyuJB06dEj//Oc/lZaWpvDwcP3kJz/R4sWLJUnTpk3jCjAATKNVNUB69OihlStXNtq+bNkyP0QDAAAABJ7+/ftr06ZNTd63dOnSRtt69+6t3r17u26npKQoJSXFa/EBgL+0qikwAAAAAAAAzUEDBAAAAAAAmB4NEAAAAAAAYHo0QAAAAAAAgOm1qkVQAQCBKScnR0VFRYqMjFRGRoZr+6uvvqrXX39dQUFBGjp0qGbMmOHHKAEAANCW0QABALTYuHHjNHnyZGVnZ7u2ffjhh9q5c6dWrVqldu3aqbKy0o8RAgAAoK1jCgwAoMUSExMVHh7utm3Lli368Y9/rHbt2kmSIiMj/REaAAAAIIkzQAAAXvLFF19o3759ev7559WuXTvNnDlTffr08XdYAAAAaKNogAAAvMLpdOrkyZNasWKFDh06pMzMTK1du1YWi6XRvnl5ecrLy5Mkpaeny263+zrcC2Kz2QI2tuYwUz5mykWSgoKCFBYW5vVx7PYQr48hme/1AQC0TjRAAABeER0drR/+8IeyWCzq06ePgoKCVFVVpYiIiEb7OhwOORwO1+2ysjJfhnrB7HZ7wMbWHGbKx0y5SJLTGavq6mqvj1NWVuX1MaTAfn3i4uL8HQIAwEdYAwQA4BXDhw/X3r17JUnHjh1TXV2dOnbs6OeoAAAA0FZxBggAoMWysrJUUlKiqqoqpaWlKTU1VSkpKcrJydGCBQtks9k0d+7cJqe/AAAAAL5AAwQA0GLz589vcvu8efN8HAkAAADQNKbAAAAAAAAA06MBAgAAAAAATI8GCAAAAAAAMD0aIAAAAAAAwPRogAAAAAAAANOjAQIAAAAAAEyPy+ACAAAAJpKTk6OioiJFRkYqIyNDkpSZmaljx45JkqqrqxUWFqZVq1Y1Onbu3LkKDQ1VUFCQrFar0tPTfRo7AHgTDRAAAADARMaNG6fJkycrOzvbte2uu+5y/fzMM88oLCzsnMcvW7ZMERERXo0RAPyBKTAAAACAiSQmJio8PLzJ+wzD0Ntvv62rrrrKx1EBgP+1qjNAzpw5o2XLlqmurk719fUaOXKkUlNTVVpaqqysLFVVVSkhIUG//vWvZbO1qtQAAAAAr/voo48UGRmpSy+99Jz7rFixQpI0ceJEORyOJvfJy8tTXl6eJCk9PV12u93zwXqAzWYL2Niaw2z5BAUFnfdsJE+x20O8PoZkrtfHTLk01Kq6BO3atdOyZcsUGhqquro6LV26VEOGDNHf//53XX311brqqqv0xz/+Ufn5+Zo0aZK/wwUAAAACyo4dO8579sfy5csVHR2tyspKPfjgg4qLi1NiYmKj/RwOh1tzpKyszCvxtpTdbg/Y2JrDbPk4nbGqrq72+jhlZVVeH0My1+sTyLnExcU1+9hWNQXGYrEoNDRUklRfX6/6+npZLBbt3btXI0eOlPTtnMfCwkJ/hgkAAAAEnPr6er333nsaNWrUOfeJjo6WJEVGRmr48OE6ePCgr8IDAK9rVQ0QSXI6nVq4cKFuv/12DRw4ULGxsQoLC5PVapX0bdEuLy/3c5QAAABAYNmzZ4/i4uIUExPT5P21tbWqqalx/bx79251797dlyECgFe1qikw0rfzxFatWqVTp05p9erVrst5XQjmKvqemXKRmKcY6MyWDwAAzZGVlaWSkhJVVVUpLS1NqampSklJaXL6S3l5uR5//HEtXrxYlZWVWr16taRvzxYZPXq0hgwZ4o8UAMArWl0D5KwOHTpowIAB2r9/v6qrq1VfXy+r1ary8nLXqXvfxVxF3zNTLhLzFANdIOfTkrmKAABcjPnz5ze5fe7cuY22RUdHa/HixZKk2NhYrVq1yquxAYA/taopMF9//bVOnTol6dsrwuzevVvx8fEaMGCA3nnnHUnStm3blJSU5M8wAQAAAABAgGlVZ4BUVFQoOztbTqdThmHoyiuv1LBhw9S1a1dlZWXp+eefV69evZSSkuLvUAEAAAAAQABpVQ2QHj16aOXKlY22x8bG6qGHHvJDRACAs3JyclRUVKTIyEhlZGS43ffyyy9rw4YNevLJJxUREeGnCAEAANCWtaopMACAwDVu3DgtWbKk0faysjLt3r2bBWoBAADgVzRAAAAekZiYqPDw8Ebbn376ad18882yWCx+iAoAAAD4VquaAgMAaF0KCwsVHR2tnj17nnc/LlPuH2bKx0y5SFx2HQAAb6ABAgDwitOnT2vz5s269957v3dfLlPuH2bKx0y5SFx23Ze4TDkAtB1MgQEAeMW///1vlZaWauHChZo7d66OHz+ue+65RydOnPB3aAAAAGiDOAMEAOAV3bt315NPPum6PXfuXD300ENcBQYAAAB+QQMEAOARWVlZKikpUVVVldLS0pSamqqUlBR/hwUAAABIogECAPCQ+fPnn/f+7OxsH0UCAAAANMYaIAAAAAAAwPRogAAAAAAAANOjAQIAAAAAAEyPBggAAAAAADA9GiAAAAAAAMD0aIAAAAAAAADTowECAAAAAABMz+bvAAAAAAB4Tk5OjoqKihQZGamMjAxJ0qZNm7R161ZFRERIkm666SYNHTq00bHFxcVav369nE6nJkyYoKlTp/o0dgDwJhogAAAAgImMGzdOkydPVnZ2ttv2q6++Wtdee+05j3M6nVq3bp3uvfdexcTEaPHixUpKSlLXrl29HTIA+ARTYAAAAAATSUxMVHh4+EUfd/DgQV1yySWKjY2VzWbTqFGjVFhY6IUIAcA/OAMEAAAAaANef/11bd++XQkJCfrZz37WqElSXl6umJgY1+2YmBgdOHDA12ECgNfQAAEAAABMbtKkSZo2bZokaePGjXrmmWc0Z86cZj9eXl6e8vLyJEnp6emy2+0eidPTbDZbwMbWHGbLJygoSGFhYV4fx24P8foYkrleHzPl0hANEAAAAMDkOnXq5Pp5woQJevjhhxvtEx0drePHj7tuHz9+XNHR0U0+nsPhkMPhcN0uKyvzYLSeY7fbAza25jBbPk5nrKqrq70+TllZldfHkMz1+gRyLnFxcc0+ljVAAAAAAJOrqKhw/fzee++pW7dujfbp3bu3vvjiC5WWlqqurk5vvfWWkpKSfBkmAHgVZ4AAAAAAJpKVlaWSkhJVVVUpLS1Nqamp2rt3r44ePSqLxaLOnTtr9uzZkr5d9+Pxxx/X4sWLZbVaddttt2nFihVyOp0aP358k40SAGitWlUDpKysTNnZ2Tpx4oQsFoscDoemTJlywdc1BwAAAMxu/vz5jbalpKQ0uW90dLQWL17suj106FA+RwMwrVbVALFarZo5c6YSEhJUU1OjRYsWadCgQZK+/7rmAAAAAACg7WpVDZCoqChFRUVJktq3b6/4+HiVl5f7OSoAQE5OjoqKihQZGamMjAxJ0oYNG7Rr1y7ZbDbFxsZqzpw56tChg58jBQAAQFvVqhogDZWWlurIkSPq06eP9u3b973XNZe4XJc/mCkXiUt1BTqz5dOajBs3TpMnT1Z2drZr26BBgzR9+nRZrVY9++yz2rx5s2bMmOHHKAEAANCWtcoGSG1trTIyMjRr1iyFhYVd8HXNuVyX75kpF4lLdQW6QM6nJZfrag0SExNVWlrqtm3w4MGun/v166d33nnH12EBAAAALq2uAVJXV6eMjAyNGTNGI0aMkHRh1zUHAPhPfn6+Ro0adc77OUPPP8yUj5lykTjjEAAAb2hVDRDDMPTYY48pPj5e11xzjWt7RUWFa22Qc13XHADgHy+++KKsVqvGjBlzzn04Q88/zJSPmXKROOPQl8x+hh4A4L9aVQPk448/1vbt29W9e3ctXLhQ0reXvN2xY0eT1zUHAPjXtm3btGvXLi1dulQWi8Xf4QAAAKANa1UNkP79+2vTpk2NtnOtcgAIPMXFxXrppZd0//33KyTEN6fZAwAAAOfSqhogAIDAlJWVpZKSElVVVSktLU2pqanavHmz6urqtHz5cklS3759OUMPAAAAfkMDBADQYvPnz2+0LSUlxQ+RAAAAAE0L8ncAAAAAAAAA3kYDBAAAAAAAmB4NEAAAAAAAYHo0QAAAAAAAgOnRAAEAAAAAAKZHAwQAAAAAAJiezxsghYWFqq+v9/WwAIDvQX0GgMBBTQYAz7P5esBNmzbpscce06hRozR27Fj17dvX1yEAAJpAfQa+X0ZGR5+MExbmk2EQwKjJAOB5Pm+ArFq1SkePHtWbb76pjIwMhYSEaOzYsRozZoy6dOni63AAAP9BfQaAwNGSmpyTk6OioiJFRkYqIyNDkrRhwwbt2rVLNptNsbGxmjNnjjp06NDo2Llz5yo0NFRBQUGyWq1KT0/3Sn4A4A8+b4BIUs+ePdWzZ0/NmDFDe/bs0YYNG7Rp0yb1799fDodDV111lYKCWJ4EAHyN+gwAgaO5NXncuHGaPHmysrOzXdsGDRqk6dOny2q16tlnn9XmzZs1Y8aMJsddtmyZIiIivJYXAPiLXxogkvTll1/qzTff1JtvvimLxaIbb7xRdrtdr732mt59913dfffd/goNANo06jMABI7m1OTExESVlpa6bRs8eLDr5379+umdd97xeuwAEGh83gB57bXX9Oabb+qLL77QqFGj9Ktf/Ur9+vVz3T9ixAjdfvvtvg4LANo86jMABA5v1uT8/HyNGjXqnPevWLFCkjRx4kQ5HI5mjQEAgcjnDZDi4mJdc801SkpKUrt27RrdHxISwreLAOAH1GcACBzeqskvvviirFarxowZ0+T9y5cvV3R0tCorK/Xggw8qLi5OiYmJjfbLy8tTXl6eJCk9PV12u/2iY/EFm80WsLE1h9nyCQoKUpgPVn2220O8PoZkrtfHTLk05PMGyG9+8xsFBQXJZvvv0HV1dTIMw1XcG56iBwDwDeozAAQOb9Tkbdu2adeuXVq6dKksFkuT+0RHR0uSIiMjNXz4cB08eLDJBojD4XA7O6SsrOyiYvEVu90esLE1h9nycTpjVV1d7fVxysqqvD6GZK7XJ5BziYuLa/axPl/JbsWKFTp8+LDbtsOHD7tOtQMA+Af1GQACh6drcnFxsV566SXdc889Cglp+tvw2tpa1dTUuH7evXu3unfv3qzxACAQ+fwMkE8++aTRdcz79OmjTz75xNehAAAaoD4DQOBoSU3OyspSSUmJqqqqlJaWptTUVG3evFl1dXVavny5JKlv376aPXu2ysvL9fjjj2vx4sWqrKzU6tWrJUn19fUaPXq0hgwZ4vnkAMBPfN4A6dChgyorK9WpUyfXtsrKynN2ogEAvtHS+pyTk6OioiJFRkYqIyNDknTy5EllZmbqq6++UufOnXXXXXcpPDzcK/EDgJm0pCbPnz+/0baUlJQm942OjtbixYslSbGxsVq1alUzIwaAwOfzKTAjRozQ73//e3366ac6ffq0Pv30U61du1ZXXnmlr0MBADTQ0vo8btw4LVmyxG1bbm6uBg4cqDVr1mjgwIHKzc31RugAYDp8ZgYAz/P5GSA//elP9cwzz2jJkiX65ptvFBwcrHHjxummm27ydSgAgAZaWp8TExNVWlrqtq2wsFD33XefJCk5OVn33XefZsyY4enQAcB0+MwMAJ7n8wZIcHCwbr/9dv385z9XVVWVOnbseM5VqAEAvuON+lxZWamoqChJUqdOnVRZWemJUAHA9PjMDACe5/MGiCRVV1fr2LFjqq2tddt+xRVXnPe4srIyZWdn68SJE7JYLHI4HJoyZQpzzAHAQ5pbny+ExWI554f3vLw85eXlSZLS09MD9rrzNpstYGNrDjPl46tcwsKsXh9DkoKCghQWFub1cex236zBZqb3mi95syYDQFvk8wbItm3btG7dOoWGhio4ONi13WKxaO3atec91mq1aubMmUpISFBNTY0WLVqkQYMGadu2bRo4cKCmTp2q3Nxc5ebmcoo1AFykltTnc4mMjFRFRYWioqJUUVGhiIiIJvdzOBxyOByu24F63Xm73R6wsTWHmfLxVS7V1R29PoYkhYWFqbq62uvjlJVVeX0MKbDfa3Fxcf4OoUneqMkA0Nb5vAHyl7/8Rb/5zW/0gx/84KKPjYqKcp1K3b59e8XHx6u8vJw55gDgAS2pz+eSlJSkgoICTZ06VQUFBRo+fLjHHhsAzMwbNRkA2jqfN0CcTqcGDx7c4scpLS3VkSNH1KdPH+aYA4AHtLQ+Z2VlqaSkRFVVVUpLS1NqaqqmTp2qzMxM5efnu6YoAgC+n6c+MwMA/svnDZAf//jHeuGFF/STn/xEQUHNuwpvbW2tMjIyNGvWYFYqkwAAIABJREFUrEbzY5ljHljMlIvEnOxAZ7Z8fK2l9Xn+/PlNbl+6dGlLQwOANscTn5kBAO583gD5xz/+oRMnTuhvf/tbo4VKH3300e89vq6uThkZGRozZoxGjBghiTnmgcxMuUiS0xnLnOwAFsj5BOoc84ZaWp8BAJ5DTQYAz/N5A+TXv/51s481DEOPPfaY4uPjdc0117i2M8ccAFquJfUZAOBZ1GQA8DyfN0ASExObfezHH3+s7du3q3v37lq4cKEk6aabbmKOOQB4QEvqMwDAs6jJAOB5Pm+AfPPNN/rrX/+qHTt2qKqqSk8//bQ++OADffHFF5o8efJ5j+3fv782bdrU5H3MMQeAlmlJfQYAeBY1GQA8z+crKj399NP67LPPNG/ePNdipd26ddOWLVt8HQoAoAHqMwAEDmoyAHiez88Aee+997RmzRqFhoa6inl0dLTKy8t9HQoAoAHqMwAEDmoyAHiez88Asdlscjqdbtu+/vprdezY0dehAAAaoD4DQOCgJgOA5/m8ATJy5EitXbtWpaWlkqSKigqtW7dOo0aN8nUoAIAGqM8AEDioyQDgeT5vgEyfPl1dunTRggULVF1drXnz5ikqKko33HCDr0MBADRAfQaAwEFNBgDP8/kaIDabTbNmzdKsWbNcp/GdndcIAPAf6jMABA5qMgB4ns8bIP/+97/dbtfU1Lh+jo2N9XU4AID/oD4DQOCgJgOA5/m8ATJv3rxz3rdx40YfRgIAaIj6DACBoyU1OScnR0VFRYqMjFRGRoYk6eTJk8rMzNRXX32lzp0766677lJ4eHijY7dt26YXX3xRknT99ddr3LhxzU8CAAKMzxsg3y3YJ06c0P/+7//q8ssv93UoAIAGqM8AEDhaUpPHjRunyZMnKzs727UtNzdXAwcO1NSpU5Wbm6vc3FzNmDHD7biTJ0/qr3/9q9LT0yVJixYtUlJSUpONEgBojXy+COp3derUSbNmzdKf//xnf4cCAGiA+gwAgeNianJiYmKjpkVhYaGSk5MlScnJySosLGx0XHFxsQYNGqTw8HCFh4dr0KBBKi4u9kwCABAAfH4GSFOOHTum06dP+zsMAMB3UJ8BIHC0pCZXVlYqKipK0rfNlMrKykb7lJeXKyYmxnU7Ojpa5eXlTT5eXl6e8vLyJEnp6emy2+3NisvbbDZbwMbWHL7KZ/lyq9fHkKSgoCCFhYV5fRy7PcTrY0jmer+ZKZeGfN4AWbp0qdsK1qdPn9Znn32madOm+ToUAEAD1GcACBzerMkWi6XFV5RxOBxyOByu22VlZS0NyyvsdnvAxtYcvsqnurqj18eQpLCwMFVXV3t9nLKyKq+PIZnr/RbIucTFxTX7WJ83QFJSUtxuh4aGqkePHrr00kt9HQoAoAHqMwAEDk/X5MjISFVUVCgqKkoVFRWKiIhotE90dLRKSkpct8vLy5WYmNis8QAgEPm8AcJK0gAQmLxVn//+978rPz9fFotF3bp105w5cxQcHOyVsQDALDxdk5OSklRQUKCpU6eqoKBAw4cPb7TPkCFD9Je//EUnT56UJH3wwQeaPn26R+MAAH/y+1VgzuXGG2/0ciQAgIa8UZ/Ly8v16quvKjMzU8HBwXrkkUf01ltv0QwHgO/RkpqclZWlkpISVVVVKS0tTampqZo6daoyMzOVn5/vugyuJB06dEj//Oc/lZaWpvDwcP3kJz/R4sWLJUnTpk3jCjAATMXnDZAvvvhC7777rvr06eOaV3Tw4EGNGDGCbwQBwI+8VZ+dTqfOnDkjq9WqM2fOuBbhAwCcW0tq8vz585vcvnTp0kbbevfurd69e7tup6SkNJp+AwBm4ZerwNx5550aOXKk6/a7776rt99+W3PmzPFHOACA//B0fY6OjtaPfvQj/fKXv1RwcLAGDx6swYMHeypcADA1PjMDgGf5vAHy/vvva968eW7bkpKSlJOT4+tQAAANeKM+nzx5UoWFhcrOzlZYWJgeeeQRbd++XWPHjnXbj8sp+oeZ8vFVLmFhXBqyOcz0XvMVPjMDgOf5vAFyySWX6LXXXtOUKVNc27Zs2aJLLrnE16EAABrwRn3es2ePunTp4rrawIgRI7R///5GDRAup+gfZsqHS0M2D5eGbNnlFL2Jz8wA4Hk+b4CkpaVp9erV+tvf/qbo6GiVl5fLarVqwYIFvg4FANCAN+qz3W7XgQMHdPr0aQUHB2vPnj1uc80BAE3jMzMAeJ7PGyC9evXS73//ex04cEAVFRXq1KmT+vXrJ5vNL8uRAAD+wxv1uW/fvho5cqTuueceWa1W9ezZ0+1MDwBA0/jMDACe5/cKmpiYqNraWtXV1Sk0NNTf4QAA/sNT9Tk1NVWpqakejAwA2h4+MwNAy/m8AfLpp5/q4YcfVrt27XT8+HGNGjVKJSUlKigocF2PHADge9RnAAgc1GQA8LwgXw/4xBNP6MYbb1RWVpbrFL7ExETt27fve4/NycnR7bff7jb3cdOmTbrjjju0cOFCLVy4UEVFRV6LHQDMrCX1GQDgWdRkAPA8n58B8vnnn2vMmDFu20JDQ3XmzJnvPXbcuHGaPHmysrOz3bZfffXVuvbaaz0aJwC0NS2pzwAAz6ImA4Dn+fwMkM6dO+vw4cNu2w4ePHhBl/RKTExUeHi4t0IDgDatJfUZAOBZ1GQA8DyfnwFy4403Kj09XRMnTlRdXZ02b96sf/7zn7rjjjua/Zivv/66tm/froSEBP3sZz87Z5MkLy9PeXl5kqT09HTZ7fZmj+lNNpstYGO7WGbKRZKCgoIUFhbm9XHs9hCvjyGZ7/UxWz6+5o36DABoHmoyAHiezxsgw4YN05IlS7R161YlJibqq6++0t13362EhIRmPd6kSZM0bdo0SdLGjRv1zDPPaM6cOU3u63A43C6/WFZW1qwxvc1utwdsbBfLTLlIktMZq+rqaq+PU1ZW5fUxJPO9PoGcT1xcnL9D+F6ers8AgOajJgOA5/m0AeJ0OnXnnXfqkUce0e233+6Rx+zUqZPr5wkTJujhhx/2yOMCQFvijfoMAGgeajIAeIdP1wAJCgpSUFCQvvnmG489ZkVFhevn9957T926dfPYYwNAW+GN+gwAaB5qMgB4h8+nwEyZMkWZmZm67rrrFB0dLYvF4rovNjb2vMdmZWWppKREVVVVSktLU2pqqvbu3aujR4/KYrGoc+fOmj17trdTAABTakl9BgB4FjUZADzPZw2QEydOqFOnTvrTn/4kSdq9e3ejfTZu3Hjex5g/f36jbSkpKZ4JEADaKE/UZwCAZ1CTAcB7fNYAufPOO/X000+7CvaqVau0cOFCXw0PADgH6jMABA5qMgB4j8/WADEMw+12SUmJr4YGAJwH9RkAAgc1GQC8x2dngDSctwgACBzUZwAIHN6syceOHVNmZqbrdmlpqVJTU3X11Ve7tu3du1crV65Uly5dJEkjRozQtGnTvBYTAPiSzxog9fX1+vDDD123nU6n221JuuKKK3wVDgDgP6jPABA4vFmT4+LitGrVKtfj3nHHHfrhD3/YaL/LL79cixYtatYYABDIfNYAiYyM1KOPPuq6HR4e7nbbYrFo7dq1vgoHAPAf1GcACBy+qsl79uzRJZdcos6dO7f4sQCgtfBZAyQ7O9tXQwEALgL1GQACh69q8o4dO3TVVVc1ed/+/fu1cOFCRUVFaebMmerWrZtPYgIAb/NZAwQAAACA/9XV1WnXrl2aPn16o/t69eqlnJwchYaGqqioSKtWrdKaNWsa7ZeXl6e8vDxJUnp6uux2u9fjbg6bzRawsTWHr/IJC7N6fQxJCgoKUlhYmNfHsdtDvD6GZK73m5lyaYgGCADAq06dOqXHHntMn332mSwWi375y1+qX79+/g4LANqs999/X7169VKnTp0a3dfwj9GhQ4dq3bp1+vrrrxUREeG2n8PhkMPhcN0uKyvzXsAtYLfbAza25vBVPtXVHb0+hvTt+626utrr45SVVXl9DMlc77dAziUuLq7Zx9IAAQB41fr16zVkyBAtWLBAdXV1On36tL9DAoA27XzTX06cOKHIyEhZLBYdPHhQTqdTHTv65o9hAPA2GiAAAK+prq7WRx99pLlz50r69nRKm43/egDAX2pra7V7927Nnj3btW3Lli2SpEmTJumdd97Rli1bZLVaFRwcrPnz53O5dACmwadQAIDXlJaWKiIiQjk5Ofrkk0+UkJCgWbNmKTQ01N+hAUCbFBoaqj/96U9u2yZNmuT6efLkyZo8ebKvwwIAn6ABAgDwmvr6eh05ckS33Xab+vbtq/Xr1ys3N1c//elP3fZjMT3/MFM+LAzYPCwMCABoS2iAAAC8JiYmRjExMerbt68kaeTIkcrNzW20H4vp+YeZ8mFhwOZhYcCWLaYHAGhdgvwdAADAvDp16qSYmBgdO3ZMkrRnzx517drVz1EBAACgLeIMEACAV912221as2aN6urq1KVLF82ZM8ffIQEAAKANogECAPCqnj17Kj093d9hAAAAoI1jCgwAAAAAADA9GiAAAAAAAMD0aIAAAAAAAADTowECAAAAAABMjwYIAAAAAAAwPRogAAAAAADA9FrVZXBzcnJUVFSkyMhIZWRkSJJOnjypzMxMffXVV+rcubPuuusuhYeH+zlSAAAAAAAQSFrVGSDjxo3TkiVL3Lbl5uZq4MCBWrNmjQYOHKjc3Fw/RQcAAAAAAAJVq2qAJCYmNjq7o7CwUMnJyZKk5ORkFRYW+iM0AAAAAAAQwFrVFJimVFZWKioqSpLUqVMnVVZWnnPfvLw85eXlSZLS09Nlt9t9EuPFstlsARvbxTJTLpIUFBSksLAwr49jt4d4fQzJfK+P2fIBAAAA4DmtvgHSkMVikcViOef9DodDDofDdbusrMwXYV00u90esLFdLDPlIklOZ6yqq6u9Pk5ZWZXXx5DM9/oEcj5xcXH+DgEAAABo01rVFJimREZGqqKiQpJUUVGhiIgIP0cEAAAAAAACTatvgCQlJamgoECSVFBQoOHDh/s5IgAAAAAAEGha1RSYrKwslZSUqKqqSmlpaUpNTdXUqVOVmZmp/Px812VwAQAAAAAAGmpVDZD58+c3uX3p0qU+jgQAAABofebOnavQ0FAFBQXJarUqPT3d7X7DMLR+/Xq9//77CgkJ0Zw5c5SQkOCnaAHAs1pVAwQAAABAyyxbtuyc6+a9//77+vLLL7VmzRodOHBATz75pH73u9/5OEIA8I5WvwYIAAAAAM/YuXOnxo4dK4vFon79+unUqVOuCw4AQGvHGSAAAK9zOp1atGiRoqOjtWjRIn+HAwBt2ooVKyRJEydOlMPhcLuvvLxcdrvddTsmJkbl5eWKiopy2y8vL095eXmSpPT0dLdjAonNZgvY2JrDV/mEhVm9PoYkBQUFKSwszOvj2O0hXh9DMtf7zUy5NEQDBADgda+88ori4+NVU1Pj71AAoE1bvny5oqOjVVlZqQcffFBxcXFKTEy86MdxOBxuzZOysjJPhukxdrs9YGNrDl/lU13d0etjSFJYWJiqq6u9Pk5ZWZXXx5DM9X4L5Fzi4uKafSxTYAAAXnX8+HEVFRVpwoQJ/g4FANq86OhoSVJkZKSGDx+ugwcPNrq/4R89x48fdx0DAK0dDRAAgFc99dRTmjFjhiwWi79DAYA2rba21nUmXm1trXbv3q3u3bu77ZOUlKTt27fLMAzt379fYWFhjaa/AEBrxRQYAIDX7Nq1S5GRkUpISNDevXvPuR9zyf3DTPkwL755Hn3U+2NI0v33W0zzXmvNKisrtXr1aklSfX29Ro8erSFDhmjLli2SpEmTJukHP/iBioqKNG/ePAUHB2vOnDn+DBkAPIoGCADAaz7++GPt3LlT77//vs6cOaOamhqtWbNG8+bNc9uPueT+YaZ8mBcf2OrqQgL2vdaSueStTWxsrFatWtVo+6RJk1w/WywW3X777b4MCwB8hgYIAMBrpk+frunTp0uS9u7dq5dffrlR8wMAAADwBdYAAQAAAAAApscZIAAAnxgwYIAGDBjg7zAAAADQRnEGCAAAAAAAMD0aIAAAAAAAwPSYAgMAAAAAMK2MDN9cweuhh3wyDFqAM0AAAAAAAIDp0QABAAAAAACmRwMEAAAAAACYHg0QAAAAAABgeiyCCgAAWr3ly62qrvbNIncAAKB14gwQAAAAAABgejRAAAAAAACA6dEAAQAAAAAApmeaNUDmzp2r0NBQBQUFyWq1Kj093d8hAQAAAACAAGGaBogkLVu2TBEREf4OAwAAAAAABBimwAAAAAAAANMz1RkgK1askCRNnDhRDofDz9EAAAAAAIBAYZoGyPLlyxUdHa3Kyko9+OCDiouLU2Jiots+eXl5ysvLkySlp6fLbrf7I9TvZbPZAja2i2WmXCQpKChIYWFhXh/Hbg/x+hiS+V4fs+UDAIAnlZWVKTs7WydOnJDFYpHD4dCUKVPc9tm7d69WrlypLl26SJJGjBihadOm+SNcAPA40zRAoqOjJUmRkZEaPny4Dh482KgB4nA43M4MKSsr82mMF8putwdsbBfLTLlIktMZq+rqaq+PU1ZW5fUxJPO9PoGcT1xcnL9DAAC0cVarVTNnzlRCQoJqamq0aNEiDRo0SF27dnXb7/LLL9eiRYv8FCUAeI8pGiC1tbUyDEPt27dXbW2tdu/eTacaAALAhXzbCADwjaioKEVFRUmS2rdvr/j4eJWXlzdqgACAWZmiAVJZWanVq1dLkurr6zV69GgNGTLEz1EBAC7020YAgG+VlpbqyJEj6tOnT6P79u/fr4ULFyoqKkozZ85Ut27d/BAhAHieKRogsbGxWrVqlb/DAAB8B982AkDgqa2tVUZGhmbNmtVobbNevXopJydHoaGhKioq0qpVq7RmzZpGj8Haev7hq3zCwqxeH0Py3fp6vmKzWUzzfjPb785ZpmiAAAAC3/m+beSDtH+YKR+zfYg2Wz5m+qOgtaurq1NGRobGjBmjESNGNLq/4ftu6NChWrdunb7++mtFRES47cfaev7hq3yqqzt6fQzp2/ebL9bX85W6uhDTvN8C+XenJWvr0QABAHjd+b5tlPgg7S9mysdXi1T7Cn8U+E5bWqTaMAw99thjio+P1zXXXNPkPidOnFBkZKQsFosOHjwop9Opjh1988cwAHgbDRAAgFd937eNAADf+Pjjj7V9+3Z1795dCxculCTddNNNrubUpEmT9M4772jLli2yWq0KDg7W/PnzZbFY/Bk2AHgMDRAAgNdcyLeNAADf6N+/vzZt2nTefSZPnqzJkyf7KCIA8C0aIAAArznXt41Dhw71c2QAAABoa2iAAAC85kK+bQQAAAB8IcjfAQAAAAAAAHgbDRAAAAAAAGB6NEAAAAAAAIDp0QABAAAAAACmRwMEAAAAAACYHg0QAAAAAABgejRAAAAAAACA6dEAAQAAAAAApkcDBAAAAAAAmJ7N3wEAAAAAAL7f8uVWVVd39HcYQKvFGSAAAAAAAMD0aIAAAAAAAADTowECAAAAAABMjwYIAAAAAAAwPRogAAAAAADA9GiAAAAAAAAA06MBAgAAAAAATM/m7wA8pbi4WOvXr5fT6dSECRM0depUf4cEABD1GQACyffV5G+++UZr167V4cOH1bFjR82fP19dunTxU7QA4FmmOAPE6XRq3bp1WrJkiTIzM7Vjxw59/vnn/g4LANo86jMABI4Lqcn5+fnq0KGD/vCHP+jqq6/Wc88956doAcDzTNEAOXjwoC655BLFxsbKZrNp1KhRKiws9HdYANDmUZ8BIHBcSE3euXOnxo0bJ0kaOXKkPvzwQxmG4YdoAcDzTDEFpry8XDExMa7bMTExOnDgQKP98vLylJeXJ0lKT09XXFycz2K8WIEc28UyUy7Ll0tSRx+M5IsxvmWm10cyXz6tHfU58JklH9/VZ18yVz5mea+1ZhdSkxvuY7VaFRYWpqqqKkVERLjtR932D2pd4DPT+81MuZxlijNALpTD4VB6errS09P9Hcp5LVq0yN8heIyZcpHIJ9CZLZ+2hPrsH2bKx0y5SOSDwEfd9g/yCWxmysdMuTRkigZIdHS0jh8/7rp9/PhxRUdH+zEiAIBEfQaAQHIhNbnhPvX19aqurlbHjub6hh5A22WKBkjv3r31xRdfqLS0VHV1dXrrrbeUlJTk77AAoM2jPgNA4LiQmjxs2DBt27ZNkvTOO+9owIABslgsfogWADzPet99993n7yBaKigoSJdccon+8Ic/6LXXXtOYMWM0cuRIf4fVIgkJCf4OwWPMlItEPoHObPm0dtTnwGemfMyUi0Q+8Lxz1eSNGzeqtrZWcXFx6t69u/7v//5Pf/7zn3X06FHNnj1b4eHh/g69Rcz23iOfwGamfMyUy1kWg2WdAQAAAACAyZliCgwAAAAAAMD50AABAAAAAACmZ/N3ADi3l19+WRs2bNCTTz7Z6NrrrcmGDRu0a9cu2Ww2xcbGas6cOerQoYO/w7poxcXFWr9+vZxOpyZMmKCpU6f6O6RmKSsrU3Z2tk6cOCGLxSKHw6EpU6b4O6wWczqdWrRokaKjo0172S4EFjPUaOpz4DFjjaY+I1CYoW5L5qjd1O3AZ9baTQMkQJWVlWn37t2y2+3+DqXFBg0apOnTp8tqterZZ5/V5s2bNWPGDH+HdVGcTqfWrVune++9VzExMVq8eLGSkpLUtWtXf4d20axWq2bOnKmEhATV1NRo0aJFGjRoUKvMpaFXXnlF8fHxqqmp8XcoaAPMUqOpz4HHjDWa+oxAYJa6LbX+2k3dbh3MWruZAhOgnn76ad18882muOzY4MGDZbVaJUn9+vVTeXm5nyO6eAcPHtQll1yi2NhY2Ww2jRo1SoWFhf4Oq1mioqJcKzq3b99e8fHxrfI1aej48eMqKirShAkT/B0K2giz1Gjqc+AxW42mPiNQmKVuS62/dlO3A5+ZazcNkABUWFio6Oho9ezZ09+heFx+fr6GDBni7zAuWnl5uWJiYly3Y2JiWn1hk6TS0lIdOXJEffr08XcoLfLUU09pxowZpvhQg8Bn1hpNfQ48ZqjR1GcEArPWbal11m7qduAzc+1mCoyfLF++XCdO/H/27jwuqrL///h7GAREER1wCVFRMNdbzTV3WfS2LFNTy92szK9bLpVL3mUuiRnlXuZuWmqmebdpuZt7Ku6Wa2piiBihuAHn94c/5nYEFBcGOL6ejwePB3PmOud8rjOHzxk+c51r/k61/MUXX9SyZcs0bNiwLIjq/t2pPzVq1JAkLV26VFarVfXr13d2eEjD1atXFRERoa5du8rT0zOrw7lvO3fulLe3t0qVKqUDBw5kdTgwCTPlaPJzzmSGHE1+hjOZKW9L5O6cyAx5WzJ/7rYYhmFkdRD4n1OnTmnEiBFyd3eXdHP4UYECBTRmzBjlz58/i6O7f+vWrdPPP/+sd955x963nOT333/XV199pbfffluStGzZMklSy5YtszKs+5aYmKixY8eqcuXKeuaZZ7I6nAfyxRdfaMOGDbJarbp+/bquXLmimjVrqm/fvlkdGkzIjDma/Jz9mCVHk5+RHZgxb0s5O3eTt7M30+duA9laz549jbi4uKwO44Hs3r3b6NevX47uR2JiotGrVy/jr7/+Mm7cuGG88cYbxqlTp7I6rPuSnJxsTJo0yZg9e3ZWh/LQ7d+/3xgzZkxWh4FHSE7P0eTn7MesOZr8jOwip+dtw8j5uZu8nXOYMXdzCwwy3cyZM5WYmKiRI0dKkkqXLq3u3btncVT3xmq1qlu3bho9erSSk5MVHBysYsWKZXVY9+W3337Thg0bVLx4cb355puSpHbt2qlq1apZHBkAZyM/Zz/kaAB3k9NzN3kbWYlbYAAAAAAAgOnxLTAAAAAAAMD0KIAAAAAAAADTowACAAAAAABMjwIIAAAAAAAwPQogAAAAAADA9CiAQJ999pmWLFlif/zTTz/p1VdfVadOnRQfH6/Dhw+rb9++6tSpk7Zv356FkZrf8OHDtXr16qwO46E7cOCAevTokdVhADkO+Tn7ID8DyAjydvZB3kZaXLM6AGSuXr166e+//5bVapWLi4v8/f3VoEEDhYWFycXlZv3r1u8NT0xM1Ny5czV69GgFBARIkhYvXqymTZvq6aefzoou5BiLFy/WuXPn1Ldv36wOJdvr1auXXnvtNVWqVCmrQwGyDPnZecjPGUd+BtJH3nYe8nbGkbfvDQWQR8CgQYNUqVIlJSQk6ODBg5o9e7aOHj2qnj17pmobFxenGzduqFixYvZl58+fl7+//33tOykpSVar9b5jNxPDMGQYhv0CmR3xegHORX7OHsjPADKKvJ09kLdxvyiAPEI8PT1VvXp15c+fX2+//baeeeYZFS9eXFOmTJGPj48aNGigQYMGSZK6du2qoKAgxcTEKDo6WmPHjpWLi4tmzZqlGzduaO7cudq9e7csFouCg4PVtm1bubi4aN26dVq9erUCAwO1YcMGNWnSRM8//7y+/PJLbdmyRYmJiapRo4a6du0qNzc3HThwQJMmTVKzZs20fPlyubi4qF27dgoODpYkXb9+XQsXLtTWrVt1+fJlFS9eXP/5z3/k5uam33//XfPmzdOZM2dUsGBBde3aVRUqVMjQsYiJidGcOXN06NAhGYahunXr6uWXX1ZycrKWLVum1atX6/r166pSpYq6desmT09PRUdHq3fv3urZs6cWLVqk69evq1mzZmrVqpUiIyO1bNkySdKOHTtUpEgRjRs3TsOHD1eZMmV08OBBHT9+XBEREYqLi9OcOXN09uxZ+fn5qWvXripTpswd442NjVWfPn00bdo05c2bV5J04sQJjRo1StOmTVNMTIw++eQTnTx5Uq6urqpYsaL69+9/1+Nwr6/XP//8o6lTp+rw4cOyWCwqVqyYhg8fLhcZ2doEAAAgAElEQVQXF7Vt21YTJ05UkSJFJMl+Xr344osO+5w0aZJiYmLs51Tr1q313HPPZeh1A8yK/Pw/5OebyM9A9kbe/h/y9k3k7ZyBAsgjKCgoSDabTYcPH1bx4sXty/38/BQREaHevXtrzpw59orl7cOqxo8fL29vb02cOFHXrl1TeHi4fHx81LhxY0nSkSNHVKdOHU2fPl1JSUlasGCB/vrrL40bN05Wq1UTJkzQkiVL1L59e0nS33//rYSEBH366afau3evPvroI9WoUUN58+a1J+JRo0Ypf/78OnLkiCwWi2JjYxUeHq7evXurSpUq2r9/vyIiIjR+/Hjly5dP33zzjQ4fPqzBgwen6n9ycrLGjh2rChUqaMqUKXJxcdHx48cl3Uxc69at07vvvitvb29NnjxZM2fOVJ8+fezrHz58WBMmTNDZs2c1dOhQ1axZU1WqVFHLli3THKq3YcMGDR06VH5+foqPj9eQIUP00ksvqW7dutqyZYvCw8M1ceJEeXl5pfua2Ww2Pf7449q6davCwsIkSb/88otq1aolV1dXLVy4UJUrV9a7776rxMREe38y4l5er++++042m00zZsywr2uxWDK8L0nq06ePDh8+zFA9IA3kZ/LzrcjPQPZH3iZv34q8nf1l3zFDyFQ2m02XLl265/X+/vtv7d69W127dpWHh4e8vb3VrFkzbd682d6mQIECeuqpp2S1WpUrVy6tXr1aXbp0Ud68eZU7d261atVKmzZtsre3Wq1q3bq1XF1dVbVqVXl4eOjs2bNKTk7W2rVr1bVrV9lsNrm4uKhMmTLKlSuXNmzYoCeeeEJVq1aVi4uLKlWqpMDAQO3atUuS1KJFizSTtCQdPXpUsbGx6tSpkzw8POTm5qayZctKupn8nnnmGRUuXFgeHh5q3769Nm/erKSkJPv6bdq0kZubmwICAlSiRAn98ccfdzxmjRo1UrFixWS1WrV3714VKVJEDRo0kNVqVb169eTn56edO3fe9djXq1fPftwMw9DmzZtVr149SZKrq6vOnz+vixcvOvQnI+7l9bJarfr7778VExMjV1dXlStX7p4TNYA7Iz+Tn1OQn4GcgbxN3k5B3s7+GAHyiIqNjbUP+boXMTExSkpKcpjgyTAM+fj42B/7+vraf//nn3907do1h6RpGIaSk5Ptj728vBzuj3N3d9fVq1cVHx+vGzdu2Id+3R7H1q1bHRJcUlJShobqxcTEqGDBgmnek3fx4kUVLFjQoS9JSUmKi4uzL8ufP3+qWO/k1mMTGxvrsH1JKliwoGJjY+8ad61atTRr1ixdvHhRUVFRslgsKleunCSpY8eOWrhwoYYOHao8efLomWeeUUhIyF23mdLHFHd7vZo3b66vvvpKo0aNkiSFhYWpRYsWGdoPgIwhP5Ofb+1jCvIzkH2Rt8nbt/YxBXk7e6IA8ghKqdTeSzUzhY+Pj1xdXTVz5swMTerj5eUlNzc3ffTRR7LZbPe0Ly8vL+XKlUvnzp2zz5x9axz169e/r6+A8vX1tV9wbu9DgQIFdP78efvjmJgYWa1WeXt768KFC3fcbnoV21uX22w2bdu2zeH5mJgYValS5a5x582bV5UrV9bmzZv1559/qk6dOvZt58+f334sDh8+rJEjR6p8+fJpXuTu5G6vV+7cudW5c2d17txZp06d0ogRIxQYGKh//etfcnd317Vr1+xt//77b4eLFIC7Iz+Tn9NDfgayJ/I2eTs95O3siVtgHiEJCQnauXOnJkyYoPr16zvcp5hRBQoUUOXKlTVv3jwlJCQoOTlZ586d08GDB9Ns7+LiotDQUM2ZM8de7Y2NjVVkZORd9+Xi4qLg4GDNmzdPsbGxSk5O1u+//64bN26ofv362rlzpyIjI5WcnKzr16/rwIEDd02m0s17NQsUKKAFCxbo6tWrun79ug4fPixJqlu3rr7//ntFR0fr6tWr+vLLL1W7du0MXZS8vb11/vx5hyr87Z544glFRUXpl19+UVJSkjZv3qwzZ86oatWqd92+dHO43oYNG7R161b7MD1J2rJli73vefLkkZT+heNO7vZ67dy5U+fOnZNhGPL09JSLi4t9PwEBAfrll1+UnJysyMjIdM8J6eaFJTo6+p7jA8yK/HwT+Tl95GcgeyFv30TeTh95O3tiBMgjYOzYsbJarbJYLPL391ezZs3UpEmT+95e7969tWDBAg0YMEBXrlxR4cKF7zjbcIcOHbRkyRK9/fbbio+Pl81mU+PGjTNUne3cubO++OILDRkyRFevXlVAQIDefvtt+fr66q233tL8+fM1YcIEubi4KCgoSK+++qokaenSpTp8+LCGDh2aapsuLi4aNGiQZs2apZ49e8pisahu3boqW7asgoODdfHiRb377ru6fv26KleurG7dumXouNSuXVsbN27Uyy+/rEKFCmns2LGp2nh5eWnw4MGaPXu2pk+friJFimjw4MHKly9fhvZRvXp1ffrpp/L19XWo3h87dkxz5sxRQkKC8ufPr5deekmFCxeWJA0YMEAtW7ZU/fr1M7SPO71eUVFRmjVrlv755x/lyZNHTZo0UcWKFSXdnOF8ypQpWrlypWrUqKEaNWqku48WLVpo1qxZmj9/vlq1aqXmzZtnKDbAbMjPjsjPd0Z+BrIeedsRefvOyNvZj8UwDCOrgwAAAAAAAMhM3AIDAAAAAABMjwIIAAAAAAAwPQogAAAAAADA9CiAAAAAAAAA06MAAgAAAAAATI8CCAAAAAAAMD0KIAAAAAAAwPQogAAAAAAAANOjAAIAAAAAAEyPAggAAAAAADA9CiAAAAAAAMD0KIAAAAAAAADTowACAAAAAABMjwIIAAAAAAAwPQogAAAAAADA9CiAAAAAAAAA06MAAgAAAAAATI8CCAAAAAAAMD0KIAAAAAAAwPQogAAAAAAAANOjAAIAAAAAAEyPAggAAAAAADA9CiAAAAAAAMD0KIAAAAAAAADTowACAAAAAABMjwIIAAAAAAAwPQogAAAAAADA9CiAAAAAAAAA06MAAgAAAAAATI8CCAAAAAAAMD0KIAAAAAAAwPQogAAAAAAAANOjAAIAAAAAAEyPAggAAAAAADA9CiAAAAAAAMD0KIAAAAAAAADTowACAAAAAABMjwIIAAAAAAAwPQogAAAAAADA9CiAAAAAAAAA06MAAgAAAAAATI8CCAAAAAAAMD0KIAAAAAAAwPQogAAAAAAAANOjAAIAAAAAAEyPAggAAAAAADA9CiAAAAAAAMD0KIAAAAAAAADTowACAAAAAABMjwIIAAAAAAAwPQogAAAAAADA9CiAAAAAAAAA06MAAgAAAAAATI8CCAAAAAAAMD0KIAAAAAAAwPQogAAAAAAAANOjAAIAAAAAAEyPAggAAAAAADA9CiAAAAAAAMD0KIAAAAAAAADTowACAAAAAABMjwIIAAAAAAAwPQogAAAAAADA9CiAAAAAAAAA06MAAgAAAAAATI8CCAAAAAAAMD0KIAAAAAAAwPQogAAAAAAAANOjAAIAAAAAAEyPAggAAAAAADA9CiAAAAAAAMD0KIAAAAAAAADTowACAAAAAABMjwIIAAAAAAAwPQogAAAAAADA9CiAAAAAAAAA06MAAgAAAAAATI8CCAAAAAAAMD0KIAAAAAAAwPQogAAAAAAAANOjAAIAAAAAAEyPAgiyheHDhysoKMgp21m3bp0sFovOnDnzwPt7WBo1aqRXXnklq8PIsSwWi+bPn5/VYQA5GnmYPOxM5G0AWYV8/2gzdQHEYrHc8ScgIEDSzT+ClGW5cuVSQECA+vTpo7///jvVNq9evSqbzaY8efIoNjY2zf0eOHBAnTp1UtGiReXu7q4SJUqoZcuWWrt2rf1N351+unbt+kD9vtObz4CAAI0aNeqBtm92s2bNUq5cuRQfH++wvHLlyuku79atmzNDdKpTp07ptddeU+nSpZU7d275+/vrpZde0p9//pnVoWWJrl27KiwsLM3nbn9Dn97fW3b85y+zkIdTIw/fHXk4tY4dOyowMFC5c+eWj4+PGjdurC1btmR1WDkCeRspunbtas/zVqtV/v7+6ty5c6r3NLdek279qVixokO706dPq3fv3goKCpKHh4cKFiyomjVrauzYsYqJiXHY3u3/cP/111/q06ePAgIC5ObmpoIFC+r5559XZGSkQ7s5c+bIYrGoVq1aqfoTFBSk4cOHP+BRuckwDE2fPl01a9ZU3rx5lSdPHtWoUUPTp0+XYRgPZR/ONmrUKPv7jFstXbpUH330Uabue/jw4Xd9rzFnzpxMjSE9Bw4cUJs2bVS6dGm5uLg8csUgUxdAoqKi7D9ff/21JGnXrl32ZTt27LC3bd++vaKionTixAl9+umnWrp0qXr27Jlqm4sXL1bJkiXVsGFDzZ07N9XzK1euVPXq1XX27FnNmDFDBw8e1Lfffqsnn3xSr732murUqeMQ18CBAxUQEOCwbMKECZl3UHBXoaGhSkxM1IYNG+zLzp8/r/379+uxxx5LtXzfvn3pvrG6mxs3bjxwvOm5fv36Q9nOb7/9psuXL2v8+PHav3+/Fi5cqAMHDqhp06ZKSkp6KPu4Xw+rj2nJzNfmUUIexv0gD6f25JNPas6cOTp06JDWrl0rf39/NW7c+I7F6ICAAK1bt+6hxfAwkLeR1erXr6+oqCidOnVKX3zxhXbv3q02bdqkapdyTbr1Z/369fbnIyMjVaVKFW3evFnh4eHavXu3tm/frhEjRmjPnj2aNWtWujGcPn1a1atX1+bNm/XJJ5/o6NGj+v777+Xm5qYnn3xSK1ascGhvsVi0Z88eLVy48OEdiNt07dpV/fv3V/v27bVr1y5FRkaqY8eO6t+/v1566aVM229WsNlsypcvX6bu44033nA4d2rXrp3qnHrhhRcyNYb0JCQkqHjx4nrnnXdUuXLlLIkhK5m6AFKkSBH7j81mkyQVLFjQvqxgwYL2trlz51aRIkXk7++vpk2b6sUXX9TKlStTbfOzzz5T165d1aVLF02fPt3huYSEBHXu3FmNGjXS6tWr9dRTTykwMFCVKlXSoEGDtG3bNrm5uTnElTdvXlmtVodl3t7emXtgbhEfH6/XXntNBQsWlLu7u6pXr66ffvrJ/vzJkydlsVj0yy+/OKx3e8V5xowZKleunDw8PGSz2dSgQQOHT0l27typJk2aKG/evCpYsKBatWqlP/74I1U8y5cvV9myZZUnTx41atRIR44ccXj+hx9+ULVq1eTu7q5ChQqpZ8+eunz58h37OGnSJPn7+8vT01P//ve/derUqTu2L1GihAIDA7V69Wr7sjVr1qhixYp67rnnUi03DEOhoaEZii/lU6hJkyYpICBA7u7uunLlSqoYIiMj5efnp4EDB8owDN24cUPDhw9XyZIl5eHhoQoVKmjatGkO61gsFk2cOFHt27eXt7e3OnXqJEl6//33VapUKbm7u6tgwYL697//neY+09O4cWPNnz9fzZo1U2BgoOrVq6dPP/1U+/fv18GDB9Ndr1ixYg5/I126dJHFYtHRo0fty/z9/e39MAxDH374oUqVKiU3NzcFBgZq/PjxDtsMCAjQsGHD1LNnT/n4+Kh+/fpp7nv+/Pny8vLSV199Jenmpyxdu3ZVwYIF5eXlpbp16zr8A5Xyyd7333+vevXqycPDQzNmzMjwMUL6yMN3Rx5OjTycWu/evVW/fn0FBASoUqVKGj9+vC5fvqxff/31nrZzJ+RtPApSrgFFixZVgwYN1L17d23ZskX//POPQ7uUa9KtPz4+PpJunvudO3eWv7+/tm/frtatW6tcuXIqWbKkmjZtqi+++EJvvvlmujH06tVLN27c0Nq1a/XUU0+pePHiqlmzpr788kuFhISoa9euDjnCxcVFffr00dChQzOliLh06VLNmzdPs2bNUr9+/fT444+rdOnSev311zVz5kzNnTtXS5cutbePjo7WSy+9pMKFC8vDw0NlypRxKPgcO3ZMrVu3ls1mk6enpypVqqTvvvtO0s0RLa6urg77P3PmjCwWi71gm/L3/e2336pmzZry8PBQxYoVtWbNGvs6hmHo1VdftY+MK1WqlIYOHapr167Z9/Of//xHf/zxh33ERco18/YROTdu3NDgwYNVtGhRubm5qXz58vriiy8cYrRYLJo6dao6deokLy8v+fv7a8yYMeke07x58zqcO25ubvZz6vDhwypatKjDKCFJmjdvnry9vXX58mX7tX/+/PkKDQ219/H2ItjdcmVaatSooYiICHXq1Mmp73eyC1MXQO7X0aNH9cMPP8jNzc1h+YEDB7Rjxw61b99ezz33nKKiohxOsJ9++knR0dF6++2309xugQIFMjXu+9GtWzetXLlS8+fPV2RkpOrWratnnnlGhw8fzvA2du7cqR49emjIkCH67bfftH79enXu3Nn+/MGDB9WwYUPVrl1bv/76q9asWSOr1arGjRvr6tWr9nZRUVH65JNPtGDBAm3evFnx8fEOQ5r37t2r5s2bq0GDBtqzZ4/mzp2r7777Tj169Eg3tuXLl6t///4aMGCAIiMj1bZt2ztekFKEhoY6vMFevXq1QkJCFBwcnGp5xYoVVbhw4QzHt337dq1Zs0bLly/Xnj17Up1nq1evVqNGjTRw4EBFRETIYrHo1Vdf1dKlSzVt2jQdOnRI77zzjgYNGqSZM2c6rPvee++pTp062rVrl0aNGqWlS5cqPDxcEyZM0JEjR/Tzzz/rqaeesrdPSa73OgQv5bYET0/PdNsEBwc7XKjWrl2rggUL2pf99ttv+vPPPxUSEiJJmjp1qv7zn/9o8ODBOnDggN58800NHjw4VR8nTpyoQoUKacuWLZo9e3aq/X7wwQfq3bu3/vvf/6pNmza6cuWKgoODFR8frx9//FG7d+/W008/rcaNG+vQoUMO6w4cOFCDBg3SoUOH9Oyzz97TMcHDRR4mD5OH03f16lVNnTpVefPmVY0aNTK83t2Qt/GoOXv2rJYsWSKr1Sqr1Zrh9fbs2aN9+/Zp0KBBqf6ZT2GxWNJcfvHiRX3//ffq3bt3mqMQhgwZor/++ks///yzw/K3335b//zzjyZNmpThODPq888/V2BgoNq2bZvquRdeeEGBgYH2W8WuXLmihg0bas+ePVqwYIEOHjyoSZMm2d8Tnjt3TnXq1NHff/+t//73v9q3b59GjhwpF5d7/7dzwIABeuedd7R7927VqlVLzz77rKKioiTdLIAUKlRIX3zxhQ4dOqTx48dr9uzZev/99+1xDxo0SP7+/vYRF2+88Uaa+xk6dKimT59uH+3csWNHdezY0eFaI93M7w0aNFBkZKSGDBmioUOHpmqTEY0aNVLp0qVTjRKaPn262rdvrzx58tiXvfXWW+rWrZsiIyPVvn17dejQQbt375ake8qVuIXxiFi7dq0hyTh9+nSq5xo2bGi4uroaefLkMdzd3Q1JhiRj4sSJDu369u1rtGrVyv74tddeMzp06GB/PHbsWEOSceHChQzH9e677xqBgYH30aM7b9NisRh58uRJ9WOxWIyRI0cahmEYR44cMSQZ33//vcP6TzzxhPHSSy8ZhmEYJ06cMCQZGzdudGgTGBhovPvuu4ZhGMbSpUuNfPnyGXFxcWnG06VLF+OFF15wWHb16lUjd+7cxrJly+wxW61WIzo62t5m4cKFhsViMa5cuWIYhmF07NjRqFGjhsN2vvnmG8NisRgnT560b+fW41m3bl2jffv2DusMHDgw3XMhxaJFiwyLxWKcP3/e3t/ly5cbMTExhtVqdVjer1+/DMfXpUsXw9vb24iPj3do17BhQ+Pll182FixYYOTJk8eYP3++/bnjx48bFovFOHTokMM67733nlG5cmX7Y0lGt27dHNp89NFHRunSpY3r16+n2c8zZ84YZcqUMZYuXZrusbhdfHy8UblyZeP555+/Y7vZs2cbhQoVMgzDMH7//Xcjd+7cxogRI+znwtSpU41ixYrZ2/v7+xtvvvmmwzb69etnlCxZ0v64RIkSRkhISKp9STLmzp1r9O3b13jssceMyMhIhziKFi1q3Lhxw2Gd4OBg4/XXXzcM43/5Yd68eXftf5cuXQyr1Zrm35ck4/PPP3eI183NLVU7Dw+Pu56DZkQeJg+nIA//z73k4SlTptjPIX9/f2Pbtm13bF+iRAlj7dq1d91uCvI2edvsbj0XcufObb/WDBw40KHdrdekW3969eplGMbN/CTJ2LVrl8N6RYsWtbdt2rSpw/ZefvllwzAMY9u2bYakdP/mL1y4YEgyPvjgA8Mwbv49WK1WwzAMY/z48UaBAgXs17hbrwMPoly5ckbz5s3Tff7ZZ581ypcvbxiGYcyYMcNwd3dP929h2LBhRuHChY1Lly6l+fyt/Ulx+vRpQ5I9X6X8fc+YMcPe5saNG0bx4sWNYcOGpRvnRx99ZAQFBdkfjxw50ihRokSqdre+HpcvXzbc3NyMKVOmOLRp0aKFERwcbH8syejTp49Dm7JlyxqDBw9ON5709mkYhhEREWEUL17cSEpKMgzDMA4dOuRwTqVc+2/vb+3atY2OHTsahpGxXHmvcT0K0i5ZPoJatmyp999/X5cvX9aUKVN04cIF9erVy/781atX9fnnnzvcb96lSxcFBwdr4sSJstlsmT5BUN68ee2/169fXz/++GO6bYsVK5ZmRbJRo0b231NuX2jQoIFDmwYNGtzTxGqNGzdWqVKlVLJkSTVu3FghISFq1aqVfH19JUk7duzQ0aNHHeKXbh7TW4dW+/n5OQyH9/Pzk2EYio6OVvHixXXgwAH7p04pGjZsKMMwdPDgQZUoUSJVbAcPHlS7du0cltWrV08RERF37FPKftasWaNatWrp5MmTatiwoby9ve1D8GrVqqVjx47Zh11nNL5y5cqlOhaStGLFCs2ePVvLly/XM888Y1/+66+/yjAMVa9e3aF9YmJiqk8ratas6fC4bdu2mjhxokqUKKEmTZooNDRULVq0kJeXlySpaNGi9/Qp8+XLl9W8eXO5urqm+oTvdsHBwYqOjtb+/fu1adMm1atXT02bNtXkyZMl3Ty2wcHBkqR//vlHZ86cSXUuNmzYUBMmTFBCQoL9k4Xb+5hi2LBhunLlinbs2OEw4dWOHTt07tw55c+f36H9tWvXlDt3bodl6W37drVq1Upz7onSpUunWtarV69U81hs27ZNHTt2zNC+HiXk4f8hD5OH09KhQwc1adJE0dHR+uyzz9S6dWv98ssvKl68uCTpqaee0saNG+3tExIS9NRTTznE+OOPP6Z7Gwp5+ybytrmlnAtXr17V4sWLtWrVqjQnvk25Jt3q9tsFbr/mbNy4UUlJSRo6dKiio6Mfeuw9e/bUpEmTNGrUqAxN4nl7Trh06dIDx7Bz506VL19e/v7+6T5fp04dh1EM96t27dr2311dXVWzZk0dOHDAvmz69OmaMWOGTp48qcuXLysxMVHJycn3tI+jR4/q+vXraeay229xqVKlisNjPz8//fXXX/e0vxRdunTR22+/rZUrV+qpp57SjBkzVK1aNT3xxBMO7W49BpJUt25d+3uLe8mV+B8KIP9fvnz57DP2f/bZZ6pXr57GjBljH0a9ePFiXbx4US1btnRYLykpSXPnzlX//v1VpkwZSTff7NWrV++hx3jrrNB3O6lz5cqV5jcQpDdMLz0pw9VuT/C3TjSWN29e/frrr9q0aZNWrVqlTz/9VG+99ZZWr16tatWqKTk5WZ06ddLgwYNTbT/lXkpJqYYgpwwdvNdE9jD4+vqqcuXKWr16tS5duqSqVavaL3opw68vXbokV1dXNWzY8J62nd4FoWLFivLw8ND06dPVpEkT+/FI6f/mzZtT3XJy+/DK27ed8sZ67dq1WrNmjUaOHGmfB6FYsWL3FHdcXJyaNWumGzduaNWqVXe9Z7BEiRIqVaqUVq9erc2bNyskJERVq1bVtWvXtG/fPq1bt04ffvjhPcWQVh9ThIWFadGiRVq4cKHDuZacnKxy5cpp2bJlqda5/Xhm9GKdO3fuDH9dqM1mS9WWbxFIG3k4beRh8nAKb29veXt7KygoSHXq1FHZsmU1depUhYeHS7o5D8yt8wY0atRIY8eOdfj2iKJFi6a7ffL2TeRtc7v1XKhYsaKOHTumPn36pJpT6tZr0u0ef/xxSdKhQ4dUtWpV+/KSJUva102vABIUFCSLxaL9+/enup5Jsv+Dn3I9u1WuXLkUHh6uDh06qHfv3nfraqqckJ7HH39c+/fvT/f5gwcPqlKlSnfdTkakdSvM/Uxg/NVXX6lXr14KDw9Xw4YNlS9fPn311Vfp3gL7MKR1jbzf66OPj49at26t6dOnKzQ0VPPmzbvnb4i7l1yJ/2EOkHS89957Gj16tH129ZRJ9yIjIx1+Bg4caE+YTZo0UaFChTR69Og0t3nx4sUHiikoKMj+c6c3MBlVoUIFSUo1Uc6GDRvsX/OV8kng2bNn7c9HR0enmnXearWqQYMGGjFihHbu3KnHHnvMPnlQ9erVtXfvXgUGBjr0ISgo6J7ux69QoUKqWNevXy+LxWLvy+3Kly+vzZs3OyzbtGlThvaXcv95yn3nKVLeeK9evVq1atWyf4p3P/Hdyt/fX+vXr9fhw4fVsmVL+yRO1apVk3Tz62hvP36BgYF33a67u7uaNm2qDz74QPv27VNCQoK++eabDB2DFDExMfZP/X7++edUleb0pByrdevWKTQ0VFarVQ0bNtT48eMVExNjP6758uWTv79/msevZMmSGUriISEh+uGHHzRq1CiNHDnSvrx69eo6fvy4/Y3MrT9+fn4ZPQTIAuRh8jB5+M6Sk5Md5nApWrSoQ2yurq6plt2tcEfexqNm+PDhmj179j1NKFy5cmVVrFhR4eHh9/zPu81m09NPP63Jk21nD0IAACAASURBVCenmnhVksaMGaPChQurcePGaa7funVrVatWLc2C9u1u//tPT8eOHXXs2DEtWrQo1XOLFi3SsWPH7COgqlWrpoMHD6ZbFKxWrZo2b96c7uTYhQoVUlJSksPIiV27dqXZduvWrfbfExMTtX37dpUvX17SzevkE088oQEDBqhatWoqXbq0Tp486bC+m5vbXb+xMCgoSO7u7mnmstu/9vhhe+211/Ttt99q2rRpunLlSqrRkpLjMZBuFuJTjgG58v5QAElHaGioypYtqxEjRujAgQPatGmTunXrpooVKzr8dO/eXYcOHdKGDRvk6empOXPmaO3atQoLC9OPP/6o48ePa9++ffrwww/15JNPZnW3HAQGBqpNmzbq2bOnVq5cqcOHD+v111/X/v377RPU5c6dW3Xr1tUHH3ygPXv2aOfOnercubPc3d3t21m+fLk+/vhj7dy5U6dOndI333yj06dP2/84hw4dqkOHDqljx47avn27Tpw4obVr1+r111/X8ePHMxzvm2++qV27dql///46fPiwVqxYoT59+qhDhw724b+3GzhwoBYtWmSffG727Nn6/PPPM7S/0NBQHTt2TN9++63DG+8GDRroxIkT+vbbb+3Dru83vtsVLVpU69ev18mTJ9W8eXNduXJFQUFB6tatm1599VV9/vnnOnr0qP3r1caOHXvH7c2cOVPTp0/Xnj179Mcff2jBggWKj4+3vzZ//vmnypYtm2blOEVUVJQaNGggi8WiuXPnKiEhQefOndO5c+fuOhN5SEiIfvzxR127ds3+CUlISIjmzZunoKAgh08/hwwZokmTJmn69Ok6cuSIpk2bpk8++URDhw7N0LGTbg5XXLlypcaNG6d33nlH0s0h4yVLllSzZs30008/6eTJk9q2bZvGjBnzUP4BQeYhD5OHycM37d+/X+PGjbO/vjt27FC3bt104sQJdejQIUP9yijyNh41pUuX1rPPPptq5MCVK1fs73dSflJGdaS8Jzpz5oxq1qypJUuW6NChQzpy5Ii+/vpr/fLLL3ecVHXKlClydXVVSEiIVqxYodOnT9sn+F6zZo3mzJlzx2JlRESElixZcsevwb4XrVu3VocOHfTyyy9r/PjxOnLkiI4ePaqJEyfqlVdeUefOndWqVStJUrt27VSiRAk1b95cq1at0okTJ7R69Wp78aRnz55KTk7Wc889p02bNunEiRP67rvv7LeM1qxZU15eXho8eLCOHDmiFStWaMSIEWnGFR4erh9++EGHDh3S//3f/+n8+fP229PKlCmjffv2afny5Tp27JgmTJjg8E010s0ROefOndOWLVsUExOjhISEVPvw9PRU37599Z///EdfffWVfv/9d73//vtavnz5PeWy+1GvXj2VKVNGb7zxhl588UV7Mf9WM2fO1BdffKHff/9d77zzjrZs2aIBAwZIuv9cef36dfuHSJcuXVJsbKwiIyPv+O2OppIlM49kgbtNvpfW5C8LFiwwXF1djaefftrw8/MzkpOT09x2lSpVHCbh27t3r9G+fXvjscceM3LlymUUK1bMaNmypbF+/fpU62bW5HvpbbNEiRL2yfcMwzDi4uKM7t27G76+voabm5tRrVo1Y+XKlQ7r/Pbbb0aDBg0MT09PIygoyPj6668dJl1av369ERwcbPj6+hru7u5GUFCQMWbMGIdt7N2712jevLmRP39+w8PDwwgMDDReffVV+yROacW8ceNGQ5Jx4sQJ+7Lvv//eqFq1quHm5mb4+voaPXr0cJhkKa3tjB8/3vDz8zM8PDyM0NBQY86cORmayOzSpUtGrly5DDc3N+Py5csOz1WrVs2QZGzYsMFh+d3i69KlixEaGppqX7efg9HR0UalSpWMkJAQ4/Lly0ZiYqIxduxYo0yZMkauXLkMHx8fo0GDBsbixYvt6+i2idwMwzC+/vpro3bt2kb+/PmN3LlzGxUqVHCYUCplgqXZs2enexxmz55tnyTs9p+7Ta539uxZQ5LDxFp79+41JBndu3d3aJucnGx88MEHRkBAgOHq6mqULFnS+Pjjjx3a3H7+ptf3rVu3Gt7e3sagQYMMwzCMmJgYo0ePHoafn5+RK1cuw8/Pz2jRooV9oqk75YfbpfcaphVHevHey/7MhDx8E3mYPHyvefjIkSPGv//9b6NQoUL2HPbcc88ZW7ZsuePxu9dJUA2DvE3eNrf0zoVNmzY5vK9p2LBhmu978uTJ47DeH3/8Yfzf//2fUapUKcPNzc3w9PQ0qlSpYgwbNsz466+/7O3SusZFRUUZPXv2NIoXL27PKa1atUo1sWpak4YahmG0bt3akPRQJkE1jJt/z59++qlRvXp1I3fu3Ebu3LmNatWqGdOmTUt17Y2KijI6depk+Pj4GO7u7kaZMmUccthvv/1mtGjRwsiXL5+RO3duo1KlSg6TfX/33XdG2bJlDQ8PD6NOnTrGihUr0pwEdfny5fZ8Xq5cOeOnn36yb+P69etG9+7djQIFChheXl5Gu3btjEmTJhm3/nt7/fp1o127dkaBAgUcjtXtr8f169eNQYMG2fNNuXLljAULFjj0Oa38HhoaanTp0iVDxze99znjx483JBnbt293WJ5ybZg3b57RsGFDw93d3QgICEgV191yZVpStn37T1oTxpqRxTAyecY4AAAAAAAyYN26dQoODtbp06fTnWzVLN566y39/PPP9q+2TXHy5EmVLFlSGzduzJQ5zR5lTIIKAAAAAICTxMXF6ffff9dnn32miRMnZnU4jxTmAAEAAAAAwEmee+45NWjQQC1btuQrtp2MW2AAAAAAAIDpMQIEAAAAAACYHgUQAAAAAABgeo/0JKhnz57N6hDS5Ovrq5iYmKwO46EwU18k+pPdZef++Pn5ZXUIOQr52TnM1B8z9UWiP85Efn44yNvOQX+yNzP1Jzv35UHyNiNAAAAAAACA6VEAAQAAAAAApkcBBAAAAAAAmB4FEAAAAAAAYHoUQAAAAAAAgOlRAAEAAAAAAKZHAQQAAAAAAJgeBRAAAAAAAGB6FEAAAAAAAIDpuWZ1AMDDEBHh5ZT9jBnjlN0AAO7RyJFWJSRk/rVg4MD4TN8HAADIHIwAAQAAAAAApkcBBAAAAAAAmB63wAAA7mjq1KnatWuXvL29FRERIUn6+OOPdfbsWUlSQkKCPD09NW7cuFTr9urVSx4eHnJxcZHValV4eLhTYwcAAABSUAABANxRo0aN1LRpU02ZMsW+rH///vbf582bJ09Pz3TXf/fdd5UvX75MjREAAAC4G26BAQDcUfny5ZU3b940nzMMQ1u2bFHdunWdHBUAAABwbxgBAgC4b4cOHZK3t7cee+yxdNuMHj1aktS4cWOFhYWl2WbVqlVatWqVJCk8PFy+vr4PP9iHwNXVNdvGdj/M1B8XF5c7jkR6WHx93TN9H5K5XhvJfP0BAORMFEAAAPdt06ZNdxz9MXLkSNlsNsXFxWnUqFHy8/NT+fLlU7ULCwtzKI7ExMRkSrwPytfXN9vGdj/M1J/k5MJKSEjI9P3ExDjna3DN9NpI2bs/fn5+WR0CAMBJuAUGAHBfkpKStH37dtWpUyfdNjabTZLk7e2tGjVq6OjRo84KDwAAAHBAAQQAcF/27dsnPz8/+fj4pPn81atXdeXKFfvve/fuVfHixZ0ZIgAAAGCXo26BSeurGCXpxx9/1MqVK+Xi4qKqVauqY8eOWRglAJjL+PHjdfDgQcXHx6tHjx5q27atQkJC0rz9JTY2VtOmTdOQIUMUFxenDz/8UNLN0SL16tVTlSpVsqILAAAAQM4qgKT1VYz79+/Xr7/+qnHjxilXrlyKi4vLwggBwHz69euX5vJevXqlWmaz2TRkyBBJUuHChTVu3LhMjQ0AAADIqBx1C0xaX8X4008/6bnnnlOuXLkk3bzPHAAAAAAA4FY5agRIWqKionT48GEtXLhQuXLlUqdOnRQUFJRmW75m0fmc1RdPT2um70OSXF0tpnltJHOda5L5+gOYRUSEV6bvwwnfgAsAAHK4HF8ASU5O1qVLlzR69GgdO3ZMH3/8sSZPniyLxZKqLV+z6HzO6ktCQua/uZakxER307w2krnONSl794evWQQAAACyVo66BSYtNptNNWvWlMViUVBQkFxcXBQfH5/VYQEAAAAAgGwkxxdAatSooQMHDkiSzp49q8TERHl5OWc0AAAAAAAAyBly1C0w6X0V49SpUzVw4EC5urqqV69ead7+AgAAADwqIiMjNXv2bCUnJys0NFQtWrRweP7GjRuaPHmyjh8/Li8vL/Xr10+FChWyPx8TE6P+/furTZs2at68ubPDB4BMkaMKIOl9FWPfvn2dHAkAAACQPSUnJ2vmzJkaNmyYfHx8NGTIEFWvXl3+/v72NmvWrFGePHk0adIkbdq0SQsWLFD//v3tz8+dO1dPPPFEVoQPAJkmx98CAwAAAOB/jh49qiJFiqhw4cJydXVVnTp1tGPHDoc2v/76qxo1aiRJevLJJ7V//34ZhiFJ2r59uwoVKuRQMAEAM6AAAgAAAJhIbGysfHx87I99fHwUGxubbhur1SpPT0/Fx8fr6tWrWr58udq0aePUmAHAGXLULTAAAAAAMs/ixYvVrFkzeXh43LHdqlWrtGrVKklSeHi4fH19nRHePXN1dc22sd0P+pO9mak/ZurLrSiAAAAAACZis9l04cIF++MLFy7IZrOl2cbHx0dJSUlKSEiQl5eXjh49qm3btmnBggW6fPmyLBaL3Nzc1LRpU4f1w8LCFBYWZn8cExOTuZ26T76+vtk2tvtBf7I3M/UnO/fFz8/vvtelAAIAAACYSGBgoKKiohQdHS2bzabNmzen+tKAatWqad26dXr88ce1detWVahQQRaLRSNGjLC3Wbx4sTw8PFIVPwAgp6IAAgAAAJiI1WpVt27dNHr0aCUnJys4OFjFihXTokWLFBgYqOrVqyskJESTJ09Wnz59lDdv3nS/bREAzIQCCAAAAGAyVatWVdWqVR2WvfDCC/bf3dzcNGDAgDtuo23btpkSGwBkFb4FBgAAAAAAmB4FEAAAAAAAYHoUQAAAAAAAgOlRAAEAAAAAAKZHAQQAAAAAAJgeBRAAAAAAAGB6FEAAAAAAAIDpuWZ1AACA7G3q1KnatWuXvL29FRERIUlavHixVq9erXz58kmS2rVrp6pVq6ZaNzIyUrNnz1ZycrJCQ0PVokULp8YOAAAApKAAAgC4o0aNGqlp06aaMmWKw/JmzZqpefPm6a6XnJysmTNnatiwYfLx8dGQIUNUvXp1+fv7Z3bIAAAAQCo56haYqVOn6pVXXtHAgQNTPfftt9+qbdu2+ueff7IgMgAwr/Llyytv3rz3vN7Ro0dVpEgRFS5cWK6urqpTp4527NiRCRECAAAAd5ejCiCNGjXS0KFDUy2PiYnR3r175evrmwVRAcCjaeXKlXrjjTc0depUXbp0KdXzsbGx8vHxsT/28fFRbGysM0MEAAAA7HLULTDly5dXdHR0quVz585Vhw4dNG7cuCyICgAePU2aNFHr1q0lSYsWLdK8efPUs2fP+97eqlWrtGrVKklSeHh4ti1ou7q6ZtvY7oez+uPpac30fbi4uMjT0zPT9+Pr657p+5A41wAAyAw5qgCSlh07dshmsykgICCrQwGAR0b+/Pntv4eGhmrs2LGp2thsNl24cMH++MKFC7LZbGluLywsTGFhYfbHMTExDzHah8fX1zfbxnY/nNWfhASvTN+Hp6enEhISMn0/MTHxmb4PiXPNmfz8/LI6BACAk+ToAsi1a9e0bNkyDRs2LEPt+YTR+cz06aIkubpaTPPaSOY61yTz9Sc7u3jxogoUKCBJ2r59u4oVK5aqTWBgoKKiohQdHS2bzabNmzerb9++zg4VAAAAkJTDCyB//fWXoqOj9eabb0q6+enioEGDNGbMGIdPJ1PwCaPzmenTRUlKTHQ3zWsjmetck7J3f3LyJ4zjx4/XwYMHFR8frx49eqht27Y6cOCATp48KYvFooIFC6p79+6Sbs77MW3aNA0ZMkRWq1XdunXT6NGjlZycrODg4DQLJQAAAIAz5OgCSPHixTVjxgz74169emnMmDHKly9fFkYFAObSr1+/VMtCQkLSbGuz2TRkyBD746pVq6pq1aqZFhsAAACQUTmqAJLWp5DpvQkHAAAAAABIkaMKIGl9CnmrKVOmOCkSAAAAAACQk7hkdQAAAAAAAACZjQIIAAAAAAAwPQogAAAAAADA9CiAAAAAAAAA06MAAgAAAAAATI8CCAAAAAAAMD0KIAAAAAAAwPQogAAAAAAAANOjAAIAAAAAAEyPAggAAAAAADA9CiAAAAAAAMD0KIAAAAAAAADTowACAAAAAABMjwIIAAAAAAAwPQogAAAAAADA9FyzOgAAAAAAD1dkZKRmz56t5ORkhYaGqkWLFg7P37hxQ5MnT9bx48fl5eWlfv36qVChQtq7d68WLFigxMREubq6qlOnTqpYsWIW9QIAHi5GgAAAAAAmkpycrJkzZ2ro0KH6+OOPtWnTJp05c8ahzZo1a5QnTx5NmjRJzZo104IFCyRJXl5eGjRokCIiItSrVy9NmjQpK7oAAJkiR40AmTp1qnbt2iVvb29FRERIkj7//HPt3LlTrq6uKly4sHr27Kk8efJkcaQAAABA1jh69KiKFCmiwoULS5Lq1KmjHTt2yN/f397m119/VZs2bSRJTz75pGbNmiXDMFSyZEl7m2LFiun69eu6ceOGcuXK5dxOAEAmyFEjQBo1aqShQ4c6LKtUqZIiIiL04Ycf6rHHHtOyZcuyKDoAAAAg68XGxsrHx8f+2MfHR7Gxsem2sVqt8vT0VHx8vEObbdu2qVSpUhQ/AJhGjhoBUr58eUVHRzssq1y5sv33xx9/XFu3bnV2WAAAAICpnD59WgsWLNDbb7+d5vOrVq3SqlWrJEnh4eHy9fV1ZngZ5urqmm1jux/0J3szU3/M1Jdb5agCyN2sWbNGderUyeowAMBUHuT2w169esnDw0MuLi6yWq0KDw93dvgA8Mix2Wy6cOGC/fGFCxdks9nSbOPj46OkpCQlJCTIy8vL3v7DDz9Ur169VKRIkTT3ERYWprCwMPvjmJiYTOjJg/P19c22sd0P+pO9mak/2bkvfn5+972uaQogS5culdVqVf369dNtQ6Xa+ZzVF09Pa6bvQ5JcXS2meW0kc51rkvn6k100atRITZs21ZQpU+zLKlWqpPbt28tqtWr+/PlatmyZOnbsmOb67777rvLly+escAHgkRcYGKioqChFR0fLZrNp8+bN6tu3r0ObatWqad26dfYR1BUqVJDFYtHly5cVHh6u9u3bq2zZslnUAwDIHKYogKxbt047d+7UO++8I4vFkm47KtXO56y+JCR4Zfo+JCkx0d00r41krnNNyt79eZBKdVbj9kMAyFmsVqu6deum0aNHKzk5WcHBwSpWrJgWLVqkwMBAVa9eXSEhIZo8ebL69OmjvHnzql+/fpKkFStW6Ny5c1qyZImWLFkiSRo2bJi8vb2zsksA8FDk+AJIZGSkli9frvfee0/u7u5ZHQ4APHLudvvh6NGjJUmNGzd2KELfihF6WcNMo/RcXFzk6emZ6fvx9XXOew3ONTyoqlWrqmrVqg7LXnjhBfvvbm5uGjBgQKr1nn/+eT3//POZHh8AZIUcVQAZP368Dh48qPj4ePXo0UNt27bVsmXLlJiYqJEjR0qSSpcure7du2dxpADwaLjb7YcjR46UzWZTXFycRo0aJT8/P5UvXz5VO0boZQ0zjdLz9PRUQkJCpu8nJib+7o0eAs4158nJI/QAAPcmRxVAUobm3SokJCQLIgEAZOT2w5RJ97y9vVWjRg0dPXo0zQIIAAAAkNlcsjoAAEDOk3L74aBBg9K9/fDq1au6cuWK/fe9e/eqePHizgwTAAAAsMtRI0AAAM53L7cfxsbGatq0aRoyZIji4uL04YcfSpKSkpJUr149ValSJSu7AgAAgEcYBRAAwB3dy+2HNptNQ4YMkSQVLlxY48aNy9TYAAAAgIziFhgAAAAAAGB6FEAAAAAAAIDpUQABAAAAAACmRwEEAAAAAACYntMLIDt27FBSUpKzdwsAjzRyLwBkL+RlAHA+pxdAFi9erO7du2vmzJk6cuSIs3cPAI8kci8AZC/kZQBwPqd/De64ceN08uRJbdy4UREREXJ3d1eDBg1Uv359FSpUyNnhAMAjgdwLANkLeRkAnM/pBRBJCggIUEBAgDp27Kh9+/bp888/1+LFi1W2bFmFhYWpbt26cnFhehIAeJjIvQCQvZCXAcC5sqQAIknnzp3Txo0btXHjRlksFr3wwgvy9fXVihUrtG3bNr3xxhtZFRoAmBa5FwCyF/IyADiP0wsgK1as0MaNGxUVFaU6deqod+/eevzxx+3P16pVS6+88oqzwwIAUyP3AkD2Ql4GAOdzegEkMjJSzzzzjKpXr65cuXKlet7d3Z1KNwA8ZOReAMheyMsA4HxOL4AMGDBALi4ucnX9364TExNlGIY9+VeuXNnZYQGAqZF7ASB7IS8DgPM5fVal0aNH6/jx4w7Ljh8/rtGjRzs7FAB4ZJB7ASB7IS8DgPM5vQDyxx9/qHTp0g7LgoKC9Mcffzg7FAB4ZJB7ASB7IS8DgPM5/RaYPHnyKC4uTvnz57cvi4uLk7u7+13XnTp1qnbt2iVvb29FRERIki5duqSPP/5Y58+fV8GCBdW/f3/lzZs30+IHgJzoQXIvAODhIy8DgPM5fQRIrVq1NGHCBJ06dUrXrl3TqVOnNHnyZNWuXfuu6zZq1EhDhw51WPbNN9/oX//6lyZOnKh//etf+uabbzIrdADIsR4k9wIAHj7yMgA4n9NHgLz44ouaN2+ehg4dqhs3bsjNzU2NGjVSu3bt7rpu+fLlFR0d7bBsx44dGj58uCSpYcOGGj58uDp27JgZoQNAjvUguRcA8PCRlwHA+ZxeAHFzc9Mrr7yil19+WfHx8fLy8pLFYrnv7cXFxalAgQKSpPz58ysuLu5hhQoApvGwcy8A4MGQlwHA+ZxeAJGkhIQEnT17VlevXnVYXrFixQfarsViueOFY9WqVVq1apUkKTw8XL6+vg+0v8zi6uqabWO7V87qi6enNdP3IUmurhbTvDaSuc41yXz9edgyK/cCAO4PeRkAnMvpBZB169Zp5syZ8vDwkJubm325xWLR5MmT73l73t7eunjxogoUKKCLFy8qX7586bYNCwtTWFiY/XFMTMw9788ZfH19s21s98pZfUlI8Mr0fUhSYqK7aV4byVznmpS9++Pn55el+3/YuRcA8GDIywDgfE4vgHz55ZcaMGCAnnjiiYeyverVq2v9+vVq0aKF1q9frxo1ajyU7QKAmTzs3AsAeDDkZQBwPqcXQJKTk1W5cuX7Wnf8+PE6ePCg4uPj1aNHD7Vt21YtWrT4f+zdeViU5f7H8c8wiIigsggeXFIxyyUkxUzLnbxMW0htMy2yOnU0Tdtc2jyZhXncteWYW2VpedS208nI1IpMUzGVXMgWPa6IqIiKMvfvD4/zcwIUkFl4eL+ui+vymbln7u89M34Yvz6LJk2apOXLlzsvgwsAcHUp2XsplyBfsWKFFi9eLEnq1auXOnXqVOo1AICVXEouAwBKx+MNkFtvvVX/+te/1Lt3b/n5lewqvEOHDi309ueff74sSgMAy7qU7O3UqZO6d++uGTNmOG87dwnyxMRELV26VEuXLi1wBa6cnBwtWrRIycnJkqQRI0YoPj6+0EYJAFQ0l5LLAIDS8XgD5LPPPlN2drY+/vjjAl+CX3/9dU+XAwAVwqVkb2kvQZ6WlqbY2FjnfLGxsUpLS9P1119/iasBgPKP78QA4Hkeb4AMHjzY01MCQIVX1tlbnEuQZ2VlKTw83LkdFhamrKysMq0DAMorvhMDgOd5vAHStGlTT08JABWeO7P3YpcgLw4uU+4dVrpUuZ+fn4KCgtw+T0REZbfPIfFZqwj4TgwAnufxBsjp06e1aNEifffddzp27JjmzZunjRs3au/everevbunywGACqGss7c4lyAPCwtTenq6czsrK6vIL/xcptw7rHSp8qCgIOXm5rp9nszMY26fQ+Kz5kneukw534kBwPM8fsalefPmadeuXRoyZIjzfwzr1q2rZcuWeboUAKgwyjp7z12CXFKRlyCPi4vTxo0blZOTo5ycHG3cuFFxcXGlXwQAWAjfiQHA8zy+B8iaNWs0depUBQYGOsOe48IBwL0uJXtLcgnyX375RV9++aUeeeQRBQcHq3fv3ho5cqQkqU+fPlwBBgD+x93fidPS0jRnzhw5HA517dpViYmJLvefPn1a06dP186dOxUSEqKhQ4cqMjJSkrRkyRItX75cfn5+uv/++2leA7AMjzdA/P395XA4XG47evSoQkLcv3ssAFRUl5K9JbkEeUxMjGJiYpzbXbp0UZcuXUpYLQBYnzu/EzscDs2aNUvPPvuswsPDNXLkSMXHx6tOnTrOMcuXL1fVqlU1bdo0fffdd5o/f76GDRum3bt3KzU1VRMnTtThw4c1ZswYTZkyhUv1ArAEjyfZtddeq+nTpzsvqXj48GHNmjVL7dq183QpAFBhkL0A4FvcmcsZGRmqVauWoqKi5O/vr3bt2mnt2rUuY3788Ud16tTJWcvmzZtljNHatWvVrl07VapUSZGRkapVq5YyMjIuuSYA8AUeb4D07dtXkZGReuKJJ5Sbm6shQ4YoNDRUt99+u6dLAYAKg+wFAN/izlz+82XIw8PDCxxac/4Yu92uoKAgHTt2jEuYA7A0rxwCk5SUpKSkJOdufpd6+UQAwIWRvQDgW8p7LnP5cu9gPb7NSuux0lrO5/EGyP79+122T5w44fxzVFSUp8sBgAqB7AUA3+LO114gmAAAIABJREFUXA4LC9OhQ4ec24cOHVJYWFihY8LDw5Wfn6/c3FyFhIQUeGxWVlaBx0pcvtxbWI9vs9J6fHktl3L5co83QIYMGVLkfQsXLvRgJQBQcZC9AOBb3JnLMTEx2rt3rw4cOKCwsDClpqYWmK9Vq1ZasWKFGjdurNWrV6tZs2ay2WyKj4/X1KlTddNNN+nw4cPau3evGjVqdEn1AICv8HgD5M+Bnp2drQ8//FBNmjTxdCkAUGGQvQDgW9yZy3a7XQMGDNDYsWPlcDjUuXNn1a1bVwsXLlRMTIzi4+PVpUsXTZ8+XYMHD1ZwcLDzil9169ZV27Zt9fjjj8vPz08PPPAAV4ABYBkeb4D8WY0aNZSUlKTHHntM119/vbfLAYAKgewFAN9S1rncsmVLtWzZ0uW2O++80/nngIAAPf7444U+tlevXurVq9cl1wAAvsYn2rl79uzRqVOnvF0GAFQoZC8A+BZyGQDcy+N7gDz//PMuZ7g+deqUdu3apT59+ni6FACoMMheAPAt5DIAeJ7HGyBdunRx2Q4MDNRll12mv/zlL54uBQAqDLIXAHwLuQwAnufxBkinTp3c8ryffvqpli9fLpvNprp162rgwIEKCAhwy1wAUN64K3sBAKVDLgOA53n9KjBFOf8kTReTlZWlzz//XJMmTVJAQIAmTpyo1NRUfrEAwP+4I3sBAKVHLgOA53m8AbJ371798MMPatSokSIiIpSZmamMjAy1adPmkvbYcDgcysvLk91uV15enkJDQ8uwagAo39yVvQCA0iGXAcDzvHIZ3Mcee0zXXnutc/uHH37Q999/r4EDB5bq+cLCwnTzzTfrb3/7mwICAtSiRQu1aNGirMoFAEso6+wFAFwachkAPMvjDZANGzZoyJAhLrfFx8frtddeK/Vz5uTkaO3atZoxY4aCgoI0ceJErVq1Sh06dHAZl5KSopSUFElScnKyIiIiSj2nO/n7+/tsbSXlqbUEBdndPockjR3rJ4cjyu3zPPdcvtvnkKz1WZOst56y5I7sBQCUHrkMAJ7n8QZIrVq19J///Ec9evRw3rZs2TLVqlWr1M+5adMmRUZGqlq1apKkNm3aaPv27QUaIAkJCUpISHBuZ2ZmlnpOdzq3G6QVeGotubkhbp9DkoKCgpSbm+v2eTIzj7l9DslanzXJt9cTHR3t1fndkb0AgNIjlwHA8zzeAHnkkUf0j3/8Qx9//LHCwsKUlZUlu92uJ554otTPGRERoR07dujUqVMKCAjQpk2bFBMTU4ZVA0D55o7sBQCUHrkMAJ7n8QZIgwYNNGXKFO3YsUOHDx9WjRo11LhxY/n7l76Uyy+/XNdee62GDx8uu92u+vXru+zpAQAVnTuyFwBQeuQyAHie1xO2adOmOnnypM6cOaPAwMBSP88dd9yhO+64owwrAwDrKqvsBQCUDXIZANzP4w2QP/74Q+PGjVOlSpV06NAhtWvXTunp6Vq5cqWGDRvm6XIAoEIgewHAt5DLAOB5fp6ecObMmbrzzjs1efJk5y5+TZs21datWz1dCgBUGGQvAPgWchkAPM/jDZDdu3erffv2LrcFBgYqLy/P06UAQIVB9gKAbyGXAcDzPH4ITM2aNbVz506Xq7RkZGRwyS8AcCN3ZO+ePXs0adIk5/aBAwd0xx13qGfPns7btmzZoldffVWRkZGSzl6mvE+fPqWeEwCsgu/EAOB5Hm+A3HnnnUpOTtYNN9ygM2fOaMmSJfryyy/18MMPe7oUAKgw3JG90dHRGj9+vCTJ4XDo4Ycf1jXXXFNgXJMmTTRixIhSzwMAVsR3YgDwPI8fAtOqVSuNGjVKR48eVdOmTXXw4EE9+eSTatGihadLAYAKw93Zu2nTJtWqVUs1a9Ysk+cDAKvjOzEAeJ5H9wBxOBx67LHHNHHiRD344IOenBoAKixPZO93332n6667rtD7tm/frqeeekqhoaHq37+/6tatW2BMSkqKUlJSJEnJycmKiIhwS52Xyt/f32drKw1PrScoyO72Ofz8/BQUFOT2eSIiKrt9DonPmtXxnRgAvMOjDRA/Pz/5+fnp9OnTqlSpkienhpeMGWNXbm6It8sAKjR3Z++ZM2e0bt069e3bt8B9DRo00GuvvabAwECtX79e48eP19SpUwuMS0hIUEJCgnM7MzOzzOssCxERET5bW2l4aj2e+D0QFBSk3Nxct8+TmXnM7XNIfNY8KTo62uNz8p0YALzD44fA9OjRQ5MmTVJ6err27dun/fv3O38AAO7hzuzdsGGDGjRooBo1ahS4LygoSIGBgZKkli1bKj8/X0ePHr3kOQGgvOM7MQB4nsf2AMnOzlaNGjU0e/ZsSdJPP/1UYMzChQs9VQ4AVAieyN4LHf6SnZ2t6tWry2azKSMjQw6HQyEh7BUGoOLiOzEAeI/HGiCPPfaY5s2b5wz08ePH66mnnvLU9ABQIbk7e0+ePKmffvpJf/3rX523LVu2TJLUrVs3rV69WsuWLZPdbldAQICGDh0qm81WZvMDQHnDd2IA8B6PNUCMMS7b6enpnpoaACosd2dvYGCg838xz+nWrZvzz927d1f37t3LdE4AKM/4TgwA3uOxc4DwP34A4HlkLwD4FnIZALzHY3uA5Ofna/Pmzc5th8Phsi1JzZs391Q5AFAhkL0A4FvIZQDwHo81QKpXr67XX3/duR0cHOyybbPZNH36dE+VAwAVAtkLAL6FXAYA7/FYA2TGjBmemgoA8D9kLwD4FnIZALzHY+cAAQAAAAAA8BaP7QHibsePH9cbb7yhXbt2yWaz6W9/+5saN27s7bIAAAAAAIAPsEwDZM6cOYqLi9MTTzyhM2fO6NSpU94uCQAAAAAA+AhLHAKTm5urn3/+WV26dJEk+fv7q2rVql6uCgAAAAAA+ApL7AFy4MABVatWTa+99pp+//13NWzYUElJSQoMDHQZl5KSopSUFElScnKyIiIivFHuRfn7+/tsbSXl5+enoKAgb5dRZjy1noiIym6fQ7LWZ02y3noAAAAAlB1LNEDy8/P166+/asCAAbr88ss1Z84cLV26VHfddZfLuISEBCUkJDi3MzMzPV1qsURERPhsbSXlcEQpNzfX22WUmaCgII+sJzPzmNvnkKz1WZN8ez3R0dHeLgEAUAHk5ORo0qRJOnjwoGrWrKlhw4YpODi4wLgVK1Zo8eLFkqRevXqpU6dOOnXqlCZOnKj9+/fLz89PrVq10j333OPpJQCA21jiEJjw8HCFh4fr8ssvlyRde+21+vXXX71cFQAAAOBZS5cu1VVXXaWpU6fqqquu0tKlSwuMycnJ0aJFi/Tyyy/r5Zdf1qJFi5STkyNJuvnmmzV58mS9+uqr2rZtmzZs2ODpJQCA21iiAVKjRg2Fh4drz549kqRNmzapTp06Xq4KAAAA8Ky1a9eqY8eOkqSOHTtq7dq1BcakpaUpNjZWwcHBCg4OVmxsrNLS0lS5cmU1b95c0tnDShs0aKBDhw55tH4AcCdLHAIjSQMGDNDUqVN15swZRUZGauDAgd4uCQAAAPCoI0eOKDQ0VNLZ/yQ8cuRIgTFZWVkKDw93boeFhSkrK8tlzPHjx7Vu3Tr16NHDvQUDgAdZpgFSv359JScne7sMAAAAwK3GjBmj7OzsArf/+fx3NptNNputxM+fn5+vKVOm6MYbb1RUVFShY7i4gHewHt9mpfVYaS3ns0wDBAAAAKgInnvuuSLvq169ug4fPqzQ0FAdPnxY1apVKzAmLCxM6enpzu2srCw1bdrUuf3mm2+qVq1a6tmzZ5HzcHEB72A9vs1K6/HltVzKxQUscQ4QAAAAAFJ8fLxWrlwpSVq5cqVat25dYExcXJw2btyonJwc5eTkaOPGjYqLi5MkLViwQLm5uUpKSvJk2QDgEewBAgAAAFhEYmKiJk2apOXLlzsvgytJv/zyi7788ks98sgjCg4OVu/evTVy5EhJUp8+fRQcHKxDhw5p8eLFql27toYPHy5J6t69u7p27eq19QBAWaIBAgAAAFhESEiInn/++QK3x8TEKCYmxrndpUsXdenSxWVMeHi4PvjgA7fXCADewiEwAAAAAADA8miAAAAAAAAAy6MBAgAAAAAALI9zgAAASm3QoEEKDAyUn5+f7Ha7kpOTXe43xmjOnDnasGGDKleurIEDB6phw4ZeqhYAAAAVGQ0QAMAleeGFF1StWrVC79uwYYP27dunqVOnaseOHXrrrbf08ssve7hCAAAAgENgAABu9OOPP6pDhw6y2Wxq3Lixjh8/rsOHD3u7LAAAAFRA7AECALgkY8eOlSTdcMMNSkhIcLkvKytLERERzu3w8HBlZWUpNDTUozUCAAAANEAAAKU2ZswYhYWF6ciRI3rppZcUHR2tpk2blvh5UlJSlJKSIklKTk52aZr4En9/f5+trTQ8tZ6gILvb5/Dz81NQUJDb54mIqOz2OSQ+awAAuAMNEABAqYWFhUmSqlevrtatWysjI8OlARIWFqbMzEzn9qFDh5yPOV9CQoLL3iPnP8aXRERE+GxtpeGp9eTmhrh9jqCgIOXm5rp9nszMY26fQ+Kz5knR0dHeLgEA4CGcAwQAUConT57UiRMnnH/+6aefVK9ePZcx8fHxWrVqlYwx2r59u4KCgjj8BQAAAF7BHiAAgFI5cuSI/vGPf0iS8vPzdf311ysuLk7Lli2TJHXr1k1XX3211q9fryFDhiggIEADBw70ZskAAACowGiAAABKJSoqSuPHjy9we7du3Zx/ttlsevDBBz1ZFgAAAFAoDoEBAAAAAACWZ6kGiMPh0NNPP63k5GRvlwIAAAAAAHyIpRog//73v1W7dm1vlwEAAAAAAHyMZRoghw4d0vr169W1a1dvlwIAAAAAAHyMZU6COnfuXPXr1895ScbCpKSkKCUlRZKUnJysiIgIT5VXIv7+/j5bW0n5+fkpKCjI22WUGU+tJyKistvnkKz1WZOstx4AAAAAZccSDZB169apevXqatiwobZs2VLkuISEBCUkJDi3MzMzPVFeiUVERPhsbSXlcEQpNzfX22WUmaCgII+sJzPzmNvnkKz1WZN8ez3R0dHeLgEAAACo0CzRANm2bZt+/PFHbdiwQXl5eTpx4oSmTp2qIUOGeLs0AAAAAADgAyzRAOnbt6/69u0rSdqyZYs++eQTmh8AAAAAAMDJMidBBQAAAAAAKIol9gA5X7NmzdSsWTNvlwEAAAAAAHwIe4AAAAAAAADLowECAAAAAAAsjwYIAAAAAACwPBogAAAAAADA8miAAAAAAAAAy6MBAgAAAAAALI8GCAAAAAAAsDwaIAAAAAAAwPJogAAAAAAAAMujAQIAAAAAACyPBggAAAAAALA8f28XAAAAAKBs5OTkaNKkSTp48KBq1qypYcOGKTg4uMC4FStWaPHixZKkXr16qVOnTi73jxs3TgcOHNCECRM8UTYAeAQNEABAqWRmZmrGjBnKzs6WzWZTQkKCevTo4TJmy5YtevXVVxUZGSlJatOmjfr06eONcgGgQli6dKmuuuoqJSYmaunSpVq6dKn69evnMiYnJ0eLFi1ScnKyJGnEiBGKj493Nkp++OEHBQYGerx2AHA3DoEBAJSK3W5X//79NWnSJI0dO1ZffPGFdu/eXWBckyZNNH78eI0fP57mBwC42dq1a9WxY0dJUseOHbV27doCY9LS0hQbG6vg4GAFBwcrNjZWaWlpkqSTJ0/q008/Ve/evT1aNwB4AnuAAABKJTQ0VKGhoZKkKlWqqHbt2srKylKdOnW8XBkAVFxHjhxxZnONGjV05MiRAmOysrIUHh7u3A4LC1NWVpYkacGCBbr55psVEBBwwXlSUlKUkpIiSUpOTlZERERZLaFM+fv7+2xtpcF6fJuV1mOltZyPBggA4JIdOHBAv/76qxo1alTgvu3bt+upp55SaGio+vfvr7p16xYYwxdp7/DUeoKC7G6fw8/PT0FBQW6fJyKistvnkPis4cLGjBmj7OzsArffddddLts2m002m63Yz/vbb79p//79SkpK0oEDBy44NiEhQQkJCc7tzMzMYs/jSRERET5bW2mwHt9mpfX48lqio6NL/VhLNECKcxw6AMA9Tp48qQkTJigpKanAP0AbNGig1157TYGBgVq/fr3Gjx+vqVOnFngOvkh7h6fWk5sb4vY5goKClJub6/Z5MjOPuX0Oic+aJ13KF2lvee6554q8r3r16jp8+LBCQ0N1+PBhVatWrcCYsLAwpaenO7ezsrLUtGlTbd++XTt37tSgQYOUn5+vI0eOaPTo0Ro9erQ7lgEAHmeJBsi549AbNmyoEydOaMSIEYqNjWU3bABwszNnzmjChAlq37692rRpU+D+8xsiLVu21KxZs3T06NFCv5ADAC5dfHy8Vq5cqcTERK1cuVKtW7cuMCYuLk7vv/++cnJyJEkbN25U3759FRwcrG7dukk6u2ffuHHjaH4AsBRLnAQ1NDRUDRs2lOR6HDoAwH2MMXrjjTdUu3Zt3XTTTYWOyc7OljFGkpSRkSGHw6GQEPfvDQAAFVViYqJ++uknDRkyRJs2bVJiYqIk6ZdfftEbb7whSQoODlbv3r01cuRIjRw5Un369Cn0UrkAYDWW2APkfBc6Dh0AUHa2bdumVatWqV69enrqqackSXfffbdzN/du3bpp9erVWrZsmex2uwICAjR06NASHY8OACiZkJAQPf/88wVuj4mJUUxMjHO7S5cu6tKlS5HPExkZqQkTJrilRgDwFks1QC50HLrESfa8wVMnpfMUT63n9dc985r9/e82y3zWJGv93SkPrrzySn3wwQcXHNO9e3d1797dQxUBAAAARbNMA+Rix6FLnGTPGxyOKI+clM5TPHWSPU85c6ayZT5rkm//3SmPJ9kDAAAArMQS5wApznHoAAAAAACg4rLEHiBFHYfesmVLL1cGAAAAAAB8gSUaIMU5Dh0AAAAAAFRcljgEBgAAAAAA4EJogAAAAAAAAMujAQIAAAAAACyPBggAAAAAALA8GiAAAAAAAMDyaIAAAAAAAADLowECAAAAAAAsjwYIAAAAAACwPH9vFwDvmDAhxCPzBAV5ZBoAAAAAAC6IPUAAAAAAAIDl0QABAAAAAACWRwMEAAAAAABYHg0QAAAAAABgeTRAAAAAAACA5dEAAQAAAAAAlkcDBAAAAAAAWB4NEAAAAAAAYHn+3i6grKSlpWnOnDlyOBzq2rWrEhMTvV0SAFjexbL39OnTmj59unbu3KmQkBANHTpUkZGRXqoWAAAAFZkl9gBxOByaNWuWRo0apUmTJum7777T7t27vV0WAFhacbJ3+fLlqlq1qqZNm6aePXtq/vz5XqoWAAAAFZ0lGiAZGRmqVauWoqKi5O/vr3bt2mnt2rXeLgsALK042fvjjz+qU6dOkqRrr71WmzdvljHGC9UCAACgorNEAyQrK0vh4eHO7fDwcGVlZXmxIgCwvuJk7/lj7Ha7goKCdOzYMY/WCQAAAEgWOgdIcaSkpCglJUWSlJycrOjoaC9XVDR31zZhgluf/k9CPDmZB1hrPb7896A0rLaeioJ89h5PrMdzv3M8kc+e+x3AZw3liS+/v75cW2mwHt9mpfVYaS3nWGIPkLCwMB06dMi5fejQIYWFhRUYl5CQoOTkZCUnJ3uyvBIbMWKEt0soM1Zai8R6fJ3V1uPripO954/Jz89Xbm6uQkIK/gOSfPYOK63HSmuRWA9QVqz22WM9vs1K67HSWs5niQZITEyM9u7dqwMHDujMmTNKTU1VfHy8t8sCAEsrTva2atVKK1askCStXr1azZo1k81m80K1AAAAqOgscQiM3W7XgAEDNHbsWDkcDnXu3Fl169b1dlkAYGlFZe/ChQsVExOj+Ph4denSRdOnT9fgwYMVHBysoUOHertsAAAAVFD20aNHj/Z2EWXhL3/5i2688Ub16NFDTZo08XY5l6xhw4beLqHMWGktEuvxdVZbj68rLHubN2/uPGbUbrerbdu26tGjhxISEhQcHOzNcsuE1T5jVlqPldYisR6grFjts8d6fJuV1mOltZxjM1yPEAAAAAAAWJwlzgECAAAAAABwIZY4B4hVffLJJ3rnnXf01ltvqVq1at4up9TeeecdrVu3Tv7+/oqKitLAgQNVtWpVb5dVYmlpaZozZ44cDoe6du2qxMREb5dUKpmZmZoxY4ays7Nls9mUkJCgHj16eLusS+ZwODRixAiFhYVZ9qzV8C1WyGjy2fdYMaPJZ/gKK+S2ZI3sJrd9n1WzmwaIj8rMzNRPP/2kiIgIb5dyyWJjY9W3b1/Z7Xa9++67WrJkifr16+ftskrE4XBo1qxZevbZZxUeHq6RI0cqPj5ederU8XZpJWa329W/f381bNhQJ06c0IgRIxQbG1su13K+f//736pdu7ZOnDjh7VJQAVglo8ln32PFjCaf4QuskttS+c9ucrt8sGp2cwiMj5o3b57uueceS1wuskWLFrLb7ZKkxo0bKysry8sVlVxGRoZq1aqlqKgo+fv7q127dlq7dq23yyqV0NBQ5wmNqlSpotq1a5fL9+R8hw4d0vr169W1a1dvl4IKwioZTT77HqtlNPkMX2GV3JbKf3aT277PytlNA8QHrV27VmFhYapfv763Sylzy5cvV1xcnLfLKLGsrCyFh4c7t8PDw8t9sEnSgQMH9Ouvv6pRo0beLuWSzJ07V/369bPElxr4PqtmNPnse6yQ0eQzfIFVc1sqn9lNbvs+K2c3h8B4yZgxY5SdnV3g9rvuuktLlizRs88+64WqSu9C62ndurUkafHixbLb7Wrfvr2ny0MhTp48qQkTJigpKUlBQUHeLqfU1q1bp+rVq6thw4basmWLt8uBRVgpo8nn8skKGU0+w5OslNsS2V0eWSG3JetnN5fB9TF//PGHXnzxRVWuXFnS2d2PQkND9corr6hGjRperq70VqxYoS+//FLPP/+8c23lyfbt2/Xhhx/qmWeekSQtWbJEknTbbbd5s6xSO3PmjMaNG6cWLVropptu8nY5l+S9997TqlWrZLfblZeXpxMnTuiaa67RkCFDvF0aLMiKGU0++x6rZDT5DF9gxdyWynd2k9u+zfLZbeDTBg4caI4cOeLtMi7Jhg0bzNChQ8v1Os6cOWMGDRpk9u/fb06fPm2efPJJ88cff3i7rFJxOBxm2rRpZs6cOd4upcxt3rzZvPLKK94uAxVIec9o8tn3WDWjyWf4ivKe28aU/+wmt8sPK2Y3h8DA7WbNmqUzZ85ozJgxkqTLL79cf/3rX71cVcnY7XYNGDBAY8eOlcPhUOfOnVW3bl1vl1Uq27Zt06pVq1SvXj099dRTkqS7775bLVu29HJlADyNfPY9ZDSAiynv2U1uw5s4BAYAAAAAAFgeV4EBAAAAAACWRwMEAAAAAABYHg0QAAAAAABgeTRAAAAAAACA5dEAAQAAAAAAlkcDBPrnP/+pRYsWObeXLVumhx56SP3799exY8e0detWDRkyRP3799eaNWu8WKn1jR49Wl999ZW3yyhzW7Zs0SOPPOLtMoByh3z2HeQzgOIgt30HuY3C+Hu7ALjXoEGDlJ2dLbvdLj8/P9WpU0cdOnRQQkKC/PzO9r/Ov274mTNnNG/ePI0dO1b169eXJH3wwQfq3r27evTo4Y0llBsffPCB9u3bpyFDhni7FJ83aNAgPfzww4qNjfV2KYDXkM+eQz4XH/kMFI3c9hxyu/jI7ZKhAVIBDB8+XLGxscrNzVV6errmzJmjjIwMDRw4sMDYI0eO6PTp06pbt67ztoMHD6pOnTqlmjs/P192u73UtVuJMUbGGOcvSF/E+wV4FvnsG8hnAMVFbvsGchulRQOkAgkKClJ8fLxq1KihZ555RjfddJPq1aunGTNmKDw8XB06dNDw4cMlSUlJSWrUqJEyMzN14MABjRs3Tn5+fpo9e7ZOnz6tefPmacOGDbLZbOrcubPuuOMO+fn5acWKFfrqq68UExOjVatWqVu3burdu7fef/99ff/99zpz5oxat26tpKQkBQQEaMuWLZo2bZp69uypjz76SH5+frr77rvVuXNnSVJeXp4WLFig1atX6/jx46pXr56ee+45BQQEaPv27Xr77be1e/du1axZU0lJSWrWrFmxXovMzEzNnTtXP//8s4wxuu666/TAAw/I4XBoyZIl+uqrr5SXl6e4uDgNGDBAQUFBOnDggB599FENHDhQCxcuVF5ennr27KlevXopLS1NS5YskSStXbtWtWrV0vjx4zV69GhdccUVSk9P186dOzVhwgQdOXJEc+fO1Z49exQdHa2kpCRdccUVF6w3KytLgwcP1ptvvqng4GBJ0q+//qqXXnpJb775pjIzM/X666/rt99+k7+/v5o3b65hw4Zd9HUo6ft19OhRvfbaa9q6datsNpvq1q2r0aNHy8/PT3fccYemTp2qWrVqSZLzc3XXXXe5zDlt2jRlZmY6P1N9+vTRrbfeWqz3DbAq8vn/kc9nkc+AbyO3/x+5fRa5XT7QAKmAGjVqpLCwMG3dulX16tVz3h4dHa0JEybo0Ucf1dy5c50dyz/vVjV58mRVr15dU6dO1alTp5ScnKzw8HDdcMMNkqQdO3aoXbt2mjlzpvLz8zV//nzt379f48ePl91u15QpU7Ro0SL17dtXkpSdna3c3Fy98cYb+umnnzRx4kS1bt1awcHBziB+6aWXVKNGDe3YsUM2m01ZWVlKTk7Wo48+qri4OG3evFkTJkzQ5MmTVa1aNS1dulRbt27ViBEjCqzf4XBo3LhxatasmWbMmCE/Pz/t3LlT0tngWrFihV544QVVr15d06dP16xZszR48GDn47du3aopU6Zoz549GjVqlK655hrFxcXptttuK3RXvVWrVmnUqFGKjo7WsWPHNHLkSN1///267rrr9P333ytoHpetAAAgAElEQVQ5OVlTp05VSEhIke9ZWFiYGjdurNWrVyshIUGS9O2336pNmzby9/fXggUL1KJFC73wwgs6c+aMcz3FUZL369NPP1VYWJjeeust52NtNlux55KkwYMHa+vWreyqBxSCfCafz0c+A76P3Ca3z0du+z7f3WcIbhUWFqacnJwSPy47O1sbNmxQUlKSAgMDVb16dfXs2VOpqanOMaGhobrxxhtlt9tVqVIlffXVV7rvvvsUHBysKlWqqFevXvruu++c4+12u/r06SN/f3+1bNlSgYGB2rNnjxwOh77++mslJSUpLCxMfn5+uuKKK1SpUiWtWrVKV199tVq2bCk/Pz/FxsYqJiZG69evlyQlJiYWGtKSlJGRoaysLPXv31+BgYEKCAjQlVdeKels+N10002KiopSYGCg+vbtq9TUVOXn5zsff/vttysgIED169fXZZddpt9///2Cr1mnTp1Ut25d2e12/fTTT6pVq5Y6dOggu92u66+/XtHR0Vq3bt1FX/vrr7/e+boZY5Samqrrr79ekuTv76+DBw/q8OHDLuspjpK8X3a7XdnZ2crMzJS/v7+aNGlS4qAGcGHkM/l8DvkMlA/kNrl9Drnt+9gDpILKyspy7vJVEpmZmcrPz3c5wZMxRuHh4c7tiIgI55+PHj2qU6dOuYSmMUYOh8O5HRIS4nJ8XOXKlXXy5EkdO3ZMp0+fdu769ec6Vq9e7RJw+fn5xdpVLzMzUzVr1iz0mLzDhw+rZs2aLmvJz8/XkSNHnLfVqFGjQK0Xcv5rk5WV5fL8klSzZk1lZWVdtO42bdpo9uzZOnz4sPbu3SubzaYmTZpIkvr166cFCxZo1KhRqlq1qm666SZ16dLlos95bo3nXOz9uuWWW/Thhx/qpZdekiQlJCQoMTGxWPMAKB7ymXw+f43nkM+A7yK3ye3z13gOue2baIBUQOc6tSXpZp4THh4uf39/zZo1q1gn9QkJCVFAQIAmTpyosLCwEs0VEhKiSpUqad++fc4zZ59fR/v27Ut1CaiIiAjnL5w/ryE0NFQHDx50bmdmZsput6t69eo6dOjQBZ+3qI7t+beHhYXphx9+cLk/MzNTcXFxF607ODhYLVq0UGpqqv773/+qXbt2zueuUaOG87XYunWrxowZo6ZNmxb6S+5CLvZ+ValSRffee6/uvfde/fHHH3rxxRcVExOjq666SpUrV9apU6ecY7Ozs11+SQG4OPKZfC4K+Qz4JnKb3C4Kue2bOASmAsnNzdW6des0ZcoUtW/f3uU4xeIKDQ1VixYt9Pbbbys3N1cOh0P79u1Tenp6oeP9/PzUtWtXzZ0719ntzcrKUlpa2kXn8vPzU+fOnfX2228rKytLDodD27dv1+nTp9W+fXutW7dOaWlpcjgcysvL05YtWy4aptLZYzVDQ0M1f/58nTx5Unl5edq6dask6brrrtNnn32mAwcO6OTJk3r//ffVtm3bYv1Sql69ug4ePOjShf+zq6++Wnv37tW3336r/Px8paamavfu3WrZsuVFn186u7veqlWrtHr1auduepL0/fffO9detWpVSUX/4riQi71f69at0759+2SMUVBQkPz8/Jzz1K9fX99++60cDofS0tKK/ExIZ3+xHDhwoMT1AVZFPp9FPheNfAZ8C7l9FrldNHLbN7EHSAUwbtw42e122Ww21alTRz179lS3bt1K/XyPPvqo5s+fr8cff1wnTpxQVFTUBc82fM8992jRokV65plndOzYMYWFhemGG24oVnf23nvv1XvvvaeRI0fq5MmTql+/vp555hlFRETo6aef1rvvvqspU6bIz89PjRo10kMPPSRJWrx4sbZu3apRo0YVeE4/Pz8NHz5cs2fP1sCBA2Wz2XTdddfpyiuvVOfOnXX48GG98MILysvLU4sWLTRgwIBivS5t27bVN998owceeECRkZEaN25cgTEhISEaMWKE5syZo5kzZ6pWrVoaMWKEqlWrVqw54uPj9cYbbygiIsKle//LL79o7ty5ys3NVY0aNXT//fcrKipKkvT444/rtttuU/v27Ys1x4Xer71792r27Nk6evSoqlatqm7duql58+aSzp7hfMaMGfriiy/UunVrtW7dusg5EhMTNXv2bL377rvq1auXbrnllmLVBlgN+eyKfL4w8hnwPnLbFbl9YeS277EZY4y3iwAAAAAAAHAnDoEBAAAAAACWRwMEAAAAAABYHg0QAAAAAABgeTRAAAAAAACA5dEAAQAAAAAAlkcDBAAAAAAAWB4NEAAAAAAAYHk0QAAAAAAAgOXRAAEAAAAAAJZHAwQAAAAAAFgeDRAAAAAAAGB5NEAAAAAAAIDl0QABAAAAAACWRwMEAAAAAABYHg0QAAAAAABgeTRAAAAAAACA5dEAAQAAAAAAlkcDBAAAAAAAWB4NEAAAAAAAYHk0QAAAAAAAgOXRAAEAAAAAAJZHAwQAAAAAAFgeDRAAAAAAAGB5NEAAAAAAAIDl0QABAAAAAACWRwMEAAAAAABYHg0QAAAAAABgeTRAAAAAAACA5dEAAQAAAAAAlkcDBAAAAAAAWB4NEAAAAAAAYHk0QAAAAAAAgOXRAAEAAAAAAJZHAwQAAAAAAFgeDRAAAAAAAGB5NEAAAAAAAIDl0QABAAAAAACWRwMEAAAAAABYHg0QAAAAAABgeTRAAAAAAACA5dEAAQAAAAAAlkcDBAAAAAAAWB4NEAAAAAAAYHk0QAAAAAAAgOXRAAEAAAAAAJZHAwQAAAAAAFgeDRAAAAAAAGB5NEAAAAAAAIDl0QABAAAAAACWRwMEAAAAAABYHg0QAAAAAABgeTRAAAAAAACA5dEAAQAAAAAAlkcDBAAAAAAAWB4NEAAAAAAAYHk0QAAAAAAAgOXRAAEAAAAAAJZHAwQAAAAAAFgeDRAAAAAAAGB5NEAAAAAAAIDl0QABAAAAAACWRwMEAAAAAABYHg0QAAAAAABgeTRAAAAAAACA5dEAAQAAAAAAlkcDBAAAAAAAWB4NEAAAAAAAYHk0QAAAAAAAgOXRAAEAAAAAAJZHAwQAAAAAAFgeDRAAAAAAAGB5NEAAAAAAAIDl0QABAAAAAACWRwMEAAAAAABYHg0QAAAAAABgeTRAAAAAAACA5dEAAQAAAAAAlkcDBAAAAAAAWB4NEAAAAAAAYHk0QAAAAAAAgOXRAAEAAAAAAJZHAwQoBzp16qQHH3zQ22UAAP6EfAaA8oXcrthogPi4pKQk2Ww22Ww22e121alTR/fee6/++9//uozr1KmTc9z5P82bN3cZt2vXLj366KNq1KiRAgMDVbNmTV1zzTUaN26cMjMzXZ7vz8Gwf/9+DR48WPXr11dAQIBq1qyp3r17Ky0tzWXc3LlzZbPZ1KZNmwLradSokUaPHn2Jr8pZxhjNnDlT11xzjYKDg1W1alW1bt1aM2fOlDGmTObwtJdeekn169cvcPvixYs1ceJEt849evToQj9D5//MnTvXrTUUZfbs2ercubMiIiIUEhKiVq1aaf78+V6pBTiHfC4a+Vy2fDmfv/jiC7Vt21YREREKDAxUTEyMnn32WeXl5XmlHuBCyO2ikdtly5dz+3zp6emqWrWq/P39vV2Kx9AAKQfat2+vvXv36o8//tB7772nDRs26Pbbby8wrm/fvtq7d6/Lz8qVK533p6WlKS4uTqmpqUpOTtaGDRu0Zs0avfjii9q4caNmz55dZA27du1SfHy8UlNT9frrrysjI0OfffaZAgICdO211+o///mPy3ibzaaNGzdqwYIFZfdC/ElSUpKGDRumvn37av369UpLS1O/fv00bNgw3X///W6b1xvCwsJUrVo1t87x5JNPunx22rZtW+Azdeedd7q1hqIsX75ct956qz7//HOlpaWpb9++uvfee7Vw4UKv1AOcQz4XjnwuW76cz9WqVdNjjz2mFStWaNu2bZowYYL++c9/avjw4V6pB7gYcrtw5HbZ8uXcPic3N1d33HGHunTp4tU6PM7Ap913332ma9euLrdNnTrVSDJHjhxx3taxY0fzwAMPFPk8DofDXHXVVSY2NtacPn26yDFFPd/NN99soqKiXOY858YbbzRRUVEmNzfXGGPMnDlzjN1uN08++aRp0KCBOXXqlHNsTEyMeeGFFy686GL417/+ZSSZhQsXFrhvwYIFRpL517/+5bxt//79JikpyURGRprKlSubxo0bm1mzZjnvz8jIML179zahoaGmSpUq5qqrrjKffPKJy3rOt2vXLiPJfP3118YYY77++msjyXz88cemdevWpnLlyqZZs2bmq6++cj7G4XCYBx980DRs2NAEBgaaBg0amJEjR5qTJ08655Hk8nPutfrz+5GXl2eGDx9uoqOjTaVKlUyTJk3M/PnzXWqUZGbMmGH69etngoODTe3atc3LL79c7Nf4/Dm//vpr4+fnZ/744w+XMfPmzTPVqlUzOTk55tdffzWSzDvvvGO6dOniXOP777/v8ph9+/aZ++67z0RERJjg4GDTrl07s3LlymLXdc7NN99sevXqVeLHAWWFfC4c+Uw+Dx061MTFxZX4cYC7kduFI7crZm4nJSWZhx9+uND3xMrYA6Sc2bNnjxYtWiS73S673V7sx23cuFGbNm3S8OHDi9zFyWazFXr74cOH9dlnn+nRRx8ttFs6cuRI7d+/X19++aXL7c8884yOHj2qadOmFbvO4nrnnXcUExOjO+64o8B9d955p2JiYvTuu+9Kkk6cOKGOHTtq48aNmj9/vtLT0zVt2jQFBQVJkvbt26d27dopOztbH3/8sTZt2qQxY8bIz6/kfz0ef/xxPf/889qwYYPatGmjm2++WXv37pV0dtfCyMhIvffee/r55581efJkzZkzRy+//LKz7uHDh6tOnTrOzvCTTz5Z6DyjRo3SzJkzNXnyZG3evFn9+vVTv3799NVXX7mM+/vf/64OHTooLS1NI0eO1KhRowqMKY5OnTrp8ssvL/C/GTNnzlTfvn1VtWpV521PP/20BgwY4NxT45577tGGDRsknX0vOnfurGPHjunzzz/Xhg0b1KNHD91www36+eefS1RTdna2y7yAt5HPZ5HPFTuft27dqs8//1ydO3cu8VoATyO3zyK3K15uv/3221q7dq0mTZpU4vrLPS83YHAR9913n7Hb7aZq1aqmSpUqzg7mE0884TKuY8eOxt/f31StWtXlZ9CgQcYYYxYuXGgkmfXr17s8rnbt2s6x3bt3d3m+c13KH374wUgyixcvLrTGQ4cOGUnm1VdfNca4dnYnT55sQkNDzaFDh4wxZdepbtKkibnllluKvP/mm282TZs2NcYY89Zbb5nKlSubXbt2FTr22WefNVFRUSYnJ6fQ+0vSqX7rrbecY06fPm3q1atnnn322SLrnDhxomnUqJFze8yYMeayyy4rMO789+P48eMmICDAzJgxw2VMYmKi6dy5s3Nbkhk8eLDLmCuvvNKMGDGiyHqKmtMYYyZMmGDq1atn8vPzjTHG/Pzzzy6fqXOd6j+vt23btqZfv37GmLOvZe3atQv8b0nnzp3NY489Vqy6jDHmnXfeMZUqVTLr1q0r9mOAskY+F458rpj5XLt2bRMQEGAkmUceecRZC+BLyO3CkdsVK7fT09NNRESE2bRpk/N52AMEPqVNmzZKS0vTmjVr9Nxzz6lt27Z66aWXCoy77bbblJaW5vLzwgsvuIwxfzqJ0TfffKO0tDT16NFDJ06cKPPaBw4cqLCwsELrLcyNN96o4OBg509ZWLdunZo2bao6deoUeX+7du3KZG+Ctm3bOv/s7++va665Rlu2bHHeNnPmTLVp00ZRUVEKDg7WyJEj9fvvv5dojoyMDOXl5alDhw4ut3fs2NFlLkmKi4tz2Y6Ojtb+/ftLNN859913nw4cOKAvvvhCkvTWW2+pVatWuvrqq13Gnf8aSNJ1113nrGvt2rXat2+fatSo4fI+f/PNN9qxY0ex6vjoo4/00EMPadasWWrZsmWp1gKUFfL50pDP/6+85/M333yj9evX65133tHHH3+sv//976VaC+Bu5PalIbf/X3nM7VOnTun222/XSy+9VOCkvhVFxTndazlWpUoVNWrUSJLUvHlz/fLLLxo8eLBmzpzpMq5atWrOcX/WuHFjSdLPP//s8o/GBg0aOB974MCBQh/bqFEj2Ww2bd68WbfddluB+8/9JbziiisK3FepUiUlJyfrnnvu0aOPPnqxpeqtt94q1i+Mxo0ba/PmzUXen56ertjY2Is+T3EUtsve6dOnS/w8H374oQYNGqTk5GR17NhR1apV04cffqhnnnmmLMosVEBAgMu2zWaTw+Eo1XOFh4erT58+mjlzprp27aq333672L+Az3E4HGrSpImWLFlS4L5zu05eyIIFC5SUlKSZM2eqf//+JZobcAfyufD1kM8XZ7V8Pvd5bdasmex2u/r166enn36aQxXhc8jtwtdDbl+cFXJ779692rJliwYNGqRBgwZJOtvIczgc8vf314svvqhRo0aVfEHlCHuAlEOjR4/WnDlz9OOPPxb7MS1atFDz5s2VnJxc4pAJCwtTjx49NH36dB09erTA/a+88oqioqJ0ww03FPr4Pn36qFWrVhoxYsRF56pdu7YaNWrk/ClKv3799MsvvxR6FZCFCxfql19+Ub9+/SRJrVq1Unp6unbv3l3oc7Vq1Uqpqak6fvx4ofdHRkYqPz/fpcO7fv36QseuXr3a+eczZ85ozZo1atq0qSRp1apVuvrqq/X444+rVatWuvzyy/Xbb7+5PD4gIED5+flFrls6+4uzcuXKWrVqlcvtK1eudHsn9+GHH9Ynn3yiN998UydOnNDdd99dYMz5r4EkpaamOl+D+Ph47dy50/ml4vyf6OjoC849c+ZMJSUlad68eTQ/4LPIZ/K5IubznzkcDjkcDi6Fi3KB3Ca3K1Ju165dW5s2bXLZs+nFF1+U3W5XWlqaHnroobJfqK/x7hE4uJjCzlZtzNnj0rp16+bc7tixo+nbt6/Zu3evy8/+/fudY9atW2dq1Khh4uLizIcffmjS09PN9u3bzaJFi8wVV1xhunTp4vJ85x+n9ttvv5no6GjTqlUr8/nnn5s//vjDrFmzxtx9992mcuXK5vPPP3eOLew4stTUVGOz2UxgYGCZHKtojDH33HOPqVq1qpk0aZLZvn272bFjh5kyZYoJDg429957r3Pc8ePHTePGjc3VV19tvvzyS7Nz506TkpJiFixYYIwxZs+ePaZmzZqma9eu5ttvvzU7d+40n3zyifn3v/9tjDl7LGZISIhJSkoy27dvN59//rmJjY0t9FjFyy+/3Hz22WcmPT3dPPjgg6ZKlSrmv//9rzHGmGnTppkqVaqYpUuXmoyMDDN58mQTHh5uzv9r+MEHHxh/f3+TmppqDh48aI4fP17o+/HUU0+ZsLAw88EHH5ht27aZsWPHGpvNZlJSUpxj9L8zR5+va9eu5r777ivW61vUGdCbNWtmAgICzIMPPuhy+7ljFaOjo838+fPNtm3bzHPPPWdsNpvzXB0nTpwwzZo1M/Hx8eaLL74wv/76q1m9erV5+eWXzZIlS4qsZeLEicZut5s33njD5fN97hhYwBvI56KRzxUnn//xj3+YTz/91Pk+v//++yY6OvqC5xMAvIXcLhq5XXFy+88q2jlAaID4uKKC+rvvvnMJio4dOxa41JMkU7VqVZfH/f777+Zvf/ubadiwoQkICDBBQUEmLi7OPPvssy6hXthf0r1795qBAweaevXqmUqVKpnw8HDTq1evAieAKuovUZ8+fVwuQXWpHA6HeeONN0x8fLypUqWKqVKlimnVqpV58803XS49dq72/v37m/DwcFO5cmVzxRVXmDlz5jjv37Ztm0lMTDTVqlUzVapUMbGxseazzz5z3v/pp5+aK6+80gQGBpp27dqZ//znP4UG9UcffWRatmxpAgICTJMmTcyyZcucz5GXl2f++te/mtDQUBMSEmLuvvtuM23aNJegzsvLM3fffbcJDQ0tk8t1uSOoJ0+ebCSZNWvWuNx+Lqjffvtt07FjR1O5cmVTv379AnVlZmaaRx55xFl7dHS0SUxMLPA5Ot9ll11W6Oe7Y8eOxVoL4A7kc9HI54qTz6+88opp2rSpCQoKMsHBwaZZs2Zm7Nixzn9oAL6E3C4auV1xcvvPKloDxGbMn87eA6DEVqxYoc6dO2vXrl1FnhTKKp5++ml9+eWXzktwnfPbb7+pQYMG+uabb3T99dd7qToAcEU+k88Ayhdym9x2J06CCqBYjhw5ou3bt+uf//ynpk6d6u1yAAD/Qz4DQPlCbnsPJ0EFUCy33nqrOnTooNtuu815IiwAgPeRzwBQvpDb3sMhMAAAAAAAwPLYAwQAAAAAAFgeDRAAAAAAAGB5NEAAAAAAAIDlVeirwOzZs8fbJRQqIiJCmZmZ3i6jTFhpLRLr8XW+vJ7o6Ghvl1CukM+eYaX1WGktEuvxJPK5bJDbnsF6fJuV1uPLa7mU3GYPEAAAAAAAYHk0QAAAAAAAgOXRAAEAAAAAAJZHAwQAAAAAAFgeDRAAAAAAAGB5NEAAAAAAAIDl0QABAAAAAACWRwMEAAAAAABYHg0QAAAAAABgeTRAAAAAAACA5dEAAQAAAAAAlkcDBAAAAAAAWB4NEAAAAAAAYHk0QAAAAAAAgOXRAAEAAAAAAJZHAwQAAAAAAFgeDRAAAAAAAGB5NEAAAAAAAIDl0QABAAAAAACWRwMEAAAAAABYHg0QAAAAAABgeTRAAAAAAACA5dEAAQAAAAAAlkcDBAAAAAAAWB4NEAAAAAAAYHk0QAAAAAAAgOX5e7uAc9LS0jRnzhw5HA517dpViYmJLvefPn1a06dP186dOxUSEqKhQ4cqMjLSeX9mZqaGDRum22+/XbfccounywcASyOjAaB8IbcBoCCf2APE4XBo1qxZGjVqlCZNmqTvvvtOu3fvdhmzfPlyVa1aVdOmTVPPnj01f/58l/vnzZunq6++2pNlA0CFQEYDQPlCbgNA4XyiAZKRkaFatWopKipK/v7+ateundauXesy5scff1SnTp0kSddee602b94sY4wkac2aNYqMjFSdOnU8XToAWB4ZDQDlC7kNAIXziUNgsrKyFB4e7twODw/Xjh07ihxjt9sVFBSkY8eOKSAgQB999JGee+45ffzxxxecJyUlRSkpKZKk5ORkRURElPFKyoa/v7/P1lZSVlqLxHp8ndXW4ys8kdHks3dYaT1WWovEenBpyO3/Z7XPHuvxbVZaj5XWcj6faIBcig8++EA9e/ZUYGDgRccmJCQoISHBuZ35f+zdeXhU9dn/8c9kQhIgATIJhAawCIjsawBB2SR6qagFpSqLGpGqD5tgbWXRyiNCoRZks2qRxQUFRLAqj1RAWTSyCARFRECUpQlLEvY1ZL6/P/gxZUwCk5DM8s37dV25Ls7Md+bc98zwid6ccyYzsyRLK7L4+Pigra2wbOpFop9gF8z9JCYmBrqEgPA1o8nnwLCpH5t6kejHn0prPheE3A5u9BPcbOonmHu5mtwOigGIy+VSVlaWZzsrK0sulyvfNXFxccrNzdWpU6cUExOjnTt3au3atZozZ45Onjwph8OhiIgI3Xbbbf5uAwCsREYDQGghtwEgf0ExAKldu7YyMjJ08OBBuVwupaamavDgwV5rWrZsqRUrVqhu3bpas2aNGjZsKIfDoRdeeMGzZv78+YqKiiKgAaAYkdEAEFrIbQDIX1AMQJxOp/r27asxY8bI7Xarc+fOqlGjhubNm6fatWsrKSlJN998s6ZNm6ZBgwYpOjpaQ4YMCXTZAFAqkNEAEFrIbQDIn8NcvNxzKZSenh7oEvIVzOdbFZZNvUj0E+yCuR/OMS8c8tk/bOrHpl4k+vEn8rl4kNv+QT/BzaZ+grmXq8ntoPgaXAAAAAAAgJLEAAQAAAAAAFiPAQgAAAAAALAeAxAAAAAAAGA9BiAAAAAAAMB6DEAAAAAAAID1GIAAAAAAAADrMQABAAAAAADWYwACAAAAAACsxwAEAAAAAABYjwEIAAAAAACwHgMQAAAAAABgPQYgAAAAAADAegxAAAAAAACA9RiAAAAAAAAA6zEAAQAAAAAA1mMAAgAAAAAArMcABAAAAAAAWI8BCAAAAAAAsB4DEAAAAAAAYD0GIAAAAAAAwHoMQAAAAAAAgPUYgAAAAAAAAOsxAAEAAAAAANZjAAIAAAAAAKzHAAQAAAAAAFiPAQgAAAAAALAeAxAAAAAAAGA9BiAAAAAAAMB6DEAAAAAAAID1GIAAAAAAAADrMQABAAAAAADWYwACAAAAAACsFx7oAi5KS0vTrFmz5Ha71aVLF3Xr1s3r/pycHE2bNk27du1STEyMhgwZoipVqujbb7/VnDlzdP78eYWHh+vBBx9Uo0aNAtQFANiJjAaA0EJuA0BeQXEEiNvt1owZMzRixAi9/PLL+uqrr7Rv3z6vNZ9//rnKly+vqVOnqmvXrpozZ44kKSYmRs8884wmTJigAQMGaOrUqYFoAQCsRUYDQGghtwEgf0ExANm5c6eqVq2qhIQEhYeHq127dlq/fr3Xmm+++UadOnWSJN1www3asmWLjDG69tpr5XK5JEk1atTQuXPnlJOT4+8WAMBaZDQAhBZyGwDyFxSnwGRnZysuLs6zHRcXpx07dhS4xul0qly5cjp+/LgqVKjgWbN27VrVqlVLZcqUyXc/y5Yt07JlyyRJ48aNU3x8fHG3UizCw8ODtrbCsqkXiX6CnW39BAt/ZDT5HBg29WNTLxL94OqQ2/9l22ePfoKbTf3Y1MulgmIAUhz27t2rOXPmaOTIkQWuSU5OVnJysmc7MzPTH6UVWnx8fNDWVlg29SLRT7AL5n4SExMDXUJAXSmjyefAsKkfm3qR6J6Gll0AACAASURBVMefSns+F4TcDk70E9xs6ieYe7ma3A6KU2BcLpeysrI821lZWZ5D7/Jbk5ubq1OnTikmJsaz/u9//7sGDBigqlWr+q9wACgFyGgACC3kNgDkLygGILVr11ZGRoYOHjyo8+fPKzU1VUlJSV5rWrZsqRUrVkiS1qxZo4YNG8rhcOjkyZMaN26cevXqpXr16gWgegCwGxkNAKGF3AaA/AXFKTBOp1N9+/bVmDFj5Ha71blzZ9WoUUPz5s1T7dq1lZSUpJtvvlnTpk3ToEGDFB0drSFDhkiSlixZov3792vBggVasGCBJOnZZ59VxYoVA9kSAFiDjAaA0EJuA0D+HMYYE+giAiU9PT3QJeQrmM+3KiybepHoJ9gFcz+cY1445LN/2NSPTb1I9ONP5HPxILf9g36Cm039BHMvIX8NEAAAAAAAgJLEAAQAAAAAAFiPAQgAAAAAALAeAxAAAAAAAGA9BiAAAAAAAMB6DEAAAAAAAID1GIAAAAAAAADrMQABAAAAAADWYwACAAAAAACs5/MAZP369crNzS3JWgAARURGA0BoIbcBwP98HoDMnz9fjz32mGbMmKEdO3aUZE0AgEIiowEgtJDbAOB/4b4ufOmll/TLL79o9erVmjBhgiIjI9WhQwe1b99eVapUKckaAQBXQEYDQGghtwHA/3wegEhSzZo1VbNmTfXp00ffffed3n77bc2fP1/16tVTcnKybrzxRoWFcVkRAAgEMhoAQgu5DQD+VagBiCTt379fq1ev1urVq+VwOHT//fcrPj5eS5Ys0dq1a/X000+XRJ0AAB+Q0QAQWshtAPAfnwcgS5Ys0erVq5WRkaF27dpp4MCBqlu3ruf+Nm3aqF+/fiVSJADg8shoAAgt5DYA+J/PA5C0tDTdeeedSkpKUpkyZfLcHxkZyYQaAAKEjAaA0EJuA4D/+TwAeeqppxQWFqbw8P8+5Pz58zLGeEK7adOmxV8hAOCKyGgACC3kNgD4n89XVRozZox27drldduuXbs0ZsyYYi8KAFA4ZDQAhBZyGwD8z+cByO7du3Xdddd53VanTh3t3r272IsCABQOGQ0AoYXcBgD/83kAUr58eR09etTrtqNHjyoyMrLYiwIAFA4ZDQChhdwGAP/zeQDSpk0bTZ48WXv27NHZs2e1Z88eTZs2TW3bti3J+gAAPiCjASC0kNsA4H8+XwT1gQce0FtvvaURI0YoJydHERER6tSpk3r27FmS9QEAfEBGA0BoIbcBwP98HoBERESoX79+evTRR3X8+HHFxMTI4XCUZG0AAB+R0QAQWshtAPA/nwcgknTq1Cmlp6frzJkzXrc3atSoWIsCABQeGQ0AoYXcBgD/8nkAsmLFCs2YMUNRUVGKiIjw3O5wODRt2rQSKQ4A4BsyGgBCC7kNAP7n8wDkvffe01NPPaXmzZuXZD0AgCIgowEgtJDbAOB/Pn8LjNvtVtOmTUuyFgBAEZHRABBayG0A8D+fByC/+93v9MEHH8jtdpdkPQCAIiCjASC0kNsA4H8+nwKzePFiHTlyRB999JGio6O97nv11VeLvTAAgO/IaAAILeQ2APifzwOQQYMGlWQdAICrQEYDQGghtwHA/3wegDRo0KAk6wAAXAUyGgBCC7kNAP7n8wAkJydHCxYs0FdffaXjx4/rzTff1ObNm5WRkaHbbrutJGsEAFwBGQ0AoYXcBgD/8/kiqG+++ab27t2rwYMHy+FwSJJq1Kihzz77rMSKAwD4howGgNBCbgOA//l8BMi6des0ZcoURUVFeULa5XIpOzu7WApJS0vTrFmz5Ha71aVLF3Xr1s3r/pycHE2bNk27du1STEyMhgwZoipVqkiSFi1apM8//1xhYWF65JFH1KxZs2KpCQBCBRkNAKGF3AYA//P5CJDw8PA8X9N17NgxxcTEXHURbrdbM2bM0IgRI/Tyyy/rq6++0r59+7zWfP755ypfvrymTp2qrl27as6cOZKkffv2KTU1VRMnTtTIkSM1Y8YMvk4MQKlDRgNAaCG3AcD/fB6A3HDDDZo2bZoOHjwoSTp8+LBmzJihdu3aXXURO3fuVNWqVZWQkKDw8HC1a9dO69ev91rzzTffqFOnTp5atmzZImOM1q9fr3bt2qlMmTKqUqWKqlatqp07d151TQAQSshoAAgt5DYA+J/Pp8D06tVL77zzjv74xz/q3LlzGjx4sLp06aLf//73V11Edna24uLiPNtxcXHasWNHgWucTqfKlSun48ePKzs7W9ddd51n3eUOHVy2bJmWLVsmSRo3bpzi4+OvuvaSEB4eHrS1FZZNvUj0E+xs66cwQj2jyefAsKkfm3qR6Kc0ILf9w7bPHv0EN5v6samXS/k8AAkPD1dKSopSUlI8h+ddPF8xVCQnJys5OdmznZmZGcBqChYfHx+0tRWWTb1I9BPsgrmfxMTEEn3+UM9o8jkwbOrHpl4k+vGnks7ngpDb/hHMn72ioJ/gZlM/wdzL1eS2zwOQAwcOeG2fPn3a8+eEhIQiFyBdmCxnZWV5trOysuRyufJdExcXp9zcXJ06dUoxMTF5HpudnZ3nsQBgOzIaAEILuQ0A/ufzAGTw4MEF3jdv3ryrKqJ27drKyMjQwYMH5XK5lJqammd/LVu21IoVK1S3bl2tWbNGDRs2lMPhUFJSkqZMmaI777xThw8fVkZGhurUqXNV9QBAqCGjASC0kNsA4H8+D0B+HcRHjhzR+++/r/r16191EU6nU3379tWYMWPkdrvVuXNn1ahRQ/PmzVPt2rWVlJSkm2++WdOmTdOgQYMUHR2tIUOGSLrwfelt27bVU089pbCwMD366KMKC/P52q4AYAUyGgBCC7kNAP7nMMaYoj44JydHTz75pP7xj38UZ01+k56eHugS8hXM51sVlk29SPQT7IK5n0CcYx7KGU0++4dN/djUi0Q//hSoa4Dkh9wufsH82SsK+gluNvUTzL1cTW5f1Tg3PT1dZ8+evZqnAACUEDIaAEILuQ0AJcvnU2D+8pe/eF2Z+uzZs9q7d6969OhRIoUBAHxHRgNAaCG3AcD/fB6A3HzzzV7bUVFR+u1vf6vf/OY3xV4UAKBwyGgACC3kNgD4n88DkE6dOpVgGQCAq0FGA0BoIbcBwP+K/C0wBbn//vuLXAwAoGjIaAAILeQ2APifzwOQjIwMrV27VnXq1PFcEXbnzp1q06aNIiIiSrJGAMAVkNEAEFrIbQDwP58HIJL05JNP6oYbbvBsr127Vl9//bX69+9f7IUBAAqHjAaA0EJuA4B/+fw1uJs2bVLr1q29bktKStKmTZuKvSgAQOGQ0QAQWshtAPA/nwcgVatW1ZIlS7xu++yzz1S1atViLwoAUDhkNACEFnIbAPzP51NgnnjiCf3973/XRx99JJfLpezsbDmdTv3xj38syfoAAD4gowEgtJDbAOB/Pg9Arr32Wk2ePFk7duzQ4cOHValSJdWtW1fh4YW6jAgAoASQ0QAQWshtAPA/n0+B+bUGDRro/PnzOnPmTHHWAwAoBmQ0AIQWchsASp7PI+Y9e/Zo/PjxKlOmjLKystSuXTtt3bpVK1eu1NChQ0uyRgDAFZDRABBayG0A8D+fjwCZPn267r//fk2aNMlzaF6DBg20bdu2EisOAOAbMhoAQgu5DQD+5/MAZN++fWrfvr3XbVFRUTp37lyxFwUAKBwyGgBCC7kNAP7n8wCkcuXK2rVrl9dtO3fu5Ku6ACAIkNEAEFrIbQDwP5+vAXL//fdr3LhxuuWWW3T+/HktWrRIS5cu1eOPP16S9QEAfEBGA0BoIbcBwP98PgKkZcuWGjFihI4dO6YGDRro0KFDevrpp9W0adOSrA8A4AMyGgBCC7kNAP7n0xEgbrdbTz75pCZOnKh+/fqVdE0AgEIgowEgtJDbABAYPh0BEhYWprCwMOXk5JR0PQCAQiKjASC0kNsAEBg+XwPkjjvu0Msvv6zu3bvL5XLJ4XB47ktISCiR4gAAviGjASC0kNsA4H9XHIAcOXJElSpV0syZMyVJ3377bZ418+bNK/7KAABXREYDQGghtwEgcK44AHnyySf15ptveoL4pZde0p/+9KcSLwwAcGVkNACEFnIbAALnitcAMcZ4bW/durXEigEAFA4ZDQChhdwGgMC54gDk0vMRAQDBhYwGgNBCbgNA4FzxFJjc3Fxt2bLFs+12u722JalRo0bFXxkA4IrIaAAILeQ2AATOFQcgFStW1KuvvurZjo6O9tp2OByaNm1ayVQHALgsMhoAQgu5DQCBc8UByCuvvOKPOgAARUBGA0BoIbcBIHCueA0QAAAAAACAUMcABAAAAAAAWI8BCAAAAAAAsB4DEAAAAAAAYD0GIAAAAAAAwHpX/BaYknbixAm9/PLLOnTokCpXrqyhQ4cqOjo6z7oVK1Zo4cKFkqR77rlHnTp10tmzZzVx4kQdOHBAYWFhatmypXr37u3vFgDAWmQ0AIQWchsAChbwI0A+/PBDNW7cWFOmTFHjxo314Ycf5llz4sQJLViwQGPHjtXYsWO1YMECnThxQpJ01113adKkSfrb3/6mH3/8UZs2bfJ3CwBgLTIaAEILuQ0ABQv4AGT9+vXq2LGjJKljx45av359njVpaWlq0qSJoqOjFR0drSZNmigtLU2RkZFq1KiRJCk8PFzXXnutsrKy/Fo/ANiMjAaA0EJuA0DBAn4KzNGjRxUbGytJqlSpko4ePZpnTXZ2tuLi4jzbLpdL2dnZXmtOnjypDRs26I477ihwX8uWLdOyZcskSePGjVN8fHxxtFDswsPDg7a2wrKpF4l+gp1t/QQDf2U0+RwYNvVjUy8S/aDoyG1vtn326Ce42dSPTb1cyi8DkNGjR+vIkSN5bn/ggQe8th0OhxwOR6GfPzc3V5MnT9btt9+uhISEAtclJycrOTnZs52ZmVnofflDfHx80NZWWDb1ItFPsAvmfhITEwNdQoGCIaPJ58CwqR+bepHox5+COZ8LQm77Lpg/e0VBP8HNpn6CuZeryW2/DECee+65Au+rWLGiDh8+rNjYWB0+fFgVKlTIs8blcmnr1q2e7ezsbDVo0MCz/frrr6tq1arq2rVr8RYOAKUAGQ0AoYXcBoCiCfg1QJKSkrRy5UpJ0sqVK9WqVas8a5o1a6bNmzfrxIkTOnHihDZv3qxmzZpJkubOnatTp04pJSXFn2UDQKlARgNAaCG3AaBgzlGjRo0KZAG1atXSv/71L33wwQc6ceKEHnnkEUVEROinn37S/PnzlZSUpIiICJUtW1bTpk3T8uXLde+99+r6669XVlaW/v73v0uSPv/8cy1dulROp1O1atXyad/Hjx8vydaKrFy5cjp16lSgyygWNvUi0U+wC+Z+YmJiAl1CkQQqo8ln/7CpH5t6kejHn0I1nwtCbnsL5s9eUdBPcLOpn2Du5Wpy22GMMcVYS0hJT08PdAn5CubzrQrLpl4k+gl2wdxPKJ5jHkjks3/Y1I9NvUj040/kc/Egt/2DfoKbTf0Ecy9Xk9sBPwUGAAAAAACgpDEAAQAAAAAA1mMAAgAAAAAArMcABAAAAAAAWI8BCAAAAAAAsB4DEAAAAAAAYD0GIAAAAAAAwHoMQAAAAAAAgPUYgAAAAAAAAOsxAAEAAAAAANZjAAIAAAAAAKzHAAQAAAAAAFiPAQgAAAAAALAeAxAAAAAAAGA9BiAAAAAAAMB6DEAAAAAAAID1GIAAAAAAAADrMQABAAAAAADWYwACAAAAAACsxwAEAAAAAABYjwEIAAAAAACwHgMQAAAAAABgPQYgAAAAAADAegxAAAAAAACA9RiAAAAAAAAA6zEAAQAAAAAA1mMAAgAAAAAArMcABAAAAAAAWI8BCAAAAAAAsB4DEAAAAAAAYD0GIAAAAAAAwHoMQAAAAAAAgPXCA13AiRMn9PLLL+vQoUOqXLmyhg4dqujo6DzrVqxYoYULF0qS7rnnHnXq1Mnr/vHjx+vgwYOaMGGCP8oGgFKBjAaA0EJuA0DBAn4EyIcffqjGjRtrypQpaty4sT788MM8a06cOKEFCxZo7NixGjt2rBYsWKATJ0547l+7dq2ioqL8WTYAlApkNACEFnIbAAoW8AHI+vXr1bFjR0lSx44dtX79+jxr0tLS1KRJE0VHRys6OlpNmjRRWlqaJOnMmTP65JNPdO+99/q1bgAoDchoAAgt5DYAFCzgA5CjR48qNjZWklSpUiUdPXo0z5rs7GzFxcV5tl0ul7KzsyVJc+fO1V133aWIiAj/FAwApQgZDQChhdwGgIL55Rogo0eP1pEjR/Lc/sADD3htOxwOORwOn5/3l19+0YEDB5SSkqKDBw9ecf2yZcu0bNkySdK4ceMUHx/v8778KTw8PGhrKyybepHoJ9jZ1o+/BENGk8+BYVM/NvUi0Q8uj9z2nW2fPfoJbjb1Y1Mvl/LLAOS5554r8L6KFSvq8OHDio2N1eHDh1WhQoU8a1wul7Zu3erZzs7OVoMGDbR9+3bt2rVLAwYMUG5uro4ePapRo0Zp1KhR+e4rOTlZycnJnu3MzMyiN1WC4uPjg7a2wrKpF4l+gl0w95OYmBjoEgoUDBlNPgeGTf3Y1ItEP/4UzPlcEHLbd8H82SsK+gluNvUTzL1cTW4H/FtgkpKStHLlSnXr1k0rV65Uq1at8qxp1qyZ3nvvPc/FmTZv3qxevXopOjpat956qyTp4MGDGj9+fIHDDwBA4ZHRABBayG0AKFjAByDdunXTyy+/rM8//9zzVV2S9NNPP2np0qV64oknFB0drXvvvVfDhw+XJPXo0SPfr/MCABQvMhoAQgu5DQAFcxhjTKCLCJT09PRAl5CvYD7cqLBs6kWin2AXzP2E4iHWgUQ++4dN/djUi0Q//kQ+Fw9y2z/oJ7jZ1E8w93I1uR3wb4EBAAAAAAAoaQxAAAAAAACA9RiAAAAAAAAA6zEAAQAAAAAA1mMAAgAAAAAArMcABAAAAAAAWI8BCAAAAAAAsB4DEAAAAAAAYD0GIAAAAAAAwHoMQAAAAAAAgPUYgAAAAAAAAOsxAAEAAAAAANZjAAIAAAAAAKzHAAQAAAAAAFiPAQgAAAAAALAeAxAAAAAAAGA9BiAAAAAAAMB6DEAAAAAAAID1GIAAAAAAAADrMQABAAAAAADWYwACAAAAAACsxwAEAAAAAABYjwEIAAAAAACwHgMQAAAAAABgPQYgAAAAAADAegxAAAAAAACA9RzGGBPoIgAAAAAAAEoSR4AEoWHDhgW6hGJjUy8S/QQ72/pB8LHtM2ZTPzb1ItEPUFxs++zRT3CzqR+berkUAxAAAAAAAGA9BiAAAAAAAMB6zlGjRo0KdBHIq1atWoEuodjY1ItEP8HOtn4QfGz7jNnUj029SPQDFBfbPnv0E9xs6semXi7iIqgAAAAAAMB6nAIDAAAAAACsxwAEAAAAAABYLzzQBaBgH3/8sd5++2298cYbqlChQqDLKbK3335bGzZsUHh4uBISEtS/f3+VL18+0GUVWlpammbNmiW3260uXbqoW7dugS6pSDIzM/XKK6/oyJEjcjgcSk5O1h133BHosq6a2+3WsGHD5HK5rP3aLgQXGzKafA4+NmY0+YxgYUNuS3ZkN7kd/GzNbgYgQSozM1Pffvut4uPjA13KVWvSpIl69eolp9Opd955R4sWLVKfPn0CXVahuN1uzZgxQ88++6zi4uI0fPhwJSUlqXr16oEurdCcTqcefPBB1apVS6dPn9awYcPUpEmTkOzlUv/3f/+natWq6fTp04EuBaWALRlNPgcfGzOafEYwsCW3pdDPbnI7NNia3ZwCE6TefPNN9e7dWw6HI9ClXLWmTZvK6XRKkurWravs7OwAV1R4O3fuVNWqVZWQkKDw8HC1a9dO69evD3RZRRIbG+u5onPZsmVVrVq1kHxPLpWVlaWNGzeqS5cugS4FpYQtGU0+Bx/bMpp8RrCwJbel0M9ucjv42ZzdDECC0Pr16+VyuVSzZs1Al1LsPv/8czVr1izQZRRadna24uLiPNtxcXEhH2ySdPDgQf3888+qU6dOoEu5KrNnz1afPn2s+I8aBD9bM5p8Dj42ZDT5jGBga25LoZnd5Hbwszm7OQUmQEaPHq0jR47kuf2BBx7QokWL9OyzzwagqqK7XD+tWrWSJC1cuFBOp1Pt27f3d3nIx5kzZzRhwgSlpKSoXLlygS6nyDZs2KCKFSuqVq1a+v777wNdDixhU0aTz6HJhowmn+FPNuW2RHaHIhtyW7I/ux3GGBPoIvBfe/bs0QsvvKDIyEhJFw4/io2N1V//+ldVqlQpwNUV3YoVK7R06VL95S9/8fQWSrZv3673339fI0eOlCQtWrRIktS9e/dAllVk58+f1/jx49W0aVPdeeedgS7nqrz77rtatWqVnE6nzp07p9OnT6t169YaPHhwoEuDhWzMaPI5+NiS0eQzgoGNuS2FdnaT28HN+uw2CGr9+/c3R48eDXQZV2XTpk1myJAhId3H+fPnzYABA8yBAwdMTk6Oefrpp82ePXsCXVaRuN1uM3XqVDNr1qxAl1LstmzZYv76178GugyUIqGe0eRz8LE1o8lnBItQz21jQj+7ye3QYWN2cwoMStyMGTN0/vx5jR49WpJ03XXX6bHHHgtwVYXjdDrVt29fjRkzRm63W507d1aNGjUCXVaR/Pjjj1q1apWuueYa/elPf5Ik9ezZUy1atAhwZQD8jXwOPmQ0gCsJ9ewmtxFInAIDAAAAAACsx7fAAAAAAAAA6zEAAQAAAAAA1mMAAgAAAAAArMcABAAAAAAAWI8BCAAAAAAAsB4DEOif//ynFixY4Nn+7LPP9Ic//EEPPvigjh8/rm3btmnw4MF68MEHtW7dugBWar9Ro0Zp+fLlgS6j2H3//fd64oknAl0GEHLI5+BBPgPwBbkdPMht5Cc80AWgZA0YMEBHjhyR0+lUWFiYqlevrg4dOig5OVlhYRfmX5d+b/j58+f15ptvasyYMapZs6Ykaf78+brtttt0xx13BKKFkDF//nzt379fgwcPDnQpQW/AgAF6/PHH1aRJk0CXAgQM+ew/5LPvyGegYOS2/5DbviO3C4cBSCnwzDPPqEmTJjp16pS2bt2qWbNmaefOnerfv3+etUePHlVOTo5q1Kjhue3QoUOqXr16kfadm5srp9NZ5NptYoyRMcbzCzIY8X4B/kU+BwfyGYCvyO3gQG6jqBiAlCLlypVTUlKSKlWqpJEjR+rOO+/UNddco1deeUVxcXHq0KGDnnnmGUlSSkqK6tSpo8zMTB08eFDjx49XWFiYZs6cqZycHL355pvatGmTHA6HOnfurPvuu09hYWFasWKFli9frtq1a2vVqlW69dZbde+99+q9997T119/rfPnz6tVq1ZKSUlRRESEvv/+e02dOlVdu3bVv/71L4WFhalnz57q3LmzJOncuXOaO3eu1qxZo5MnT+qaa67Rc889p4iICG3fvl1vvfWW9u3bp8qVKyslJUUNGzb06bXIzMzU7Nmz9cMPP8gYoxtvvFGPPvqo3G63Fi1apOXLl+vcuXNq1qyZ+vbtq3LlyungwYMaOHCg+vfvr3nz5uncuXPq2rWr7rnnHqWlpWnRokWSpPXr16tq1ap66aWXNGrUKF1//fXaunWrdu3apQkTJujo0aOaPXu20tPTlZiYqJSUFF1//fWXrTc7O1uDBg3S66+/rujoaEnSzz//rBdffFGvv/66MjMz9eqrr+qXX35ReHi4GjVqpKFDh17xdSjs+3Xs2DH94x//0LZt2+RwOFSjRg2NGjVKYWFhuu+++zRlyhRVrVpVkjyfqwceeMBrn1OnTlVmZqbnM9WjRw/97ne/8+l9A2xFPv8X+XwB+QwEN3L7v8jtC8jt0MAApBSqU6eOXC6Xtm3bpmuuucZze2JioiZMmKCBAwdq9uzZnonlrw+rmjRpkipWrKgpU6bo7NmzGjdunOLi4nTLLbdIknbs2KF27dpp+vTpys3N1Zw5c3TgwAG99NJLcjqdmjx5shYsWKBevXpJko4cOaJTp07ptdde07fffquJEyeqVatWio6O9gTxiy++qEqVKmnHjh1yOBzKzs7WuHHjNHDgQDVr1kxbtmzRhAkTNGnSJFWoUEEffvihtm3bpmHDhuXp3+12a/z48WrYsKFeeeUVhYWFadeuXZIuBNeKFSv0/PPPq2LFipo2bZpmzJihQYMGeR6/bds2TZ48Wenp6RoxYoRat26tZs2aqXv37vkeqrdq1SqNGDFCiYmJOn78uIYPH65HHnlEN954o77++muNGzdOU6ZMUUxMTIHvmcvlUt26dbVmzRolJydLkr788ku1adNG4eHhmjt3rpo2barnn39e58+f9/Tji8K8X5988olcLpfeeOMNz2MdDofP+5KkQYMGadu2bRyqB+SDfCafL0U+A8GP3Ca3L0VuB7/gPWYIJcrlcunEiROFftyRI0e0adMmpaSkKCoqShUrVlTXrl2VmprqWRMbG6vbb79dTqdTZcqU0fLly/Xwww8rOjpaZcuW1T333KOvvvrKs97pdKpHjx4KDw9XixYtFBUVpfT0dLndbn3xxRdKSUmRy+VSWFiYrr/+epUpU0arVq1S8+bN1aJFC4WFhalJkyaqXbu2Nm7cKEnq1q1bviEtSTt37lR2drYefPBBRUVFKSIiQvXq1ZN0IfzuvPNOJSQkKCoqSr169VJqaqpyc3M9j//973+viIgI1axZU7/97W+1e/fuy75mnTp1Uo0aNeR0OvXtt9+qatWq6tChg5xOp2666SYlJiZqw4YNV3ztb7rpJs/rZoxRamqqbrrpJklSeHi4Dh06pMOHD3v144vCvF9Op1NHjhxRZmamwsPDVb9+/UIHNYDLI5/J54vIZyA0kNvk9kXkdvDjCJBSKjs723PIV2FkPGRf2wAAIABJREFUZmYqNzfX6wJPxhjFxcV5tuPj4z1/PnbsmM6ePesVmsYYud1uz3ZMTIzX+XGRkZE6c+aMjh8/rpycHM+hX7+uY82aNV4Bl5ub69OhepmZmapcuXK+5+QdPnxYlStX9uolNzdXR48e9dxWqVKlPLVezqWvTXZ2ttfzS1LlypWVnZ19xbrbtGmjmTNn6vDhw8rIyJDD4VD9+vUlSX369NHcuXM1YsQIlS9fXnfeeaduvvnmKz7nxR4vutL7dffdd+v999/Xiy++KElKTk5Wt27dfNoPAN+Qz+TzpT1eRD4DwYvcJrcv7fEicjs4MQAphS5OagszzbwoLi5O4eHhmjFjhk8X9YmJiVFERIQmTpwol8tVqH3FxMSoTJky2r9/v+fK2ZfW0b59+yJ9BVR8fLznF86ve4iNjdWhQ4c825mZmXI6napYsaKysrIu+7wFTWwvvd3lcmnt2rVe92dmZqpZs2ZXrDs6OlpNmzZVamqq/vOf/6hdu3ae565UqZLntdi2bZtGjx6tBg0a5PtL7nKu9H6VLVtWDz30kB566CHt2bNHL7zwgmrXrq3GjRsrMjJSZ8+e9aw9cuSI1y8pAFdGPpPPBSGfgeBEbpPbBSG3gxOnwJQip06d0oYNGzR58mS1b9/e6zxFX8XGxqpp06Z66623dOrUKbndbu3fv19bt27Nd31YWJi6dOmi2bNne6a92dnZSktLu+K+wsLC1LlzZ7311lvKzs6W2+3W9u3blZOTo/bt22vDhg1KS0uT2+3WuXPn9P33318xTKUL52rGxsZqzpw5OnPmjM6dO6dt27ZJkm688UYtXrxYBw8e1JkzZ/Tee++pbdu2Pv1Sqlixog4dOuQ1hf+15s2bKyMjQ19++aVyc3OVmpqqffv2qUWLFld8funC4XqrVq3SmjVrPIfpSdLXX3/t6b18+fKSCv7FcTlXer82bNig/fv3yxijcuXKKSwszLOfmjVr6ssvv5Tb7VZaWlqBnwnpwi+WgwcPFro+wFbk8wXkc8HIZyC4kNsXkNsFI7eDE0eAlALjx4+X0+mUw+FQ9erV1bVrV916661Ffr6BAwdqzpw5euqpp3T69GklJCRc9mrDvXv31oIFCzRy5EgdP35cLpdLt9xyi0/T2Yceekjvvvuuhg8frjNnzqhmzZoaOXKk4uPj9ec//1nvvPOOJk+erLCwMNWpU0d/+MMfJEkLFy7Utm3bNGLEiDzPGRYWpmeeeUYzZ85U//795XA4dOONN6pevXrq3LmzDh8+rOeff17nzp1T06ZN1bdvX59el7Zt22r16tV69NFHVaVKFY0fPz7PmpiYGA0bNkyzZs3S9OnTVbVqVQ0bNkwVKlTwaR9JSUl67bXXFB8f7zW9/+mnnzR79mydOnVKlSpV0iOPPKKEhARJ0lNPPaXu3burffv2Pu3jcu9XRkaGZs6cqWPHjql8+fK69dZb1ahRI0kXrnD+yiuv6N///rdatWqlVq1aFbiPbt26aebMmXrnnXd0zz336O677/apNsA25LM38vnyyGcg8Mhtb+T25ZHbwcdhjDGBLgIAAAAAAKAkcQoMAAAAAACwHgMQAAAAAABgPQYgAAAAAADAegxAAAAAAACA9RiAAAAAAAAA6zEAAQAAAAAA1mMAAgAAAAAArMcABAAAAAAAWI8BCAAAAAAAsB4DEAAAAAAAYD0GIAAAAAAAwHoMQAAAAAAAgPUYgAAAAAAAAOsxAAEAAAAAANZjAAIAAAAAAKzHAAQAAAAAAFiPAQgAAAAAALAeAxAAAAAAAGA9BiAAAAAAAMB6DEAAAAAAAID1GIAAAAAAAADrMQABAAAAAADWYwACAAAAAACsxwAEAAAAAABYjwEIAAAAAACwHgMQAAAAAABgPQYgAAAAAADAegxAAAAAAACA9RiAAAAAAAAA6zEAAQAAAAAA1mMAAgAAAAAArMcABAAAAAAAWI8BCAAAAAAAsB4DEAAAAAAAYD0GIAAAAAAAwHoMQAAAAAAAgPUYgAAAAAAAAOsxAAEAAAAAANZjAAIAAAAAAKzHAAQAAAAAAFiPAQgAAAAAALAeAxAAAAAAAGA9BiAAAAAAAMB6DEAAAAAAAID1GIAAAAAAAADrMQABAAAAAADWYwACAAAAAACsxwAEAAAAAABYjwEIAAAAAACwHgMQAAAAAABgPQYgAAAAAADAegxAAAAAAACA9RiAAAAAAAAA6zEAAQAAAAAA1mMAAgAAAAAArMcABAAAAAAAWI8BCAAAAAAAsB4DEAAAAAAAYD0GIAAAAAAAwHoMQAAAAAAAgPUYgAAAAAAAAOsxAAEAAAAAANZjAAIAAAAAAKzHAAQAAAAAAFiPAQgAAAAAALAeAxAAAAAAAGA9BiAAAAAAAMB6DEAAAAAAAID1GIAAAAAAAADrMQABAAAAAADWYwACAAAAAACsxwAEAAAAAABYjwEIAAAAAACwHgMQAAAAAABgPQYgAAAAAADAegxAAAAAAACA9RiAAAAAAAAA6zEAAQAAAAAA1mMAAgAAAAAArMcABAAAAAAAWI8BCAAAAAAAsB4DECAEdOrUSf369Qt0GQCAXyGfASC0kNulGwOQIJeSkiKHwyGHwyGn06nq1avroYce0n/+8x+vdZ06dfKsu/SnUaNGXuv27t2rgQMHqk6dOoqKilLlypXVunVrjR8/XpmZmV7P9+tgOHDggAYNGqSaNWsqIiJClStX1r333qu0tDSvdbNnz5bD4VCbNm3y9FOnTh2NGjXqKl+VC4wxmj59ulq3bq3o6GiVL19erVq10vTp02WMKZZ9+NuLL76omjVr5rl94cKFmjhxYonue9SoUfl+hi79mT17donWUJCLn6lf/yxbtiwg9QAS+Xw55HPxCuZ8lqRTp05p2LBhns9ftWrV9MILLwSsHqAg5HbByO3iFcy5XdDnu3z58gGpx98YgISA9u3bKyMjQ3v27NG7776rTZs26fe//32edb169VJGRobXz8qVKz33p6WlqVmzZkpNTdW4ceO0adMmrVu3Ti+88II2b96smTNnFljD3r17lZSUpNTUVL366qvauXOnFi9erIiICN1www1asmSJ13qHw6HNmzdr7ty5xfdC/EpKSoqGDh2qXr16aePGjUpLS1OfPn00dOhQPfLIIyW230BwuVyqUKFCie7j6aef9vrstG3bNs9n6v777y/RGi7H6XTm+Xx36NAhYPUAEvlcEPK5eAVzPufm5qpr165aunSpXn/9dW3fvl0fffRRvv+zBgQDcjt/5HbxCubcXrhwoVcd6enpqlatmh544IGA1ON3BkHt4YcfNl26dPG6bcqUKUaSOXr0qOe2jh07mkcffbTA53G73aZx48amSZMmJicnp8A1BT3fXXfdZRISErz2edHtt99uEhISzKlTp4wxxsyaNcs4nU7z9NNPm2uvvdacPXvWs7Z27drm+eefv3zTPvjggw+MJDNv3rw8982dO9dIMh988IHntgMHDpiUlBRTpUoVExkZaerWrWtmzJjhuX/nzp3m3nvvNbGxsaZs2bKmcePG5uOPP/bq51J79+41kswXX3xhjDHmiy++MJLMRx99ZFq1amUiIyNNw4YNzfLlyz2Pcbvdpl+/fqZWrVomKirKXHvttWb48OHmzJkznv1I8vq5+Fr9+v04d+6ceeaZZ0xiYqIpU6aMqV+/vpkzZ45XjZLMK6+8Yvr06WOio6NNtWrVzNixY31+jS/d5xdffGHCwsLMnj17vNa8+eabpkKFCubEiRPm559/NpLM22+/bW6++WZPj++9957XY/bv328efvhhEx8fb6Kjo027du3MypUrL1tLfu8BEGjkc/7I59KVzzNnzjQxMTHmwIEDPtcPBAq5nT9yu3Tl9q999tlnRpJZt25doR4XqjgCJMSkp6drwYIFcjqdcjqdPj9u8+bN+u677/TMM88oPDw83zUOhyPf2w8fPqzFixdr4MCB+U5Lhw8frgMHDmjp0qVet48cOVLHjh3T1KlTfa7TV2+//bZq166t++67L899999/v2rXrq133nlHknT69Gl17NhRmzdv1pw5c7R161ZNnTpV5cqVkyTt379f7dq105EjR/TRRx/pu+++0+jRoxUWVvi/Hk899ZT+8pe/aNOmTWrTpo3uuusuZWRkSLpwaGGVKlX07rvv6ocfftCkSZM0a9YsjR071lP3M888o+rVq3smsk8//XS++xkxYoSmT5+uSZMmacuWLerTp4/69Omj5cuXe6373//9X3Xo0EFpaWkaPny4RowYkWeNLzp16qTrrrsuz79mTJ8+Xb169fI6ZO7Pf/6z+vbtq7S0NPXq1Uu9e/fWpk2bJF14Lzp37qzjx4/r008/1aZNm3THHXfolltu0Q8//HDZGnJzc1WrVi395je/UadOnfTJJ58Uug+gJJHPF5DPpSufP/jgA7Vu3VqTJ09WjRo1VKtWLf3hD39QVlZWoXsB/I3cvoDcLl25/WuvvfaamjdvrlatWhW6l5AU4AEMruDhhx82TqfTlC9f3pQtW9YzwfzjH//ota5jx44mPDzclC9f3utnwIABxhhj5s2bZySZjRs3ej2uWrVqnrW33Xab1/NdnFKuXbvWSDILFy7Mt8asrCwjyfztb38zxnhPdidNmmRiY2NNVlaWMab4JtX169c3d999d4H333XXXaZBgwbGGGPeeOMNExkZafbu3Zvv2meffdYkJCSYEydO5Ht/YSbVb7zxhmdNTk6Oueaaa8yzzz5bYJ0TJ040derU8WyPHj3a/Pa3v82z7tL34+TJkyYiIsK88sorXmu6detmOnfu7NmWZAYNGuS1pl69embYsGEF1lPQPo0xZsKECeaaa64xubm5xhhjfvjhB6/P1MVJ9a/7bdu2renTp48x5sJrWa1atTz/WtK5c2fz5JNPFlhLamqqmTlzptmwYYNJTU01Q4cOzfN6A/5GPuePfC5d+VyvXj0TGRlpbrnlFvP111+bZcuWmcaNG5ubbrrJ61/AgWBAbueP3C5duX2p9PR0Ex4ebl577TWf1tuAI0BCQJs2bZSWlqZ169bpueeeU9u2bfXiiy/mWde9e3elpaV5/Tz//PNea8yvLmK0evVqpaWl6Y477tDp06eLvfb+/fvL5XLlW29+br/9dkVHR3t+isOGDRvUoEEDVa9evcD727VrVywX/mnbtq3nz+Hh4WrdurW+//57z23Tp09XmzZtlJCQoOjoaA0fPly7d+8u1D527typc+fO5bn+RceOHb32JUnNmjXz2k5MTNSBAwcKtb+LHn74YR08eFD//ve/JUlvvPGGWrZsqebNm3utu/Q1kKQbb7zRU9f69eu1f/9+VapUyet9Xr16tXbs2FHgvtu2batHHnlELVq0UNu2bTVx4kQ99NBDGj9+fJF6AYoL+Xx1yOf/CtV8drvdMsZo7ty5uuGGG9SlSxfNnDlTX375pedfKYFgQm5fHXL7v0I1ty81c+ZMRUVFqVevXkXqIxTlf8wWgkrZsmVVp04dSVKjRo30008/adCgQZo+fbrXugoVKnjW/VrdunUlST/88INatGjhuf3aa6/1PPbgwYP5PrZOnTpyOBzasmWLunfvnuf+i38Jr7/++jz3lSlTRuPGjVPv3r01cODAK7WqN954w6dfGHXr1tWWLVsKvH/r1q1q0qTJFZ/HF/kdspeTk1Po53n//fc1YMAAjRs3Th07dlSFChX0/vvva+TIkcVRZr4iIiK8th0Oh9xud5GeKy4uTj169ND06dPVpUsXvfXWWz7/Ar7I7Xarfv36WrRoUZ77Lh466at27drpvffeK9RjgOJGPuffD/l8Zbbk829+8xudPXtWLpfLc1vDhg0lSbt37/b6TAPBgNzOvx9y+8psye1LHz99+nT17t1bMTExhdp3KOMIkBA0atQozZo1S998843Pj2natKkaNWqkcePGFTpkXC6X7rjjDk2bNk3Hjh3Lc/9f//pXJSQk6JZbbsn38T169FDLli01bNiwK+6rWrVqqlOnjuenIH369NFPP/2kefPm5blv3rx5+umnn9SnTx9JUsuWLbV161bt27cv3+dq2bKlUlNTdfLkyXzvr1KlinJzc70mvBs3bsx37Zo1azx/Pn/+vNatW6cGDRpIklatWqXmzZvrqaeeUsuWLXXdddfpl19+8Xp8RESEcnNzC+xbuvCLMzIyUqtWrfK6feXKlXm+nq24Pf744/r444/1+uuv6/Tp0+rZs2eeNZe+BpKUmprqeQ2SkpK0a9cuz39UXPqTmJhYqFo2btyoGjVqFL0ZoASQz+Rzacvni9+ocfToUc9tP/74oyTl+/WTQLAht8nt0pbbFy1ZskS7d+/W448/XjwNhYrAnoGDK8nvatXGXDgv7dZbb/Vsd+zY0fTq1ctkZGR4/Vx6VfYNGzaYSpUqmWbNmpn333/fbN261Wzfvt0sWLDAXH/99ebmm2/2er5Lz1P75ZdfTGJiomnZsqX59NNPzZ49e8y6detMz549TWRkpPn00089a/M7ty81NdU4HA4TFRVVLOcqGmNM7969Tfny5c3LL79stm/fbnbs2GEmT55soqOjzUMPPeRZd/LkSVO3bl3TvHlzs3TpUrNr1y6zbNkyM3fuXGPMhXPfKleubLp06WK+/PJLs2vXLvPxxx+b//u//zPGXDgXMyYmxqSkpJjt27ebTz/91DRp0iTfcxWvu+46s3jxYrN161bTr18/U7ZsWfOf//zHGGPM1KlTTdmyZc2HH35odu7caSZNmmTi4uLMpX8N58+fb8LDw01qaqo5dOiQOXnyZL7vx5/+9CfjcrnM/PnzzY8//mjGjBljHA6HWbZsmWeN/v+Voy/VpUsX8/DDD/v0+hZ0BfSGDRuaiIgI069fP6/bL56rmJiYaObMmWN+/PFH89xzzxmHw2E2bNhgjDHm9OnTpmHDhiYpKcn8+9//Nj///LNZs2aNGTt2rFm0aFGBtTz//PNm8eLFZseOHWbLli1m1KhRJiwszEybNs2nXoCSQD4XjHwuPfmcnp5uKlWqZO6++27z3XffmbVr15qkpCTTsWNHrgGCoENuF4zcLj25fdHdd99tWrVq5VP9NmEAEuQKCuqvvvrKKyg6duyY56ueJJny5ct7PW737t3mf/7nf0ytWrVMRESEKVeunGnWrJl59tlnvUI9v7+kGRkZpn///uaaa64xZcqUMXFxceaee+7JcwGogr6ytEePHl5fQXW13G63ee2110xSUpIpW7asKVu2rGnZsqV5/fXX8/xHV0ZGhnnwwQdNXFyciYyMNNdff72ZNWuW5/4ff/zRdOvWzVSoUMGULVvWNGnSxCxevNhz/yeffGLq1atnoqKiTLt27cySJUvyDep//etfpkWLFiYiIsLUr1/ffPbZZ57nOHfunHnsscdMbGysiYmJMT179jRTp071Cupz586Znj17mtjY2GL5uq6SCOpJkybl+1VZF4P6rbfeMh07djSRkZGmZs2aeerKzMw0TzzxhKf2xMRE061btzyfo0sNHTrU1KxZ00RFRZnY2FjTtm1bs2DBAp/6AEoK+Vww8rn05LMxxmzcuNF06tTJREVFmcTERNOvXz/PRRqBYEJuF4zcLl25vW/fPuN0OkvlFwo4jPnV1XsAFNqKFSvUuXNn7d27t8CLQtniz3/+s5YuXZrn4na//PKLrr32Wq1evVo33XRTgKoDAG/kM/kMILSQ2+R2SeIiqAB8cvToUW3fvl3//Oc/NWXKlECXAwD4/8hnAAgt5HbgcBFUAD753e9+pw4dOqh79+6eC2EBAAKPfAaA0EJuBw6nwAAAAAAAAOtxBAgAAAAAALAeAxAAAAAAAGA9BiAAAAAAAMB6pfpbYNLT0wNdQr7i4+OVmZkZ6DKKhU29SPQT7IK5n8TExECXEFLIZ/+wqR+bepHox5/I5+JBbvsH/QQ3m/oJ5l6uJrc5AgQAAAAAAFiPAQgAAAAAALAeAxAAAAAAAGA9BiAAAAAAAMB6DEAAAAAAAID1SvW3wAAAAAClyT/+8Q9t3LhRFStW1IQJE/Lcb4zRrFmztGnTJkVGRqp///6qVatWACoFgOLHESAAAABAKdGpUyeNGDGiwPs3bdqk/fv3a8qUKXrsscf0xhtv+LE6AChZDEAAAACAUqJBgwaKjo4u8P5vvvlGHTp0kMPhUN26dXXy5EkdPnzYjxUCQMlhAAIAAABAkpSdna34+HjPdlxcnLKzswNYEQAUH64BAgAAAKBQli1bpmXLlkmSxo0b5zU0CSbh4eFBW1tR0E/RjB7tLPF9SNL//q/DmvfHts/aRQxAAAAAAEiSXC6XMjMzPdtZWVlyuVx51iUnJys5Odmzfeljgkl8fHzQ1lYU9FM0p07FlPg+JOn8+Uhr3p9g/qwlJiYW+bGcAgMAAABAkpSUlKRVq1bJGKPt27erXLlyio2NDXRZAFAsOAIEAAAAKCUmTZqkrVu36vjx43riiSd033336fz585KkW2+9Vc2bN9fGjRs1ePBgRUREqH///gGuGACKDwMQAAAAoJQYMmTIZe93OBzq16+fn6oBAP/iFBgAAAAAAGA9BiAAAAAAAMB6DEAAAAAAAID1GIAAAAAAAADrMQAB8P/Yu/fwpuu7/+OvNKFgaTkkhXblMLSAighYy6mKUKjeKurwiEPUis75AznOCVRQJqJlCoiAzhvLSVBRBszpPe9ZEVEqWJHiEJlUPMAolDacy6Ftvr8/vMhtLIc0NE36yfNxXb0uvskn+b7fTfbq9t7nmwAAAACA8RiAAAAAAAAA4zEAAQAAAAAAxmMAAgAAAAAAjMcABAAAAAAAGI8BCAAAAAAAMB4DEAAAAAAAYDwGIAAAAAAAwHiOUBdwUkFBgebPny+Px6N+/fppwIABPveXl5dr9uzZ2r59u+Li4jRq1Cg1b97ce39JSYlGjx6t22+/XTfddFNtlw8ARiOjAQAAUNeFxQ4Qj8ejnJwcZWVlacaMGVq7dq127tzps2bVqlVq2LChZs2apf79+2vJkiU+9y9cuFCXXXZZbZYNABGBjAYAAIAJwmIAUlhYqMTERCUkJMjhcCgtLU35+fk+az7//HP16dNHktSjRw9t3rxZlmVJkj777DM1b95cLVu2rO3SAcB4ZDQAAABMEBaXwLjdbrlcLu+xy+XStm3bTrvGbrcrJiZGhw4dUnR0tP72t79p4sSJevvtt894ntzcXOXm5kqSsrOzFR8fX8Od1AyHwxG2tVWXSb1I9BPuTOsnXNRGRpPPoWFSPyb1ItEPAADBEBYDkHPx5ptvqn///mrQoMFZ12ZkZCgjI8N7XFJSEszSAhYfHx+2tVWXSb1I9BPuwrmfpKSkUJcQEv5mNPkcGib1Y1IvEv3UpkjNZwCIRGExAHE6nSotLfUel5aWyul0nnKNy+VSZWWlysrKFBcXp8LCQq1fv15LlizRkSNHZLPZFB0drWuvvba22wAAI5HRAAAAMEFYDECSk5NVVFSk4uJiOZ1O5eXlacSIET5rLr/8cq1evVrt27fXunXrdMkll8hms+nJJ5/0rnnzzTfVoEED/os1ANQgMhoAAAAmCIsBiN1u15AhQzRlyhR5PB6lp6erVatWWrp0qZKTk5Wamqq+fftq9uzZGj58uGJjYzVq1KhQlw0AEYGMBgAAgAnCYgAiSSkpKUpJSfG5beDAgd5/R0dHa8yYMWd8jjvuuCMotQFApCOjAQAAUNeFxdfgAgAAAAAABBMDEAAAAAAAYDwGIAAAAAAAwHgMQAAAAAAAgPEYgAAAAAAAAOMxAAEAAAAAAMZjAAIAAAAAAIzHAAQAAAAAABiPAQgAAAAAADAeAxAAAAAAAGA8BiAAAAAAAMB4DEAAAAAAAIDxGIAAAAAAAADjMQABAAAAAADGc4S6AAAAAAC1o6CgQPPnz5fH41G/fv00YMAAn/tLSko0Z84cHTlyRB6PR4MGDVJKSkqIqgWAmsUABAAAAIgAHo9HOTk5mjBhglwul8aPH6/U1FS1bNnSu+avf/2revbsqWuuuUY7d+7UM888wwAEgDG4BAYAAACIAIWFhUpMTFRCQoIcDofS0tKUn5/vs8Zms6msrEySVFZWpqZNm4aiVAAICnaAAAAAABHA7XbL5XJ5j10ul7Zt2+az5vbbb9dTTz2l9957T8ePH9fEiRNru0wACBoGIAAAAAAkSWvXrlWfPn1044036ptvvtGsWbM0bdo0RUX5bhzPzc1Vbm6uJCk7O1vx8fGhKPesHA5H2NYWCPoJTEyMPejnkCSHw2bM62Pae+0kBiAAAABABHA6nSotLfUel5aWyul0+qxZtWqVsrKyJEnt27dXeXm5Dh06pMaNG/usy8jIUEZGhve4pKQkiJUHLj4+PmxrCwT9BKasLC7o55Ckior6xrw+4fxeS0pKCvixfAYIAAAAEAGSk5NVVFSk4uJiVVRUKC8vT6mpqT5r4uPjtXnzZknSzp07VV5erkaNGoWiXACocewAAQAAACKA3W7XkCFDNGXKFHk8HqWnp6tVq1ZaunSpkpOTlZqaqnvuuUcvv/yy3n33XUnS0KFDZbPZQlw5ANQMBiAAAABAhEhJSanytbYDBw70/rtly5aaPHlybZcFALWCS2AAAAAAAIDxGIAAAAAAAADjMQABAAAAAADGYwACAAAAAACMxwAEAAAAAAAYjwEIAAAAAAAwHgMQAAAAAABgPAYgAAAAAADAeAxAAAAAAACA8RyhLuCkgoICzZ8/Xx6PR/369dOAAQN87i8vL9fs2bO1fft2xcXFadSoUWrevLm+/PJLLVmyRBUVFXI4HLr77rvVsWPHEHUBAGYiowEAAFDXhcUOEI/Ho5ycHGVlZWnGjBlau3atdu7c6bNm1apVatiwoWbNmqX+/ftryZIlkqS4uDiNHTtW06ZN07BhwzRr1qx/EI/aAAAgAElEQVRQtAAAxiKjAQAAYIKwGIAUFhYqMTFRCQkJcjgcSktLU35+vs+azz//XH369JEk9ejRQ5s3b5ZlWTr//PPldDolSa1atdKJEydUXl5e2y0AgLHIaAAAAJggLAYgbrdbLpfLe+xyueR2u0+7xm63KyYmRocOHfJZs379el1wwQWqV69e8IsGgAhBRgMAAMAEYfMZIOdqx44dWrJkiR577LHTrsnNzVVubq4kKTs7W/Hx8bVVXrU4HI6wra26TOpFop9wZ1o/JjlbRpPPoWFSPyb1ItEPAADBEBYDEKfTqdLSUu9xaWmpd8v0L9e4XC5VVlaqrKxMcXFx3vXPPfechg0bpsTExNOeJyMjQxkZGd7jkpKSGu6kZsTHx4dtbdVlUi8S/YS7cO4nKSkp1CUErDYymnwODZP6MakXiX5qU13OZwBA9YTFJTDJyckqKipScXGxKioqlJeXp9TUVJ81l19+uVavXi1JWrdunS655BLZbDYdOXJE2dnZGjRokC666KIQVA8AZiOjAQAAYIKw2AFit9s1ZMgQTZkyRR6PR+np6WrVqpWWLl2q5ORkpaamqm/fvpo9e7aGDx+u2NhYjRo1SpL03nvvaffu3Vq2bJmWLVsmSZowYYIaN24cypYAwBhkNAAAAExgsyzLCnURobJr165Ql3BK4bxNtLpM6kWin3AXzv2wxbp6yOfaYVI/JvUi0U9tIp9rBrldO+gnMNOmxQX9HJL0zDP1jXl9wvm9di65HRaXwAAAAAAAAAQTAxAAAAAAAGA8BiAAAAAAAMB4DEAAAAAAAIDxGIAAAAAAAADjMQABAAAAAADGYwACAAAAAACMxwAEAAAAAAAYjwEIAAAAAAAwnt8DkPz8fFVWVgazFgBAgMhoAIgcZD4ABMbvAcibb76pBx98UDk5Odq2bVswawIAVBMZDQCRg8wHgMA4/F347LPP6vvvv9fHH3+sadOmqX79+rrqqqvUq1cvNW/ePJg1AgDOgowGgMhB5gNAYPwegEhSmzZt1KZNGw0ePFj/+te/9Oqrr+rNN9/URRddpIyMDF1xxRWKiuJjRQAgFMhoAIgcZD4AVF+1BiCStHv3bn388cf6+OOPZbPZNHDgQMXHx+u9997T+vXr9cgjjwSjTgCAH8hoAIgcZD4AVI/fA5D33ntPH3/8sYqKipSWlqaHH35Y7du3997fvXt3PfDAA0EpEgBwZmQ0AEQOMh8AAuP3AKSgoEA33HCDUlNTVa9evSr3169fnykzAIQIGQ0AkYPMB4DA+D0AGTNmjKKiouRw/N9DKioqZFmWN3g7d+5c8xUCAM6KjAaAyEHmA0Bg/P5kpClTpmj79u0+t23fvl1Tpkyp8aIAANVDRgNA5DiXzC8oKNDIkSM1fPhwrVy58pRr8vLyNHr0aI0ZM0YzZ86skZoBIBz4vQPkhx9+ULt27Xxua9u2rX744YcaLwoAUD1kNABEjkAz3+PxKCcnRxMmTJDL5dL48eOVmpqqli1betcUFRVp5cqVmjx5smJjY3XgwIGg9AAAoeD3DpCGDRtWCcADBw6ofv36NV4UAKB6yGgAiByBZn5hYaESExOVkJAgh8OhtLQ05efn+6z54IMP9F//9V+KjY2VJDVu3LhmiweAEPJ7B0j37t01c+ZM3XfffUpISNCePXu0cOFC9ezZM5j1AQD8QEYDQOQINPPdbrdcLpf32OVyadu2bT5rdu3aJUmaOHGiPB6Pbr/9dnXp0qXKc+Xm5io3N1eSlJ2drfj4+HNtKygcDkfY1hYI+glMTIw96OeQJIfDZszrY9p77SS/ByB33nmnFi1apKysLJWXlys6Olp9+vTRb3/722DWBwDwAxkNAJEjmJnv8XhUVFSkJ554Qm63W0888YSee+45NWzY0GddRkaGMjIyvMclJSXnfO5giI+PD9vaAkE/gSkriwv6OSSpoqK+Ma9POL/XkpKSAn6s3wOQ6OhoPfDAA7r//vt16NAhxcXFyWazBXxiAEDNIaMBIHIEmvlOp1OlpaXe49LSUjmdzipr2rVrJ4fDoebNm+tXv/qVioqK1LZt2xrvAwBqm98DEEkqKyvTrl27dOzYMZ/bO3bsWKNFAQCqj4wGgMgRSOYnJyerqKhIxcXFcjqdysvL04gRI3zWdOvWTZ988onS09N18OBBFRUVKSEhISg9AEBt83sAsnr1auXk5KhBgwaKjo723m6z2TR79uygFAcA8A8ZDQCRI9DMt9vtGjJkiKZMmSKPx6P09HS1atVKS5cuVXJyslJTU9W5c2dt2rRJo0ePVlRUlAYPHqy4uNq5fAAAgs3vAcjrr7+uMWPG6LLLLgtmPQCAAJDRABA5ziXzU1JSlJKS4nPbwIEDvf+22Wy69957de+9955znQAQbvz+GlyPx6POnTsHsxYAQIDIaACIHGQ+AATG7wHIb37zG/31r3+Vx+MJZj0AgACQ0QAQOch8AAiM35fAvPvuu9q/f7/efvttxcbG+tz30ksv1XhhAAD/kdEAEDnIfAAIjN8DkOHDhwezDgDAOSCjASBykPkAEBi/ByAdOnQIZh0AgHNARgNA5CDzASAwfg9AysvLtWzZMq1du1aHDh3SwoULtWnTJhUVFenaa68NZo0AgLMgowEgcpD5ABAYvz8EdeHChdqxY4dGjBghm80mSWrVqpX++c9/Bq04AIB/yGgAiBxkPgAExu8dIJ999pleeOEFNWjQwBu0TqdTbre7RgopKCjQ/Pnz5fF41K9fPw0YMMDn/vLycs2ePVvbt29XXFycRo0apebNm0uSVqxYoVWrVikqKkr33XefunTpUiM1AUBdQUYDQOQIduYDgKn83gHicDiqfNXWwYMHFRcXd85FeDwe5eTkKCsrSzNmzNDatWu1c+dOnzWrVq1Sw4YNNWvWLPXv319LliyRJO3cuVN5eXmaPn26HnvsMeXk5PCVYAAiDhkNAJEjmJkPACbzewDSo0cPzZ49W8XFxZKkffv2KScnR2lpaedcRGFhoRITE5WQkCCHw6G0tDTl5+f7rPn888/Vp08fby2bN2+WZVnKz89XWlqa6tWrp+bNmysxMVGFhYXnXBMA1CVkNABEjmBmPgCYzO8ByKBBg9S8eXP94Q9/UFlZmUaMGKGmTZvq9ttvP+ci3G63XC6X99jlclXZwvfzNXa7XTExMTp06FCVx7L9D0AkIqMBIHIEM/MBwGR+fwaIw+FQZmamMjMzvVvsTl5zWFfk5uYqNzdXkpSdna34+PgQV3RqDocjbGurLpN6kegn3JnWT3XU9Ywmn0PDpH5M6kWiH5xZXc98AAgVvwcge/bs8Tk+evSo998JCQnnVITT6VRpaan3uLS0VE6n85RrXC6XKisrVVZWpri4uCqPdbvdVR57UkZGhjIyMrzHJSUl51R3sMTHx4dtbdVlUi8S/YS7cO4nKSkpqM9f1zOafA4Nk/oxqReJfmpTsPM5GIKZ+QBgMr8HICNGjDjtfUuXLj2nIpKTk1VUVKTi4mI5nU7l5eVVOd/ll1+u1atXq3379lq3bp0uueQS2Ww2paam6oUXXtANN9ygffv2qaioSG3btj2negCgriGjASByBDPzAcBkfg9Afhmm+/fv11tvvaWLL774nIuw2+0aMmSIpkyZIo/Ho/T0dLVq1UpLly5VcnKyUlNT1bdvX82ePVvDhw9XbGysRo0aJemn7zzv2bOnxowZo6ioKN1///2KivL7o00AwAhkNABEjmBmPgCYzGZZlhXog8vLyzVy5Ei9+OKLNVlTrdm1a1eoSzilcN4mWl0m9SLRT7gL535CscW6Lmc0+Vw7TOrHpF4k+qlNdfESmFMJdeaT27WDfgIzbVrtfEX0M8/UN+b1Cef32rnk9jn933C7du3S8ePHz+UpAABBQkYDQOQg8wHg7Py+BObxxx/3+XTp48ePa8eOHbrtttuCUhgAwH9kNABEDjIfAALj9wCkb9++PscNGjTQr3/9a/3qV7+q8aIAANVDRgNA5CDzASAwfg9A+vTpE8QyAADngowGgMhB5gNAYAL+FpjTGThwYMDFAAACQ0YDQOQg8wEgMH4PQIqKirR+/Xq1bdvW+4mwhYWF6t69u6Kjo4NZIwDgLMhoAIgcZD4ABMbvAYgkjRw5Uj169PAer1+/Xp9++qmGDh1a44UBAKqHjAaAyEHmA0D1+f01uBs3blS3bt18bktNTdXGjRtrvCgAQPWQ0QAQOch8AAiM3wOQxMREvffeez63/fOf/1RiYmKNFwUAqB4yGgAiB5kPAIHx+xKYhx56SM8995zefvttOZ1Oud1u2e12/eEPfwhmfQAAP5DRABA5yHwACIzfA5Dzzz9fM2fO1LZt27Rv3z41adJE7du3l8NRrY8RAQAEARkNAJGDzAeAwPh9CcwvdejQQRUVFTp27FhN1gMAqAFkNABEDjIfAPzj95j4xx9/1NSpU1WvXj2VlpYqLS1NW7Zs0UcffaTRo0cHs0YAwFmQ0QAQOch8AAiM3ztA5s6dq4EDB+r555/3bq/r0KGDtm7dGrTiAAD+IaMBIHKQ+QAQGL8HIDt37lSvXr18bmvQoIFOnDhR40UBAKqHjAaAyEHmA0Bg/B6ANGvWTNu3b/e5rbCwkK/bAoAwQEYDQOQg8wEgMH5/BsjAgQOVnZ2tq6++WhUVFVqxYoXef/99/f73vw9mfQAAP5DRABA5yHwACIzfO0Auv/xyZWVl6eDBg+rQoYP27t2rRx55RJ07dw5mfQAAP5DRABA5yHwACIxfO0A8Ho9Gjhyp6dOn64EHHgh2TQCAaiCjASBykPkAEDi/doBERUUpKipK5eXlwa4HAFBNZDQARI5zzfyCggKNHDlSw4cP18qVK0+7bt26dbrjjjv07bffBloqAIQdvz8D5Prrr9eMGTN08803y+l0ymazee9LSEgISnEAAP+Q0QAQOQLNfI/Ho5ycHE2YMEEul0vjx49XamqqWrZs6bPu6NGj+sc//qF27doFrQcACIWzDkD279+vJk2aaN68eZKkL7/8ssqapUuX1nxlAICzIqMBIHKca+af/KaYk0OStLQ05efnVxmALF26VL/5zW/09ttv12D1ABB6Zx2AjBw5UgsXLvSG6bPPPqs//vGPQS8MAHB2ZDQARI5zzXy32y2Xy+U9drlc2rZtm8+a7du3q6SkRCkpKWccgOTm5io3N1eSlJ2drfj4+Oq0UmscDkfY1hYI+glMTIw96OeQJIfDZszrY9p77aSzDkAsy/I53rJlS9CKAQBUDxkNAJEj2Jnv8Xi0aNEiDR069KxrMzIylJGR4T0uKSmp0VpqSnx8fNjWFgj6CUxZWVzQzyFJFRX1jXl9wvm9lpSUFPBjzzoA+fk1hQCA8EJGA0DkONfMdzqdKi0t9R6XlpbK6XR6j48dO6YdO3boT3/6k6SfLrn585//rEcffVTJycnndG4ACAdnHYBUVlZq8+bN3mOPx+NzLEkdO3as+coAAGdFRgNA5DjXzE9OTlZRUZGKi4vldDqVl5enESNGeO+PiYlRTk6O93jSpEm6++67GX4AMMZZByCNGzfWSy+95D2OjY31ObbZbJo9e3ZwqgMAnBEZDQCR41wz3263a8iQIZoyZYo8Ho/S09PVqlUrLV26VMnJyUpNTQ1q/QAQamcdgMyZM6c26gAABICMBoDIUROZn5KSopSUFJ/bBg4ceMq1kyZNOufzAUA4iQp1AQAAAAAAAMHGAAQAAAAAABiPAQgAAAAAADAeAxAAAAAAAGA8BiAAAAAAAMB4Z/0WmGA7fPiwZsyYob1796pZs2YaPXq0YmNjq6xbvXq1li9fLkm65ZZb1KdPHx0/flzTp0/Xnj17FBUVpcsvv1x33XVXbbcAAMYiowEAAGCKkO8AWblypS699FK98MILuvTSS7Vy5coqaw4fPqxly5bp6aef1tNPP61ly5bp8OHDkqQbb7xRzz//vP785z/r3//+tzZu3FjbLQCAschoAAAAmCLkA5D8/Hz17t1bktS7d2/l5+dXWVNQUKBOnTopNjZWsbGx6tSpkwoKClS/fn117NhRkuRwOHT++eertLS0VusHAJOR0QAAADBFyAcgBw4cUNOmTSVJTZo00YEDB6qscbvdcrlc3mOn0ym32+2z5siRI9qwYYMuvfTS4BYMABGEjAYAAIApauUzQCZPnqz9+/dXuf3OO+/0ObbZbLLZbNV+/srKSs2cOVPXXXedEhISTrsuNzdXubm5kqTs7GzFx8dX+1y1weFwhG1t1WVSLxL9hDvT+qkt4ZDR5HNomNSPSb1I9AMAQDDUygBk4sSJp72vcePG2rdvn5o2bap9+/apUaNGVdY4nU5t2bLFe+x2u9WhQwfv8csvv6zExET179//jHVkZGQoIyPDe1xSUlKdNmpNfHx82NZWXSb1ItFPuAvnfpKSkkJdwmmFQ0aTz6FhUj8m9SLRT20K53wGANSskF8Ck5qaqo8++kiS9NFHH6lr165V1nTp0kWbNm3S4cOHdfjwYW3atEldunSRJL3xxhsqKytTZmZmbZYNABGBjAYAAIApQv41uAMGDNCMGTO0atUq71csStK3336r999/Xw899JBiY2N16623avz48ZKk2267TbGxsSotLdXy5cvVokULjR07VpJ07bXXql+/fiHrBwBMQkYDAADAFCEfgMTFxenxxx+vcntycrKSk5O9x3379lXfvn191rhcLr355ptBrxEAIhUZDQAAAFOE/BIYAAAAAACAYGMAAgAAAAAAjMcABAAAAAAAGI8BCAAAAAAAMB4DEAAAAAAAYDwGIAAAAAAAwHgMQAAAAAAAgPEYgAAAAAAAAOMxAAEAAAAAAMZjAAIAAAAAAIzHAAQAAAAAABiPAQgAAAAAADAeAxAAAAAAAGA8BiAAAAAAAMB4DEAAAAAAAIDxGIAAAAAAAADjMQABAAAAAADGYwACAAAAAACMxwAEAAAAAAAYjwEIAAAAAAAwHgMQAAAAAABgPEeoCwAAAABQOwoKCjR//nx5PB7169dPAwYM8Ln/nXfe0QcffCC73a5GjRrp//2//6dmzZqFqFoAqFnsAAEAAAAigMfjUU5OjrKysjRjxgytXbtWO3fu9FnTpk0bZWdn67nnnlOPHj20ePHiEFULADWPAQgAAAAQAQoLC5WYmKiEhAQ5HA6lpaUpPz/fZ03Hjh1Vv359SVK7du3kdrtDUSoABAWXwAAAAAARwO12y+VyeY9dLpe2bdt22vWrVq1Sly5dTnlfbm6ucnNzJUnZ2dmKj4+v2WJriMPhCNvaAkE/gYmJsQf9HJLkcNiMeX1Me6+dxAAEAAAAgI81a9Zo+/btmjRp0invz8jIUEZGhve4pKSkliqrnvj4+LCtLRD0E5iysrign0OSKirqG/P6hPN7LSkpKeDHcgkMAAAAEAGcTqdKS0u9x6WlpXI6nVXWffnll1qxYoUeffRR1atXrzZLBICgYgACAAAARIDk5GQVFRWpuLhYFRUVysvLU2pqqs+a7777TnPnztWjjz6qxo0bh6hSAAgOLoEBAAAAIoDdbteQIUM0ZcoUeTwepaenq1WrVlq6dKmSk5OVmpqqxYsX69ixY5o+fbqkn7bBjx07NsSVA0DNYAACAAAARIiUlBSlpKT43DZw4EDvvydOnFjbJQFAreESGAAAAAAAYDwGIAAAAAAAwHgMQAAAAAAAgPFC/hkghw8f1owZM7R37141a9ZMo0ePVmxsbJV1q1ev1vLlyyVJt9xyi/r06eNz/9SpU1VcXKxp06bVRtkAEBHIaAAAAJgi5DtAVq5cqUsvvVQvvPCCLr30Uq1cubLKmsOHD2vZsmV6+umn9fTTT2vZsmU6fPiw9/7169erQYMGtVk2AEQEMhoAAACmCPkAJD8/X71795Yk9e7dW/n5+VXWFBQUqFOnToqNjVVsbKw6deqkgoICSdKxY8f0zjvv6NZbb63VugEgEpDRAAAAMEXIByAHDhxQ06ZNJUlNmjTRgQMHqqxxu91yuVzeY6fTKbfbLUl64403dOONNyo6Orp2CgaACEJGAwAAwBS18hkgkydP1v79+6vcfuedd/oc22w22Ww2v5/3+++/1549e5SZmani4uKzrs/NzVVubq4kKTs7W/Hx8X6fqzY5HI6wra26TOpFop9wZ1o/tSUcMpp8Dg2T+jGpF4l+AAAIhloZgEycOPG09zVu3Fj79u1T06ZNtW/fPjVq1KjKGqfTqS1btniP3W63OnTooG+++Ubbt2/XsGHDVFlZqQMHDmjSpEmaNGnSKc+VkZGhjIwM73FJSUngTQVRfHx82NZWXSb1ItFPuAvnfpKSkkJdwmmFQ0aTz6FhUj8m9SLRT20K53wGANSskH8LTGpqqj766CMNGDBAH330kbp27VplTZcuXfT66697P1Rv06ZNGjRokGJjY3XNNddIkoqLizV16tTTDj8AANVHRgMAAMAUIR+ADBgwQDNmzNCqVau8X7EoSd9++63ef/99PfTQQ4qNjdWtt96q8ePHS5Juu+22U34NIwCgZpHRAAAAMIXNsiwr1EWEyq5du0JdwimF8zbR6jKpF4l+wl0498MW6+ohn2uHSf2Y1ItEP7WJfK4Z5HbtoJ/ATJsWF/RzSNIzz9Q35vUJ5/faueR2yL8FBgAAAAAAINgYgAAAAAAAAOMxAAEAAAAAAMZjAAIAAAAAAIzHAAQAAAAAABiPAQgAAAAAADAeAxAAAAAAAGA8BiAAAAAAAMB4DEAAAAAAAIDxGIAAAAAAAADjMQABAAAAAADGYwACAAAAAACMxwAEAAAAAAAYjwEIAAAAAAAwHgMQAAAAAABgPAYgAAAAAADAeAxAAAAAAACA8RiAAAAAAAAA4zEAAQAAAAAAxmMAAgAAAAAAjMcABAAAAAAAGI8BCAAAAAAAMB4DEAAAAAAAYDxHqAsAAAAAUDsKCgo0f/58eTwe9evXTwMGDPC5v7y8XLNnz9b27dsVFxenUaNGqXnz5iGqFgBqFjtAAAAAgAjg8XiUk5OjrKwszZgxQ2vXrtXOnTt91qxatUoNGzbUrFmz1L9/fy1ZsiRE1QJAzWMAAgAAAESAwsJCJSYmKiEhQQ6HQ2lpacrPz/dZ8/nnn6tPnz6SpB49emjz5s2yLCsE1QJAzYvoS2CSkpJCXcJphXNt1WVSLxL9hDvT+olU4fw6hnNtgTCpH5N6kegHNc/tdsvlcnmPXS6Xtm3bdto1drtdMTExOnTokBo1auSzLjc3V7m5uZKk7OzssH59w7m2QNBP9U2bFvRTeJn0+pjUy0nsAAlD48aNC3UJNcakXiT6CXem9YPwY9p7zKR+TOpFoh+Ev4yMDGVnZys7OzvUpZyRae89+glvJvVjUi8/xwAEAAAAiABOp1OlpaXe49LSUjmdztOuqaysVFlZmeLi4mq1TgAIFgYgAAAAQARITk5WUVGRiouLVVFRoby8PKWmpvqsufzyy7V69WpJ0rp163TJJZfIZrOFoFoAqHn2SZMmTQp1EajqggsuCHUJNcakXiT6CXem9YPwY9p7zKR+TOpFoh/UvKioKCUmJmrWrFl677331KtXL/Xo0UNLly7VsWPHlJSUpNatW+uTTz7Ra6+9pu+//14PPvigYmNjQ136OTHtvUc/4c2kfkzq5SSbxcc6AwAAAAAAw3EJDAAAAAAAMB4DEAAAAAAAYDxHqAvA6f3973/Xq6++qldeeaXKd6/XJa+++qo2bNggh8OhhIQEDR06VA0bNgx1WdVWUFCg+fPny+PxqF+/fhowYECoSwpISUmJ5syZo/3798tmsykjI0PXX399qMs6Zx6PR+PGjZPT6TT2a7sQXkzIaPI5/JiY0eQzwoUJuS2Zkd3kdvgzNbsZgISpkpISffnll4qPjw91KeesU6dOGjRokOx2uxYvXqwVK1Zo8ODBoS6rWjwej3JycjRhwgS5XC6NHz9eqampatmyZahLqza73a67775bF1xwgY4ePapx48apU6dOdbKXn/uf//kftWjRQkePHg11KYgApmQ0+Rx+TMxo8hnhwJTclup+dpPbdYOp2c0lMGFq4cKFuuuuu4z42rHOnTvLbrdLktq3by+32x3iiqqvsLBQiYmJSkhIkMPhUFpamvLz80NdVkCaNm3q/UTn8847Ty1atKiTr8nPlZaW6osvvlC/fv1CXQoihCkZTT6HH9MymnxGuDAlt6W6n93kdvgzObsZgISh/Px8OZ1OtWnTJtSl1LhVq1apS5cuoS6j2txut1wul/fY5XLV+WCTpOLiYn333Xdq27ZtqEs5JwsWLNDgwYON+C81CH+mZjT5HH5MyGjyGeHA1NyW6mZ2k9vhz+Ts5hKYEJk8ebL2799f5fY777xTK1as0IQJE0JQVeDO1E/Xrl0lScuXL5fdblevXr1quzycwrFjxzRt2jRlZmYqJiYm1OUEbMOGDWrcuLEuuOACffXVV6EuB4YwKaPJ57rJhIwmn1GbTMptieyui0zIbcn87LZZlmWFugj8nx9//FFPPvmk6tevL+mn7UdNmzbVM888oyZNmoS4usCtXr1a77//vh5//HFvb3XJN998o7feekuPPfaYJGnFihWSpJtvvjmUZQWsoqJCU6dOVefOnXXDDTeEupxz8tprr2nNmjWy2+06ceKEjh49qm7dumnEiBGhLg0GMjGjyefwY0pGk88IBybmtlS3s5vcDm/GZ7eFsDZ06FDrwIEDoS7jnGzcuNEaNWpUne6joqLCGjZsmLVnzx6rvLzceuSRR6wff/wx1GUFxOPxWLNmzbLmz58f6lJq3ObNm61nnnkm1GUggtT1jCafw4+pGU0+I1zU9dy2rLqf3eR23WFidnMJDIIuJydHFRUVmjx5siSpXbt2evDBB0NcVfXY7XYNGTJEU6ZMkcfjUXp6ulq1ahXqsgLy73//WyNdm48AACAASURBVGvWrFHr1q31xz/+UZL029/+VikpKSGuDEBtI5/DDxkN4GzqenaT2wglLoEBAAAAAADG41tgAAAAAACA8RiAAAAAAAAA4zEAAQAAAAAAxmMAAgAAAAAAjMcABAAAAAAAGI8BCPTf//3fWrZsmff4n//8p373u9/p7rvv1qFDh7R161aNGDFCd999tz777LMQVmq+SZMm6YMPPgh1GTXuq6++0kMPPRTqMoA6h3wOH+QzAH+Q2+GD3MapOEJdAIJr2LBh2r9/v+x2u6KiotSyZUtdddVVysjIUFTUT/Ovn39veEVFhRYuXKgpU6aoTZs2kqQ333xT1157ra6//vpQtFBnvPnmm9q9e7dGjBgR6lLC3rBhw/T73/9enTp1CnUpQMiQz7WHfPYf+QycHrlde8ht/5Hb1cMAJAKMHTtWnTp1UllZmbZs2aL58+ersLBQQ4cOrbL2wIEDKi8vV6tWrby37d27Vy1btgzo3JWVlbLb7QHXbhLLsmRZlvcPZDji9QJqF/kcHshnAP4it8MDuY1AMQCJIDExMUpNTVWTJk302GOP6YYbblDr1q01Z84cuVwuXXXVVRo7dqwkKTMzU23btlVJSYmKi4s1depURUVFad68eSovL9fChQu1ceNG2Ww2paen64477lBUVJRWr16tDz74QMnJyVqzZo2uueYa3XrrrXr99df16aefqqKiQl27dlVmZqaio6P11VdfadasWerfv7/+9re/KSoqSr/97W+Vnp4uSTpx4oTeeOMNrVu3TkeOHFHr1q01ceJERUdH65tvvtGiRYu0c+dONWvWTJmZmbrkkkv8+l2UlJRowYIF+vrrr2VZlq644grdf//98ng8WrFihT744AOdOHFCXbp00ZAhQxQTE6Pi4mI9/PDDGjp0qJYuXaoTJ06of//+uuWWW1RQUKAVK1ZIkvLz85WYmKhnn31WkyZN0oUXXqgtW7Zo+/btmjZtmg4cOKAFCxZo165dSkpKUmZmpi688MIz1ut2uzV8+HC9/PLLio2NlSR99913euqpp/Tyyy+rpKREL730kr7//ns5HA517NhRo0ePPuvvobqv18GDB/Xiiy9q69atstlsatWqlSZNmqSoqCjdcccdeuGFF5SYmChJ3vfVnXfe6XPOWbNmqaSkxPueuu222/Sb3/zGr9cNMBX5/H/I55+Qz0B4I7f/D7n9E3K7bmAAEoHatm0rp9OprVu3qnXr1t7bk5KSNG3aND388MNasGCBd2L5y21Vzz//vBo3bqwXXnhBx48fV3Z2tlwul66++mpJ0rZt25SWlqa5c+eqsrJSS5Ys0Z49e/Tss8/Kbrdr5syZWrZsmQYNGiRJ2r9/v8rKyvSXv/xFX375paZPn66uXbsqNjbWG8RPPfWUmjRpom3btslms8ntdis7O1sPP/ywunTpos2bN2vatGl6/vnn1ahRI61cuVJbt27VuHHjqvTv8Xg0depUXXLJJZozZ46ioqK0fft2ST8F1+rVq/XEE0+ocePGmj17tnJycjR8+HDv47du3aqZM2dq165dysrKUrdu3dSlSxfdfPPNp9yqt2bNGmVlZSkpKUmHDh3S+PHjdd999+mKK67Qp59+quzsbL3wwguKi4s77WvmdDrVvn17rVu3ThkZGZKkTz75RN27d5fD4dAbb7yhzp0764knnlBFRYW3H39U5/V655135HQ69corr3gfa7PZ/D6XJA0fPlxbt25lqx5wCuQz+fxz5DMQ/shtcvvnyO3wF757hhBUTqdThw8frvbj9u/fr40bNyozM1MNGjRQ48aN1b9/f+Xl5XnXNG3aVNddd53sdrvq1aunDz74QPfee69iY2N13nnn6ZZbbtHatWu96+12u2677TY5HA6lpKSoQYMG2rVrlzwejz788ENlZmbK6XQqKipKF154oerVq6c1a9bosssuU0pKiqKiotSpUyclJyfriy++kCQNGDDglCEtSYWFhXK73br77rvVoEEDRUdH66KLLpL0U/jdcMMNSkhIUIMGDTRo0CDl5eWpsrLS+/jbb79d0dHRatOmjX7961/rhx9+OOPvrE+fPmrVqpXsdru+/PJLJSYm6qqrrpLdbteVV16ppKQkbdiw4ay/+yuvvNL7e7MsS3l5ebryyislSQ6HQ3v37tW+fft8+vFHdV4vu92u/fv3q6SkRA6HQxdffHG1gxrAmZHP5PNJ5DNQN5Db5PZJ5Hb4YwdIhHK73d4tX9VRUlKiyspKnw94sixLLpfLexwfH+/998GDB3X8+HGf0LQsSx6Px3scFxfnc31c/fr1dezYMR06dEjl5eXerV+/rGPdunU+AVdZWenXVr2SkhI1a9bslNfk7du3T82aNfPppbKyUgcOHPDe1qRJkyq1nsnPfzdut9vn+SWpWbNmcrvdZ627e/fumjdvnvbt26eioiLZbDZdfPHFkqTBgwfrjTfeUFZWlho2bKgbbrhBffv2PetznuzxpLO9XjfddJPeeustPfXUU5KkjIwMDRgwwK/zAPAP+Uw+/7zHk8hnIHyR2+T2z3s8idwOTwxAItDJSW11ppknuVwuORwO5eTk+PWhPnFxcYqOjtb06dPldDqrda64uDjVq1dPu3fv9n5y9s/r6NWrV0BfARUfH+/9g/PLHpo2baq9e/d6j0tKSmS329W4cWOVlpae8XlPN7H9+e1Op1Pr16/3ub+kpERdunQ5a92xsbHq3Lmz8vLy9J///EdpaWne527SpIn3d7F161ZNnjxZHTp0OOUfuTM52+t13nnn6Z577tE999yjH3/8UU8++aSSk5N16aWXqn79+jp+/Lh37f79+33+SAE4O/KZfD4d8hkIT+Q2uX065HZ44hKYCFJWVqYNGzZo5syZ6tWrl891iv5q2rSpOnfurEWLFqmsrEwej0e7d+/Wli1bTrk+KipK/fr104IFC7zTXrfbrYKCgrOeKyoqSunp6Vq0aJHcbrc8Ho+++eYblZeXq1evXtqwYYMKCgrk8Xh04sQJffXVV2cNU+mnazWbNm2qJUuW6NixYzpx4oS2bt0qSbriiiv07rvvqri4WMeOHdPrr7+unj17+vVHqXHjxtq7d6/PFP6XLrvsMhUVFemTTz5RZWWl8vLytHPnTqWkpJz1+aWftuutWbNG69at827Tk6RPP/3U23vDhg0lnf4Px5mc7fXasGGDdu/eLcuyFBMTo6ioKO952rRpo08++UQej0cFBQWnfU9IP/1hKS4urnZ9gKnI55+Qz6dHPgPhhdz+Cbl9euR2eGIHSASYOnWq7Ha7bDabWrZsqf79++uaa64J+PkefvhhLVmyRGPGjNHRo0eVkJBwxk8bvuuuu7Rs2TI99thjOnTokJxOp66++mq/prP33HOPXnvtNY0fP17Hjh1TmzZt9Nhjjyk+Pl6PPvqoFi9erJkzZyoqKkpt27bV7373O0nS8uXLtXXrVmVlZVV5zqioKI0dO1bz5s3T0KFDZbPZdMUVV+iiiy5Senq69u3bpyeeeEInTpxQ586dNWTIEL9+Lz179tTHH3+s+++/X82bN9fUqVOrrImLi9O4ceM0f/58zZ07V4mJiRo3bpwaNWrk1zlSU1P1l7/8RfHx8T7T+2+//VYLFixQWVmZmjRpovvuu08JCQmSpDFjxujmm29Wr169/DrHmV6voqIizZs3TwcPHlTDhg11zTXXqGPHjpJ++oTzOXPm6H//93/VtWtXde3a9bTnGDBggObNm6fFixfrlltu0U033eRXbYBpyGdf5POZkc9A6JHbvsjtMyO3w4/Nsiwr1EUAAAAAAAAEE5fAAAAAAAAA4zEAAQAAAAAAxmMAAgAAAAAAjMcABAAAAAAAGI8BCAAAAAAAMB4DEAAAAAAAYDwGIAAAAAAAwHgMQAAAAAAAgPEYgAAAAAAAAOMxAAEAAAAAAMZjAAIAAAAAAIzHAAQAAAAAABiPAQgAAAAAADAeAxAAAAAAAGA8BiAAAAAAAMB4DEAAAAAAAIDxGIAAAAAAAADjMQABAAAAAADGYwACAAAAAACMxwAEAAAAAAAYjwEIAAAAAAAwHgMQAAAAAABgPAYgAAAAAADAeAxAAAAAAACA8RiAAAAAAAAA4zEAAQAAAAAAxmMAAgAAAAAAjMcABAAAAAAAGI8BCAAAAAAAMB4DEAAAAAAAYDwGIAAAAAAAwHgMQAAAAAAAgPEYgAAAAAAAAOMxAAEAAAAAAMZjAAIAAAAAAIzHAAQAAAAAABiPAQgAAAAAADAeAxAAAAAAAGA8BiAAAAAAAMB4DEAAAAAAAIDxGIAAAAAAAADjMQABAAAAAADGYwACAAAAAACMxwAEAAAAAAAYjwEIAAAAAAAwHgMQAAAAAABgPAYgAAAAAADAeAxAAAAAAACA8RiAAAAAAAAA4zEAAQAAAAAAxmMAAgAAAAAAjMcABAAAAAAAGI8BCAAAAAAAMB4DEAAAAAAAYDwGIAAAAAAAwHgMQAAAAAAAgPEYgAAAAAAAAOMxAAEAAAAAAMZjAAIAAAAAAIzHAAQAAAAAABiPAQgAAAAAADAeAxAAAAAAAGA8BiAAAAAAAMB4DEAAAAAAAIDxGIAAAAAAAADjMQABAAAAAADGYwACAAAAAACMxwAEAAAAAAAYjwEIAAAAAAAwHgMQAAAAAABgPAYgAAAAAADAeAxAAAAAAACA8RiAAAAAAAAA4zEAAQAAAAAAxmMAAgAAAAAAjMcABAAAAAAAGI8BCAAAAAAAMB4DEAAAAAAAYDwGIAAAAAAAwHgMQAAAAAAAgPEYgAAAAAAAAOMxAAHqgD59+uiBBx4IdRkAAAAAUGcxAAlzmZmZstlsstlsstvtatmype655x795z//8VnXp08f77qf/3Ts2NFn3Y4dO/Twww+rbdu2atCggZo1a6Zu3bpp6tSpKikp8Xm+X/4P7j179mj48OFq06aNoqOj1axZM916660qKCjwWbdgwQLZbDZ17969Sj9t27bVpEmTzvG38hPLsjR37lx169ZNsbGxatiwobp27aq5c+fKsqwaOUdte+qpp9SmTZsqty9fvlzTp08P6rknTZp0yvfQz38WLFgQ1BrO5MUXX1SHDh0UExOjX/3qV7r33nu1Z8+ekNUDAAAAoG5hAFIH9OrVS0VFRfrxxx/12muvaePGjbr99turrBs0aJCKiop8fj766CPv/QUFBerSpYvy8vKUnZ2tjRs36rPPPtOTTz6pTZs2ad68eaetYceOHUpNTVVeXp5eeuklFRYW6t1331V0dLR69Oih9957z2e9zWbTpk2b9MYbb9TcL+IXMjMzNXr0aA0aNEhffPGFCgoKNHjwYI0ePVr33Xdf0M4bCk6nU40aNQrqOR555BGf907Pnj2rvKcGDhwY1BpO56233tLIkSM1ZswYbdmyRW+99ZY2bNige+65JyT1AAAAAKh7GIDUAdHR0UpMTFSLFi101VVX6cEHH9Snn36qgwcP+qw777zzlJiY6PPjcrkk/bRb4p577lHLli312Wef6bbbbtPFF1+s888/X9dee61ee+01/fGPfzxtDcOGDVN5ebk+/PBDXXfddWrdurW6deum119/XX379lVmZqaOHj3qXR8VFaXhw4crKytLJ06cqPHfyfLly7Vo0SLNmzdPo0aNUvv27dWuXTuNHDlSOTk5WrhwoZYvX+5dX1xcrPvuu08JCQlq0KCBLrzwQp+Bz7fffqvbbrtNTqdTMTEx6tSpk9555x1JP+1ocTgcPuffuXOnbDabVq9eLUlavXq1bDab/v73v6tbt25q0KCBOnbsqFWrVnkfY1mWfve73yk5OVnnnXeeLrjgAmVlZen48ePe80ycOFE//PCDd8fFyd0yv9yRU15ernHjxqlFixaKjo5Whw4d9Nprr/nUaLPZ9OKLL+ruu+9WXFycWrZsqWeeeea0v9PY2Fif9050dLT3PbV161a1aNHCZ5eQJC1atEiNGzfWkSNH9P3338tms2nx4sXq16+ft8dfDsH27NmjzMxMNWvWTHFxcbriiiu0Zs2a09YlSWvXrlWnTp30wAMPqE2bNrryyiv1+9//Xp999tkZHwcAAAAAJzEAqWN27dqlZcuWyW63y263+/24TZs26V//+pfGjh1b5X/Mn2Sz2U55+759+/Tuu+/q4YcfPuUuhPHjx2vPnj16//33fW5/7LHHdPDgQc2aNcvvOv316quvKjk5WXfccUeV+wYOHKjk5GQtXrxYknT06FH17t1bmzZt0pIlS7RlyxbNmjVLMTExkqTdu3crLS1N+/fv19tvv61//etfmjx5sqKiqv8fjzFjxujxxx/Xxo0b1b17d914440qKiqS9NMApHnz5nrttdf09ddf6/nnn9f8+fP19NNPe+seO3asWrZs6d1x8cgjj5zyPFlZWZo7d66ef/55bd68WYMHD9bgwYP1wQcf+Kz705/+pKuuukoFBQUaP368srKyqqzxR58+fdSuXbsqu4Tmzp2rQYMGqWHDht7bHn30UQ0ZMkQFBQUaNGiQ7rrrLm3cuFHST69Fenq6Dh06pH/84x/auHGjrr/+el199dX6+uuvT3v+K6+8Ul9//bVWr14ty7K0e/duLVu2TP379692LwAAAAAilIWwdu+991p2u91q2LChdd5551mSLEnWH/7wB591vXv3thwOh9WwYUOfn2HDhlmWZVlLly61JFlffPGFz+NatGjhXXvttdf6PN/9999vWZZlrV+/3pJkLV++/JQ1lpaWWpKsP//5z5ZlWdb8+fMtu91uWZZlPf/881bTpk2t0tJSy7IsKzk52XriiSfO+fdy8cUXWzfddNNp77/xxhutDh06WJZlWa+88opVv359a8eOHadcO2HCBCshIcE6fPjwKe//eT8n7dixw5Jkffjhh5ZlWdaHH35oSbJeeeUV75ry8nKrdevW1oQJE05b5/Tp0622bdt6jydPnmz9+te/rrLu56/HkSNHrOjoaGvOnDk+awYMGGClp6d7jyVZw4cP91lz0UUXWePGjTttPac7p2VZ1rRp06zWrVtblZWVlmVZ1tdff+3znvruu+8sSVX67dmzpzV48GDLsn76XbZo0cIqLy/3WZOenm6NHDnyjPW88sor1nnnnWc5HA5LktW/f3/r2LFjfvUCAAAAAOwAqQO6d++ugoICffbZZ5o4caJ69uypp556qsq6m2++WQUFBT4/TzzxhM8a6xcfDvrxxx+roKBA119/vc8lLDVl6NChcjqdp6z3VK677jrFxsZ6f2rChg0b1KFDB7Vs2fK096elpfnsYghUz549vf92OBzq1q2bvvrqK+9tc+fOVffu3ZWQkKDY2FiNHz9eP/zwQ7XOUVhYqBMnTuiqq67yub13794+55KkLl26+BwnJSUF/MGh9977/9u79+ioynv/459JhgRCQmBmIJiCogFU5HAJ44UgFCSlPV5q5KAIoiJaqxGQUisQRWiRQ6wGuVooxABeakSL1xY9gUNBIsotWkDKVSUlGCZDIIdwSbL37w8W82NMgBDIzGTP+7UWa2XP3jPP95vJPIQP+9n7QRUXF+uTTz6RJC1cuFA9evRQ9+7d/Y4783sgSb169fLVtX79eh04cEDNmzf3e5/XrFmjnTt3nnXsNWvWKCMjQy+++KI2btyov/3tb/r22281YsSIOvUCAAAAIPzUvBYCIaVJkyZq3769JKlz587avXu3Ro0apQULFvgd16xZM99xP9axY0dJ0jfffKPk5GTf41deeaXvucXFxTU+t3379rLZbNqyZYvuuuuuavtP/+P26quvrravUaNGyszM1H333aeRI0eer1UtXLiwVkFMx44dtWXLlrPu37Ztm7p06XLe16mNmpbCVFRUXPDrLF26VE888YQyMzP105/+VM2aNdPSpUv1zDPPXIoyaxQVFeW3bbPZZBhGnV7L6XRq0KBBWrBggfr3768lS5bUOtg6zTAMXXvttVq2bFm1faeXJNXkmWee0cCBA/XEE09Ikrp06aLY2Fj16dNHv//978/6cw8AAAAAp3EGSAM0efJk5eTkaMOGDbV+TteuXdW5c2dlZmZe8D/eHQ6Hbr31Vs2ZM6fahVcladq0aUpISNDPfvazGp8/aNAg9ejRQ+PHjz/vWD/5yU/Uvn1735+zGTZsmHbv3q3c3Nxq+3Jzc7V7924NGzZMktSjRw9t27ZNhYWFNb5Wjx49lJ+fr6NHj9a4v1WrVqqqqvI7c2LTpk01Hrtu3Trf15WVlfryyy/VqVMnSdLq1avVvXt3jR07Vj169FCHDh307bff+j0/KipKVVVVZ+1bOhVIRUdHV7tw6D/+8Y9qtz2+1H7961/rww8/1Pz583Xs2DENGTKk2jFnfg8kKT8/3/c9cLvd2rNnjy+sO/NPYmLiWcc9evRotSDq9DVwfnxWEwAAAADUhACkAerQoYPuuOOOamcOHDt2TAcOHPD7c/qsDpvNpsWLF6uwsFA33HCD3nnnHX3zzTfauXOn3n33XX322WfnvKjq3LlzZbfbdcstt2j58uXat2+f1q9fr6FDh2rlypVatGiRmjRpctbnZ2Vl6Z133tG///3vS/I9GDRokO677z49/PDDmjFjhnbu3Kldu3Zp1qxZeuSRR/TAAw9o4MCBkqQhQ4boiiuu0C9/+Uvl5eVp7969WrFihS88SU9Pl2EYuvPOO7V27Vrt3btXH330kf7+979Lkm644QbFxcVp/Pjx2rlzp5YvX64//OEPNdaVmZmpv/3tb/rmm2/0+OOP6+DBg0pPT5d06gyZf/7zn3r//fe1e/duzZw50+9ONdKpM3IOHDigzz//XB6PR+Xl5dXGiImJ0ejRozVx4kQtXbpUO3bs0H//93/r/fffV0ZGxiX5/p7NzTffrKuvvlpPPfWU7r33XsXFxVU7Jjs7W2+++aZ27Nih5557Tp9//rnGjh0rSbrvvvt05ZVX6rbbbtOnn36qb7/9Vl988YWmTZum995776zjpqWlKScnR4sXL9bevXu1Zs0ajRo1Sl26dFFSUlK99QsAAADAQoJ9ERKc24MPPmj279+/2uNr1671uwjnT3/6U98FUs/807RpU7/nfffdd+bjjz9uXnXVVWZUVJQZExNjduvWzXz22WfNH374wXfcjy+AaZqmWVRUZKanp5uXX3652ahRI9PpdJoDBw6sdmHVmi4aapqmOWjQIFPSJbkIqmmapmEY5rx580y32202adLEbNKkidmjRw9z/vz5pmEY1Wq///77TafTaUZHR5tXX321mZOT49v/r3/9y0xLSzObNWtmNmnSxOzSpYv58ccf+/Z/9NFH5jXXXGM2btzYTElJMZcvX17jRVDff/99Mzk52YyKijKvvfZa89NPP/W9xsmTJ81HH33UbNGihRkXF2cOGTLEnD17tnnmx/DkyZPmkCFDzBYtWvh9r378fpw8edIcN26cmZiYaDZq1Mi89tprzTfeeMOvZ0nma6+95vdY//79zQcffLBW39+afgZM89SFbSWZX375pd/jpy+CumTJEvOnP/2pGR0dbbZr165aXR6Px3zsscd8tScmJpppaWnVfo7OVFlZaU6dOtXs2LGj2bhxY/Oyyy4zhw4dan733Xe16gUAAAAAbKbJ+ePAxVq1apX69eunffv2nfViq1bx9NNP63/+5398t7Y97dtvv9WVV16pNWvW6Oabbw5SdQAAAABQMy6CCqBWDh8+rB07dujPf/6zZs2aFexyAAAAAOCCEIAAqJU777xTX3zxhe69917fBWYR3l555RVt2rRJ8fHxysrKqrbfNE3l5ORo8+bNio6OVnp6uq666qogVAoAOI25G0A44yKowCXQt29fmaZp6eUvq1at0rFjx5STk1PjrYHbtWsn0zRZ/hJG+vbte84L727evFkHDhzQrFmz9Oijj2rhwoUBrA4AUBPmbgDhjAAEAFAnnTp1Umxs7Fn3b9iwQX369JHNZlPHjh119OhRHTp0KIAVAgB+jLkbQDhjCQwAoF54vV65XC7fttPplNfrVYsWLaodm5eXp7y8PEmnbicNAAiO2s7dzNsAGqKwDkD2798f7BJq5HK55PF4gl3GJWGlXiT6CXWh3E9iYmKwSwhpqampSk1N9W2H6vx8qYTyz+qlQo/WEA49Mj/XDfO29dCjNYRDjxczb7MEBgBQLxwOh99fwCUlJXI4HEGsCABwPszdAKyMAAQAUC/cbrdWr14t0zS1Y8cOxcTE1Lj8BQAQOpi7AVhZWC+BAQDU3YwZM7Rt2zaVlZXpscce0z333KPKykpJ0oABA9S9e3dt2rRJo0ePVlRUlNLT04NcMQCAuRtAOCMAAQDUyZgxY86532az6ZFHHglQNQCA2mDuBhDOWAIDAAAAAAAsjwAEAAAAAABYXsgvgXnllVe0adMmxcfHKysrq9p+0zSVk5OjzZs3Kzo6Wunp6brqqquCUCkAAAAAAAhVIX8GSN++fZWRkXHW/Zs3b9aBAwc0a9YsPfroo1q4cGEAqwMAAAAAAA1ByAcgnTp1Umxs7Fn3b9iwQX369JHNZlPHjh119OhRHTp0KIAVAgAAAACAUBfyS2DOx+v1yuVy+badTqe8Xm+N9yvPy8tTXl6eJCkzM9PveaHEbreHbG0Xykq9SPQT6qZObSTDSKj3cSZOrKr3MQAAAABcWg0+ALkQqampSk1N9W17PJ4gVnN2LpcrZGu7UFbqRaKfUGcYCSovL6/3cTyesgt+TmJiYj1UAgAAAKC2Qn4JzPk4HA6/f8CVlJTI4XAEsSIAAAAAABBqGnwA4na7tXr1apmmqR07digmJqbG5S8AAAAAACB8hfwSmBkzZmjbtm0qKyvTY489pnvuuUeVlZWSpAEDBqh79+7atGmTRo8eraioKKWnpwe5YgAAAAAAEGpCPgAZM2bMOffbbDY98sgjAaoGAAAAlsPz+gAAIABJREFUAAA0RA1+CQwAAAAAAMD5EIAAAAAAAADLIwABAAAAAACWRwACAAAAAAAsjwAEAAAAAABYHgEIAAAAAACwPAIQAAAAAABgeQQgAAAAAADA8ghAAAAAAACA5RGAAAAAAAAAyyMAAQAAAAAAlkcAAgAAAAAALI8ABAAAAAAAWB4BCAAAAAAAsDwCEAAAAAAAYHkEIAAAAAAAwPIIQAAAAAAAgOURgAAAAAAAAMsjAAEAAAAAAJZHAAIAAAAAACyPAAQAAAAAAFgeAQgAAAAAALA8AhAAAAAAAGB5BCAAAAAAAMDyCEAAAAAAAIDlEYAAAAAAAADLswe7AABAw1VQUKCcnBwZhqH+/fsrLS3Nb7/H49HcuXN19OhRGYahoUOHKjk5OUjVAgCYtwGEMwIQAECdGIah7OxsPfvss3I6nZowYYLcbrfatGnjO+bdd99Vz549NWDAABUWFmratGn8Ig0AQcK8DSDcsQQGAFAnu3btUuvWrZWQkCC73a6UlBStX7/e7xibzaby8nJJUnl5uVq0aBGMUgEAYt4GAM4AAQDUidfrldPp9G07nU7t3LnT75i7775bzz//vJYvX64TJ05o4sSJNb5WXl6e8vLyJEmZmZlyuVz1V3gIsNvt9GgB9IiGhnm77sLhs0CP1hAOPV4MAhAAQL1Zu3at+vbtqzvuuEM7duzQ7NmzlZWVpYgI/xMQU1NTlZqa6tv2eDyBLjWgXC4XPVoAPVpDYmJisEsIKczbNQuHzwI9WkM49Hgx8zZLYAAAdeJwOFRSUuLbLikpkcPh8Dtm5cqV6tmzpySpY8eOqqioUFlZWUDrBACcwrwNINwRgAAA6iQpKUlFRUUqLi5WZWWl8vPz5Xa7/Y5xuVzasmWLJKmwsFAVFRVq1qxZMMoFgLDHvA0g3LEEBgBQJ5GRkRoxYoSmTp0qwzDUr18/tW3bVrm5uUpKSpLb7dYDDzyg+fPn6+OPP5Ykpaeny2azBblyAAhPzNsAwh0BCACgzpKTk6vdHnHw4MG+r9u0aaMpU6YEuiwAwFkwbwMIZw0iACkoKFBOTo4Mw1D//v2Vlpbmt9/j8Wju3Lk6evSoDMPQ0KFDuV85AAAAAADwCfkAxDAMZWdn69lnn5XT6dSECRPkdrvVpk0b3zHvvvuuevbsqQEDBqiwsFDTpk0jAAEAAAAAAD4hfxHUXbt2qXXr1kpISJDdbldKSorWr1/vd4zNZlN5ebkkqby8XC1atAhGqQAAAAAAIESF/BkgXq9XTqfTt+10OrVz506/Y+6++249//zzWr58uU6cOKGJEyfW+Fp5eXnKy8uTJGVmZsrlctVf4RfBbreHbG0Xykq9SPQT6iIiIhQTE1Pv47hc0fU+BgAAAIBLK+QDkNpYu3at+vbtqzvuuEM7duzQ7NmzlZWVpYgI/xNcUlNTlZqa6tv2eDyBLrVWXC5XyNZ2oazUi0Q/oc4wEnxng9Unj6fsgp+TmJhYD5UAAAAAqK2QXwLjcDhUUlLi2y4pKZHD4fA7ZuXKlerZs6ckqWPHjqqoqFBZ2YX/AwUAAAAAAFhTyAcgSUlJKioqUnFxsSorK5Wfny+32+13jMvl0pYtWyRJhYWFqqioULNmzYJRLgAAAAAACEEhvwQmMjJSI0aM0NSpU2UYhvr166e2bdsqNzdXSUlJcrvdeuCBBzR//nx9/PHHkqT09HTZbLYgVw4AAAAAAEJFyAcgkpScnFzttraDBw/2fd2mTRtNmTIl0GUBAAAAAIAGIuSXwAAAAAAAAFwsAhAAAAAAAGB5BCAAAAAAAMDyCEAAAAAAAIDlEYAAAAAAAADLIwABAAAAAACWRwACAAAAAAAsjwAEAAAAAABYHgEIAAAAAACwPAIQAAAAAABgeQQgAAAAAADA8ghAAAAAAACA5RGAAAAAAAAAyyMAAQAAAAAAlkcAAgAAAAAALI8ABAAAAAAAWB4BCAAAAAAAsDwCEAAAAAAAYHkEIAAAAAAAwPIIQAAAAAAAgOURgAAAAAAAAMsjAAEAAAAAAJZHAAIAAAAAACyPAAQAAAAAAFgeAQgAAAAAALA8AhAAAAAAAGB5BCAAAAAAAMDyAhKArF+/XlVVVYEYCgAAAAAAoBp7IAZ5++23NW/ePKWkpKhPnz7q0KFDIIYFANSzgoIC5eTkyDAM9e/fX2lpadWOyc/P19KlS2Wz2XTFFVfoySefDEKlAACJeRtAeAtIAPLiiy/q22+/1Zo1a5SVlaXo6Gj16dNHvXv3VqtWrQJRAgDgEjMMQ9nZ2Xr22WfldDo1YcIEud1utWnTxndMUVGR3nvvPU2ZMkWxsbE6fPhwECsGgPDGvA0g3AUkAJGkdu3aqV27dho2bJj++c9/6rXXXtPbb7+ta665RqmpqerVq5ciIrgkCQA0FLt27VLr1q2VkJAgSUpJSdH69ev9fpFesWKFfv7znys2NlaSFB8fH5RaAQDM2wAQsABEkg4cOKA1a9ZozZo1stlsGjx4sFwul5YvX64vvvhCTz31VCDLAQBcBK/XK6fT6dt2Op3auXOn3zH79++XJE2cOFGGYejuu+9Wt27dAlonAOAU5m0A4S4gAcjy5cu1Zs0aFRUVKSUlRSNHjlTHjh19+2+88UY98sgjgSgFABBAhmGoqKhIkyZNktfr1aRJk/TSSy+padOmfsfl5eUpLy9PkpSZmSmXyxWMcgPGbrfTowXQI6yIebtm4fBZoEdrCIceL0ZAApCCggLdfvvtcrvdatSoUbX90dHRnP0BAA2Mw+FQSUmJb7ukpEQOh6PaMR06dJDdblerVq102WWXqaioSO3bt/c7LjU1Vampqb5tj8dTv8UHmcvlokcLoEdrSExMDHYJAcO8XXfh8FmgR2sIhx4vZt4OyEU3xo4dq+uvv94v/KisrFRFRYVvu2vXroEoBQBwiSQlJamoqEjFxcWqrKxUfn6+3G633zE33HCDtm7dKkk6cuSIioqKfGvPAQCBxbwNINwF5AyQqVOn6r777vNb9rJnzx69+eabmjx58jmfy626ACA0RUZGasSIEZo6daoMw1C/fv3Utm1b5ebmKikpSW63W127dtVXX32l3/zmN4qIiNCwYcMUFxcX7NIBICwxbwMIdwEJQL777jt16NDB77H27dvru+++O+fzuFUXAIS25ORkJScn+z02ePBg39c2m00PPvigHnzwwUCXBgCoAfM2gHAWkCUwTZs2rRZMHD58WNHR0ed83pm36rLb7b5bdZ2JW3UBAAAAAIDzCcgZIDfeeKNmzpyphx56SAkJCfrhhx+0ePFi9ezZ85zPu9S36mooV6u20pV7rdSLRD+hLiIiQjExMfU+jst17vAWAAAAQOgJSABy7733asmSJcrIyFBFRYWioqLUt29fDRky5KJfu7a36pIaztWqrXTlXiv1ItFPqDOMBJWXl9f7OB5P2QU/J5zuMgAAAACEooAEIFFRUXrkkUf08MMPq6ysTHFxcbLZbOd93qW8VRcAAAAAAAhfAbkGiCSVl5dr9+7d+v7777V161Zt2bJFW7ZsOedzuFUXAAAAAAC4FAJyBsiqVauUnZ2txo0bKyoqyve4zWbTnDlzzvo8btUFAAAAAAAuhYAEIH/5y180duxYde/e/YKfy626AAAAAADAxQrIEhjDMNS1a9dADAUAAAAAAFBNQAKQO++8U++++64MwwjEcAAAAAAAAH4CsgTm448/VmlpqT744APFxsb67fvTn/4UiBIAAAAAAEAYC0gAMmrUqEAMAwAAAAAAUKOABCCdOnUKxDAAAAAAAAA1CkgAUlFRoXfeeUdr165VWVmZFi9erK+++kpFRUX6xS9+EYgSAAAAAABAGAvIRVAXL16sffv2afTo0bLZbJKktm3b6tNPPw3E8AAAAAAAIMwF5AyQL7/8UrNmzVLjxo19AYjD4ZDX6w3E8AAAAAAAIMwF5AwQu91e7Ra4R44cUVxcXCCGBwAAAAAAYS4gAchNN92kOXPmqLi4WJJ06NAhZWdnKyUlJRDDAwAAAACAMBeQAGTo0KFq1aqVfvvb36q8vFyjR49WixYtdPfddwdieAAAAAAAEOYCcg0Qu92u4cOHa/jw4b6lL6evBQIAAAAAAFDfAhKA/PDDD37bx44d832dkJAQiBIAAAAAAEAYC0gAMnr06LPuy83NDUQJAAAAAAAgjAUkAPlxyFFaWqqlS5fq2muvDcTwAAAAAAAgzAXkIqg/1rx5cw0fPlxvvvlmMIYHAAAAAABhJigBiCTt379fJ06cCNbwAAAAAAAgjARkCcxzzz3nd9eXEydOaN++fRo0aFAghgcAAAAAAGEuIAHILbfc4rfduHFjXXHFFbrssssCMTwAAAAAAAhzAQlA+vbtG4hhAAAAAAAAahSUu8CczeDBg+u5EgAAAAAAEI4CEoAUFRXpiy++UPv27eVyueTxeLRr1y7deOONioqKCkQJAAAAAAAgjAUkAJGkJ598UjfddJNv+4svvtDnn3+u9PT0QJUAAAAAAADCVEBug7t582bdcMMNfo+53W5t3rw5EMMDAAAAAIAwF5AApHXr1lq+fLnfY59++qlat24diOEBAAAAAECYC8gSmMcee0wvvfSSPvjgAzkcDnm9XkVGRuq3v/1tIIYHAAAAAABhLiAByJVXXqmZM2dq586dOnTokJo3b66OHTvKbg/YJUgAAAAAAEAYC8gSmB/r1KmTKisrdfz48WAMDwAAAAAAwkxATsH4/vvv9cILL6hRo0YqKSlRSkqKtm3bpn/84x/6zW9+E4gSAAAAAABAGAvIGSALFizQ4MGDNWPGDN+yl06dOmn79u2BGB4AAAAAAIS5gAQghYWF6t27t99jjRs31smTJwMxPACgnhQUFOjJJ5/UqFGj9N577531uHXr1umee+7R7t27A1gdAODHmLcBhLOABCAtW7bUnj17/B7btWsXt8EFgAbMMAxlZ2crIyNDL7/8stauXavCwsJqxx07dkx///vf1aFDhyBUCQA4jXkbQLgLSAAyePBgZWZm6u2331ZlZaWWLVum6dOn69577w3E8ACAenA6yE5ISJDdbldKSorWr19f7bjc3FzdeeedatSoURCqBACcxrwNINwFJADp0aOHMjIydOTIEXXq1EkHDx7UU089pa5duwZieABAPfB6vXI6nb5tp9Mpr9frd8yePXvk8XiUnJwc6PIAAD/CvA0g3NX7XWAMw9CTTz6p6dOn65FHHqnTaxQUFCgnJ0eGYah///5KS0ur8bh169Zp+vTpmjZtmpKSki6mbADARTIMQ0uWLFF6evp5j83Ly1NeXp4kKTMzUy6Xq77LCyq73U6PFkCPsBrm7bMLh88CPVpDOPR4Meo9AImIiFBERIQqKirqdBrd6bWKzz77rJxOpyZMmCC32602bdr4HcdaRQAILIfDoZKSEt92SUmJHA6Hb/v48ePat2+ffv/730uSSktL9cc//lFPP/10tZA6NTVVqampvm2Px1PP1QeXy+WiRwugR2tITEwMdgkBw7xdd+HwWaBHawiHHi9m3q73AESSbr31Vr388su666675HA4ZLPZfPsSEhLO+dwz1ypK8q1V/HEAcnqt4gcffHDpGwAAVJOUlKSioiIVFxfL4XAoPz9fo0eP9u2PiYlRdna2b3vy5Mm6//77OUMPAIKEeRtAuKvXAKS0tFTNmzfXq6++Kkn6+uuvqx2Tm5t7zteoaa3izp07/Y45c60iAQgABEZkZKRGjBihqVOnyjAM9evXT23btlVubq6SkpLkdruDXSIA4AzM2wDCXb0GIE8++aQWL17sCzlefPFF/e53v7ukY1hxraKV1m1ZqReJfkJdRESEYmJi6n0clyu63sdoKJKTk6tdKG/w4ME1Hjt58uQAVAQAOBfmbQDhrF4DENM0/ba3bdt2wa8RjmsVrbRuy0q9SPQT6gwjQeXl5fU+jsdTdsHPCac15gAAAEAoqtcA5MxrfdQVaxUBAAAAAMDFqtcApKqqSlu2bPFtG4bhty1JnTt3PudrsFYRAAAAAABcrHoNQOLj4/WnP/3Jtx0bG+u3bbPZNGfOnPO+DmsVAQAAAADAxajXAGTu3Ln1+fIAAAAAAAC1EhHsAgAAAAAAAOobAQgAAAAAALA8AhAAAAAAAGB5BCAAAAAAAMDyCEAAAAAAAIDlEYAAAAAAAADLIwABAAAAAACWRwACAAAAAAAsjwAEAAAAAABYHgEIAAAAAACwPAIQAAAAAABgeQQgAAAAAADA8ghAAAAAAACA5RGAAAAAAAAAyyMAAQAAAAAAlkcAAgAAAAAALI8ABAAAAAAAWB4BCAAAAAAAsDwCEAAAAAAAYHkEIAAAAAAAwPIIQAAAAAAAgOURgAAAAAAAAMsjAAEAAAAAAJZHAAIAAAAAACyPAAQAAAAAAFgeAQgAAAAAALA8AhAAAAAAAGB5BCAAAAAAAMDyCEAAAAAAAIDlEYAAAAAAAADLIwABAAAAAACWRwACAAAAAAAszx7sAgAADVdBQYFycnJkGIb69++vtLQ0v/0fffSRVqxYocjISDVr1kyPP/64WrZsGaRqAQDM2wDCGWeAAADqxDAMZWdnKyMjQy+//LLWrl2rwsJCv2PatWunzMxMvfTSS7rpppv0+uuvB6laAADzNoBwF/JngJBSA0Bo2rVrl1q3bq2EhARJUkpKitavX682bdr4juncubPv6w4dOmjNmjUBrxMAcArzNoBwF9JngJBSA0Do8nq9cjqdvm2n0ymv13vW41euXKlu3boFojQAQA2YtwGEu5A+A4SUGgCsYfXq1dqzZ48mT55c4/68vDzl5eVJkjIzM+VyuQJYXeDZ7XZ6tAB6hJUxb/sLh88CPVpDOPR4MUI6AKkppd65c+dZjyelBoDAcTgcKikp8W2XlJTI4XBUO+7rr7/WsmXLNHnyZDVq1KjG10pNTVVqaqpv2+PxXPqCQ4jL5aJHC6BHa0hMTAx2CQHDvF134fBZoEdrCIceL2beDukA5EKcL6WWGk5SbaXUzkq9SPQT6iIiIhQTE1Pv47hc0fU+RkOQlJSkoqIiFRcXy+FwKD8/X6NHj/Y7Zu/evVqwYIEyMjIUHx8fpEoBABLzNgCEdAByKVNqqeEk1VZK7azUi0Q/oc4wElReXl7v43g8ZRf8HCv+D2NkZKRGjBihqVOnyjAM9evXT23btlVubq6SkpLkdrv1+uuv6/jx45o+fbqkUz9z48aNC3LlABCemLcBhLuQDkBIqQEgtCUnJys5OdnvscGDB/u+njhxYqBLAgCcA/M2gHAW0gEIKTUAAAAAALgUQjoAkUipAQAAAADAxYsIdgEAAAAAAAD1jQAEAAAAAABYHgEIAAAAAACwPAIQAAAAAABgeQQgAAAAAADA8ghAAAAAAACA5RGAAAAAAAAAyyMAAQAAAAAAlkcAAgAAAAAALI8ABAAAAAAAWB4BCAAAAAAAsDwCEAAAAAAAYHkEIAAAAAAAwPIIQAAAAAAAgOURgAAAAAAAAMsjAAEAAAAAAJZHAAIAAAAAACyPAAQAAAAAAFgeAQgAAAAAALA8AhAAAAAAAGB5BCAAAAAAAMDyCEAAAAAAAIDlEYAAAAAAAADLIwABAAAAAACWRwACAAAAAAAsjwAEAAAAAABYHgEIAAAAAACwPAIQAAAAAABgeQQgAAAAAADA8ghAAAAAAACA5RGAAAAAAAAAyyMAAQAAAAAAlkcAAgAAAAAALI8ABAAAAAAAWB4BCAAAAAAAsDx7sAuojYKCAuXk5MgwDPXv319paWl++ysqKjRnzhzt2bNHcXFxGjNmjFq1ahWkagEgfDA/A0DDwrwNIJyF/BkghmEoOztbGRkZevnll7V27VoVFhb6HbNy5Uo1bdpUs2fP1m233aY33ngjSNUCQPhgfgaAhoV5G0C4C/kAZNeuXWrdurUSEhJkt9uVkpKi9evX+x2zYcMG9e3bV5J00003acuWLTJNMwjVAkD4YH4GgIaFeRtAuAv5AMTr9crpdPq2nU6nvF7vWY+JjIxUTEyMysrKAlonAIQb5mcAaFiYtwGEuwZxDZBLJS8vT3l5eZKkzMxMJSYmBrmiswvl2i6UlXqR6CeUTZkiSXEBGCkQY4SXhjQ/Xyr0aA30iHDFvG1N9GgN4dBjXYX8GSAOh0MlJSW+7ZKSEjkcjrMeU1VVpfLycsXFVf8HSmpqqjIzM5WZmVm/RV+k8ePHB7uES8ZKvUj0E+qs1k+oq6/5ORzeR3q0Bnq0hnDo8TTm7bqjR2ugR2u4mB5DPgBJSkpSUVGRiouLVVlZqfz8fLndbr9jevTooVWrVkmS1q1bp+uuu042my0I1QJA+GB+BoCGhXkbQLgL+SUwkZGRGjFihKZOnSrDMNSvXz+1bdtWubm5SkpKktvt1i233KI5c+Zo1KhRio2N1ZgxY4JdNgBYHvMzADQszNsAwl3IByCSlJycrOTkZL/HBg8e7Ps6KipKY8eODXRZ9SY1NTXYJVwyVupFop9QZ7V+GoL6mJ/D4X2kR2ugR2sIhx7PxLxdN/RoDfRoDRfTo83kvlYAAAAAAMDiQv4aIAAAAAAAABerQSyBCVcffvihXnvtNS1cuFDNmjULdjl19tprr2njxo2y2+1KSEhQenq6mjZtGuyyLlhBQYFycnJkGIb69++vtLS0YJdUJx6PR3PnzlVpaalsNptSU1N16623Brusi2YYhsaPHy+HwxEWV7+2gvN9pioqKjRnzhzt2bNHcXFxGjNmjFq1ahWkauvmfD1+9NFHWrFihSIjI9WsWTM9/vjjatmyZZCqrZvazo3r1q3T9OnTNW3aNCUlJQW4yotTmx7z8/O1dOlS2Ww2XXHFFXryySeDUGndna/H0393HD16VIZhaOjQodWWUYSyV155RZs2bVJ8fLyysrKq7TdNUzk5Odq8ebOio6OVnp6uq666KgiVhjbmbebthoJ5m3n7rEyEpIMHD5rPP/+8+fjjj5uHDx8OdjkXpaCgwKysrDRN0zRfe+0187XXXgtyRReuqqrKHDlypHngwAGzoqLCfOqpp8x9+/YFu6w68Xq95u7du03TNM3y8nJz9OjRDbaXM3344YfmjBkzzGnTpgW7FNRCbT5Ty5cvN+fPn2+apml+9tln5vTp04NRap3Vpsd//vOf5vHjx03TNM1PPvnEkj2a5qm55rnnnjMzMjLMXbt2BaHSuqtNj/v37zd/97vfmWVlZaZpmmZpaWkwSq2z2vQ4b94885NPPjFN0zT37dtnpqenB6PUOtu6dau5e/duc+zYsTXu37hxozl16lTTMAzzX//6lzlhwoQAVxj6mLdPYd4OfczbpzBv14wlMCFq8eLFuu+++yxx27GuXbsqMjJSktSxY0d5vd4gV3Thdu3apdatWyshIUF2u10pKSlav359sMuqkxYtWvjS0SZNmugnP/lJg3xPzlRSUqJNmzapf//+wS4FtVSbz9SGDRvUt29fSdJNN92kLVu2yGxAl62qTY+dO3dWdHS0JKlDhw4N7rNY27kxNzdXd955pxo1ahSEKi9ObXpcsWKFfv7znys2NlaSFB8fH4xS66w2PdpsNpWXl0uSysvL1aJFi2CUWmedOnXyvT812bBhg/r06SObzaaOHTvq6NGjOnToUAArDH3M26cwb4c+5u1TmLdrRgASgtavXy+Hw6F27doFu5RLbuXKlerWrVuwy7hgXq9XTqfTt+10OhvcX3g1KS4u1t69e9W+fftgl3JRFi1apGHDhlkiMAwXtflMnXlMZGSkYmJiVFZWFtA6L8aFzhsNcX6sTY979uyRx+NpUKfdnqk2Pe7fv19FRUWaOHGinnnmGRUUFAS6zItSmx7vvvturVmzRo899pimTZumESNGBLrMeuX1euVyuXzbVvl7/lJi3q6OeTs0MW+fwrxdM64BEiRTpkxRaWlptcfvvfdeLVu2TM8++2wQqqq7c/Vz/fXXS5L++te/KjIyUr179w50eajB8ePHlZWVpeHDhysmJibY5dTZxo0bFR8fr6uuukpbt24NdjlAnaxevVp79uzR5MmTg13KJWUYhpYsWaL09PRgl1KvDMNQUVGRJk2aJK/Xq0mTJumll15qkNe7Opu1a9eqb9++uuOOO7Rjxw7Nnj1bWVlZiojg/9IQnpi3Gzbm7fBFABIkEydOrPHx77//XsXFxfrd734n6dSp/ePGjdO0adPUvHnzQJZ4Qc7Wz2mrVq3Sxo0b9dxzzzXI/6V3OBwqKSnxbZeUlMjhcASxootTWVmprKws9e7dWzfeeGOwy7ko//rXv7RhwwZt3rxZJ0+e1LFjxzRr1iyNHj062KXhHGrzmTp9jNPpVFVVlcrLyxUXFxfoUuustvPG119/rWXLlmny5MkN7lTj8/V4/Phx7du3T7///e8lSaWlpfrjH/+op59+usFcUK+2P6sdOnSQ3W5Xq1atdNlll6moqKjBnF1Xmx5XrlypjIwMSaeWs1ZUVKisrKzBnTZ+Ng6HQx6Px7fd0P+erw/M2/8f83ZoY94+hXm7ZuEd/4Sgyy+/XAsXLtTcuXM1d+5cOZ1OvfDCCyEdfpxPQUGB3n//fY0bN863ZrKhSUpKUlFRkYqLi1VZWan8/Hy53e5gl1Unpmlq3rx5+slPfqLbb7892OVctKFDh2revHmaO3euxowZo86dOxN+NAC1+Uz16NFDq1atknTqSvTXXXddgwpQa9Pj3r17tWDBAj399NMN8heS8/UYExOj7Oxs399pHTp0aFC/REu1ex9vuOEG3xloR44cUVFRkRISEoJRbp3UpkeXy6UtW7ZIkgoLC1VRUdGg71D3Y263W6tXr5ZpmtqxY4diYmIa3Hr5+sa8fQrzduhj3j6FebtmNrMhXZkoDD3xxBOaNm1ag/5hHTVqlCorK30XsenQoYMeffTRIFd14TZt2qTFixfIIT4TAAALqElEQVTLMAz169dPAwcODHZJdbJ9+3Y999xzuvzyy32/lAwZMqTBrvM809atW/Xhhx9yG9wGoqbPVG5urpKSkuR2u3Xy5EnNmTNHe/fuVWxsrMaMGdOgfjmRzt/jlClT9P333/tCbpfLpXHjxgW56gtzvh7PNHnyZN1///0N6hdp6fw9mqapJUuWqKCgQBERERo4cKB69eoV7LIvyPl6LCws1Pz583X8+HFJ0rBhw9S1a9cgV117M2bM0LZt23z/+3nPPfeosrJSkjRgwACZpqns7Gx99dVXioqKUnp6eoP7OQ0E5m3m7YaCeZt5+2wIQAAAAAAAgOWxBAYAAAAAAFgeAQgAAAAAALA8AhAAAAAAAGB5BCAAAAAAAMDyCEAAAAAAAIDlEYBAf/7zn/XOO+/4tj/99FP96le/0v3336+ysjJt375do0eP1v33368vv/wyiJVa3+TJk7VixYpgl3HJbd26VY899liwywAAAAAQxuzBLgD164knnlBpaakiIyMVERGhNm3aqE+fPkpNTVVExKn869FHH/UdX1lZqcWLF2vq1Klq166dJOntt9/WL37xC916663BaKHBePvtt3XgwAGNHj062KWEvCeeeEK//vWv1aVLl2CXAgAAACBMEICEgXHjxqlLly4qLy/Xtm3blJOTo127dik9Pb3asYcPH1ZFRYXatm3re+zgwYNq06ZNncauqqpSZGRknWu3EtM0ZZqmL3gKRbxfAAAAAKyKACSMxMTEyO12q3nz5nrmmWd0++236/LLL9fcuXPldDrVp08fjRs3TpI0fPhwtW/fXh6PR8XFxXrhhRcUERGhV199VRUVFVq8eLE2b94sm82mfv366Z577lFERIRWrVqlFStWKCkpSatXr9aAAQP0X//1X/rLX/6izz//XJWVlbr++us1fPhwRUVFaevWrZo9e7Zuu+02vf/++4qIiNCQIUPUr18/SdLJkyf11ltvad26dTp69Kguv/xyTZw4UVFRUdqxY4eWLFmiwsJCtWzZUsOHD9d1111Xq++Fx+PRokWL9M0338g0TfXq1UsPP/ywDMPQsmXLtGLFCp08eVLdunXTiBEjFBMTo+LiYo0cOVLp6enKzc3VyZMnddttt2ngwIEqKCjQsmXLJEnr169X69at9eKLL2ry5Mm6+uqrtW3bNu3Zs0dZWVk6fPiwFi1apP379ysxMVHDhw/X1Vdffc56vV6vRo0apfnz5ys2NlaStHfvXj3//POaP3++PB6P/vSnP+nbb7+V3W5X586d9Zvf/Oa834cLfb+OHDmiV155Rdu3b5fNZlPbtm01efJkRURE6J577tGsWbPUunVrSfL9XN17771+Y86ePVsej8f3MzVo0CDdeeedtXrfAAAAAKCuCEDCUPv27eVwOLR9+3ZdfvnlvscTExOVlZWlkSNHatGiRb4zAX68XGHGjBmKj4/XrFmzdOLECWVmZsrpdOpnP/uZJGnnzp1KSUnRggULVFVVpTfeeEM//PCDXnzxRUVGRmrmzJl65513NHToUElSaWmpysvLNW/ePH399deaPn26rr/+esXGxvoCjueff17NmzfXzp07ZbPZ5PV6lZmZqZEjR6pbt27asmWLsrKyNGPGDDVr1kzvvfeetm/frvHjx1fr3zAMvfDCC7ruuus0d+5cRUREaM+ePZJOBQKrVq3SpEmTFB8frzlz5ig7O1ujRo3yPX/79u2aOXOm9u/fr4yMDN1www3q1q2b7rrrrhqXwKxevVoZGRlKTExUWVmZJkyYoIceeki9evXS559/rszMTM2aNUtxcXFnfc8cDoc6duyodevWKTU1VZL02Wef6cYbb5Tdbtdbb72lrl27atKkSaqsrPT1UxsX8n599NFHcjgcWrhwoe+5Nput1mNJ0qhRo7R9+3aWwAAAAAAIqNA9Fx/1yuFw6P/+7/8u+HmlpaXavHmzhg8frsaNGys+Pl633Xab8vPzfce0aNFC//mf/6nIyEg1atRIK1as0IMPPqjY2Fg1adJEAwcO1Nq1a33HR0ZGatCgQbLb7UpOTlbjxo21f/9+GYah//3f/9Xw4cPlcDgUERGhq6++Wo0aNdLq1avVvXt3JScnKyIiQl26dFFSUpI2bdokSUpLS6sx/JCkXbt2yev16v7771fjxo0VFRWla665RtKpUOH2229XQkKCGjdurKFDhyo/P19VVVW+5999992KiopSu3btdMUVV+i777475/esb9++atu2rSIjI/X111+rdevW6tOnjyIjI3XzzTcrMTFRGzduPO/3/uabb/Z930zTVH5+vm6++WZJkt1u18GDB3Xo0CG/fmrjQt6vyMhIlZaWyuPxyG6369prr73gAAQAAAAAgoEzQMKU1+v1LaW4EB6PR1VVVX4XTjVNU06n07ftcrl8Xx85ckQnTpzwCyNM05RhGL7tuLg4v+tOREdH6/jx4yorK1NFRYVvScWP61i3bp1fcFBVVVWrJTAej0ctW7as8VoXhw4dUsuWLf16qaqq0uHDh32PNW/evFqt53Lm98br9fq9viS1bNlSXq/3vHXfeOONevXVV3Xo0CEVFRXJZrPp2muvlSQNGzZMb731ljIyMtS0aVPdfvvtuuWWW877mqd7PO1879cvf/lLLV26VM8//7wkKTU1VWlpabUaBwAAAACCiQAkDJ0+A+JCzhI4zel0ym63Kzs7u1YXy4yLi1NUVJSmT58uh8NxQWPFxcWpUaNGOnDggO+ONGfW0bt37zrdWtXlcvmCnB/30KJFCx08eNC37fF4FBkZqfj4eJWUlJzzdc92JsSZjzscDn3xxRd++z0ej7p163beumNjY9W1a1fl5+fr3//+t1JSUnyv3bx5c9/3Yvv27ZoyZYo6depUY3h0Lud7v5o0aaIHHnhADzzwgL7//nv94Q9/UFJSkv7jP/5D0dHROnHihO/Y0tJSv/AHAAAAAIKJJTBhpLy8XBs3btTMmTPVu3dvv+t/1FaLFi3UtWtXLVmyROXl5TIMQwcOHNC2bdtqPD4iIkL9+/fXokWLfGdReL1eFRQUnHesiIgI9evXT0uWLJHX65VhGNqxY4cqKirUu3dvbdy4UQUFBTIMQydPntTWrVvPG1JIp66B0qJFC73xxhs6fvy4Tp48qe3bt0uSevXqpY8//ljFxcU6fvy4/vKXv6hnz561Cnvi4+N18OBBv7Nbfqx79+4qKirSZ599pqqqKuXn56uwsFDJycnnfX3p1DKY1atXa926db7lL5L0+eef+3pv2rSppLMHMudyvvdr48aNOnDggEzTVExMjCIiInzjtGvXTp999pkMw1BBQcFZfyakU4FNcXHxBdcHAAAAAHXFGSBh4IUXXlBkZKRsNpvatGmj2267TQMGDKjz640cOVJvvPGGxo4dq2PHjikhIeGcd/G477779M477+iZZ55RWVmZHA6Hfvazn9XqrIcHHnhAb775piZMmKDjx4+rXbt2euaZZ+RyufT000/r9ddf18yZMxUREaH27dvrV7/6lSTpr3/9q7Zv366MjIxqrxkREaFx48bp1VdfVXp6umw2m3r16qVrrrlG/fr106FDhzRp0iSdPHlSXbt21YgRI2r1fenZs6fWrFmjhx9+WK1atdILL7xQ7Zi4uDiNHz9eOTk5WrBggVq3bq3x48erWbNmtRrD7XZr3rx5crlcfmfF7N69W4sWLVJ5ebmaN2+uhx56SAkJCZKksWPH6q677lLv3r1rNca53q+ioiK9+uqrOnLkiJo2baoBAwaoc+fOkk7dOWju3Ln65JNPdP311+v6668/6xhpaWl69dVX9frrr2vgwIH65S9/WavaAAAAAKCubKZpmsEuAgAAAAAAoD6xBAYAAAAAAFgeAQgAAAAAALA8AhAAAAAAAGB5BCAAAAAAAMDyCEAAAAAAAIDlEYAAAAAAAADLIwABAAAAAACWRwACAAAAAAAsjwAEAAAAAABY3v8D6JTQlLHnjyMAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -948,12 +948,12 @@ "\n", "stats = []\n", "for params, ax in zip(aggregate_list, axes.ravel()):\n", - " s, f = process_control(**params)\n", + " s, f, diff = process_control(summary_df, **params)\n", " stats.append(s)\n", " \n", " ax.set_title(f\"{params['geography']} - {params['name']}\")\n", " ax.set_ylabel('Frequency'); ax.set_xlabel('Difference: control vs. result')\n", - " ax.scatter(f.index, f)\n", + " ax.hist(diff, bins=10, range=(-5,5), alpha=0.5)\n", "\n", "summary_fig.savefig(os.path.join(validation_dir, 'frequencies.pdf'))\n", "stats_df = pd.DataFrame(stats)\n", @@ -974,7 +974,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkgAAAQMCAYAAABtB2bvAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOzce1yV153v8c/mslEuBhQhQfCGKV4iGiQBaRwvKC89jqdONZrUop7SOPGWIqJ2VIytVpNojTPVtHa8jZoENXRMnRyjQSQmmYhiNd4Sp+B4IUjt3jFF5Lb3Zp0/GPcJ20tIIhLD9/165fXKfp79rLV+6+HydT1rYzHGGERERETEzau5ByAiIiLybaOAJCIiIuJBAUlERETEgwKSiIiIiAcFJBEREREPCkgiIiIiHhSQ5DsrPz+fyMjIr339s88+y5IlS+7iiG6tV69e5OfnN3k/3waTJ09m4cKFzT2MFsnz6/m3v/0t4eHhBAYGYrfb+eCDD3j44YcJDAxk165dzThSkW8HBSS5Jzp37kzr1q0JDAwkPDyc//N//g8VFRXNPSy3zZs388QTTzQ49rvf/Y6srKxv3HZtbS2zZ88mMjKSwMBAunTpwqxZs9znT58+zaBBg75xPze89tprxMfHExgYyEMPPcSIESN4//33v3G7zRluLBYLAQEBBAYG0qFDBzIyMnC5XM0yltuxWCwUFRU1S983vr+CgoIIDg4mKSmJ3/3ud9TV1bnf88WvZ4fDQUZGBvv27aOiooJ27dqxaNEiZsyYQUVFBaNHj26WOkS+TRSQ5J7ZvXs3FRUV/OlPf+LIkSMsXbq0uYd0TyxfvpzCwkIOHz7MtWvXOHDgAI8++miT9LVq1SrS09OZP38+f/nLX7h48SLTpk3jzTffbJL+vsjpdDZp+x999BEVFRXs37+f1157jX/913/9ym009Rib0+7du7l27RoXLlzg5z//OS+++CJpaWm3fO9f/vIXqqur6dWrl/vYhQsXGrz+Kr7L8yotmBG5Bzp16mTeeecd9+vMzEwzcuRIY4wxn376qRk1apQJCQkx0dHR5ve//737fc8//7wZM2aMGTdunAkMDDSPPvqoOX78uPs8YP785z+7X0+aNMksWLDAGGPMgQMHTIcOHdznli9fbrp27WoCAwNNjx49zB/+8AdjjDFnzpwxfn5+xsvLywQEBJgHHnjgpraMMeb3v/+9iY6ONiEhIWbUqFHm008/bTCO3/72t6Zbt24mODjYTJs2zdTV1RljjBk5cqR5+eWXGzU3zz//vBk7dqyZMGGCCQwMNI888og5e/asWbZsmWnfvr2JjIw0e/fuvWU7n3/+uQkICDA7duy4bV/V1dXmZz/7mXnooYfMQw89ZH72s5+Z6urqBvO1cuVK0759e/Pggw+ajRs3GmOMWbdunfHx8TG+vr4mICDA/P3f/7177C+88ILp3bu3sVqtxuFwmDNnzpiBAweaBx54wPTs2dO8+eabt7w/f/3rX83IkSPNAw88YEJCQswTTzxhXC7XLcfteZ/Hjh1rpk+fboyp//r54Q9/aEJDQ03nzp3NP//zP7vfd+PrZ8KECSYoKMj867/+q3E6neZXv/qV+2shLi7OXLx40RhjzMcff2yGDh1qQkJCzPe+9z2zffv2BmOfNm2a+V//63+ZwMBA8/jjj5uioiJjjDEDBgwwgPH39zcBAQEmOzvbfPbZZ2bkyJEmNDTUBAcHm5EjR5pLly652zt37pwZMGCACQwMNMnJyWbatGlmwoQJ7vMffvih6d+/v3nggQdMbGysOXDgwG3vq+f3lzHGFBQUGIvFYk6ePNlg7s+ePWv8/f0NYAICAszgwYNN165djcViMa1atTIBAQGmurrafP755+YnP/mJefDBB01ERIRZsGCBcTqdxhhjNm3aZJKSkkx6eroJCQlx39MNGzaY7t27m+DgYJOSkmLOnz/f4B7e7nvEmPrvr+7du7u/P48ePfql91ekKSkgyT3xxR/gFy9eND179jQLFy40xhjzd3/3d2bq1KmmqqrKHDt2zISGhprc3FxjTP0vOB8fH7Nz505TW1trVqxYYTp37mxqa2uNMV8tIO3YscN8+umnxuVymezsbOPv729KS0uNMfU/8L///e83GPMX29q/f79p166dOXr0qKmurjYzZswwAwYMcL8XMCNHjjRXr141Fy5cMKGhoWbPnj3GGGOWLFlioqKizNq1a82JEyca/FLwnJvnn3/e+Pn5mbfffts4HA6TmppqOnfubJYuXWpqa2vN73//e9O5c+dbzvGePXuMt7e3cTgct70PWVlZJiEhwfzlL38xV65cMf3793ffhwMHDhhvb2+TlZVlamtrzVtvvWVat25tPvvss5vm44tj79Onj7l48aKprKw0tbW1Jjo62vzqV78yNTU1Zv/+/SYwMNB88sknN7Xx85//3PzjP/6jqa2tNbW1tebgwYM3zc0X5/fGfT59+rQJDw8369evNy6Xy8TFxZlf/OIXpqamxhQXF5suXbqYt99+2z2fPj4+5t///d+Ny+UylZWV5qWXXjKPPPKI+eSTT0xdXZ05fvy4sdlspqKiwkRGRpqNGzcah8Nhjh49atq1a2dOnTrlHntISIgpKCgwDofD/OhHPzLjx4+/5RiNMcZms5k33njDXL9+3ZSXl5uxY8eaH/zgB+7ziYmJZvbs2aampsa89957JigoyB2QSkpKTNu2bc1bb71lXC6X2bdvn2nbtq25cuXKLefnVgHJGGOioqLMK6+8ctPc//d//7cBGnyteLbxgx/8wEyZMsVUVFSYv/zlL+axxx4zv/vd74wx9d8v3t7e5l/+5V+Mw+EwlZWV5t///d9NdHS0OXPmjHE4HGbJkiWmf//+Debndt8jO3bsMBEREebw4cOmrq7O/PnPfzbnz5//0vsr0pQUkOSe6NSpk3t1pmPHjmbq1KmmsrLSXLx40Xh5eZny8nL3e3/+85+bSZMmGWPqf8ElJCS4z7lcLvPggw+agwcPGmO+WkDy1KdPH7Nr1y5jzJcHpJ/85Cdmzpw57nPXrl0zPj4+5r//+7/d43jvvffc55988kmzfPlyY4wxTqfTrFmzxiQlJRmr1Woeeughs3nz5gZz88WANHToUPe5P/7xjyYgIMD9L/fy8nIDmKtXr95Uz7Zt20x4ePht6zXGmK5du5q33nrL/frtt982nTp1MsbUz1erVq0a/NJs3769+fDDD2+ajy+OfcOGDe7XBw8eNOHh4Q1Wgp566inz/PPP39RGVlaW+d//+383uH+3A5igoCATHBxsunbtahYsWGBcLpc5dOiQiYqKavDeZcuWmcmTJxtj6ufzi0HWGGO+973vue/7F2VnZ5snnniiwbEpU6aYxYsXu8eelpbmPvfWW2+ZmJiYBmO8Uy3Hjh0zwcHBxhhjLly4YLy9vc3169fd5ydMmOAOSC+88IL58Y9/3OD6lJSUBl83X3S7gJSQkGCWLl3qHn9jA1JZWZmxWq2msrLSff61114zgwYNMsbUf794zvvw4cPN+vXr3a9dLpdp3bq1exXpTt8jKSkpZvXq1TeN/8vur0hT8rnHT/SkBdu1axdDhw5tcKy0tJS2bdsSFBTkPtapUycKCwvdr6Oiotz/7+XlRWRkJKWlpV+5/y1btrBq1SrOnz8PQEVFBTabrVHXlpaWEhcX534dGBhIu3bt+PTTT+ncuTMADz74oPu8v7+/exO6t7c306dPZ/r06VRVVbFx40Z+8pOf8Pjjj9OjR4+b+goPD3f/f+vWrQkNDcXb29v9+sbYg4ODG1zXrl07bDYbTqcTH59bf2uXlpbSqVMn9+tOnTo1mMt27do1uPaLddzOF+9PaWkpUVFReHn9/+2NnTp14tNPP73pujlz5rB48WJSUlIAmDJlCj//+c9v28+f/vQnunXr1uDYhQsXKC0tbTAXLpeLAQMG3HJ8AJcuXSI6Ovqm9i9cuEBBQUGDtpxOJ6mpqe7Xt7vHt1JZWcmsWbN4++23uXr1KgDXrl3D5XK5v+79/f0bjPPSpUvusezcuZPdu3e7zzscDgYPHnzb/m7l008/pW3btl/pmhv9OxwOHnroIfexurq6BnPpOa8XLlzgZz/7GbNnz3YfM8bw6aefur/mbjd/d7onX3Z/RZqKNmlLs4qIiOCzzz7j2rVr7mMXL16kQ4cO7tc3fmlA/Q/pkpISIiIigPofspWVle7zZWVlt+znwoULPPPMM6xZswa73c7nn3/OI488gjEGqP8E0peN88KFC+7X169fx263NxhnY7Ru3Zrp06cTEhLCmTNnvtK1X6Z///60atXqjh/R9qzj4sWL7rn8Mreboy8ej4iI4NKlSw0+PeV5P28ICgri17/+NefOnWP37t2sWrWK/fv3N2osN0RFRdGlSxc+//xz93/Xrl3j//7f/3vbcUdFRVFcXHzLtgYOHNigrYqKCn77299+pTHd8Otf/5qzZ89SUFBAeXk5Bw8eBOpDw0MPPcRnn33W4Gv3i1/nUVFRpKamNhjL9evX7xggPR05coRPP/30pk9nNkZUVBR+fn7YbDZ3/+Xl5Zw+fdr9nlvN67p16xqMuaqqiqSkpEb1d7t78mX3V6SpKCBJs4qKiiIpKYl/+qd/orq6mhMnTrBhwwYmTJjgfs/Ro0f5wx/+gNPpZPXq1fj5+ZGYmAhA3759ee2113C5XLz99tu8++67t+zn+vXrWCwW2rdvD8CmTZs4deqU+3x4eDglJSXU1tbe8vof/ehHbNq0iePHj1NTU8P8+fNJSEhwrx7dyerVq8nPz6eqqgqn08m//du/ce3atbv+SbYHHniAX/7yl0yfPp1du3ZRWVmJw+Fgz549zJ07F4Cnn36apUuX8te//hWbzcYvf/lLfvzjHzeq/fDwcM6dO3fH9yQkJBAQEMBLL72Ew+EgPz+f3bt389RTT9303v/4j/+gqKgIYwxt2rTB29vbvVLWWI8//jht2rThxRdfpKqqCpfLxalTpzhy5Mhtr/npT39KVlYWf/7znzHGcOLECex2O3//93/Pf/3Xf7F161YcDgcOh4MjR47w8ccfN2osnvNz7do1WrduTXBwMJ999hm/+MUv3Oc6depEfHw8ixcvpra2lg8//LDBatGPf/xjdu/ezd69e3G5XFRXV5Ofn09JScmXjqO8vJz/+I//4KmnnuLHP/4xvXv3btT4v+ihhx4iJSWF2bNnU15eTl1dHcXFxbf9/oL6v7O0fPlyd4j629/+xs6dOxvV309/+lNWrlzJ0aNHMcZQVFTEhQsXvtb9FblbFJCk2b3++uucP3+eiIgI/uEf/oFf/OIXDBs2zH3+Bz/4Adu3byckJIStW7fyhz/8AV9fXwD++Z//md27dxMcHMyrr75627/f0rNnT2bPnk3//v0JDw/n5MmTfP/733efHzJkCL169eLBBx8kNDT0puuTk5NZsmQJY8aM4aGHHqK4uJjs7OxG1de6dWtmz57tbnvt2rXk5OTQtWvXrzJNjZKRkcGqVatYunQp7du3JyoqijVr1rjnZeHChcTHxxMbG0vv3r2Ji4tr9N82SktL48yZMwQHB992nq1WK3/84x/Zs2cPoaGhTJs2jS1bttC9e/eb3vvnP/+ZoUOHEhgYSP/+/Zk2bdpX/ntQ3t7e7N69m+PHj9OlSxdCQ0P56U9/yt/+9rfbXpORkcG4ceNISUmhTZs2pKWlUVVVRVBQEPv27SM7O5uIiAgefPBB5s2bR01NTaPGsnjxYiZNmkRwcDA7duwgPT2dqqoqQkNDSUxMZPjw4Q3e/+qrr/Lhhx/Srl07Fi5cyPjx4/Hz8wPq/+Hw5ptvsmzZMvd9XLFiRYOVOU+jRo0iKCiIqKgofvWrX5GRkcGmTZsaNfZb2bJlC7W1tfTs2ZOQkBDGjh3L5cuXb/v+f/iHf2DevHk89dRTtGnThkceeYQ9e/Y0qq8nn3ySBQsW8KMf/YigoCBGjx7NZ5999rXur8jdYjE3njGIfAstXryYoqIitm3b1txDEWlS48ePp3v37g1WmkSk+WgFSUSkGRw5coTi4mLq6up4++23efPNN/UXrEW+RfQpNhGRZlBWVsYPf/hD7HY7kZGR/Pa3v22yv7AuIl+dHrGJiIiIeNAjNhEREREPesQmLc7X+SOTX1VoaGij/wjld01Lrh1Uv+pX/fdT/Xf6O3BaQRIRERHxoIAkIiIi4kEBSURERMSDApKIiIiIBwUkEREREQ8KSCIiIiIeFJBEREREPCggiYiIiHhQQBIRERHxoIAkIiIi4kEBSURERMSDApKIiIiIBwUkEREREQ8KSCIiIiIeFJBEREREPCggiYiIiHhQQBIRERHxoIAkIiIi4kEBSURERMSDApKIiIiIBwUkEREREQ8KSCIiIiIeFJBEREREPCggiYiIiHhQQBIRERHxoIAkIiIi4kEBSURERMSDApKIiIiIBwUkEREREQ8KSCIiIiIeFJBEREREPCggiYiIiHhQQBIRERHxoIAkIiIi4kEBSURERMSDApKIiIiIBwUkEREREQ8KSCIiIiIeFJBEREREPCggiYiIiHjwae4BtAR2u50NGzZQUlKCMYa4uDhSU1Px8Wm+6T98+DARERFERkYCsH37dnr06EFsbOzXbvP48eO8+uqrAJSVldG2bVusViudOnVixowZd2Xcng4ePMibb76JxWKhXbt2zJw5k8DAwCbpS0REWg4FpCZmjGHlypWkpKQwd+5c6urqWLduHa+//jqpqanNNq4jR47Qr18/d0AaP378N26zb9++9O3bF4DFixeTmppKdHT0N273dpxOJ1u2bGH16tUEBgbyb//2b+zdu5cxY8Y0WZ8i8uUKC3358EM/+vevIT7e0dzDEflaFJCa2KlTp7BarQwePBgALy8vJk2axIwZMxg3bhy+vr5s27aNjz76CIvFQnJyMiNGjKCoqIjNmzdTU1ODj48PixYtoqCggOLiYtLS0gB44YUXGDVqFL169SI1NZVhw4Zx+vRpAgICSE9Pp02bNuTm5rJ//36cTifh4eHMnDmT8+fPU1hYyJkzZ8jJyWH27Nnk5OTQr18/EhMTOXnyJFu3bsXlchEdHc0zzzyDr68v06dPZ+DAgRw9ehSn00lGRgYdOnRo1DwsXLiQKVOm0LFjRwDmz5/P1KlT+eCDD7DZbNjtdux2O6NHj2bIkCEA7Nq1i4KCAhwOB4mJiYwdO7ZBm8YYjDFUV1cTEBBAVVUVUVFRd+vWicjXcOiQhfHj2+FwWPD1DWT7drtCktyXFJCa2KVLl+jSpUuDY/7+/oSGhlJWVsbZs2e5cuUKL730Et7e3lRUVOB0Olm9ejXp6el069aNyspKrFbrHfupqamhS5cuTJw4kTfeeIOdO3eSlpZGQkICQ4cOBSA7O5u8vDxGjBhBfHy8OxB9UW1tLa+88gpZWVlERESwZs0a9u3bx8iRIwEICgrixRdfZO/evezevZtnn322UfMwZMgQ8vPzmThxIiUlJQDuMHPp0iWWLFlCVVUV8+bNIy4ujnPnzmGz2Vi2bBnGGJYvX87Zs2eJiYlxt+nr60taWhoZGRm0atWKDh06MGXKlJv6zs3NJTc3F6gPlaGhoY0a8zfh4+NzT/r5NmrJtYPq37zZG4fDgstlAeDEiRCGD69r5lHdOy39/n+X6ldAugcsFstNx4wxWCwWTpw4QUpKCt7e3gAEBgZy8eJFQkJC6NatG1AfqBrTR1JSEgADBgxg5cqVQH34yM7O5vr161RXV9OnT587tlNaWkpYWBgREREADBw4kL1797oDUkJCAgBdu3bl8OHDjSkfgKSkJObOncuECRPIy8tj0KBB7nOPPfYYVqsVq9VKjx49KC4u5uTJkxw7doy5c+cCUF1dzeXLlxsEJKfTyTvvvMPKlSsJDQ1l/fr1/PGPf2T06NEN+h46dKg7JALYbLZGj/vrCg0NvSf9fBu15NpB9T/xRHt8fet/nvn6GmJjr2KztZwVpJZ+/++3+m/8rrsVBaQmFhkZSUFBQYNjlZWV2O12wsPDb3mNMeaWx728vBqcczhu/0PnRihbu3Ytc+bMoXPnzuTn53P69OmvWkIDNzaWe3l54XK5Gn1dq1at6NmzJ4WFhRQUFLBixYo7jt0Yw5gxY9yP227l3Llz+Pj4EBYWBtSHsLfeeqvRYxKRuy8x0bB9u117kOS+p4/5N7HevXtTU1PDu+++C0BdXR1btmxh0KBB+Pn5ERsbyzvvvOMOGxUVFXTo0IGrV69SVFQEQFVVFS6Xi7CwMM6fP09dXR02m819HupD1aFDhwB4//336d69O1C/8hISEoLT6eS9995zv79169ZUVVXdNN6IiAiuXLlCWVkZUP8psZ49e96VuUhOTmbjxo3ExMQ0WBU7cuQIDoeD8vJyPvnkE7p27UqfPn3Iy8ujuroaqP8kYHl5eYP22rZty8WLF7l27RoAJ06caPSeKBFpOvHxDmbOrFA4kvuaVpCamMViITMzk/Xr15OTk4MxhkcffZSnn34aqA8Nly9fJjMzEx8fH5KTkxk+fDjp6els2rSJ2tparFYrWVlZxMTEEBYWRmZmJlFRUQ32Nvn5+XHp0iXmzZuHv78/s2bNAuo/nTZ//nzat29Px44d3aEoKSmJdevWsWfPHjIyMtztWK1Wpk2bxqpVq9ybtIcNG3ZX5uLhhx/GarU2eLwGEB0dzbJly7Db7Tz55JMEBwcTFxdHaWkpCxYsAOoD3XPPPUebNm3c14WGhvLDH/6QRYsW4e3tTfv27Zk+ffpdGauIiLRsFnO75zlyX0lNTWXr1q3NPYw7stlsLF26lJdfftn9CDA7O5ugoCD3Hqd7obS0tMn7uN+ew99NLbl2UP2qX/XfT/VrD5I0uwMHDrBjxw4mT558y03rIiIi3yZaQZIWRytITasl1w6qX/Wr/vup/jutIGmTtoiIiIgHBSQRERERDwpIIiIiIh4UkEREREQ8KCCJiIiIeFBAEhEREfGggCQiIiLiQQFJRERExIMCkoiIiIgHBSQRERERDwpIIiIiIh4UkEREREQ8KCCJiIiIeFBAEhEREfGggCQiIiLiQQFJRERExIMCkoiIiIgHBSQRERERDwpIIiIiIh58mnsA33V2u50NGzZQUlKCMYa4uDhSU1Px8Wm+qT98+DARERFERkYCsH37dnr06EFsbOzXbvP48eO8+uqrAJSVldG2bVusViudOnVixowZd2XcX3T9+nUWL17sfm232xk0aBATJ068632JiEjLo4DUhIwxrFy5kpSUFObOnUtdXR3r1q3j9ddfJzU1tdnGdeTIEfr16+cOSOPHj//Gbfbt25e+ffsCsHjxYlJTU4mOjv7G7d5OQEAAK1ascL+eM2cOCQkJTdafiHw1hYW+fPihH/371xAf72ju4Yh8ZQpITejUqVNYrVYGDx4MgJeXF5MmTWLGjBmMGzcOX19ftm3bxkcffYTFYiE5OZkRI0ZQVFTE5s2bqampwcfHh0WLFlFQUEBxcTFpaWkAvPDCC4waNYpevXqRmprKsGHDOH36NAEBAaSnp9OmTRtyc3PZv38/TqeT8PBwZs6cyfnz5yksLOTMmTPk5OQwe/ZscnJy6NevH4mJiZw8eZKtW7ficrmIjo7mmWeewdfXl+nTpzNw4ECOHj2K0+kkIyODDh06NGoeFi5cyJQpU+jYsSMA8+fPZ+rUqXzwwQfYbDbsdjt2u53Ro0czZMgQAHbt2kVBQQEOh4PExETGjh172/ZLSkqorKzke9/73je5XSJylxQW+jJ+fDscDgu+voFs325XSJL7jgJSE7p06RJdunRpcMzf35/Q0FDKyso4e/YsV65c4aWXXsLb25uKigqcTierV68mPT2dbt26UVlZidVqvWM/NTU1dOnShYkTJ/LGG2+wc+dO0tLSSEhIYOjQoQBkZ2eTl5fHiBEjiI+PdweiL6qtreWVV14hKyuLiIgI1qxZw759+xg5ciQAQUFBvPjii+zdu5fdu3fz7LPPNmoehgwZQn5+PhMnTqSkpASAqKgo9xwtWbKEqqoq5s2bR1xcHOfOncNms7Fs2TKMMSxfvpyzZ88SExNzy/Y/+OADkpKSsFgstzyfm5tLbm4uUB8sQ0NDGzXub8LHx+ee9PNt1JJrB9Xv4+PDiRMhOBwWXK7678kTJ0IYPryumUd2b+j+f3fqV0BqYrf6pW2MwWKxcOLECVJSUvD29gYgMDCQixcvEhISQrdu3YD6QNWYPpKSkgAYMGAAK1euBOrDR3Z2NtevX6e6upo+ffrcsZ3S0lLCwsKIiIgAYODAgezdu9cdkG48wuratSuHDx9uTPkAJCUlMXfuXCZMmEBeXh6DBg1yn3vsscewWq1YrVZ69OhBcXExJ0+e5NixY8ydOxeA6upqLl++fNuA9J//+Z/MmjXrtv0PHTrUHRQBbDZbo8f+dYWGht6Tfr6NWnLtoPpDQ0OJjf0bvr7tAPD1NcTGXsVmaxkrSLr/91f9N37f3YoCUhOKjIykoKCgwbHKykrsdjvh4eG3vMYYc8vjXl5eDc45HLf/YXMjlK1du5Y5c+bQuXNn8vPzOX369FctoYEbG8u9vLxwuVyNvq5Vq1b07NmTwsJCCgoKGuwdutXYjTGMGTPG/bjtTs6dO4eXlxedO3du9HhEpGnFxzvYvt2uPUhyX9PH/JtQ7969qamp4d133wWgrq6OLVu2MGjQIPz8/IiNjeWdd95xh42Kigo6dOjA1atXKSoqAqCqqgqXy0VYWBjnz5+nrq4Om83mPg/1oerQoUMAvP/++3Tv3h2oX3kJCQnB6XTy3nvvud/funVrqqqqbhpvREQEV65coaysDICDBw/Ss2fPuzIXycnJbNy4kZiYmAarYkeOHMHhcFBeXs4nn3xC165d6dOnD3l5eVRXVwP1n1ArLy+/Zbvvv/8+3//+9+/KGEXk7omPdzBzZoXCkdy3tILUhCwWC5mZmaxfv56cnByMMTz66KM8/fTTQH1ouHz5MpmZmfj4+JCcnMzw4cNJT09n06ZN1NbWYrVaycrKIiYmhrCwMDIzM4mKimqwt8nPz49Lly4xb948/BmG+OYAACAASURBVP393Y+bxo8fz/z582nfvj0dO3Z0h6KkpCTWrVvHnj17yMjIcLdjtVqZNm0aq1atcm/SHjZs2F2Zi4cffhir1drg8RpAdHQ0y5Ytw2638+STTxIcHExcXBylpaUsWLAAqA90zz33HG3atGlwrTGGDz/8kOeff/6ujFFEROQGi7ndMx25b6SmprJ169bmHsYd2Ww2li5dyssvv+x+BJidnU1QUJB7j9O9Ulpa2uR93G/P4e+mllw7qH7Vr/rvp/q1B0ma1YEDB9ixYweTJ0++7SfNREREvk20giQtjlaQmlZLrh1Uv+pX/fdT/XdaQdImbREREREPCkgiIiIiHhSQRERERDwoIImIiIh4UEASERER8aCAJCIiIuJBAUlERETEgwKSiIiIiAcFJBEREREPCkgiIiIiHhSQRERERDwoIImIiIh4UEASERER8aCAJCIiIuJBAUlERETEgwKSiIiIiAcFJBEREREPCkgiIiIiHhSQRERERDz4NPcAvuvsdjsbNmygpKQEYwxxcXGkpqbi49N8U3/48GEiIiKIjIwEYPv27fTo0YPY2Niv3ebx48d59dVXASgrK6Nt27ZYrVY6derEjBkz7sq4PTkcDjZs2MDHH3+MxWLhRz/6EY8//niT9CUiIi2LxRhjmnsQ31XGGObPn09KSgqDBw+mrq6OdevWERgYSGpqarONa+3atfTr14/ExMQmaX/x4sWkpqYSHR3dJO3f8Prrr+Pt7c24ceOoq6vj+vXrBAUFfel1paWlTTougNDQUGw2W5P3823UkmsH1V9U1J49e6ro37+G+HhHcw/nnmvp9/9+qz8iIuK257SC1IROnTqF1Wpl8ODBAHh5eTFp0iRmzJjBuHHj8PX1Zdu2bXz00UdYLBaSk5MZMWIERUVFbN68mZqaGnx8fFi0aBEFBQUUFxeTlpYGwAsvvMCoUaPo1asXqampDBs2jNOnTxMQEEB6ejpt2rQhNzeX/fv343Q6CQ8PZ+bMmZw/f57CwkLOnDlDTk4Os2fPJicnxx2YTp48ydatW3G5XERHR/PMM8/g6+vL9OnTGThwIEePHsXpdJKRkUGHDh0aNQ8LFy5kypQpdOzYEYD58+czdepUPvjgA2w2G3a7HbvdzujRoxkyZAgAu3btoqCgAIfDQWJiImPHjr2p3fz8fH7zm9+457Yx4UhEmk5hoS9PPeVDbW0Qvr6BbN9ub5EhSb4bFJCa0KVLl+jSpUuDY/7+/oSGhlJWVsbZs2e5cuUKL730Et7e3lRUVOB0Olm9ejXp6el069aNyspKrFbrHfupqamhS5cuTJw4kTfeeIOdO3eSlpZGQkICQ4cOBSA7O5u8vDxGjBhBfHz8LVeQamtreeWVV8jKyiIiIoI1a9awb98+Ro4cCUBQUBAvvvgie/fuZffu3Tz77LONmochQ4aQn5/PxIkTKSkpASAqKso9R0uWLKGqqop58+YRFxfHuXPnsNlsLFu2DGMMy5cv5+zZs8TExLjbLC8vx8fHh9dee42PP/6YBx98kLS0NNq0aXNT/7m5ueTm5gL1wTI0NLRR4/4mfHx87kk/30YtuXZo2fWfOOFFbS24XJb/eR3C8OF1zTyqe6sl33/4btWvgNTELBbLTceMMVgsFk6cOEFKSgre3t4ABAYGcvHiRUJCQujWrRtQH6ga00dSUhIAAwYMYOXKlUB9+MjOzub69etUV1fTp0+fO7ZTWlpKWFiYe8lx4MCB7N271x2QEhISAOjatSuHDx9uTPkAJCUlMXfuXCZMmEBeXh6DBg1yn3vsscewWq1YrVZ69OhBcXExJ0+e5NixY8ydOxeA6upqLl++3CAg1dXV8de//pVevXoxefJk3nzzTbZt28a0adNu6n/o0KHuoAjck+Xf+22Z+W5qybVDy64/NtYXqzWU2lqDr68hNvYqNlvLWkFqyfcf7r/69YitmURGRlJQUNDgWGVlJXa7nfDw8Ftec7stYV5eXg3OORy3/6FzI5StXbuWOXPm0LlzZ/Lz8zl9+vRXLaGBGxvLvby8cLlcjb6uVatW9OzZk8LCQgoKClixYsUdx26MYcyYMe7HbbfSpk0b/Pz8iI+PB6B///53bFdEml58vIO333a26D1I8t2hj/k3od69e1NTU8O7774L1K96bNmyhUGDBuHn50dsbCzvvPOOO2xUVFTQoUMHrl69SlFREQBVVVW4XC7CwsI4f/48dXV12Gw293moD1WHDh0C4P3336d79+5A/cpLSEgITqeT9957z/3+1q1bU1VVddN4IyIiuHLlCmVlZQAcPHiQnj173pW5SE5OZuPGjcTExDRYFTty5AgOh4Py8nI++eQTunbtSp8+fcjLy6O6uhqo/yRgeXl5g/a8vLzo27cvH3/8MQAnT55s9J4oEWk6iYmGmTMrFI7kvqcVpCZksVjIzMxk/fr15OTkYIzh0Ucf5emnnwbqQ8Ply5fJzMzEx8eH5ORkhg8fTnp6Ops2baK2thar1UpWVhYxMTGEhYWRmZlJVFRUg71Nfn5+XLp0iXnz5uHv78+sWbMAGD9+PPPnz6d9+/Z07NjRHYqSkpJYt24de/bsISMjw92O1Wpl2rRprFq1yr1Je9iwYXdlLh5++GGsVmuDx2sA0dHRLFu2DLvdzpNPPklwcDBxcXGUlpayYMECoD7QPffcczftL0pNTWXNmjVUVlbywAMPMHXq1LsyVhEREX3M/zsgNTWVrVu3Nvcw7shms7F06VJefvll9yPA7OxsgoKC3Huc7hV9zL9pteTaQfWrftV/P9WvPUjSrA4cOMCOHTuYPHnyLTeti4iIfNtoBUlaHK0gNa2WXDuoftWv+u+n+u+0gqRN2iIiIiIeFJBEREREPCggiYiIiHhQQBIRERHxoIAkIiIi4kEBSURERMSDApKIiIiIBwUkEREREQ8KSCIiIiIeFJBEREREPCggiYiIiHhQQBIRERHxoIAkIiIi4kEBSURERMSDApKIiIiIBwUkEREREQ8KSCIiIiIeFJBEREREPCggiYiIiHjwae4BfNfZ7XY2bNhASUkJxhji4uJITU3Fx6f5pv7w4cNEREQQGRkJwPbt2+nRowexsbFfu83jx4/z6quvAlBWVkbbtm2xWq106tSJGTNm3JVxe8rKyqK8vByr1QrAokWLCAoKapK+RESkZVFAakLGGFauXElKSgpz586lrq6OdevW8frrr5Oamtps4zpy5Aj9+vVzB6Tx48d/4zb79u1L3759AVi8eDGpqalER0d/43a/zKxZs+jcuXOT9yMijXPokIU9ewLp37+G+HhHcw9H5GtTQGpCp06dwmq1MnjwYAC8vLyYNGkSM2bMYNy4cfj6+rJt2zY++ugjLBYLycnJjBgxgqKiIjZv3kxNTQ0+Pj4sWrSIgoICiouLSUtLA+CFF15g1KhR9OrVi9TUVIYNG8bp06cJCAggPT2dNm3akJuby/79+3E6nYSHhzNz5kzOnz9PYWEhZ86cIScnh9mzZ5OTk0O/fv1ITEzk5MmTbN26FZfLRXR0NM888wy+vr5Mnz6dgQMHcvToUZxOJxkZGXTo0KFR87Bw4UKmTJlCx44dAZg/fz5Tp07lgw8+wGazYbfbsdvtjB49miFDhgCwa9cuCgoKcDgcJCYmMnbs2Ca4QyJyNxUW+vLUUz7U1gbh6xvI9u12hSS5bykgNaFLly7RpUuXBsf8/f0JDQ2lrKyMs2fPcuXKFV566SW8vb2pqKjA6XSyevVq0tPT6datG5WVle5HSLdTU1NDly5dmDhxIm+88QY7d+4kLS2NhIQEhg4dCkB2djZ5eXmMGDGC+Ph4dyD6otraWl555RWysrKIiIhgzZo17Nu3j5EjRwIQFBTEiy++yN69e9m9ezfPPvtso+ZhyJAh5OfnM3HiREpKSgCIiopyz9GSJUuoqqpi3rx5xMXFce7cOWw2G8uWLcMYw/Llyzl79iwxMTE3tf2b3/wGLy8v+vfvzw9/+MNb9p+bm0tubi5QHyxDQ0MbNe5vwsfH5570823UkmuHll3/iRNe1NaCy2X5n9chDB9e18yjurda8v2H71b9CkhNzGKx3HTMGIPFYuHEiROkpKTg7e0NQGBgIBcvXiQkJIRu3boB9YGqMX0kJSUBMGDAAFauXAnUh4/s7GyuX79OdXU1ffr0uWM7paWlhIWFERERAcDAgQPZu3evOyAlJCQA0LVrVw4fPtyY8gFISkpi7ty5TJgwgby8PAYNGuQ+99hjj2G1WrFarfTo0YPi4mJOnjzJsWPHmDt3LgDV1dVcvnz5poA0a9Ys2rZtS2VlJStXriQsLIwnnnjipv6HDh3qDooANput0WP/ukJDQ+9JP99GLbl2aNn1x8b6YrWGUltr8PU1xMZexWZrWStILfn+w/1X/43fd7eigNSEIiMjKSgoaHCssrISu91OeHj4La8xxtzyuJeXV4NzDsftf+jcCGVr165lzpw5dO7cmfz8fE6fPv1VS2jgxsZyLy8vXC5Xo69r1aoVPXv2pLCwkIKCAlasWHHHsRtjGDNmjPtx2+20bdsWqA+R3//+9ykqKrplQBKReyM+3sHbbzvZs6dKe5DkvqeP+Teh3r17U1NTw7vvvgtAXV0dW7ZsYdCgQfj5+REbG8s777zjDhsVFRV06NCBq1evUlRUBEBVVRUul4uwsDDOnz9PXV0dNpvNfR7qQ9WhQ4cAeP/99+nevTtQv/ISEhKC0+nkvffec7+/devWVFVV3TTeiIgIrly5QllZGQAHDx6kZ8+ed2UukpOT2bhxIzExMQ1WxY4cOYLD4aC8vJxPPvmErl270qdPH/Ly8qiurgbqPwlYXl7eoD2n0+k+5nQ6+dOf/uR+bCcizScx0TBzZoXCkdz3tILUhCwWC5mZmaxfv56cnByMMTz66KM8/fTTQH1ouHz5MpmZmfj4+JCcnMzw4cNJT09n06ZN1NbWYrVaycrKIiYmhrCwMDIzM4mKimqwt8nPz49Lly4xb948/P39mTVrFlD/6bT58+fTvn17Onbs6A5FSUlJrFu3jj179pCRkeFux2q1Mm3aNFatWuXepD1s2LC7MhcPP/wwVqu1weM1gOjoaJYtW4bdbufJJ58kODiYuLg4SktLWbBgAVAf6J577jnatGnjvs7hcPCrX/0Kl8uFy+WiT58+7s3wIiIi35TF3O6Zjtw3UlNT2bp1a3MP445sNhtLly7l5Zdfdj8CzM7OJigoyL3H6V4pLS1t8j7ut+fwd1NLrh1Uv+pX/fdT/dqDJM3qwIED7Nixg8mTJ99y07qIiMi3jVaQpMXRClLTasm1g+pX/ar/fqr/TitI2qQtIiIi4kEBSURERMSDApKIiIiIBwUkEREREQ8KSCIiIiIeFJBEREREPCggiYiIiHhQQBIRERHxoIAkIiIi4kEBSURERMSDApKIiIiIBwUkEREREQ8KSCIiIiIeFJBEREREPCggiYiIiHhQQBIRERHxoIAkIiIi4kEBSURERMSDApKIiIiIB5/mHkBLYLfb2bBhAyUlJRhjiIuLIzU1FR+f5pv+w4cPExERQWRkJADbt2+nR48exMbGfu02jx8/zquvvgpAWVkZbdu2xWq10qlTJ2bMmHFXxn07y5cv57PPPmPFihVN2o+IiLQMCkhNzBjDypUrSUlJYe7cudTV1bFu3Tpef/11UlNTm21cR44coV+/fu6ANH78+G/cZt++fenbty8AixcvJjU1lejo6G/c7pf5z//8T/z9/fnss8+avC8RubNDhyzs2RNI//41xMc7mns4Il+bAlITO3XqFFarlcGDBwPg5eXFpEmTmDFjBuPGjcPX15dt27bx0UcfYbFYSE5OZsSIERQVFbF582Zqamrw8fFh0aJFFBQUUFxcTFpaGgAvvPACo0aNolevXqSmpjJs2DBOnz5NQEAA6enptGnThtzcXPbv34/T6SQ8PJyZM2dy/vx5CgsLOXPmDDk5OcyePZucnBz69etHYmIiJ0+eZOvWrbhcLqKjo3nmmWfw9fVl+vTpDBw4kKNHj+J0OsnIyKBDhw6NmoeFCxcyZcoUOnbsCMD8+fOZOnUqH3zwATabDbvdjt1uZ/To0QwZMgSAXbt2UVBQgMPhIDExkbFjx97UbmVlJXv27OGZZ57hN7/5zd24ZSLyNRUW+vLUUz7U1gbh6xvI9u12hSS5bykgNbFLly7RpUuXBsf8/f0JDQ2lrKyMs2fPcuXKFV566SW8vb2pqKjA6XSyevVq0tPT6datG5WVlVit1jv2U1NTQ5cuXZg4cSJvvPEGO3fuJC0tjYSEBIYOHQpAdnY2eXl5jBgxgvj4eHcg+qLa2lpeeeUVsrKyiIiIYM2aNezbt4+RI0cCEBQUxIsvvsjevXvZvXs3zz77bKPmYciQIeTn5zNx4kRKSkoAiIqKcs/RkiVLqKqqYt68ecTFxXHu3DlsNhvLli3DGMPy5cs5e/YsMTExDdrNzs7mBz/4wR3nJzc3l9zcXKA+VIaGhjZqzN+Ej4/PPenn26gl1w4tu/4TJ7yorQWXy/I/r0MYPryumUd1b7Xk+w/frfoVkO4Bi8Vy0zFjDBaLhRMnTpCSkoK3tzcAgYGBXLx4kZCQELp16wbUB6rG9JGUlATAgAEDWLlyJVAfPrKzs7l+/TrV1dX06dPnju2UlpYSFhZGREQEAAMHDmTv3r3ugJSQkABA165dOXz4cGPKByApKYm5c+cyYcIE8vLyGDRokPvcY489htVqxWq10qNHD4qLizl58iTHjh1j7ty5AFRXV3P58uUGAencuXPY7Xbi4+MpKyu7bd9Dhw51h0QAm83W6HF/XaGhofekn2+jllw7tOz6Y2N9sVpDqa01+PoaYmOvYrO1rBWklnz/4f6r/8bvultRQGpikZGRFBQUNDhWWVmJ3W4nPDz8ltcYY2553MvLq8E5h+P2P3huhLK1a9cyZ84cOnfuTH5+PqdPn/6qJTRwY2O5l5cXLper0de1atWKnj17UlhYSEFBwR03U1ssFowxjBkzxv247Vb+67/+i6KiIqZPn47L5eJvf/sbv/zlL1m0aFHjCxKRuyY+3sHbbzvZs6dKe5DkvqeP+Tex3r17U1NTw7vvvgtAXV0dW7ZsYdCgQfj5+REbG8s777zjDhsVFRV06NCBq1evUlRUBEBVVRUul4uwsDDOnz9PXV0dNpvNfR7qQ9WhQ4cAeP/99+nevTtQv/ISEhKC0+nkvffec7+/devWVFVV3TTeiIgIrly54l6ROXjwID179rwrc5GcnMzGjRuJiYlpsCp25MgRHA4H5eXlfPLJJ3Tt2pU+ffqQl5dHdXU1UP9JwPLy8gbtDR8+nHXr1rF27VoWL15MZGSkwpFIM0tMNMycWaFwJPc9rSA1MYvFQmZmJuvXrycnJwdjDI8++ihPP/00UB8aLl++TGZmJj4+PiQnJzN8+HDS09PZtGkTtbW1WK1WsrKyiImJISwsjMzMTKKiohrsbfLz8+PSpUvMmzcPf39/Zs2aBdR/Om3+/Pm0b9+ejh07ukNRUlIS69atY8+ePWRkZLjbsVqtTJs2jVWrVrk3aQ8bNuyuzMXDDz+M1Wpt8HgNIDo6mmXLlmG323nyyScJDg4mLi6O0tJSFixYANQHuueee442bdrclbGIiIjcicXc7nmO3FdSU1PZunVrcw/jjmw2G0uXLuXll192PwLMzs4mKCjIvcfpXigtLW3yPu635/B3U0uuHVS/6lf991P92oMkze7AgQPs2LGDyZMn33LTuoiIyLeJVpCkxdEKUtNqybWD6lf9qv9+qv9OK0japC0iIiLiQQFJRERExIMCkoiIiIgHBSQRERERDwpIIiIiIh4UkEREREQ8KCCJiIiIeFBAEhEREfGggCQiIiLiQQFJRERExIMCkoiIiIgHBSQRERERDwpIIiIiIh4UkEREREQ8KCCJiIiIeFBAEhEREfGggCQiIiLiQQFJRERExIMCkoiIiIgHn+YeQEtgt9vZsGEDJSUlGGOIi4sjNTUVH5/mm/7Dhw8TERFBZGQkANu3b6dHjx7ExsZ+7TaPHz/Oq6++CkBZWRlt27bFarXSqVMnZsyYcVfG7WnJkiWUl5fjcrno2bMnP/nJT/DyUu4XEZFvxmKMMc09iO8yYwzz588nJSWFwYMHU1dXx7p16wgMDCQ1NbXZxrV27Vr69etHYmJik7S/ePFiUlNTiY6ObpL2b6isrMTf35+6ujpWrlzJ3/3d331pTaWlpU06JoDQ0FBsNluT9/Nt1JJrB9VfVNSePXuq6N+/hvh4R3MP555r6ff/fqs/IiLitue0gtTETp06hdVqZfDgwQB4eXkxadIkZsyYwbhx4/D19WXbtm189NFHWCwWkpOTGTFiBEVFRWzevJmamhp8fHxYtGgRBQUFFBcXk5aWBsALL7zAqFGj6NWrF6mpqQwbNozTp08TEBBAeno6bdq0ITc3l/379+N0OgkPD2fmzJmcP3+ewsJCzpw5Q05ODrNnzyYnJ8cdmE6ePMnWrVtxuVxER0fzzDPP4Ovry/Tp0xk4cCBHjx7F6XSSkZFBhw4dGjUPCxcuZMqUKXTs2BGA+fPnM3XqVD744ANsNht2ux273c7o0aMZMmQIALt27aKgoACHw0FiYiJjx469qV1/f38A6urqcDqd3/h+icjXV1joy1NP+VBbG4SvbyDbt9tbZEiS7wYFpCZ26dIlunTp0uCYv78/oaGhlJWVcfbsWa5cucJLL72Et7c3FRUVOJ1OVq9eTXp6Ot26daOyshKr1XrHfmpqaujSpQsTJ07kjTfeYOfOnaSlpZGQkMDQoUMByM7OJi8vjxEjRhAfH3/LFaTa2lpeeeUVsrKyiIiIYM2aNezbt4+RI0cCEBQUxIsvvsjevXvZvXs3zz77bKPmYciQIeTn5zNx4kRKSkoAiIqKcs/RkiVLqKqqYt68ecTFxXHu3DlsNhvLli3DGMPy5cs5e/YsMTExN7W9ZMkSzp07R1xcHI8//vhN53Nzc8nNzQXqQ2VoaGijxvxN+Pj43JN+vo1acu3Qsus/ccKL2lpwuSz/8zqE4cPrmnlU91ZLvv/w3apfAekesFgsNx0zxmCxWDhx4gQpKSl4e3sDEBgYyMWLFwkJCaFbt27A/18l+bI+kpKSABgwYAArV64E6sNHdnY2169fp7q6mj59+tyxndLSUsLCwtzLjgMHDmTv3r3ugJSQkABA165dOXz4cGPKByApKYm5c+cyYcIE8vLyGDRokPvcY489htVqxWq10qNHD4qLizl58iTHjh1j7ty5AFRXV3P58uVbBqSsrCxqa2tZvXo1Z86c4ZFHHmlwfujQoe6QCNyT5d/7bZn5bmrJtUPLrj821herNZTaWoOvryE29io2W8taQWrJ9x/uv/r1iK0ZRUZGUlBQ0OBYZWUldrud8PDwW15zu21hXl5eDc45HLf/wXMjlK1du5Y5c+bQuXNn8vPzOX369FctoYEbG8u9vLxwuVyNvq5Vq1b07NmTwsJCCgoKWLFixR3HboxhzJgx7sdtX8ZqtRIfH09hYeFNAUlE7o34eAdvv+1s0XuQ5LtDH/dpYr1796ampoZ3330XqN8rs2XLFgYNGoSfnx+xsbG888477rBRUVFBhw4duHr1KkVFRQBUVVXhcrkICwvj/Pnz1NXVYbPZ3OehPlQdOnQIgPfff5/u3bsD9SsvISEhOJ1O3nvvPff7W7duTVVV1U3jjYiI4MqVK5SVlQFw8OBBevbseVfmIjk5mY0bNxITE9NgVezIkSM4HA7Ky8v55JNP6Nq1K3369CEvL4/q6mqg/pOA5eXlDdqrqqri888/B8DlcnHs2LE7/mtARJpeYqJh5swKhSO572kFqYlZLBYyMzNZv349OTk5GGN49NFHefrpp4H60HD58mUyMzPx8fEhOTmZ4cOHk56ezqZNm6itrcVqtZKVlUVMTAxhYWFkZmYSFRXVYG+Tn58fly5dYt68efj7+zNr1iwAxo8fz/z582nfvj0dO3Z0h6KkpCTWrVvHnj17yMjIcLdjtVqZNm0aq1atcm/SHjZs2F2Zi4cffhir1drg8RpAdHQ0y5Ytw2638+STTxIcHExcXBylpaUsWLAAqA90zz33HG3atHFfV1VVxYoVK3A4HBhj6N27d4NHaSIiIl+XPub/HZGamsrWrVubexh3ZLPZWLp0KS+//LL7EWB2djZBQUHuPU73gj7m37Racu2g+lW/6r+f6tceJGl2Bw4cYMeOHUyePPmWm9ZFRES+TbSCJC2OVpCaVkuuHVS/6lf991P9d1pB0iZtEREREQ8KSCIiIiIeFJBEREREPCggiYiIiHhQQBIRERHxoIAkIiIi4kEBSURERMSDApKIiIiIBwUkEREREQ8KSP+PnXuPq6rO9z/+2rD3BknwtsXzwxFFDIQZQZPUtDQVGyvtnMmOeuaEMz40f423n5OIOTPMsalJjS6atzqTZaFNONY0aanFUcpLpGRpomxTY7wgIWDtCIG92fv3B4f1iCUQ5QWR9/Mv115rfb/fz1pbeff9fklERETERAFJRERExEQBSURERMREAUlERETERAFJRERExEQBSURERMREAUlERETERAFJRERExEQBSURERMREAUlERETExNrcA7jelZSUsGbNGk6fPo3P5+Omm24iKSkJq7X5Hv3evXsJCwvjJz/5CQAZGRnExMQQFxf3o9v89NNPWb9+PQCFhYV07NgRu91O9+7dmTlz5mUZ93dduHCBpUuXUlhYiL+/PzfffDP/8R//cdn7ERGR1kkB6Qry+Xw8+eST3HHHHaSkpOD1enn++ef561//SlJSUrONa9++ffTv398ISBMmTLjkNvv27Uvfvn0BWLhwIUlJSURGRl5yuw2xWCz867/+K7Gxsbjdbh555BEOHjx4SSFPRC6P0HBoqAAAIABJREFUnBwbH34YwC23VJKQ4G7u4Yj8KApIV9ChQ4ew2+0MHz4cAD8/P371q18xc+ZMxo8fj81mY926dRw4cACLxcLIkSO58847OXbsGGvXrqWyshKr1cof//hHPvroI44fP86UKVMAWLx4MWPHjuWnP/0pSUlJjBo1itzcXG644QbmzJlDSEgImZmZ/M///A8ej4cuXbowa9Ys8vPzycnJ4fDhw7z++uvMnTuX119/nf79+zNo0CA+++wz0tPTqa6uJjIykgceeACbzcaMGTMYNmwYH3/8MR6Ph4ceeoiuXbs26Tn84Q9/YNq0aYSHhwPwu9/9jt/85jfs3r2b4uJiSkpKKCkp4d/+7d8YMWIEAG+++SYfffQRbrebQYMGcd9999VpMzAwkNjYWABsNhs9evSgpKTksrw3EfnxsrMtTJjQCbfbgs3WloyMEoUkaZEUkK6gU6dOERERUeezoKAgHA4HhYWFOJ1OioqKeOKJJ/D396esrAyPx8PSpUuZM2cOvXr1ory8HLvd3mg/lZWVREREMGnSJDZu3Mjf/vY3pkyZwsCBA0lMTATgtddeY/v27dx5550kJCQYgei7qqqqWLVqFampqYSFhbFixQreffdd7r77bgCCg4NZsmQJ27ZtY9OmTTz44INNeg4jRowgKyuLSZMmcfr0aQC6detmPKNHH32UCxcuMH/+fG666SZOnDhBcXExjz/+OD6fj0WLFuF0OomOjq63/bKyMj755BP+9V//td7zmZmZZGZmAjXB0uFwNGncl8JqtV6Vfq5Frbl2UP1r1/rjdluorrYAcPBgB0aP9jbzqK6e1v7+r6f6FZCuMIvFctFnPp8Pi8XCwYMHueOOO/D39wegbdu2nDx5kg4dOtCrVy+gJlA1pY/BgwcDcNttt/Hkk08CNeHjtdde49tvv6WiooL4+PhG2ykoKCA0NJSwsDAAhg0bxrZt24yANHDgQAB69uzJ3r17m1I+AIMHDyYlJYX//M//ZPv27dx+++3GuZtvvhm73Y7dbicmJobjx4/z2Wef8cknn5CSkgJARUUFZ8+erTcg1QbKsWPH0rlz53r7T0xMNIIiQHFxcZPH/mM5HI6r0s+1qDXXDqr/1ls7Y7PV/Jtms/mIiztPcXHrmUFq7e+/pdVf+/OuPgpIV9BPfvITPvroozqflZeXU1JSQpcuXeq9x+fz1fu5n59fnXNud8P/4NSGspUrVzJv3jx69OhBVlYWubm5P7SEOmo3lvv5+VFdXd3k+2qXw3Jycvjoo49IS0trdOw+n49x48YZy20N8fl8PPfcc3Tr1o3Ro0c3eTwicuUMGuQjI6NEe5CkxdOv+V9Bffr0obKykvfffx8Ar9fLK6+8wu23305AQABxcXG89957RtgoKyuja9eunD9/nmPHjgE1v61VXV1NaGgo+fn5eL1eiouLjfNQExSys7MB2LVrF7179wZqZl46dOiAx+Nh586dxvVt2rThwoULF403LCyMoqIiCgsLAfjggw+MfT6XauTIkbz44otER0fXmRXbt28fbrcbl8tFXl4ePXv2JD4+nu3bt1NRUQHU/Cagy+W6qM1XX32VqqqqZt3wLiIXS0hwM2tWmcKRtGiaQbqCLBYLycnJvPDCC7z++uv4fD769etn/Dr6yJEjOXv2LMnJyVitVkaOHMno0aOZM2cOL730ElVVVdjtdlJTU4mOjiY0NJTk5GS6detWZ29TQEAAp06dYv78+QQFBfHb3/4WqPnttN/97nd07tyZ8PBwIxQNHjyY559/ni1btvDQQw8Z7djtdqZPn87TTz9tbNIeNWrUZXkWN954I3a7vc7yGkBkZCSPP/44JSUl/Pu//zvt27fnpptuoqCggN///vdATaCbPXs2ISEhxn1FRUX84x//oGvXrsyfPx+Au+66y9gQLyIiciksvobWdKTFSEpKIj09vbmH0aji4mIee+wxnnnmGWMJ8LXXXiM4ONjY43S1FBQUXPE+Wto6/OXUmmsH1a/6VX9Lql97kKRZ7dixgw0bNvDrX/+63k3rIiIi1xrNIEmroxmkK6s11w6qX/Wr/pZUf2MzSNqkLSIiImKigCQiIiJiooAkIiIiYqKAJCIiImKigCQiIiJiooAkIiIiYqKAJCIiImKigCQiIiJiooAkIiIiYqKAJCIiImKigCQiIiJiooAkIiIiYqKAJCIiImKigCQiIiJiooAkIiIiYqKAJCIiImKigCQiIiJiooAkIiIiYqKAJCIiImJibe4BXO9KSkpYs2YNp0+fxufzcdNNN5GUlITV2nyPfu/evYSFhfGTn/wEgIyMDGJiYoiLi/vRbX766aesX78egMLCQjp27Ijdbqd79+7MnDnzsozbbP369ezcuZOKigrWrl17RfoQEZHWSQHpCvL5fDz55JPccccdpKSk4PV6ef755/nrX/9KUlJSs41r37599O/f3whIEyZMuOQ2+/btS9++fQFYuHAhSUlJREZGXnK7jbn55psZPXo0c+fOvaL9iEjTZWdb2LKlLbfcUklCgru5hyPyoykgXUGHDh3CbrczfPhwAPz8/PjVr37FzJkzGT9+PDabjXXr1nHgwAEsFgsjR47kzjvv5NixY6xdu5bKykqsVit//OMf+eijjzh+/DhTpkwBYPHixYwdO5af/vSnJCUlMWrUKHJzc7nhhhuYM2cOISEhZGZm8j//8z94PB66dOnCrFmzyM/PJycnh8OHD/P6668zd+5cXn/9dfr378+gQYP47LPPSE9Pp7q6msjISB544AFsNhszZsxg2LBhfPzxx3g8Hh566CG6du3apOfwhz/8gWnTphEeHg7A7373O37zm9+we/duiouLKSkpoaSkhH/7t39jxIgRALz55pt89NFHuN1uBg0axH333XdRu1FRUVRXV1+OVyUil0FOjo2JE61UVQVjs7UlI6NEIUlaLAWkK+jUqVNERETU+SwoKAiHw0FhYSFOp5OioiKeeOIJ/P39KSsrw+PxsHTpUubMmUOvXr0oLy/Hbrc32k9lZSURERFMmjSJjRs38re//Y0pU6YwcOBAEhMTAXjttdfYvn07d955JwkJCUYg+q6qqipWrVpFamoqYWFhrFixgnfffZe7774bgODgYJYsWcK2bdvYtGkTDz74YJOew4gRI8jKymLSpEmcPn0agG7duhnP6NFHH+XChQvMnz+fm266iRMnTlBcXMzjjz+Oz+dj0aJFOJ1OoqOjm9SfWWZmJpmZmUBNsHQ4HD+qnR/CarVelX6uRa25dmjd9R886EdVFVRXW/73uAOjR3ubeVRXV2t+/3B91a+AdIVZLJaLPvP5fFgsFg4ePMgdd9yBv78/AG3btuXkyZN06NCBXr16ATWBqil9DB48GIDbbruNJ598EqgJH6+99hrffvstFRUVxMfHN9pOQUEBoaGhhIWFATBs2DC2bdtmBKSBAwcC0LNnT/bu3duU8gEYPHgwKSkp/Od//ifbt2/n9ttvN87dfPPN2O127HY7MTExHD9+nM8++4xPPvmElJQUACoqKjh79uyPDkiJiYlGUAQoLi7+Ue38EA6H46r0cy1qzbVD664/Ls6G3e6gqsqHzeYjLu48xcWtawapNb9/aHn11/68q48C0hX0k5/8hI8++qjOZ+Xl5ZSUlNClS5d67/H5fPV+7ufnV+ec293wPzq1oWzlypXMmzePHj16kJWVRW5u7g8toY7ajeV+fn4/aGkrMDCQ2NhYcnJy+Oijj0hLS2t07D6fj3HjxhnLbSLSMiQkuNm61cOWLRe0B0laPP2a/xXUp08fKisref/99wHwer288sor3H777QQEBBAXF8d7771nhI2ysjK6du3K+fPnOXbsGAAXLlygurqa0NBQ8vPz8Xq9FBcXG+ehJlRlZ2cDsGvXLnr37g3UzLx06NABj8fDzp07jevbtGnDhQsXLhpvWFgYRUVFFBYWAvDBBx8QGxt7WZ7FyJEjefHFF4mOjq4zK7Zv3z7cbjcul4u8vDx69uxJfHw827dvp6KiAqj5TUCXy3VZxiEiV9agQT5mzSpTOJIWTzNIV5DFYiE5OZkXXniB119/HZ/PR79+/fiP//gPoCY0nD17luTkZKxWKyNHjmT06NHMmTOHl156iaqqKux2O6mpqURHRxMaGkpycjLdunWrs7cpICCAU6dOMX/+fIKCgvjtb38L1Px22u9+9zs6d+5MeHi4EYoGDx7M888/z5YtW3jooYeMdux2O9OnT+fpp582NmmPGjXqsjyLG2+8EbvdXmd5DSAyMpLHH3+ckpIS/v3f/5327dtz0003UVBQwO9//3ugJtDNnj2bkJCQOve+/PLLfPjhh1y4cIEHH3yQUaNGMW7cuMsyXhERad0svobWdKTFSEpKIj09vbmH0aji4mIee+wxnnnmGWMJ8LXXXiM4ONjY43S1FBQUXPE+Wto6/OXUmmsH1a/6VX9Lql97kKRZ7dixgw0bNvDrX/+63k3rIiIi1xrNIEmroxmkK6s11w6qX/Wr/pZUf2MzSNqkLSIiImKigCQiIiJiooAkIiIiYqKAJCIiImKigCQiIiJiooAkIiIiYqKAJCIiImKigCQiIiJiooAkIiIiYqKAJCIiImKigCQiIiJiooAkIiIiYqKAJCIiImKigCQiIiJiooAkIiIiYqKAJCIiImKigCQiIiJiooAkIiIiYqKAJCIiImLyvQEpKSmpznFWVhZr1qy5YgP6rhkzZuByuZp8fWNjM9cBsHbtWt5++23j+M9//jPPPfeccfzKK6+wefPmJvdfVFTE3Llzm3z9pdq3bx/JycnMmzePhx9+mLy8vKvWd302bNjAW2+9dVnays3NZfHixXU+W7lyJdnZ2QAsXLiQ48ePG+eu9rMXEZHrW6ueQYqOjsbpdALg9XpxuVycOnXKOO90OomOjm5SW16v95LG8mPu79OnD2lpaaSlpfGb3/ymTrirlZWVxYYNGy5pbE1RXV3drPeLSPPJybGxfHlbcnJszT0UkcvGeik3nzt3jtWrV+NyuQgJCWH69Ok4HA5WrlxJ//79GTRoEFAze5Oens758+dZunQp5eXleL1epk6dSkxMDAcOHGDDhg14PB66dOnC9OnTCQwMBGDr1q18/PHHeDweHnroIbp27UpZWRmrVq2iqKiIgIAApk2bRvfu3euMraioiGXLluH1eomPj693/NHR0bz88ssAnD59mm7duvHVV19RVlZGQEAAZ86cISIiAp/Px7p16/j0008BGDduHIMHDyY3N5eNGzfSvn178vPzWbBggdH2l19+yVNPPcW0adPo2bMn69ev5/Dhw7jdbn7+858zatSoi+5ftGgRzzzzDKWlpXi9XqOfhtQ+I4DKykosFssPfodff/01jz/+OEuWLCE/P5+UlBRWrVqFw+Fg1qxZPPnkk7hcrgbfc9u2bcnPzyciIqLOeDIzM9m7dy/JycmUlpayZs0aXC4XAQEB/N//+3/p2rXrRfdPmjTpB49fRJrPffd14ptvLBw+bMPrBT+/YOLifLRp04mNG0uae3gil+R7A1JVVRXz5s0zjsvKykhISABgzZo1DB06lNtvv53t27fz4osvkpKS0mBbu3btIj4+nnvvvRev10tlZSUul4s33niD1NRUAgMDefPNN9m8eTP33XcfAMHBwSxZsoRt27axadMmHnzwQTZs2EBERAQpKSkcOnSIFStWkJaWVqevl156iTvuuINhw4axdevWesfTsWNH/P39KS4uxul0EhUVRWlpKUePHiUoKIju3btjtVrJzs4mPz+ftLQ0XC4XCxYsICYmBoBjx47x1FNPERoaSlFREQAFBQUsXbqU6dOn06NHDzIzMwkKCmLRokW43W5SU1ON0Pbd+7Ozs+nQoYMRtMrLywHIyMggMjLSeO7ftXfvXl599VW+/vrrOgGtqdq1a4fb7aa8vJy8vDwiIyM5cuQIvXv3JiQkhICAgEbf89mzZ0lNTcXPz8+Yqdq6dSsHDhxg3rx52Gw2/vu//5sHHniA//N//g+ff/45L7zwAv/1X/910f1mR44cqfPdKy4upn///sbxs88+i91uB8Dj8dTbBtSEtczMTAAWL16Mw+H4wc/ph7JarVeln2tRa64dWlf9NpuVsjKomQC34PX6+PprCyEhtlbzDMxa0/uvz/VU//cGJLvdXid8ZGVlGXs/Pv/8c5KTkwEYOnQo69evb7StyMhIVq9ejcfjYcCAAfTo0YPDhw9z+vRpUlNTgZofdFFRUcY9AwcOBKBnz57s3bsXgLy8PGO/yc9+9jPKysqMMFHL6XQa1zQ2ttplNqfTyZgxY+oEpNpx5OXlMWTIEPz8/Gjfvj2xsbEcP36cNm3a0KtXL0JDQ432XC4XTzzxBHPnzqVbt24AHDhwgJMnTxr7Z8rLyzl79ixWq7XO/eHh4aSnp7Nu3Tr69+9vhLAJEyY0+EwHDBjAgAEDOHz4MBkZGaSmpvLNN9/wpz/9CagJtB6Ph3379gEwa9YswsPD67QRFRWF0+nk8OHD/OIXv+DTTz/F5/MZ/Tf2ngcNGlQnmOzcuZOOHTsyb948rFYrFRUVOJ1Onn76aeMaj8fT4P3fFRMTw8MPP2wcr1y5ss752bNnExkZCdTMGC5ZsqTedhITE0lMTDSOi4uL673ucnI4HFeln2tRa64dWlf9f/1rzfLahAmdcLvBZvOxdm01vXqdo5U8gou0pvdfn5ZWf1hYWIPnLmmJrSH+/v7Gnhqfz2f8QIyNjeWRRx5h//79LF++nHvuuYcbbriBPn36MGfOnPoHaK0Zop+fn7FPxefzNWkcTVlyqg0Hp06dIjw8HIfDwebNm2nTpg3Dhw//3vsDAgLqHAcFBdGpUyecTqcRkHw+H5MnT6Zv3751rs3Nza1zf1hYGEuWLGH//v28+uqrxMfHGzNp3yc2NpaVK1cay2C1oTYrK4uioiLGjx/f4L0xMTEcOXKE4uJiEhIS+Mc//gFQZ7amId9dVgPo1q0b+fn5lJaWEhoaitfr5YYbbrhohq+h+0WkZUlIcJORUcKHHwZwyy2VDBrUrtWGI7m+XNIm7aioKPbs2QPULJ/17t0bgM6dO3PixAmg5jetaoPNuXPnaNeuHYmJiYwYMYIvvvjCCCiFhYVAzV6agoKCRvuNiYlh586dQE3ICA4OJigoqM410dHR7N692xhbQ3r37s3+/ftp27Ytfn5+tG3blm+//ZajR48aM0gxMTF8+OGHxkbuI0eO0KtXr3rbs1qtzJs3j/fff9/ot2/fvrz77rtGUCwoKKCiouKie0tLS7Hb7QwdOpSxY8caz7AhhYWFRlg8ceIEHo+H4ODgRu+pT+3z/Jd/+RfjGXzyySfGBvWG3nN9evTowbRp01iyZAmlpaUEBQURGhrKhx9+CNSExfz8/B88RhG5diUkuJk1q4yEBHdzD0XksrmkGaTJkyezevVq3nrrLWPzLsDIkSNJS0tjwYIF9OnTx5glyc3NZdOmTfj7+xMYGMjMmTMJCQlhxowZLFu2DLe75i/XxIkTG532Gj9+PKtWrSI5OZmAgABmzJhR79iWLVvGli1bjGW6+oSHh/PNN99w66231vmsoqKCkJAQoGYZ6+jRo8Z+mPvvv5/27dtz5syZetsMDAzk4Ycf5rHHHiMgIIARI0ZQVFTE/PnzAQgJCamzt6bWyZMnWbduHRaLBavVytSpU4GG9yBlZ2fzwQcf4O/vj91u57e//e2P2qhdu8QXGxsL1ITLkpIS2rZtCzT8nhvSu3dvkpKSWLx4MX/4wx+YPXs2f/nLX3jjjTfweDwMGTKEHj16/OBxioiIXC0WX1PXq0SuE983Q3k5tLR1+MupNdcOql/1q/6WVH9jkzGt+v+DJCIiIlIfBSQREREREwUkERERERMFJBERERETBSQREREREwUkERERERMFJBERERETBSQREREREwUkERERERMFJBERERETBSQREREREwUkERERERMFJBERERETBSQREREREwUkERERERMFJBERERETBSQREREREwUkERERERMFJBERERETBSQREREREwUkEREREZNLDkhJSUl1jrOyslizZs2lNtskM2bMwOVyNfn6xsZmrgNg7dq1vP3228bxn//8Z5577jnj+JVXXmHz5s1N7r+oqIi5c+c2+fpLtXPnTpKTk0lOTuYPf/gD+fn5V7S/hQsXcvz48cvS1oYNG3jrrbfqfPbd992c3zsREbn+aQapEdHR0TidTgC8Xi8ul4tTp04Z551OJ9HR0U1qy+v1XtJYfsz9oaGhLFy4kCeffJJx48bx3//935c0hsY0R30icm3JybHxxBN+5OTYmnsoIpfMeiUbP3fuHKtXr8blchESEsL06dNxOBysXLmS/v37M2jQIKBmNiA9PZ3z58+zdOlSysvL8Xq9TJ06lZiYGA4cOMCGDRvweDx06dKF6dOnExgYCMDWrVv5+OOP8Xg8PPTQQ3Tt2pWysjJWrVpFUVERAQEBTJs2je7du9cZW1FREcuWLcPr9RIfH1/v+KOjo3n55ZcBOH36NN26deOrr76irKyMgIAAzpw5Q0REBD6fj3Xr1vHpp58CMG7cOAYPHkxubi4bN26kffv25Ofns2DBAqPtL7/8kqeeeopp06bRs2dP1q9fz+HDh3G73fz85z9n1KhRF92/aNEinnnmGUpLS/F6vUY/DflueLvxxhspKSm56Jo9e/bw+eef86tf/Yp33nmHd955hxUrVlBYWMjKlSt59NFH+eyzz0hPT6e6uprIyEgeeOABbDYbM2bMYPjw4Rw4cIDRo0cbbXq9XlatWoXD4WDixIkNvj/z/UOGDGn0+yQi166cHBu/+IUDrxf8/Bz8/e/FJCS4m3tYIj/aJQekqqoq5s2bZxyXlZWRkJAAwJo1axg6dCi3334727dv58UXXyQlJaXBtnbt2kV8fDz33nsvXq+XyspKXC4Xb7zxBqmpqQQGBvLmm2+yefNm7rvvPgCCg4NZsmQJ27ZtY9OmTTz44INs2LCBiIgIUlJSOHToECtWrCAtLa1OXy+99BJ33HEHw4YNY+vWrfWOp2PHjvj7+1NcXIzT6SQqKorS0lKOHj1KUFAQ3bt3x2q1kp2dTX5+PmlpabhcLhYsWEBMTAwAx44d46mnniI0NJSioiIACgoKWLp0KdOnT6dHjx5kZmYSFBTEokWLcLvdpKamGqHtu/dnZ2fToUMHI2iVl5cDkJGRQWRkpPHc67N9+3b69et30eexsbFs2rQJgCNHjhAcHExpaSl5eXnExMRQVVXFqlWrSE1NJSwsjBUrVvDuu+9y9913A2Cz2Xj00UcBeO+996iurubZZ58lPDyce++993vf33fvN3v77bfZuXOncVxaWmr8ubHvnVlmZiaZmZkALF68GIfD0eBzulysVutV6eda1Jprh9Zb/8GDftRMBFvwen0cPNiB0aNb38xwa33/ta6n+i85INnt9jrhIysry9iH8vnnn5OcnAzA0KFDWb9+faNtRUZGsnr1ajweDwMGDKBHjx4cPnyY06dPk5qaCoDH4yEqKsq4Z+DAgQD07NmTvXv3ApCXl2fs9fnZz35GWVmZESZqOZ1O45rGxla7zOZ0OhkzZkydgFQ7jry8PIYMGYKfnx/t27cnNjaW48eP06ZNG3r16kVoaKjRnsvl4oknnmDu3Ll069YNgAMHDnDy5Emys7OBmuBz9uxZrFZrnfvDw8NJT09n3bp19O/f3whhEyZMaPS5Hjp0iB07dvCnP/3ponPt27enoqKCCxcuUFJSwpAhQzh8+DB5eXkMGDCAgoICQkNDCQsLA2DYsGFs27bNCEjmGay//OUv3HLLLdx7771AzXegsffX2AzY3XffzT333GMcz5gxw/hzY987s8TERBITE43j4uLiBvu8XBwOx1Xp51rUmmuH1lt/XJyNwMBOuN1gs/mIiztPcXHrm0Fqre+/Vkurv/ZnW32u6BJbQ/z9/Y09Jz6fD4/HA9TMZjzyyCPs37+f5cuXc88993DDDTfQp08f5syZU29bVmtNCX5+flRXVxttNoXFYvnea6KionA6nZw6dYrw8HAcDgebN2+mTZs2DB8+/HvvDwgIqHMcFBREp06dcDqdRkDy+XxMnjyZvn371rk2Nze3zv1hYWEsWbKE/fv38+qrrxIfH2/MxDTkn//8J88//zwLFiwgODi43mtuvPFGduzYQVhYGDExMezYsYOjR48yadIkY9arqfVFRUWRm5vLmDFjsNvt+Hy+Rt+f+X4RaZkSEtxkZJRw8GAH4uLOa3lNWrwrukk7KiqKPXv2ADXLZ7179wagc+fOnDhxAoB9+/YZwebcuXO0a9eOxMRERowYwRdffGEElMLCQgAqKyspKChotN+YmBhjaSY3N5fg4GCCgoLqXBMdHc3u3buNsTWkd+/e7N+/n7Zt2+Ln50fbtm359ttvOXr0qDETEhMTw4cffmhs5D5y5Ai9evWqtz2r1cq8efN4//33jX779u3Lu+++awTFgoICKioqLrq3tLQUu93O0KFDGTt2rPEMG1JcXMyTTz7JzJkzG03JtctsMTExREREkJubi81mIygoiLCwMIqKiozn/8EHHxAbG9tgWyNGjKBfv348/fTTVFdX/6j3JyItU0KCm5QUr8KRXBeu6AzS5MmTWb16NW+99ZaxSRtg5MiRpKWlsWDBAvr06WPMIuTm5rJp0yb8/f0JDAxk5syZhISEMGPGDJYtW4bbXfOXbuLEiY3+wB8/fjyrVq0iOTmZgICAOksz3x3bsmXL2LJli7FMV5/w8HC++eYbbr311jqfVVRUEBISAsCAAQM4evSosSfm/vvvp3379pw5c6beNgMDA3n44Yd57LHHCAgIYMSIERQVFTF//nwAQkJC6uyvqXXy5EnWrVuHxWLBarUydepUoOE9SBuWXu5dAAAgAElEQVQ3bqSsrIwXXngBqJm5W7x48UXt9u7dm5KSEmJiYvDz86NTp07G87Xb7UyfPt0IPJGRkYwaNarB5wUwZswYysvLWb58ObNnz/7B709ERKS5WXxNXY8SuU5cjRmslrYOfzm15tpB9at+1d+S6m/sP9b1/0ESERERMVFAEhERETFRQBIRERExUUASERERMVFAEhERETFRQBIRERExUUASERERMVFAEhERETFRQBIRERExUUASERERMVFAEhERETFRQBIRERExUUASERERMVFAEhERETFRQBIRERExUUASERERMVFAEhERETFRQBIRERExUUASERERMVFAEhERETFRQBIRERExueSAlJSUVOc4KyuLNWvWXGqzTTJjxgxcLleTr29sbOY6ANauXcvbb79tHP/5z3/mueeeM45feeUVNm/e3OT+i4qKmDt3bpOvv1Rnzpzh97//Pb/85S956623rnh/Cxcu5Pjx45elrQ0bNlw05u++7+b83omIyPVPM0iNiI6Oxul0AuD1enG5XJw6dco473Q6iY6OblJbXq/3ksbyY+5v27YtkydPZuzYsZfUd1M0R30icm3JybHxxBN+5OTYmnsoIpfMeiUbP3fuHKtXr8blchESEsL06dNxOBysXLmS/v37M2jQIKBmNiA9PZ3z58+zdOlSysvL8Xq9TJ06lZiYGA4cOMCGDRvweDx06dKF6dOnExgYCMDWrVv5+OOP8Xg8PPTQQ3Tt2pWysjJWrVpFUVERAQEBTJs2je7du9cZW1FREcuWLcPr9RIfH1/v+KOjo3n55ZcBOH36NN26deOrr76irKyMgIAAzpw5Q0REBD6fj3Xr1vHpp58CMG7cOAYPHkxubi4bN26kffv25Ofns2DBAqPtL7/8kqeeeopp06bRs2dP1q9fz+HDh3G73fz85z9n1KhRF92/aNEinnnmGUpLS/F6vUY/DWnXrh3t2rVj//79DV6zZ88ePv/8c371q1/xzjvv8M4777BixQoKCwtZuXIljz76KJ999hnp6elUV1cTGRnJAw88gM1mY8aMGQwfPpwDBw4wevRoo02v18uqVatwOBxMnDixwfdnvn/IkCGNfZ1E5BqWk2PjF79w4PVCYGAnMjJKSEhwN/ewRH60Sw5IVVVVzJs3zzguKysjISEBgDVr1jB06FBuv/12tm/fzosvvkhKSkqDbe3atYv4+HjuvfdevF4vlZWVuFwu3njjDVJTUwkMDOTNN99k8+bN3HfffQAEBwezZMkStm3bxqZNm3jwwQfZsGEDERERpKSkcOjQIVasWEFaWlqdvl566SXuuOMOhg0bxtatW+sdT8eOHfH396e4uBin00lUVBSlpaUcPXqUoKAgunfvjtVqJTs7m/z8fNLS0nC5XCxYsICYmBgAjh07xlNPPUVoaChFRUUAFBQUsHTpUqZPn06PHj3IzMwkKCiIRYsW4Xa7SU1NNULbd+/Pzs6mQ4cORtAqLy8HICMjg8jISOO5/xCxsbFs2rQJgCNHjhAcHExpaSl5eXnExMRQVVXFqlWrSE1NJSwsjBUrVvDuu+9y9913A2Cz2Xj00UcBeO+996iurubZZ58lPDyce++993vf33fvN3v77bfZuXOncVxaWmr8ubHvnVlmZiaZmZkALF68GIfD8YOf0w9ltVqvSj/XotZcO7Te+g8e9KNmItiC2w0HD3Zg9OjWNzPcWt9/reup/ksOSHa7vU74yMrKMvahfP755yQnJwMwdOhQ1q9f32hbkZGRrF69Go/Hw4ABA+jRoweHDx/m9OnTpKamAuDxeIiKijLuGThwIAA9e/Zk7969AOTl5Rl7fX72s59RVlZmhIlaTqfTuKaxsdUuszmdTsaMGVMnINWOIy8vjyFDhuDn50f79u2JjY3l+PHjtGnThl69ehEaGmq053K5eOKJJ5g7dy7dunUD4MCBA5w8eZLs7GygJvicPXsWq9Va5/7w8HDS09NZt24d/fv3N0LYhAkTGn2ujWnfvj0VFRVcuHCBkpIShgwZwuHDh8nLy2PAgAEUFBQQGhpKWFgYAMOGDWPbtm1GQDLPYP3lL3/hlltu4d577wVqvgONvb/GZsDuvvtu7rnnHuN4xowZxp8b+96ZJSYmkpiYaBwXFxc3/lAuA4fDcVX6uRa15tqh9dYfF2cjMLATbjfYbD7i4s5TXNz6ZpBa6/uv1dLqr/3ZVp8rusTWEH9/f2PPic/nw+PxADWzGY888gj79+9n+fLl3HPPPdxwww306dOHOXPm1NuW1VpTgp+fH9XV1UabTWGxWL73mqioKJxOJ6dOnSI8PByHw8HmzZtp06YNw4cP/977AwIC6hwHBQXRqVMnnE6nEZB8Ph+TJ0+mb9++da7Nzc2tc39YWBhLlixh//79vPrqq8THxxszMZfixhtvZMeOHYSFhRETE8OOHTs4evQokyZNMma9mlpfVFQUubm5jBkzBrvdjs/na/T9me8XkZYpIcFNRkYJBw92IC7uvJbXpMW7opu0o6Ki2LNnD1CzfNa7d28AOnfuzIkTJwDYt2+fEWzOnTtHu3btSExMZMSIEXzxxRdGQCksLASgsrKSgoKCRvuNiYkxlmZyc3MJDg4mKCiozjXR0dHs3r3bGFtDevfuzf79+2nbti1+fn60bduWb7/9lqNHjxozITExMXz44YfGRu4jR47Qq1evetuzWq3MmzeP999/3+i3b9++vPvuu0ZQLCgooKKi4qJ7S0tLsdvtDB06lLFjxxrP8FLVLrPFxMQQERFBbm4uNpuNoKAgwsLCKCoqMp7/Bx98QGxsbINtjRgxgn79+vH0009TXV39o96fiLRMCQluUlK8CkdyXbiiM0iTJ09m9erVvPXWW8YmbYCRI0eSlpbGggUL6NOnjzGLkJuby6ZNm/D39ycwMJCZM2cSEhLCjBkzWLZsGW53zV+6iRMnNjotNn78eFatWkVycjIBAQF1lma+O7Zly5axZcsWY5muPuHh4XzzzTfceuutdT6rqKggJCQEgAEDBnD06FFjT8z9999P+/btOXPmTL1tBgYG8vDDD/PYY48REBDAiBEjKCoqYv78+QCEhITU2V9T6+TJk6xbtw6LxYLVamXq1KlAw3uQvvrqKx5++GEuXLiAxWLhnXfe4emnn74oLPbu3ZuSkhJiYmLw8/OjU6dOxvO12+1Mnz7dCDyRkZGMGjWqwecFMGbMGMrLy1m+fDmzZ8/+we9PRESkuVl8TV2PErlOXI0ZrJa2Dn85tebaQfWrftXfkupv7D/W9f9BEhERETFRQBIRERExUUASERERMVFAEhERETFRQBIRERExUUASERERMVFAEhERETFRQBIRERExUUASERERMVFAEhERETFRQBIRERExUUASERERMVFAEhERETFRQBIRERExUUASERERMVFAEhERETFRQBIRERExUUASERERMVFAEhERETFRQBIRERExUUASERERMbksASkpKanOcVZWFmvWrLkcTX+vGTNm4HK5mnx9Y2Mz1wGwdu1a3n77beP4z3/+M88995xx/Morr7B58+Ym919UVMTcuXObfP2l8vl8vPjii8yaNYvk5GROnDhxRfv7oe+jMStXriQ7O7vOZ7XvqL7nuGHDBt56663L0reIiLRumkH6HtHR0TidTgC8Xi8ul4tTp04Z551OJ9HR0U1qy+v1XtJYfsz9n3zyCYWFhTz77LNMmzaNF1544ZLG0JjmqE9Eri3Z2RaWL29LTo6tuYcickmsV7qDc+fOsXr1alwuFyEhIUyfPh2Hw8HKlSvp378/gwYNAmpmBtLT0zl//jxLly6lvLwcr9fL1KlTiYmJ4cCBA2zYsAGPx0OXLl2YPn06gYGBAGzdupWPP/4Yj8fDQw89RNeuXSkrK2PVqlUUFRUREBDAtGnT6N69e52xFRUVsWzZMrxeL/Hx8fWOPzo6mpdffhmA06dP061bN7766ivKysoICAjgzJkzRERE4PP5WLduHZ9++ikA48aNY/DgweTm5rJx40bat29Pfn4+CxYsMNr+8ssveeqpp5g2bRo9e/Zk/fr1HD58GLfbzc9//nNGjRp10f2LFi3imWeeobS0FK/Xa/TTkJycHIYOHYrFYiEqKopvv/2W8+fP06FDB+Oaf/zjH9hsNu666y7Wrl3LP//5T/7rv/6Lzz77jB07djB79mx27drF3//+dwD69evH/fffb7y3MWPGcODAASZNmmS0WVVVRVpaGgMHDiQxMZEPPviALVu24PF4uPHGG5k6dSp+fn4X3d+7d++mfbFE5JqTk2Nj4kQrFy4EExjYloyMEhIS3M09LJEf5bIEpKqqKubNm2ccl5WVkZCQAMCaNWsYOnQot99+O9u3b+fFF18kJSWlwbZ27dpFfHw89957L16vl8rKSlwuF2+88QapqakEBgby5ptvsnnzZu677z4AgoODWbJkCdu2bWPTpk08+OCDbNiwgYiICFJSUjh06BArVqwgLS2tTl8vvfQSd9xxB8OGDWPr1q31jqdjx474+/tTXFyM0+kkKiqK0tJSjh49SlBQEN27d8dqtZKdnU1+fj5paWm4XC4WLFhATEwMAMeOHeOpp54iNDSUoqIiAAoKCli6dCnTp0+nR48eZGZmEhQUxKJFi3C73aSmphqh7bv3Z2dn06FDByNolZeXA5CRkUFkZKTx3GuVlpbicDiM406dOlFaWlonIMXExLB582buuusuTpw4gdvtxuPxkJeXR0xMDKWlpaxfv54lS5Zwww038Nhjj7F3714GDBhAZWUl3bp1Y8KECUZ7FRUVLFu2jKFDhzJs2DBOnz7Nnj17ePTRR7Farbzwwgvs3LmTYcOG1Xv/d6Wnp/P666/Xe66wsLDO9+6rr75i7NixF12XmZlJZmYmAIsXL67zPK4Uq9V6Vfq5FrXm2qF113/woB9VVQAW3G44eLADo0e3rpnh1vz+4fqq/7IEJLvdXid8ZGVlcfz4cQA+//xzkpOTARg6dCjr169vtK3IyEhWr16Nx+NhwIAB9OjRg8OHD3P69GlSU1MB8Hg8REVFGfcMHDgQgJ49e7J3714A8vLyjD0qP/vZzygrKzPCRC2n02lc09jYapfZnE4nY8aMqROQaseRl5fHkCFD8PPzo3379sTGxnL8+HHatGlDr169CA0NNdpzuVw88cQTzJ07l27dugFw4MABTp48aey5KS8v5+zZs1it1jr3h4eHk56ezrp16+jfv78RwhoKGD6f76LPLBZLneOePXty4sQJLly4gM1mIyIighMnTpCXl8fkyZM5fvw4P/3pTwkJCQHgtttu48iRIwwYMAA/Pz9jFrBWWloa99xzD7fddhsAhw4d4osvvjBCXVVVldFWffd/V1JSUp3z390n9i//8i91vncbNmyot43ExEQSExON4+Li4gb7u1wcDsdV6eda1Jprh9Zdf1ycDbvdQVWVD5vNR1zceYqLW9cMUmt+/9Dy6g8LC2vw3BVfYmuIv7+/sefE5/Ph8XgAiI2N5ZFHHmH//v0sX76ce+65hxtuuIE+ffowZ86cetuyWmvK8PPzo7q62mizKcxhoT5RUVE4nU5OnTpFeHg4DoeDzZs306ZNG4YPH/699wcEBNQ5DgoKolOnTjidTiMg+Xw+Jk+eTN++fetcm5ubW+f+sLAwlixZwv79+3n11VeJj483ZtLq06lTpzpf1pKSkjqzR1Dz/Dp37syOHTuIioqie/fuHDp0iMLCQrp27UpBQUGD7dtsNvz86m5li46O5pNPPuHWW2/FYrHg8/kYNmwYv/zlL5t0v4i0TAkJbrZu9bBlywVuuaVSy2vSol3xn0xRUVHs2bMHqFk+q91j0rlzZ+M3qvbt22cEm3PnztGuXTsSExMZMWIEX3zxhRFQCgsLAaisrGz0hzbULBvt3LkTqAkZwcHBBAUF1bkmOjqa3bt3G2NrSO/evdm/fz9t27bFz8+Ptm3b8u2333L06FFjBikmJoYPP/zQ2Mh95MgRevXqVW97VquVefPm8f777xv99u3bl3fffdcIigUFBVRUVFx0b2lpKXa7naFDhzJ27Njv/a20hIQEPvjgA3w+nzHrZQ5ItePftGkTMTEx9O7dm/fee48ePXpgsVi48cYbOXz4MC6XC6/Xy+7du4mNjW2wz/HjxxMcHGxsCO/Tpw/Z2dl8/fXXQM0S7Llz5xodt4i0TIMG+Zg1q0zhSFq8Kz6DNHnyZFavXs1bb71lbNIGGDlyJGlpaSxYsIA+ffoYsyS5ubls2rQJf39/AgMDmTlzJiEhIcyYMYNly5bhdtf8pZs4cWKjU2Pjx49n1apVJCcnExAQwIwZM+od27Jly9iyZYuxTFef8PBwvvnmG2699dY6n1VUVBhLRQMGDODo0aPGnpj777+f9u3bc+bMmXrbDAwM5OGHH+axxx4jICCAESNGUFRUxPz58wEICQmps7+m1smTJ1m3bh0WiwWr1crUqVOBhvcg9evXj/379zN79mzsdrvx/M1iYmL4+9//TlRUFIGBgdjtdmP5rkOHDvzyl7/kkUceMdq8+eabG3xeAL/+9a9ZvXo169at4/7772fixIk89thj+Hw+/P39mTJlCp07d260DRERkeZi8TV1LUrkOvF9s4+XQ0tbh7+cWnPtoPpVv+pvSfU3NtGizR8iIiIiJgpIIiIiIiYKSCIiIiImCkgiIiIiJgpIIiIiIiYKSCIiIiImCkgiIiIiJgpIIiIiIiYKSCIiIiImCkgiIiIiJgpIIiIiIiYKSCIiIiImCkgiIiIiJgpIIiIiIiYKSCIiIiImCkgiIiIiJgpIIiIiIiYKSCIiIiImCkgiIiIiJgpIIiIiIiYKSCIiIiIm1uYegAjAhAkTCA8Pp7q6Gn9/f4YNG8Zdd92Fn58yvIiIXH0KSHJNsNvtpKWlAfD111/z7LPPUl5ezvjx45t5ZCLSVDk5Ng4e9CMuzkZCgru5hyNySfSf53LNadeuHdOmTWPr1q34fD6ysrJYs2aNcX7x4sXk5uYCkJSUxCuvvML8+fP505/+hMvlaq5hi7RqOTk2JkzoxMKF/kyY0ImcHFtzD0nkkmgGSa5JXbp0wefz8fXXXzd6XWVlJREREUyaNImNGzfyt7/9jSlTptS5JjMzk8zMTKAmXDkcjis27lpWq/Wq9HMtas21Q+ut/+BBP9xuC9XVlv897sDo0d5mHtXV11rff63rqX4FJLlm+Xy+773GYrEwePBgAG677TaefPLJi65JTEwkMTHROC4uLr58g2yAw+G4Kv1ci1pz7dB664+Ls2GzdQLAZvMRF3ee4uLWt8zWWt9/rZZWf1hYWIPnFJDkmvTll1/i5+dHu3bt8PPzqxOW3O6G/9G1WCxXY3giYpKQ4CYjo4SDBzsQF3dee5CkxdMeJLnmuFwu/vKXvzB69GgsFguhoaHk5+fj9XopLi7m2LFjxrU+n4/s7GwAdu3aRe/evZtr2CKtXkKCm5QUr8KRXBc0gyTXhKqqKubNm2f8mv9tt93GmDFjAIiOjiY0NJTk5GS6detGRESEcV9AQACnTp1i/vz5BAUF8dvf/ra5ShARkeuIApJcEzIyMho8Z7FYmD17doPnJ06cyMSJE6/EsEREpJXSEpuIiIiIiQKStGjp6enNPQQREbkOKSCJiIiImCggiYiIiJgoIImIiIiYKCCJiIiImCggiYiIiJgoIImIiIiYKCCJiIiImCggiYiIiJgoIImIiIiYKCCJiIiImCggiYiIiJgoIImIiIiYKCCJiIiImCggiYiIiJgoIImIiIiYKCCJiIiImCggiYiIiJgoIImIiIiYKCCJiIiImCggyTVp/PjxLF++3Diurq5mypQpLF68GICsrCzWrFlT556FCxdy/PjxqzpOERG5PlmbewAi9QkICODUqVNUVVVht9s5ePAgHTt2bO5hiUgjcnJsHDzoR1ycjYQEd3MPR+SSaAZJrll9+/Zl//79AOzevZshQ4Y084hEpCE5OTYmTOjEwoX+TJjQiZwcW3MPSeSSaAZJrllDhgxh48aN3HTTTfzzn/9k+PDh5OXlGef37NlT57iwsLDedjIzM8nMzARg8eLFOByOKztwwGq1XpV+rkWtuXZovfUfPOiH222hutryv8cdGD3a28yjuvpa6/uvdT3Vr4Ak16zu3btz7tw5du/eTb9+/S46P3jwYKZMmWIcL1y4sN52EhMTSUxMNI6Li4sv+1jNHA7HVennWtSaa4fWW39cnA2brRMANpuPuLjzFBe3vmW21vr+a7W0+sPCwho8pyU2uaYlJCSQnp7Orbfe2txDEZFGJCS4ycgoYeHCajIySrQHSVo8zSDJNW348OEEBQURHh5Obm5ucw9HRBqRkOBm9Ghvq5w5kuuPZpDkmtapUyfuuuuu5h6GiIi0Mhafz+dr7kGIXE0FBQVXvI+Wtg5/ObXm2kH1q37V35Lq1x4kERERkR9AAUlERETERAFJRERExEQBSURERMREAUlERETERAFJRERExEQBSURERMREAUlERETERAFJRERExEQBSURERMREAUlERETERAFJRERExEQBSURERMREAUlERETERAFJRERExEQBSURERMREAUlERETERAFJRERExEQBSURERMREAUlERETERAFJRERExMTa3AMQacz48eO57bbbmDVrFgDV1dVMmzaNG2+8kYcffpisrCzS09Pp2LEjAN27d2fmzJnNOWQREbkOKCDJNS0gIIBTp05RVVWF3W7n4MGDRhiqNXjwYKZMmdJMIxQRgJwcGx9+GMCdd1ro1au5RyNy6RSQ5JrXt29f9u/fz6BBg9i9ezdDhgwhLy+vuYcl0urcd1+nej//5hsLhw/b8HrhiScgNtZBcLDvous2biy50kMUuWwUkOSaN2TIEDZu3MhNN93EP//5T4YPH14nIO3Zs8c4vuuuuxg+fHid+zMzM8nMzARg8eLFOByOKz5mq9V6Vfq5FrXm2uH6rt9mq/9HRlkZeL0AFrxeH2VlVkwTvQDX7XP5ruv5/TfF9VS/ApJc87p37865c+fYvXs3/fr1u+j89y2xJSYmkpiYaBwXFxdfkXF+l8PhuCr9XItac+1wfdf/17/W/3lOjo0JEzrhdoPdDsuWlZCQ4L7ouuv0sdRxPb//pmhp9YeFhTV4Tr/FJi1CQkIC6enp3Hrrrc09FBExSUhwk5FRwrx537B1q6fecCTS0mgGSVqE4cOHExQURHh4OLm5uc09HBExSUhwk5DgxuEIbBUzRXL90wyStAidOnXirrvuau5hiIhIK2Hx+XwX/6qByHWsoKDgivfR0tbhL6fWXDuoftWv+ltS/dqDJCIiIvIDKCCJiIiImCggiYiIiJgoIImIiIiYKCCJiIiImCggiYiIiJgoIImIiIiYKCCJiIiImCggiYiIiJgoIImIiIiYKCCJiIiImCggiYiIiJgoIImIiIiYKCCJiIiImCggiYiIiJgoIImIiIiYKCCJiIiImCggiYiIiJgoIImIiIiYKCCJiIiImCggiYiIiJhYm3sAIk31xhtvsGvXLvz8/LBYLEybNo3169dz/vx57HY7AOPGjWPQoEHNPFIREWnpFJCkRTh69Cgff/wxS5YswWaz4XK58Hg8AMyePZvIyMhmHqGIAGRnW9iypS233FJJQoK7uYcj8qMpIEmLcP78eYKDg7HZbACEhIQ084hExCwnx8YvfmHFYgnGZmtLRkaJQpK0WApI0iLEx8ezceNG/t//+3/06dOHwYMHExsbC8Czzz5rLLH98Y9/JDg4+P+zd+9hUdb5/8efw8wAouCCeMQDKnkAlVRC1zY0Zb1M17av9U2/P1etKzMXwkjFw7ZktnneSDJkN0/tup3Uyy01pdY1ylMRapqopKiJB0KUREQOw8zvD9Z7Y0REBRF9Pa5rr4uZue/P5/2+J52Xn/szbLlzN2/ezObNmwGYO3cuvr6+NV6vxWK5LfPcie7l3uHe7n/fPhfsdgDTfx57M2iQvVZrut3u5fcf7q7+TQ6Hw1HbRYhUhd1u5+DBg6SlpfGvf/2LkSNHkpyczKhRo27oFtvp06drsMoyvr6+5OTk1Pg8d6J7uXe4t/tPTbUyYoQvxcVgtTruyRWke/n9h7rXf4sWLa75mlaQpM5wcXEhKCiIoKAgWrduTXJycm2XJCI/ExJSQlKSjU2bLmsPktR5CkhSJ5w+fRqTyUTz5s0BOH78OI0bNyYzM7OWKxORn+vd20FAQH5tlyFyyxSQpE4oLCxk+fLlXLp0CbPZTLNmzRg3bhxxcXG1XZqIiNyFFJCkTmjXrh2vvfbaVc+/8sort78YERG56+k3aYuIiIg4UUASERERcaKAJCIiIuJEAUlERETEiQKSiIiIiBMFJBEREREnCkgiIiIiThSQRERERJwoIImIiIg4UUASERERcaKAJCIiIuJEAUlERETEiQKSiIiIiBMFJBEREREnCkgiIiIiThSQRERERJwoIImIiIg4UUASERERcaKAJCIiIuJEAUlERETEiQKSiIiIiBMFpP9Yu3YtEydOZPLkycTExHD48GEAPvnkE4qKim54vFGjRt10LcnJyZw/f77Kx69atYp169bd9Hw15eDBg0ycOJGYmBiKi4tvaazU1FQ++ugj4M7tV0RE7h6W2i7gTvD999+za9cu5s2bh9VqJS8vD5vNBsDGjRt56KGHcHNzu231JCcn06pVK3x8fG7bnDVh69atDB06lIcffviWxwoJCSEkJKQaqhKRmpKaamXfPhe6dbMSElJS2+WI3BIFJCA3NxdPT0+sVisAXl5eQFk4On/+PDNnzsTLy4sZM2YwatQoVq5cCcBXX33Frl27iIyMJDs7m/j4eOx2O8HBweXGX7duHTt37qSkpITQ0FCefPJJsrOzmTNnDh07duT777/Hx8eHKVOmsHv3bghLOxwAACAASURBVDIyMnjzzTdxdXVl1qxZrF69mtTUVMxmM926dWP06NFX9fDDDz8wc+ZMzp07x6OPPkp4eDiLFi2id+/ePPDAAwC8+eab9OnTp1zQSEtLY/Xq1Xh6epKZmUm7du2IiorCZDLx3XffsXLlSkpLS2nfvj3PPvssVquVyMhI+vbty65du7DZbEycOBE/P79y9fz73/9m586d7N27l++++45x48Yxf/58Ll26hM1mY8SIETzwwANkZ2cze/ZsOnXqxOHDh2nTpg39+vVj9erVXLhwgQkTJhAQEEBycjIZGRk888wzxhxZWVm88cYbzJs3D4AzZ86wcOFC47H81xNPNLptc1mtFkpKbt98d5p7tf+LF00cOGDFbgcXF18CA0vw9HTUdlm33b36/l9xO/tfs+ZcjY6vgAQEBwezZs0aXnjhBbp27UqfPn0IDAxk8ODBfPLJJ8yYMcMITdeyYsUKBg4cSN++fUlKSjKe37t3L2fOnGH27Nk4HA7mz5/PgQMH8PX15cyZM7zwwguMHz+euLg4vvrqK8LCwkhKSmLUqFG0b9+e/Px8UlJSWLhwISaTiUuXLlU4/4kTJ5g1axaFhYVMnTqVHj16MGDAADZs2MADDzxAQUEB6enpREZGXnXusWPHiIuLw9vbm9jYWNLT02nXrh2LFy8mNjaWFi1a8NZbb/HZZ58xZMgQADw9PZk3bx6ffvop69evZ/z48eXGHDBgAIcOHaJnz5707t2b0tJSJk+ejIeHB3l5ebz00ktGUMvKymLixIm0bNmS6dOns23bNl599VVSU1NZu3YtU6ZMqbDnZs2a4eHhwfHjx/H39+fzzz+nX79+Vx23efNmNm/eDMDcuXPx9fWt9L2sDhaL5bbMU1VW6+37o24ymYx/bNyL7tX+8/PBbgcwYbc7yM+3UMcXwW/Kvfr+X3E7+6/pv2MVkAB3d3fmzZvHwYMHSUtL44033mDkyJEVftheS3p6OpMmTQIgLCyMd999FygLSPv27TM+5AsLC8nKysLX15cmTZrg7+8PQLt27Th79uxV49arVw9XV1f+8pe/0KNHD3r27Fnh/CEhIbi6uuLq6kpQUBBHjhwhNDSUZcuWceHCBb7++mt69eqF2Wy+6tyAgAAaNSpL/P7+/mRnZ+Pu7k6TJk1o0aIFAH379uXTTz81AlKvXr2MulNSUq57fRwOB++//z4HDx7EZDJx/vx5Lly4AECTJk1o3bo1AK1ataJr166YTCZat25d4TX5uf79+/P5558zZswYdu7cyezZs686Jjw8nPDwcONxTk7Odeu9Vb6+vrdlnqp6//3bN9ed1vvtdq/2n5pqZfjwRpSUgNXqID7+3D15m+1eff+vuJ39V8c0Vz7jKqKA9B8uLi4EBQURFBRE69atSU5OrjAgmUwm42fnjcc/f+3nHnvsMX7961+Xey47O7tcynZxcalwI7PZbGb27Nl899137Nixg6SkJGbMmFFpXT9//NBDD7F161Z27NjB73//+wrrc67DXvbPwEpZLBbj+NLSUgBmzZrFTz/9RPv27a9aUdq2bRt5eXnMnTsXi8VCZGSk0e/P5//5vz5MJtN1a+nVqxdr1qyhS5cutG3bFk9Pz+vWLiLVLySkhA8/PMe+fd5065Z7T4YjubvoW2zA6dOnOXPmjPH4+PHjNG7cGChbXSosLDRea9iwISdPnsRut5dbOenYsSPbt28HysLAFcHBwXz++efGGD9fObkWd3d3Ll++DJStOBUUFNCjRw+eeuopjh8/XuE533zzDcXFxVy8eJG0tDTat28PQL9+/di4cSNQtjpTVS1atCA7O5usrCwAvvzySwIDAys956WXXmLBggVXhSOAgoICGjZsiMViYf/+/dddGaoqV1dXgoODWbp0abVsBheRmxcSUsKUKXaFI7kraAWJshCyfPlyLl26hNlsplmzZowbNw4ouz0ze/ZsvL29mTFjBiNHjmTevHk0atSIVq1aGcHn6aefJj4+nk2bNhm3n6AsIJ06dYqXXnoJKAs/UVFRuLhcO5v269ePJUuW4Orqyh/+8Afmz59PSUkJDoeDMWPGVHhOQEAAc+fOJScnh8cff9z4BtwvfvEL/Pz8jI3aVeXq6kpERARxcXHGJm3nVbAb8atf/Yp58+Yxbdo0/P39r9rUfSt+9atf8fXXX1+1OV5ERORmmRwOx733NYN7SFFREZMnT2bevHl4eHjUdjk1Yt26dRQUFDBixIgqHX/69Okaruje3odwL/cO6l/9q/+61H9le5B0i+0utm/fPqKjoxk0aNBdG44WLFjAl19+yeDBg2u7FBERuYvoFttdrFu3biQmJtZ2GTUqJiamtksQEZG7kFaQRERERJwoIImIiIg4UUASERERcaKAJCIiIuJEAUlERETEiQKSiIiIiBMFJBEREREnCkgiIiIiThSQRERERJwoIImIiIg4UUASERERcaKAJCIiIuJEAUlERETEiQKSiIiIiBMFJBEREREnCkgiIiIiThSQRERERJwoIImIiIg4UUASERERcaKAVMPWrl3LxIkTmTx5MjExMRw+fBiATz75hKKiohseb9SoUTddS3JyMufPn6/y8atWrWLdunU3Pd/KlSuZOHEiK1euvOkxrvjLX/7CyZMnAYiMjCQvL++WxxQREbkWS20XcDf7/vvv2bVrF/PmzcNqtZKXl4fNZgNg48aNPPTQQ7i5ud22epKTk2nVqhU+Pj63Zb7NmzezdOlSrFbrLY81fvz4aqhI5O6Qmmpl5043fvnLIkJCSmq7HJG7kgJSDcrNzcXT09MICF5eXkBZODp//jwzZ87Ey8uLGTNmMGrUKGOl5auvvmLXrl1ERkaSnZ1NfHw8drud4ODgcuOvW7eOnTt3UlJSQmhoKE8++STZ2dnMmTOHjh078v333+Pj48OUKVPYvXs3GRkZvPnmm7i6ujJr1ixWr15NamoqZrOZbt26MXr06Kt6+OGHH5g5cybnzp3j0UcfJTw8nEWLFtG7d28eeOABAN5880369OlDSEiIcd68efMoLCzkD3/4A//zP/+Dq6sra9euxWaz4enpSVRUFL/4xS9YtWoV2dnZ/PTTT5w5c4bRo0dz+PBh9uzZg4+PD1OnTsVisfDKK68watQo2rdvb8zxwQcf4OXlxeDBgwF4//33adiwofG4Jj3xRKNKX7daLZSUVH7M3epe7h1qvv+LF00cOGDFbgcXF08CA0vw9HTU2Hw3Su//vdP/mjXnaruEGqWAVIOCg4NZs2YNL7zwAl27dqVPnz4EBgYyePBgPvnkE2bMmGGEpmtZsWIFAwcOpG/fviQlJRnP7927lzNnzjB79mwcDgfz58/nwIED+Pr6cubMGV544QXGjx9PXFwcX331FWFhYSQlJRkhIz8/n5SUFBYuXIjJZOLSpUsVzn/ixAlmzZpFYWEhU6dOpUePHgwYMIANGzbwwAMPUFBQQHp6OpGRkeXOmzp1KqNGjWLBggUA5OfnM2vWLEwmE//+979Zt26dEch+/PFHZsyYwcmTJ/njH//IpEmT+N3vfseCBQvYvXs3oaGhFdbWv39/Xn/9dQYPHozdbmfHjh3Mnj37quM2b97M5s2bAZg7dy6+vr6VXvOqsFor/6NjMpmqZeWsLrqXe4ea7z8/H+x2ABN2u4P8fAu3aVG4SvT+3zv9V/R3qcViqZa/Y+8ECkg1yN3dnXnz5nHw4EHS0tJ44403GDlyJP369avyGOnp6UyaNAmAsLAw3n33XaAsIO3bt48pU6YAUFhYSFZWFr6+vjRp0gR/f38A2rVrx9mzZ68at169eri6uvKXv/yFHj160LNnzwrnDwkJwdXVFVdXV4KCgjhy5AihoaEsW7aMCxcu8PXXX9OrVy/MZnOlfZw/f56FCxeSm5uLzWajSZMmxmvdu3fHYrHQunVr7HY7999/PwCtW7eusPYrmjRpQoMGDTh27BgXLlzA398fT0/Pq44LDw8nPDzceJyTk1NprVXx/vuVv+7r61st89RF93LvUPP9p6ZaGT68ESUlYLU6iI8/d0fdZtP7f+/0X1Gbda3/Fi1aXPM1BaQa5uLiQlBQEEFBQbRu3Zrk5OQKA5LJZDJ+Li4uvuZrP/fYY4/x61//utxz2dnZ5f714uLictV4AGazmdmzZ/Pdd9+xY8cOkpKSmDFjRqV1/fzxQw89xNatW9mxYwe///3vK6zv55YvX85vfvMbQkJCSEtLY/Xq1cZrFovFqNVsNhtzmEwmSktLKx13wIABJCcn89NPP/Hwww9ftw6Rui4kpIQPPzynPUgiNUzfYqtBp0+f5syZM8bj48eP07hxY6BsdamwsNB4rWHDhpw8eRK73U5KSorxfMeOHdm+fTsA27ZtM54PDg7m888/N8Y4f/48Fy5cqLQed3d3Ll++DJStOBUUFNCjRw+eeuopjh8/XuE533zzDcXFxVy8eJG0tDRjD1C/fv3YuHEjAK1atbrutSgoKDA2h3/xxRfXPb6qQkND+fbbb8nIyDBWnkTudiEhJURF5SscidQgrSDVoMLCQpYvX86lS5cwm800a9aMcePGAWW3fWbPno23tzczZsxg5MiRzJs3j0aNGtGqVSsj+Dz99NPEx8ezadMmevXqZYwdHBzMqVOneOmll4Cy8BMVFYWLy7Uzb79+/ViyZAmurq784Q9/YP78+ZSUlOBwOBgzZkyF5wQEBDB37lxycnJ4/PHHjZDzi1/8Aj8/P2Oj9vX87//+L3Fxcfj4+HDfffeRnZ1dpfOux2KxEBQURP369SvtXURE5EaYHA7HnfP1B6kzioqKmDx5MvPmzcPDw6PW6rDb7UydOpWJEyfSvHnzKp1z+vTpGq6q7t2Hr073cu+g/tW/+q9L/Ve2B0n/5JYbtm/fPqKjoxk0aFCthqOTJ08yYcIEunbtWuVwJCIiUhW6xSY3rFu3biQmJtZ2GbRs2ZK33nqrtssQEZG7kFaQRERERJwoIImIiIg4UUASERERcaKAJCIiIuJEAUlERETEiQKSiIiIiBMFJBEREREnCkgiIiIiThSQRERERJwoIImIiIg4UUASERERcaKAJCIiIuJEAUlERETEiQKSiIiIiBMFJBEREREnCkgiIiIiThSQRERERJwoIImIiIg4UUASERERcaKAJCIiIuKkWgPSqFGjyj1OTk5m2bJl1TnFNUVGRpKXl1fl4yurzbmP6z1/p0lLS2PMmDHMmTPHeO4f//gHEydO5MUXX2T58uU4HA4AXnnlFV544QViYmKIiYnhwoULABw4cICpU6cyYsQIvvrqq3Lj3+hYN6oq1/ngwYNMnDiRmJgYcnJymDVr1k3NJSLV66uvTCxa1IDUVGttlyJySyy1XYDUjM6dOzNt2jQA0tPTSU9P589//jMAsbGxHDhwgKCgIAAmTJhA+/bty53v6+tLREQE69evL/f8zYx1LQkJCfTr188490Zs3bqVoUOH8vDDDwPg7e3NoUOH6NSp0w2PJXKve+KJRtUyzsWLJg4csGC3e+Li4klgYAmeno5bHnfNmnPVUJ3IjbltAens2bMkJiaSl5eHl5cXERER+Pr6kpCQQM+ePenduzdQtnqwcuVKcnNzWbhwIQUFBdjtdsaOHUvnzp3Zu3cvq1atwmaz0bRpUyIiInB3dwcgKSmJXbt2YbPZmDhxIn5+fuTn57N48WKys7Nxc3Nj3LhxtGnTplxt2dnZxMfHY7fbCQ4Ovm4vaWlprF69Gk9PTzIzM2nXrh1RUVGYTCaOHDnCO++8Q1FRERaLhZdffhmz2czSpUvJyMjAbDYzevRounTpQnJyMikpKdjtdjIzMxk6dCg2m40vv/wSq9XK9OnTadCgAVlZWSxbtoy8vDzc3Nx47rnn8PPzq/K1N5lMFBcXY7PZcDgclJaW0rBhw0rPadKkiXHurY51s651nbds2cLOnTvZu3cv3333HRMmTOCBBx5g27ZtFQakzZs3s3nzZgDmzp2Lr69vjdT7cxaL5bbMcye6l3uHutm/1Vo9HwX5+WC3A5iw2x3k51vw8bn1cevS9ayL7391upv6r9aAVFxcTExMjPE4Pz+fkJAQAJYtW0ZYWBj9+vVjy5YtLF++nClTplxzrG3bthEcHMywYcOw2+0UFRWRl5fH2rVriY2Nxd3dnY8++ogNGzbwxBNPAODp6cm8efP49NNPWb9+PePHj2fVqlW0bduWKVOmsH//ft566y0WLFhQbq4VK1YwcOBA+vbtS1JSUpV6PXbsGHFxcXh7exMbG0t6ejoBAQEsXLiQ6OhoAgICKCgowNXVlY0bNwLw+uuvc+rUKV577TXi4+MByMzMZP78+ZSUlBAVFcXIkSOZP38+77zzDl988QVDhgzh7bff5tlnn6V58+YcPnyYpUuXMmPGDFJTU8nIyGD48OGV1tqhQweCgoIYN24cDoeDQYMG0bJlS+P1xYsX4+LiQq9evXj88cevCkU1NVZVVHSdBwwYwKFDh8oF6/bt2/PBBx9UOEZ4eDjh4eHG45ycnFuqqSp8fX1vyzx3onu5d6ib/b//fvWMk5pqZcQIX4qLHVitDuLjzxESUnLL49aly1kX3//qVNf6b9GixTVfq9aA5OrqWi58JCcnk5GRAcDhw4eZPHkyAGFhYbz77ruVjtW+fXsSExOx2WyEhobi7+/PgQMHOHnyJLGxsQDYbDY6dOhgnNOrVy8A2rVrR0pKCgCHDh1i0qRJAHTp0oX8/HwKCgrKzZWenm4cU5XaAAICAmjUqGxZ2t/fn+zsbDw8PPD29iYgIAAADw8Po4ZHHnkEAD8/Pxo3bsyZM2cACAoKol69etSrVw8PDw8jULZu3ZoTJ05QWFhIeno6cXFxxtw2mw2AkJAQ4/jKZGVlcerUKf7yl78A8Kc//YkDBw4QGBjIhAkT8PHx4fLly7z++ut8+eWX9O3bt8bG+vbbb43rm5OTw6FDh3B3d8dqtTJ79uwqXeeKVom8vLzIzc297rUQkZoTElJCUpKNTZsu88tfFlVLOBKpLbW+B8lsNmMvW5PF4XAYH/6BgYHMnDmT3bt3s2jRIh599FHq169P165diY6OrnAsi6WsHRcXF0pLS40xq+JGVzqs1v9uQHRxccFut19zrspqcB7HuQe73U79+vWvWvW6ESkpKdx3333Grcju3btz+PBhAgMD8fnP+ne9evX41a9+xZEjRyoNSLc61v3338/9998PVG0PUkXXuSIlJSW4urpe71KISA3r3dtBQEB+bZchcstu29f8O3TowI4dOwDK7RVp3LgxR48eBeCbb74xgs3Zs2dp2LAh4eHh9O/fn2PHjtGhQwfS09PJysoCoKioiNOnT1c6b+fOndm6dStQtqfF09PTWNm5omPHjmzfvt2o7Wb5+fmRm5vLkSNHALh8+TKlpaUEBgYaNZw+fZqcnJxKl/V+zsPDgyZNmrBz506gLGwdP378hury9fXl4MGDlJaWYrPZOHDgAH5+fpSWlhrf/LPZbOzatYtWrVpV+1gpKSm89957N1TzjTpz5sx1axcREamq27aC9PTTT5OYmMi6deuMTdoAAwYMYMGCBUyfPp2uXbvi5uYGlIWZ9evXYzabcXd35/nnn8fLy4vIyEji4+MpKSlbuh0xYkSlYePJJ59k8eLFTJ48GTc3NyIjIyusLT4+nk2bNhm36W6GxWIhOjqaFStWUFxcjKurK7GxsQwcOJAlS5YwadIkzGYzERER5VZGrmfChAksWbKEtWvXYrPZePDBB/H396/yHqTevXuzf/9+4xbn/fffT0hICIWFhcyaNctYqeratauxV+fIkSP8+c9/5tKlS+zatYtVq1YRFxd3U2NlZWVRr169m7mkVbZ//3569OhRo3OIiMi9w+So6j0oqTOuhMsrX/OvbW+++SZPPfUUXl5eNTbHjBkziImJoUGDBtc99nqrjtWhrm1UrE73cu+g/tW/+q9L/Ve2wKLfpH0XslgsZGZmlvtFkbVpwoQJNRqO8vLyGDJkSJXCkYiISFXU+iZtqX4dO3YkISGhtsu4bby8vAgNDa3tMkRE5C6iFSQRERERJwpIIiIiIk4UkEREREScKCCJiIiIOFFAEhEREXGigCQiIiLiRAFJRERExIkCkoiIiIgTBSQRERERJwpIIiIiIk4UkEREREScKCCJiIiIOFFAEhEREXGigCQiIiLiRAFJRERExIkCkoiIiIgTBSQRERERJwpIIiIiIk4UkEREREScWKpy0KhRo1i5cqXxODk5mYyMDJ555pkaK+yKyMhI5syZg5eXV5WOr6w25z6u9/ydJi0tjfnz59OpUyemT59uPF9QUMCLL75IaGgozzzzDEVFRcTFxfHjjz/i4uJCz549GTlyJFB2fVauXImPjw8AgwYNYsCAAQD84x//YM+ePQA8/vjj9OnTB4DExESOHj2Kw+GgefPmREZG4u7uXq62goIC3nzzTc6dO0dpaSlDhw7l4YcfBmD48OG0bt0aAF9fX6ZOnQpAUlISn3zyCT/++CNLly413uObGWvhwoUMHz6c5s2bV+clF5EbkJpqZd8+F7p1sxISUlLb5YjckioFJLlzdO7cmWnTppV77sMPPyQwMLDcc0OHDqVLly7YbDZeffVV9uzZQ/fu3QHo06fPVQFy9+7dHDt2jPnz51NSUsIrr7zC/fffj4eHB2PGjMHDwwOAv/3tbyQlJfHYY4+VOz8pKYmWLVsybdo08vLyeOGFF3jooYewWCy4urqyYMGCq3rp2LEjPXr0YObMmbc81sCBA/n4448ZP358Fa+kiFTVE080uu4xFy+aOHDAit0OLi6+BAaW4OnpqPScNWvOVVeJItXulgPS2bNnSUxMJC8vDy8vLyIiIvD19SUhIYGePXvSu3dv4L+rNLm5uSxcuJCCggLsdjtjx46lc+fO7N27l1WrVmGz2WjatCkRERHGKkVSUhK7du3CZrMxceJE/Pz8yM/PZ/HixWRnZ+Pm5sa4ceNo06ZNudqys7OJj4/HbrcTHBx83V7S0tJYvXo1np6eZGZm0q5dO6KiojCZTBw5coR33nmHoqIiLBYLL7/8MmazmaVLl5KRkYHZbGb06NF06dKF5ORkUlJSsNvtZGZmMnToUGw2G19++SVWq5Xp06fToEEDsrKyWLZsGXl5ebi5ufHcc8/h5+d3Q9f/6NGjXLhwgfvvv5+MjAwA3Nzc6NKlCwAWi4W2bdty7lzlfxGdPHmSwMBAzGYzZrOZNm3a8O2339KnTx8jHDkcDoqLiys832QyUVhYiMPhoLCwkAYNGuDiUvkd3LZt21bbWJ06dSIhIYHS0lLMZnO51zZv3szmzZsBmDt3Lr6+vpWOVR0sFsttmedOdC/3Dndn/1br9T8q8vPBbgcwYbc7yM+38J+F6mu6264T3J3v/424m/qvUkAqLi4mJibGeJyfn09ISAgAy5YtIywsjH79+rFlyxaWL1/OlClTrjnWtm3bCA4OZtiwYdjtdoqKisjLy2Pt2rXExsbi7u7ORx99xIYNG3jiiScA8PT0ZN68eXz66aesX7+e8ePHs2rVKtq2bcuUKVPYv38/b7311lUrCytWrGDgwIH07duXpKSkKl2QY8eOERcXh7e3N7GxsaSnpxMQEMDChQuJjo4mICCAgoICXF1d2bhxIwCvv/46p06d4rXXXiM+Ph6AzMxMYzUmKiqKkSNHMn/+fN555x2++OILhgwZwttvv82zzz5L8+bNOXz4MEuXLmXGjBmkpqaSkZHB8OHDK63Vbrfz97//neeff579+/dXeMylS5fYtWsXgwcPNp77+uuvOXjwIM2bN2fMmDH4+vrSpk0b1qxZw29+8xuKiopIS0ujZcuWxjmLFy9mz549tGzZktGjR181z6BBg5g/fz7PPfccly9f5sUXXzRCTUlJCdOmTcNsNvPb3/6W0NDQSvu6mbFcXFxo1qwZP/zwA+3atSs3Xnh4OOHh4cbjnJycSuevDr6+vrdlnjvRvdw73J39v//+9Y9JTbUyfHgjSkrAanUQH3/uurfZ7rLLBNyd7/+NqGv9t2jR4pqvVSkgOd/WuLLPB+Dw4cNMnjwZgLCwMN59991Kx2rfvj2JiYnYbDZCQ0Px9/fnwIEDnDx5ktjYWABsNhsdOnQwzunVqxcA7dq1IyUlBYBDhw4xadIkALp06UJ+fj4FBQXl5kpPTzeOqUptAAEBATRqVLac7O/vT3Z2Nh4eHnh7exMQEABgrKgcOnSIRx55BAA/Pz8aN27MmTNnAAgKCqJevXrUq1cPDw8PI1C2bt2aEydOUFhYSHp6OnFxccbcNpsNgJCQEOP4ynz22Wd07979mmm9tLSU+Ph4HnnkEZo2bQpAz549efDBB7FarXz22WckJCQwY8YMgoODycjI4I9//CNeXl506NCh3EpMREQEdrud5cuXs2PHDmNP0BV79+6lTZs2vPzyy/z444/86U9/olOnTnh4eLB48WJ8fHz48ccfefXVV2ndujXNmjW7Zl83O1bDhg05f/78VQFJRGpeSEgJH354jn37vOnWLVd7kKTOq7E9SGazGXvZeisOh8P48A8MDGTmzJns3r2bRYsW8eijj1K/fn26du1KdHR0xUVaysp0cXGhtLTUGLMqTCbTDdVttVqNn11cXLDb7decq7IanMdx7sFut1O/fv0K99NU1ffff8/Bgwf57LPPKCwsxGaz4e7ubmzI/utf/0qzZs0YMmSIcY6np6fxc3h4eLnQOGzYMIYNGwZAfHz8VSHGxcWFPn36sG7duqsC0ueff85jjz2GyWSiWbNmNGnShNOnTxMQEGBsCG/atCmBgYEcP3680oB0s2MVFxfj6up6w9dRRKpHSEgJgwbZyclROJK675a/5t+hQwd27NgBlN0+69SpEwCNGzfm6NGjAHzzzTdGsDl79iwNGzYkPDyc/v37c+zY+YzNXQAAIABJREFUMTp06EB6ejpZWVkAFBUVcfr06Urn7dy5M1u3bgXK9g55enoaKztXdOzYke3btxu13Sw/Pz9yc3M5cuQIAJcvX6a0tJTAwECjhtOnT5OTk1Ppct3PeXh40KRJE3bu3AmUha3jx4/fUF0TJkwgMTGRhIQERo0aRVhYmBGOPvjgAwoKCnjqqafKnZObm2v8nJqaatxGs9vtXLx4EYAffviBEydOEBwcjMPhMN4Xh8NBamqq0WNKSgrvvfceULas+t133wHw008/cfr0aZo0aUJ+fj4lJWV/Webl5ZGenl7u1l1FbnasM2fO0KpVqxu6hiIiIhW55RWkp59+msTERNatW2ds0gYYMGAACxYsYPr06XTt2hU3NzegLMysX78es9mMu7s7zz//PF5eXkRGRhIfH298AI4YMaLSsPHkk0+yePFiJk+ejJubG5GRkRXWFh8fz6ZNm4zbdDfDYrEQHR3NihUrjFWK2NhYBg4cyJIlS5g0aRJms5mIiIhyK0fXM2HCBJYsWcLatWux2Ww8+OCD+Pv7V3kP0rWcO3eOtWvX4ufnZ3wN/srX+Tdt2kRqaipms5kGDRoY75fNZuPll18GysJbVFSUsQqYkJBg3L5s06YNY8eOBSArK4t69eoBZb8WYPHixcYtzZEjR+Ll5UV6ejpvv/22sRr32GOPGaFm48aNrFu3jp9++omYmBi6d+/O+PHjb2qsn376CVdXV7y9vW/qmomIiPycyVHVe1VS666ES+ev+deWN998k6eeeqrKv6OqJm3YsAEPDw/69+9/3WOvtzpZHeraRsXqdC/3Dupf/av/utR/ZQsx+k3adYjFYiEzM5M5c+bUdilA2QrYnRCOAOrXr0/fvn1ruwwREblL6BdF1iEdO3YkISGhtsu4IzlvGhcREbkVWkESERERcaKAJCIiIuJEAUlERETEiQKSiIiIiBMFJBEREREnCkgiIiIiThSQRERERJwoIImIiIg4UUASERERcaKAJCIiIuJEAUlERETEiQKSiIiIiBMFJBEREREnCkgiIiIiThSQRERERJwoIImIiIg4UUASERERcaKAJCIiIuJEAUlERETEiaUqB40aNYqVK1caj5OTk8nIyOCZZ56pscKuiIyMZM6cOXh5eVXp+Mpqc+7jes/fadLS0pg/fz6dOnVi+vTpHD9+nCVLlnD58mVcXFwYNmwYffr0ASApKYlPPvmEH3/8kaVLlxrXb+vWrXz88ccAuLu7M3bsWPz9/QHYuHEj//73v3E4HAwYMIAhQ4YA8MYbb3D69GkACgoK8PDwYMGCBRXWWFBQwIsvvkhoaCjPPPMMRUVFxMXF8eOPP+Li4kLPnj0ZOXIkUPZerVy5Eh8fHwAGDRrEgAEDAPjHP/7Bnj17AHj88ceNvhITEzl69CgOh4PmzZsTGRmJu7s7SUlJuLm58fDDD1frNReRqktNtbJvnwvdulkJCSmp7XJEbkmVApLcOTp37sy0adMAcHV15fnnn6d58+acP3+eadOmERwcTP369enYsSM9evRg5syZ5c5v0qQJr7zyCg0aNGDPnj28/fbbzJ49mxMnTvDvf/+b2bNnY7FYmD17Nj169KB58+a8+OKLxvl///vf8fDwuGZ9H374IYGBgeWeGzp0KF26dMFms/Hqq6+yZ88eunfvDkCfPn2uCrO7d+/m2LFjzJ8/n5KSEl555RXuv/9+PDw8GDNmjDH/3/72N5KSknjsscd4+OGHiY2NVUASuUlPPNHols6/eNHEgQNW7HZwcfElMLAET0/HTY21Zs25W6pFpDrcckA6e/YsiYmJ5OXl4eXlRUREBL6+viQkJNCzZ0969+4N/HeVJjc3l4ULF1JQUIDdbmfs2LF07tyZvXv3smrVKmw2G02bNiUiIgJ3d3egbDVk165d2Gw2Jk6ciJ+fH/n5+SxevJjs7Gzc3NwYN24cbdq0KVdbdnY28fHx2O12goODr9tLWloaq1evxtPTk8zMTNq1a0dUVBQmk4kjR47wzjvvUFRUhMVi4eWXX8ZsNrN06VIyMjIwm82MHj2aLl26kJycTEpKCna7nczMTIYOHYrNZuPLL7/EarUyffp0GjRoQFZWFsuWLSMvLw83Nzeee+45/Pz8qnztW7RoYfzs4+NDw4YNycvLo379+rRt27bCczp27Gj8fN9993HuXNlfRKdOneK+++7Dzc0NKAtiKSkp/Pa3vzWOdzgc7Ny5k5dffrnCsY8ePcqFCxe4//77ycjIAMDNzY0uXboAYLFYaNu2rTHntZw8eZLAwEDMZjNms5k2bdrw7bff0qdPHyMcORwOiouLjXPc3Nxo3LgxR44cISAgoNx4mzdvZvPmzQDMnTsXX1/fSuevDhaL5bbMcye6l3uHutu/1XprHwf5+WC3A5iw2x3k51v4z+LwDauL1++Kuvr+V5e7qf8q/YkoLi4mJibGeJyfn09ISAgAy5YtIywsjH79+rFlyxaWL1/OlClTrjnWtm3bCA4OZtiwYdjtdoqKisjLy2Pt2rXExsbi7u7ORx99xIYNG3jiiScA8PT0ZN68eXz66aesX7+e8ePHs2rVKtq2bcuUKVPYv38/b7311lW3fVasWMHAgQPp27cvSUlJVbogx44dIy4uDm9vb2JjY0lPTycgIICFCxcSHR1NQEAABQUFuLq6snHjRgBef/11Tp06xWuvvUZ8fDwAmZmZxgpIVFQUI0eOZP78+bzzzjt88cUXDBkyhLfffptnn32W5s2bc/jwYZYuXcqMGTNITU0lIyOD4cOHV6lmgCNHjhjhsqq2bNlirOS0atWKDz74gIsXL+Lq6sqePXto3759ueMPHjxIw4YNad68+VVj2e12/v73v/P888+zf//+Cue7dOkSu3btYvDgwcZzX3/9NQcPHqR58+aMGTMGX19f2rRpw5o1a/jNb35DUVERaWlptGzZ0jhn8eLF7Nmzh5YtWzJ69Gjj+fbt23Pw4MGrAlJ4eDjh4eHG45ycnCpfo5vl6+t7W+a5E93LvUPd7f/992/t/NRUK8OHN6KkBKxWB/Hx5276NlsdvHyGuvr+V5e61v/PFxqcVSkgubq6lgsfV/b5ABw+fJjJkycDEBYWxrvvvlvpWO3btycxMRGbzUZoaCj+/v4cOHCAkydPEhsbC4DNZqNDhw7GOb169QKgXbt2pKSkAHDo0CEmTZoEQJcuXcjPz6egoKDcXOnp6cYxVakNICAggEaNypaa/f39yc7OxsPDA29vb+OD98oqxqFDh3jkkUcA8PPzo3Hjxpw5cwaAoKAg6tWrR7169fDw8DACZevWrTlx4gSFhYWkp6cTFxdnzG2z2QAICQkxjq+K3NxcFi1aRGRkJC4uVdt3v3//fj7//HNeffVVAFq2bMlvf/tbXnvtNdzd3WnTps1VY23fvp0HH3ywwvE+++wzunfvfs1/OZSWlhIfH88jjzxihLiePXvy4IMPYrVa+eyzz0hISGDGjBkEBweTkZHBH//4R7y8vOjQoQNms9kYKyIiArvdzvLly9mxY4dxW83Ly8vYKyUit1dISAkffniOffu86dYtV3uQpM6rsT1IZrMZe9l6Kw6Hw/jwDwwMZObMmezevZtFixbx6KOPUr9+fbp27Up0dHTFRVrKynRxcaG0tNQYsypMJtMN1W21Wo2fXVxcsNvt15yrshqcx3HuwW63U79+/Wtudq6qgoIC5s6dy4gRI8qFysr88MMP/PWvf2X69Ol4enoaz/fv35/+/fsD8N577xlBEcoCTkpKCnPnzq1wzO+//56DBw/y2WefUVhYiM1mw93d3diQ/de//pVmzZoZG7+BcnOHh4eXC7DDhg1j2LBhAMTHx9OsWbNy87m4uNCnTx/WrVtnBKSSkhJcXV2rdA1EpPqFhJQwaJCdnByFI6n7bvlr/h06dGDHjh1A2e2zTp06AdC4cWOOHj0KwDfffGMEm7Nnz9KwYUPCw8Pp378/x44do0OHDqSnp5OVlQVAUVHRdVcCOnfuzNatW4GyvUOenp5XbR7u2LEj27dvN2q7WX5+fuTm5nLkyBEALl++TGlpKYGBgUYNp0+fJicnp9Llup/z8PCgSZMm7Ny5EygLW8ePH7+humw2G3/+858JCwvjl7/8ZZXOycnJ4c9//jPPP//8VbVeuHDBOCYlJaXcatF3331HixYtyoWm8+fPGytQEyZMIDExkYSEBEaNGkVYWJgRjj744AMKCgp46qmnys2Xm5tr/JyammrcRrPb7Vy8eBEoC3MnTpwgODgYh8Nh/DficDhITU0t18OZM2do1apVla6DiIhIZW55Benpp58mMTGRdevWGZu0AQYMGMCCBQuYPn06Xbt2NTb/pqWlsX79esxmM+7u7jz//PN4eXkRGRlJfHw8JSVl//IYMWJEpWHjySefZPHixUyePBk3NzciIyMrrC0+Pp5NmzYZt+luhsViITo6mhUrVlBcXIyrqyuxsbEMHDiQJUuWMGnSJMxmMxEREeVWjq5nwoQJLFmyhLVr12Kz2XjwwQfx9/ev8h6kHTt2cPDgQS5evEhycjJQ9msR/P392bhxI+vWreOnn34iJiaG7t27M378eNasWUN+fj5Lly4Fylb6rqwKvf7661y8eBGLxcIzzzxDgwYNjLkqur2Wm5tb7tZXRc6dO8fatWvx8/Nj6tSpwH+/zr9p0yZSU1Mxm800aNDA+G/HZrMZG8E9PDyIiooyViQTEhKMW6lt2rRh7Nixxlzp6enGvjUREZFbYXJU9V6V1Lor4fLK1/xrW1JSEr6+vje0X6qmHDt2jA0bNhAVFXXdY2/HPqW6tlGxOt3LvYP6V//qvy71X9lCjH6Tdh1isVjIzMxkzpw5tV0KULYSdCeEI4CLFy/e0Lf+REREKqNfFFmHdOzYkYSEhNou447UrVu32i5BRETuIlpBEhEREXGigCQiIiLiRAFJRERExIkCkoiIiIgTBSQRERERJwpIIiIiIk4UkEREREScKCCJiIiIOFFAEhEREXGigCQiIiLiRAFJRERExIkCkoiIiIgTBSQRERERJwpIIiIiIk4UkEREREScKCCJiIiIOFFAEhEREXGigCQiIiLiRAFJRERExEmNB6RRo0aVe5ycnMyyZctqeloAIiMjycvLq/LxldXm3Mf1nr8T5ebmMnfu3ApfS0hI4Kuvvqr0/JKSEv70pz8RExPDjh07yr22cuVKoqOjmTx5MgsWLODSpUsAXLx4kZkzZzJq1Khy17aoqIg5c+YQHR3NxIkTeffdd43Xzp49y6uvvsrkyZN55ZVXOHfuHAD79+8nJibG+N/IkSNJSUkBYOHChZw5c+bGL4qI1JjUVCuLFjUgNdVa26WI3DBLbRcgt8+GDRsYMGDATZ9/7NgxbDYbCxYsuOq1bt268f/+3//DbDbzj3/8g3/+85/87ne/w2q1Mnz4cE6cOEFmZma5c4YOHUqXLl2w2Wy8+uqr7Nmzh+7du7Ny5UrCwsLo168f+/fv57333iMqKoouXboYc+fn5xMVFUVwcDAAAwcO5OOPP2b8+PE33Z9IXfbEE41quwQArFYLJSWNuHjRxIEDVux2cHHxJDCwBE9PR22XB8CaNedquwSpA2o1IJ09e5bExETy8vLw8vIiIiICX19fEhIS6NmzJ7179wbKVmlWrlxJbm4uCxcupKCgALvdztixY+ncuTN79+5l1apV2Gw2mjZtSkREBO7u7gAkJSWxa9cubDYbEydOxM/Pj/z8fBYvXkx2djZubm6MGzeONm3alKstOzub+Ph47Ha78SFcmbS0NFavXo2npyeZmZm0a9eOqKgoTCYTR44c4Z133qGoqAiLxcLLL7+M2Wxm6dKlZGRkYDabGT16NF26dCE5OZmUlBTsdjuZmZkMHToUm83Gl19+idVqZfr06TRo0ICsrCyWLVtGXl4ebm5uPPfcc/j5+VVa49dff82IESOu20tkZCR9+/Ytd90aNGjAokWLyMvLIyYmhkmTJtGsWTPjnJ9fow4dOhirUe7u7nTq1ImsrKxyc7i5udGlSxcALBYLbdu2NVaKTp48yZgxYwAICgqqMJB99dVXdO/eHTc3NwA6depEQkICpaWlmM3mcsdu3ryZzZs3AzB37lx8fX2vew1ulcViuS3z3Inu5d6h9vq3Wu+Mf++aTCasViv5+WC3A5iw2x3k51vw8ant6srU5Puj//7vnv5r/E9UcXExMTExxuP8/HxCQkIAWLZsmbFSsGXLFpYvX86UKVOuOda2bdsIDg5m2LBh2O12ioqKyMvLY+3atcTGxuLu7s5HH33Ehg0beOKJJwDw9PRk3rx5fPrpp6xfv57x48ezatUq2rZty5QpU9i/fz9vvfXWVR/CK1asYODAgfTt25ekpKQq9Xrs2DHi4uLw9vYmNjaW9PR0AgICWLhwIdHR0QQEBFBQUICrqysbN24E4PXXX+fUqVO89tprxMfHA5CZmcn8+fMpKSkhKiqKkSNHMn/+fN555x2++OILhgwZwttvv82zzz5L8+bNOXz4MEuXLmXGjBmkpqaSkZHB8OHDy9WWnZ1N/fr1sVqrttRd0XUbP34869evZ9q0aZWeu2XLFvr06VOleQAuXbrErl27GDx4MABt2rTh66+/ZvDgwaSkpHD58mUuXryIp6encc727dv5zW9+Yzx2cXGhWbNm/PDDD7Rr167c+OHh4YSHhxuPc3JyqlzbzfL19b0t89yJ7uXeofb6f//92z5lha70n5pqZfjwRpSUgNXqID7+HCEhJbVdHgA1+fbov/+61X+LFi2u+VqNByRXV9dy4SM5OZmMjAwADh8+zOTJkwEICwsrtw+lIu3btycxMRGbzUZoaCj+/v4cOHCAkydPEhsbC4DNZqNDhw7GOb169QKgXbt2xn6VQ4cOMWnSJAC6dOlCfn4+BQUF5eZKT083jqlKbQABAQE0alS2zO3v7092djYeHh54e3sTEBAAgIeHh1HDI488AoCfnx+NGzc29tAEBQVRr1496tWrh4eHhxEoW7duzYkTJygsLCQ9PZ24uDhjbpvNBkBISIhx/M/l5ubi5eV13R6uqOi6VcXatWsxm8089NBDVTq+tLSU+Ph4HnnkEZo2bQqUrRguX76c5ORkOnfujI+PT7lVodzcXE6cOHHVyl7Dhg05f/78VQFJRG6/kJASPvzwHDt3uvHLXxbdMeFIpKrujDVZJ2azGXvZ2iwOh8P48A8MDGTmzJns3r2bRYsW8eijj1K/fn26du1KdHR0hWNZLGUturi4UFpaaoxZFSaT6Ybq/vnqjIuLC3a7/ZpzVVaD8zjOPdjtdurXr1/hradrcXV1paTkv39BLV68mGPHjuHj48P06dOvOr6i63Y9ycnJ7Nq1i5dffrnK1+6vf/0rzZo1Y8iQIcZzPj4+RnAuLCzk66+/NoIlwM6dOwkNDTVqvKK4uBhXV9cqzSsiNS8kpETBSOqsWv2af4cOHYxvQ23bto1OnToB0LhxY44ePQrAN998Y3xAnz17loYNGxIeHk7//v05duwYHTp0ID093djjUlRUxOnTpyudt3PnzmzduhUo2zvk6elZ7gMYoGPHjmzfvt2o7Wb5+fmRm5vLkSNHALh8+TKlpaUEBgYaNZw+fZqcnJxKl/p+zsPDgyZNmrBz506gLGwdP3680nOaN2/O2bNnjccREREsWLCgwnBUVe+9956xuvTtt9/y8ccfM3XqVGNf0PV88MEHFBQU8NRTT5V7Pi8vzwjI//znP3n44YfLvb59+3YefPDBq8Y7c+YMrVq1uolOREREyqvVFaSnn36axMRE1q1bZ2zSBhgwYIDx4d21a1fjAzctLY3169djNptxd3fn+eefx8vLi8jISOLj440VkhEjRlQaNp588kkWL17M5MmTcXNzIzIyssLa4uPj2bRpk3G76WZYLBaio6NZsWKFscIRGxvLwIEDWbJkCZMmTcJsNhMREVHl/UEAEyZMYMmSJaxduxabzcaDDz6Iv7//Nfcgubu707RpU7Kyssptrr4VJ06cKLefzGaz8ac//QmA++67j3HjxgFlm74LCgqw2Wx88803/PGPf6RevXqsXbsWPz8/pk6dCsCgQYMYMGAABw4c4L333sNkMtG5c2eeeeYZY87s7GxycnIIDAwsV8tPP/2Eq6sr3t7e1dKbiIjc20yOqt5vkjovJSWFo0ePVumbbFUxa9YsXnrppWoZ61Zt2LABDw8P+vfvf91jr7fCWB3q2kbF6nQv9w7qX/2r/7rUf61u0pY7R2hoKBcvXqy28e6UcARQv359wsLCarsMERG5Sygg3WNu5RdF3smc9ymJiIjcCv1/sYmIiIg4UUASERERcaKAJCIiIuJEAUlERETEiQKSiIiIiBMFJBEREREnCkgiIiIiThSQRERERJwoIImIiIg4UUASERERcaKAJCIiIuJEAUlERETEiQKSiIiIiBMFJBEREREnCkgiIiIiThSQRERERJwoIImIiIg4UUASERERcXLHBqRRo0aVe5ycnMyyZctuy9yRkZHk5eVV+fjKanPu42bk5eXxf//3f/zrX/+65bFulsPh4P333+eFF17gxRdfZOPGjQCkpaUxZswYYmJiiImJYc2aNbVWo4iISHWx1HYB8l8OhwOHw4GLS/ncunPnTu677z62b9/Or3/96xqZOz8/nwYNGlzz9eTkZM6dO8cbb7yBi4sLFy5cMF7r3Lkz06ZNq5G6KmO326+6ViIiItWhTgaks2fPkpiYSF5eHl5eXkRERODr60tCQgI9e/akd+/eQNnqzcqVK8nNzWXhwoUUFBRgt9sZO3YsnTt3Zu/evaxatQqbzUbTpk2JiIjA3d0dgKSkJHbt2oXNZmPixIn4+fmRn5/P4sWLyc7Oxs3NjXHjxtGmTZtytWVnZxMfH4/dbic4OLjca+vWrWPnzp2UlJQQGhrKk08+SXZ2NnPmzCEoKIjvv/+emJgYGjduXO687du3M3r0aOLj4zl//jw+Pj4AbNmyhY8//hhvb2+aNWuG1WrlmWeeIS8vj7fffptz584BMGbMGDp16lTpNZ0+fToBAQEMGDCAoKAgTCZTudc/++wzXnjhBSOQNGzYsMrv15YtWzhx4gRPPfUUAJs3b+bUqVOMGTOGL7/8kk2bNmGz2bjvvvsYO3YsLi4uLFmyhIyMDIqLi+nduzdPPvkkULa69/DDD7N3714GDRrEhQsX+Ne//oXZbKZly5ZER0dXuS4RqRmpqVZ27nTjl78sIiSkpLbLEbkpd2xAKi4uJiYmxnicn59PSEgIAMuWLSMsLIx+/fqx5f+zc/9RVVf5/sefcDhwRgTTjlr4WxAFRWpEBJ2EUfL6DcebDsvREsulgwQ1mYBFLu5NzZSYUVEB+4FW6nRl/I0zYpJxVfBHyg0VFBUlRbQDip6OhHJ+fP/g+rmdI5ApCuj7sdas4XPO/uz93p8D8pq9N7N7N6tWrWL27NkN9rVv3z58fX0ZP348ZrOZmzdvotfr2bRpEwkJCWg0GrZs2cL27dsJCwsDwMXFhcTERHbu3ElmZiaRkZFkZGTQq1cvZs+ezfHjx1mxYgVJSUlWY61evZpRo0YRFBREVlaW8npBQQGXLl3igw8+wGKx8OGHH1JUVIRWq6W8vJzXXnuN6dOn31F7ZWUl165dw8PDg8DAQPLy8hgzZgxXr15l48aNJCYmotFomDdvnhLWVq9ezZgxY+jXrx+VlZUsWLCAJUuWUFJSwq5du4iMjLxjnOTkZP7nf/6HrKws0tPTee655wgODlbC2A8//EBeXh6HDh3C1dWVqVOn8vTTTwMowa59+/aEh4fTrVs3q76HDh3K5s2bmTx5Mg4ODuTk5BAREUFZWRl5eXnMnz8fBwcHPv30U/bu3UtQUBCTJk2ibdu2mM1m5s2bx/fff6/MT61WM3/+fABmzJjBihUrUKvV3Lhxo8HvASHE3QkLe/K+7v/pJweOHtViNoO9vQve3rW4uFjuq88NG67c1/1C3IsWG5AcHR2twkdOTg4lJSUAnD59mtjYWACGDx/OunXrGu3L3d2dtLQ0jEYj/v7+9OzZk6KiIsrKykhISADAaDTi6emp3DNkyBAAevfuzaFDhwA4efIkMTExAAwYMACDwUB1dbXVWMXFxUqbn9dWUFDA0aNHlSBXU1PD5cuX0Wq1aLVaq7F/Li8vj8DAQACGDRvGypUrGTNmDGfOnMHLy0vZFgsICODSpUsAHDt2jLKyMqWP6upqfvrpJ9zd3XF3d693HHt7ewYNGsSgQYPQ6/X8/e9/Jyoqivfffx8PDw9qa2tRq9UsWrSIgwcPkpaWxrx58+jVqxepqaloNBry8/NJSkpi2bJlVn1rNBr69+9Pfn4+Xbp0wWQy0b17d7Kysjh37hzx8fFAXSh2dXVV5v31119jMpmoqqqirKxMCUhDhw5V+u7evTvLli1j8ODB+Pv71zu37OxssrOzAVi0aBFarbbedk3JwcHhoYzTEj3Oc4fWP3+1+v5+LVy+bIfZDGCH2WzBYHDgf/931j1rTc+ztX/+9+tRmn+LDUj3QqVSYa77ycRisWA0GgHw9vZm7ty55Ofns3z5csaOHYuzszM+Pj4Nbsk4ONQ9Gnt7e0wmk9Ln3bDdnrrtxRdfvOMMkU6nU7b16pObm8u1a9fYt28fAFevXlWCUEMsFgsLFizA0dHxruq9rbq6mry8PL755hscHByIjIyke/fuADz55JNKaPT39yc1NRWANm3aKPf/9re/JT09Xdn6/LmRI0eyefNm3NzcCA4OVuoMCgripZdesmqr0+nIzMxk4cKFtG3blpSUFGpr/2+Z3snJSfk6Pj6eoqIiDh8+zMaNG1m8eDEqlcqqv5CQEEJCQpTrysrKX/Vc7oVWq30o47REj/PcofXP/8sv7+/+M2c68m//pqK2FtRqC8nJV+57m60QplrEAAAgAElEQVQ1Pc7W/vnfr9Y2fzc3twbfa5UnXD09PcnLywPqts9un6/p2LEjZ8+eBeDbb79Vgk1FRQXt2rUjJCSEESNGcO7cOTw9PSkuLuby5csA3Lx5k/Ly8kbH9fLyYu/evUDdX2+5uLhYBQSAvn37kpubq9R2m6+vL9988w01NTVAXdD5+UHn+pSXl1NTU8NHH31ESkoKKSkpjBs3jtzcXDw8PDhx4gQGgwGTycTBgweV+wYOHGi1vVdaWtroOADLli3j7bff5ocffuD1119n7ty5BAcHKyFr8ODBHD9+HICioiLlm+ratWtKcDxz5gxmsxkXF5c7+u/Tpw9XrlwhNzeXYcOGAeDj48OBAweU52AwGKioqKC6uhqNRkObNm24du0a3333Xb01m81mKisrGTBgAJMnT6a6ulp5vkKI5hEQYGH9+ivExf3I+vX3H46EaC6tcgVp6tSppKWlsW3bNuWQNtStUiQlJREfH4+Pj4+y0lBYWEhmZiYqlQqNRsPrr7+Oq6sr0dHRJCcnK6sTEydObDRNTpgwgdTUVGJjY3FyciI6Orre2pKTk9mxY4ey4gJ1AenixYvMmTMHqNt2euONNxr9K6x9+/bdsW00ZMgQli5dSlhYGOPGjWPOnDm0b9+erl27KmFt6tSppKenExsbi8lkwsvLi4iIiEbPIA0dOpTo6Og7Vl9ue/HFF1m2bBn//Oc/0Wg0zJgxA4ADBw7w1VdfoVKpcHR0ZObMmQ2uoAUGBlJaWqpsC3bt2pWJEyfy/vvvY7FYUKlUTJs2DU9PT3r27ElMTAydOnWib9++9fZnNptZvny5ss0ZGhqKs7Nzg89TCPFw+PnVSjASrZ6d5W73jUSLU1NTg0ajwWQykZSUxIgRIxo8h9MSLFq0iNDQUHx8fJq1jl9aKWwKrW2ZuSk9znMHmb/MX+bfmubf2KJIq1xBEnUyMjI4duwYtbW1DBw4kMGDBzd3SfW6ceMG7777Lj169Gj2cCSEEELcDQlIrdiUKVOau4S74uzsTHJycnOXIYQQQty1VnlIWwghhBDiQZKAJIQQQghhQwKSEEIIIYQNCUhCCCGEEDYkIAkhhBBC2JCAJIQQQghhQwKSEEIIIYQNCUhCCCGEEDYkIAkhhBBC2JCAJIQQQghhQwKSEEIIIYQNCUhCCCGEEDYkIAkhhBBC2JCAJIQQQghhQwKSEEIIIYQNCUhCCCGEEDYkIAkhhBBC2JCAJIQQQghhQwKSEEIIIYSNZgtI4eHhVtc5OTmkp6c/lLGjo6PR6/V33b6x2mzncS/0ej2TJk1i165d991XQ6Kjo4mJiSEuLo533nlHeT0jI4MZM2YQFxdHXFwc+fn5DfaxY8cO3nzzTWbNmsXatWut3qusrCQ8PJxt27Y9sDkIIYQQD4tDcxfwOLFYLFgsFuztrXPp/v376dOnD7m5uTz//PMPbPz//M//xNXV9Y7XQ0NDGTt2bKP3Hj9+nMOHD/PXv/4VtVrN9evXrd7/7LPPePbZZ5u03l9iNpvveJZCCCFEU2iRAamiooK0tDT0ej2urq5ERUWh1WpJSUlh0KBBBAQEAHWrN2vWrKGqqoqlS5dSXV2N2Wxm+vTpeHl5UVBQQEZGBkajkc6dOxMVFYVGowEgKyuLI0eOYDQamTVrFl26dMFgMJCamopOp8PJyYmIiAh69OhhVZtOpyM5ORmz2Yyvr6/Ve9u2bWP//v3U1tbi7+/PhAkT0Ol0LFy4kP79+3Pq1Cni4uLo2LGj1X25ublMmTKF5ORkrl69SocOHQDYvXs3W7dupX379jz11FOo1WqmTZuGXq/n448/5sqVKwC88sor9OvX74F8Frd99dVX/Pu//ztqtRqAdu3aKe8dOnSIzp074+TkVO+9u3fv5vz587z66qsAZGdnc/HiRV555RX27NnDjh07MBqN9OnTh+nTp2Nvb88nn3xCSUkJt27dIiAggAkTJgB1K2G///3vKSgoYPTo0Vy/fp1du3ahUqno2rUrM2fOfKDPQQjRsMOH1Rw9as/AgWr8/Gqbuxwh7kuzBaRbt24RFxenXBsMBvz8/ABIT09n+PDhBAcHs3v3blatWsXs2bMb7Gvfvn34+voyfvx4zGYzN2/eRK/Xs2nTJhISEtBoNGzZsoXt27cTFhYGgIuLC4mJiezcuZPMzEwiIyPJyMigV69ezJ49m+PHj7NixQqSkpKsxlq9ejWjRo0iKCiIrKws5fWCggIuXbrEBx98gMVi4cMPP6SoqAitVkt5eTmvvfYa06dPv6P2yspKrl27hoeHB4GBgeTl5TFmzBiuXr3Kxo0bSUxMRKPRMG/ePCWsrV69mjFjxtCvXz8qKytZsGABS5YsoaSkhF27dhEZGVnvc1qwYAEAzz//PCEhIcrrO3fuZM+ePfTu3ZspU6bQtm3bO+69dOkSJ0+e5L/+679Qq9WEh4fj4eFBTU0NW7duJSEhocHttaFDh7J582YmT56Mg4MDOTk5REREUFZWRl5eHvPnz8fBwYFPP/2UvXv3EhQUxKRJk2jbti1ms5l58+bx/fffK/NXq9XMnz8fgBkzZrBixQrUajU3btyo/xtECGElLOzJJu/zxx/tKCpSYzaDvb0Wb+9aXFwsTT7Ohg1XmrxPIerTbAHJ0dHRKnzk5ORQUlICwOnTp4mNjQVg+PDhrFu3rtG+3N3dSUtLw2g04u/vT8+ePSkqKqKsrIyEhAQAjEYjnp6eyj1DhgwBoHfv3hw6dAiAkydPEhMTA8CAAQMwGAxUV1dbjVVcXKy0+XltBQUFHD16VAlyNTU1XL58Ga1Wi1artRr75/Ly8ggMDARg2LBhrFy5kjFjxnDmzBm8vLyUsBIQEMClS5cAOHbsGGVlZUof1dXV/PTTT7i7u+Pu7l7vOPPnz6dDhw5cv36d999/Hzc3N7y9vRk1apQSGtevX88XX3xBVFTUHfebzWYMBgMLFiygpKSEJUuWsGLFCjIyMggNDVVW5uqj0Wjo378/+fn5dOnSBZPJRPfu3cnKyuLcuXPEx8cDdaH59hZgXl4eX3/9NSaTiaqqKsrKypSANHToUKXv7t27s2zZMgYPHoy/v3+942dnZ5OdnQ3AokWL0Gq1DdbaVBwcHB7KOC3R4zx3aB3zV6ub/p9+gwHMZgA7zGYLBoMD/7sY3qRa+rNtDZ//g/Qozb9FbrE1RKVSYa77CcRisWA0GgHw9vZm7ty55Ofns3z5csaOHYuzszM+Pj4Nbrk4ONRN3d7eHpPJpPR5N+zs7Op9/cUXX7zjDJFOp2s0POTm5nLt2jX27dsHwNWrV5Ug1BCLxcKCBQtwdHS8q3oBZduuXbt2DB48mDNnzuDt7c0TTzyhtBk5ciSJiYkApKamcu7cOTp06EB8fDwdOnRgyJAh2NnZ4eHhgb29PT/++CNnzpzh4MGDrFu3jhs3bmBnZ4ejoyOjR4+2Gn/kyJFs3rwZNzc3goODlXkEBQXx0ksvWbXV6XRkZmaycOFC2rZtS0pKCrW1/7dc//OtvPj4eIqKijh8+DAbN25k8eLFqFQqq/5CQkKsVswqKyvv+rndK61W+1DGaYke57lD65j/l182fZ+HD6v505+epLYW1GoLyclXHsg2Wwt/tK3i83+QWtv83dzcGnyvRZ5w9fT0JC8vD6jbPrt9vqZjx46cPXsWgG+//VYJNhUVFbRr146QkBBGjBjBuXPn8PT0pLi4mMuXLwNw8+ZNysvLGx3Xy8uLvXv3AlBYWIiLiwtt2rSxatO3b19yc3OV2m7z9fXlm2++oaamBqgLOrYHmW2Vl5dTU1PDRx99REpKCikpKYwbN47c3Fw8PDw4ceIEBoMBk8nEwYMHlfsGDhxotb1XWlra6Dg1NTX89NNPytdHjx6le/fuAFRVVSntDh06RLdu3QCIiooiKSlJWd0ZPHgwx48fV+o2Go24uLgwb948pfYXXniBcePG3RGOAPr06cOVK1fIzc1l2LBhAPj4+HDgwAHlORkMBioqKqiurkaj0dCmTRuuXbvGd999V++8zGYzlZWVDBgwgMmTJ1NdXa08fyHEw+XnV8v69Vd47z0T69c/mHAkxMPUIleQpk6dSlpaGtu2bVMOaUPdKsTtX9o+Pj7KSkJhYSGZmZmoVCo0Gg2vv/46rq6uREdHk5ycrKw+TJw4sdG0OGHCBFJTU4mNjcXJyYno6Oh6a0tOTmbHjh3KNh3UBaSLFy8yZ84coG5b6Y033mj0r6z27dt3x7bQkCFDWLp0KWFhYYwbN445c+bQvn17unbtqoS1qVOnkp6eTmxsLCaTCS8vLyIiIho8g3T9+nX++te/AmAymfjd737HM888A8DatWspLS3Fzs6Ojh07EhERUW+tI0aMIDU1lZiYGBwcHIiOjm5wJa0hgYGBlJaWKtuGXbt2ZeLEibz//vtYLBZUKhXTpk3D09OTnj17EhMTQ6dOnejbt2+9/ZnNZpYvX65sg4aGhuLs7PyrahJCNB0/v1pGjzZTWSnhSLR+dpa73VcSD11NTQ0ajQaTyURSUhIjRoxo8JxNa7Bo0SJCQ0Px8fFp1jp+aSWxKbS2Zeam9DjPHWT+Mn+Zf2uaf2OLJi1yBUnUycjI4NixY9TW1jJw4EAGDx7c3CXdkxs3bvDuu+/So0ePZg9HQgghxN2QgNSCTZkypblLaBLOzs4kJyc3dxlCCCHEXWuRh7SFEEIIIZqTBCQhhBBCCBsSkIQQQgghbEhAEkIIIYSwIQFJCCGEEMKGBCQhhBBCCBsSkIQQQgghbEhAEkIIIYSwIQFJCCGEEMKGBCQhhBBCCBsSkIQQQgghbEhAEkIIIYSwIQFJCCGEEMKGBCQhhBBCCBsSkIQQQgghbEhAEkIIIYSwIQFJCCGEEMKGBCQhhBBCCBsSkIQQQgghbDRbQAoPD7e6zsnJIT09/aGMHR0djV6vv+v2jdVmO497odfrmTRpErt27brvvupTWVnJ3Llzeeutt5g1axb/+te/lPcyMjKYMWMGcXFxxMXFkZ+fX28fv9SusrKS8PBwtm3b9kDmIIQQQjxMDs1dwOPEYrFgsViwt7fOpfv376dPnz7k5uby/PPPN/m4KpWK8PBwevfuzU8//cQ777zDwIED6dq1KwChoaGMHTv2F/tprN1nn33Gs88+26R1/xKz2XzHsxRCCCGaQosMSBUVFaSlpaHX63F1dSUqKgqtVktKSgqDBg0iICAAqFu9WbNmDVVVVSxdupTq6mrMZjPTp0/Hy8uLgoICMjIyMBqNdO7cmaioKDQaDQBZWVkcOXIEo9HIrFmz6NKlCwaDgdTUVHQ6HU5OTkRERNCjRw+r2nQ6HcnJyZjNZnx9fa3e27ZtG/v376e2thZ/f38mTJiATqdj4cKF9O/fn1OnThEXF0fHjh2t7svNzWXKlCkkJydz9epVOnToAMDu3bvZunUr7du356mnnkKtVjNt2jT0ej0ff/wxV65cAeCVV16hX79+DT7P9u3b0759ewB+85vf0KVLF65evaoEpPt16NAhOnfujJOTU73v7969m/Pnz/Pqq68CkJ2dzcWLF3nllVfYs2cPO3bswGg00qdPH6ZPn469vT2ffPIJJSUl3Lp1i4CAACZMmADUrf79/ve/p6CggNGjR3P9+nV27dqFSqWia9euzJw5s0nmJIS4NwcO2LFjR1sCA2/i51fb3OUIcc+aLSDdunWLuLg45dpgMODn5wdAeno6w4cPJzg4mN27d7Nq1Spmz57dYF/79u3D19eX8ePHYzabuXnzJnq9nk2bNpGQkIBGo2HLli1s376dsLAwAFxcXEhMTGTnzp1kZmYSGRlJRkYGvXr1Yvbs2Rw/fpwVK1aQlJRkNdbq1asZNWoUQUFBZGVlKa8XFBRw6dIlPvjgAywWCx9++CFFRUVotVrKy8t57bXXmD59+h21V1ZWcu3aNTw8PAgMDCQvL48xY8Zw9epVNm7cSGJiIhqNhnnz5ilhbfXq1YwZM4Z+/fpRWVnJggULWLJkCSUlJezatYvIyMgGn5VOp+PcuXN4eHgor+3cuZM9e/bQu3dvpkyZQtu2beu9t752NTU1bN26lYSEhAa314YOHcrmzZuZPHkyDg4O5OTkEBERQVlZGXl5ecyfPx8HBwc+/fRT9u7dS1BQEJMmTaJt27aYzWbmzZvH999/r8xfrVYzf/58AGbMmMGKFStQq9XcuHGjwXkLIX6dsLAnf/U9P/5oR1GRA2azC/b2Lnh71+LiYvlVfWzYcOVXjyvEg9BsAcnR0dEqfOTk5FBSUgLA6dOniY2NBWD48OGsW7eu0b7c3d1JS0vDaDTi7+9Pz549KSoqoqysjISEBACMRiOenp7KPUOGDAGgd+/eHDp0CICTJ08SExMDwIABAzAYDFRXV1uNVVxcrLT5eW0FBQUcPXpUCXI1NTVcvnwZrVaLVqu1Gvvn8vLyCAwMBGDYsGGsXLmSMWPGcObMGby8vJSwEhAQwKVLlwA4duwYZWVlSh/V1dX89NNPuLu74+7u3uBzqqmp4W9/+xuvvvoqbdq0AWDUqFFKaFy/fj1ffPEFUVFRd9zbULuMjAxCQ0OVlbn6aDQa+vfvT35+Pl26dMFkMtG9e3eysrI4d+4c8fHxQF1odnV1VZ7L119/jclkoqqqirKyMiUgDR06VOm7e/fuLFu2jMGDB+Pv71/v+NnZ2WRnZwOwaNEitFptg7U2FQcHh4cyTkv0OM8dHp35q9W//teDwQBmM4AdZrMFg8GB/10Qv2ut/dk9Kp//vXqU5t8it9gaolKpMNf99GGxWDAajQB4e3szd+5c8vPzWb58OWPHjsXZ2RkfH58Gt1wcHOqmbm9vj8lkUvq8G3Z2dvW+/uKLL95xhkin0zUaHnJzc7l27Rr79u0D4OrVq0oQaojFYmHBggU4OjreVb1QFxD/9re/8dxzzynhEOCJJ55Qvh45ciSJiYkApKamcu7cOTp06EB8fHyD7c6cOcPBgwdZt24dN27cwM7ODkdHR0aPHm01/siRI9m8eTNubm4EBwcr8wgKCuKll16yaqvT6cjMzGThwoW0bduWlJQUamv/b6n+51t58fHxFBUVcfjwYTZu3MjixYtRqVRW/YWEhBASEqJcV1ZW3vVzu1darfahjNMSPc5zh0dn/l9++evvOXxYzcSJWm7dsqBWW0hOvvKrt9la+6N7VD7/e9Xa5u/m5tbgey3yhKunpyd5eXlA3fbZ7fM1HTt25OzZswB8++23SrCpqKigXbt2hISEMGLECM6dO4enpyfFxcVcvnwZgJs3b1JeXt7ouF5eXuzduxeAwsJCXFxclJWW2/r27Utubq5S222+vr5888031NTUAHVB5/r1642OV15eTk1NDR999BEpKSmkpKQwbtw4cnNz8fDw4MSJExgMBkwmEwcPHlTuGzhwoNX2XmlpaaPjWCwWVq5cSZcuXRgzZozVe1VVVcrXhw4dolu3bgBERUWRlJSkrO401G7evHlK7S+88ALjxo27IxwB9OnThytXrpCbm8uwYcMA8PHx4cCBA8pzMhgMVFRUUF1djUajoU2bNly7do3vvvuu3nmZzWYqKysZMGAAkydPprq6Wnn+QoiHz8+vlqwsI3FxP7J+/a8PR0K0JC1yBWnq1KmkpaWxbds25ZA21K1C3P6l7ePjo6wkFBYWkpmZiUqlQqPR8Prrr+Pq6kp0dDTJycnK6sPEiRMbTYsTJkwgNTWV2NhYnJyciI6Orre25ORkduzYYbUS4+vry8WLF5kzZw5Qt630xhtvNPpXVvv27btjW2jIkCEsXbqUsLAwxo0bx5w5c2jfvj1du3ZVwtrUqVNJT08nNjYWk8mEl5cXERERDZ5BKi4uZs+ePXTv3l059zVp0iR++9vfsnbtWkpLS7Gzs6Njx45ERETUW+vdtmtMYGAgpaWlyrZh165dmThxIu+//z4WiwWVSsW0adPw9PSkZ8+exMTE0KlTJ/r27Vtvf2azmeXLlyvboKGhoTg7O//quoQQTScgwIKHh6G5yxDivtlZ7nZfSTx0NTU1aDQaTCYTSUlJjBgxosFzNq3BokWLCA0NxcfHp1nr+KWVxKbQ2paZm9LjPHeQ+cv8Zf6taf6NLZq0yBUkUScjI4Njx45RW1vLwIEDGTx4cHOXdE9u3LjBu+++S48ePZo9HAkhhBB3QwJSCzZlypTmLqFJODs7k5yc3NxlCCGEEHetRR7SFkIIIYRoThKQhBBCCCFsSEASQgghhLAhAUkIIYQQwoYEJCGEEEIIGxKQhBBCCCFsSEASQgghhLAhAUkIIYQQwoYEJCGEEEIIGxKQhBBCCCFsSEASQgghhLAhAUkIIYQQwoYEJCGEEEIIGxKQhBBCCCFsSEASQgghhLAhAUkIIYQQwoYEJCGEEEIIGxKQhBBCCCFsSEASQgghhLDRbAEpPDzc6jonJ4f09PSHMnZ0dDR6vf6u2zdWm+087oVer2fSpEns2rXrvvtqSGpqKtOnTycmJsbq9YyMDGbMmEFcXBxxcXHk5+fXe/+aNWuYOXMmsbGxJCUlcePGDav3KysrCQ8PZ9u2bQ9sDkIIIcTD4tDcBTxOLBYLFosFe3vrXLp//3769OlDbm4uzz///AMZOzg4mNGjR5OSknLHe6GhoYwdO7bR+wcOHMhLL72ESqVi7dq1bN68mcmTJyvvf/bZZzz77LNNXndjzGbzHc9SCCGEaAotMiBVVFSQlpaGXq/H1dWVqKgotFotKSkpDBo0iICAAKBu9WbNmjVUVVWxdOlSqqurMZvNTJ8+HS8vLwoKCsjIyMBoNNK5c2eioqLQaDQAZGVlceTIEYxGI7NmzaJLly4YDAZSU1PR6XQ4OTkRERFBjx49rGrT6XQkJydjNpvx9fW1em/btm3s37+f2tpa/P39mTBhAjqdjoULF9K/f39OnTpFXFwcHTt2tLovNzeXKVOmkJyczNWrV+nQoQMAu3fvZuvWrbRv356nnnoKtVrNtGnT0Ov1fPzxx1y5cgWAV155hX79+jX6TL29vdHpdPf8mfx8rp6enhw4cEC5PnToEJ07d8bJyanee3fv3s358+d59dVXAcjOzubixYu88sor7Nmzhx07dmA0GunTpw/Tp0/H3t6eTz75hJKSEm7dukVAQAATJkwA6lb/fv/731NQUMDo0aO5fv06u3btQqVS0bVrV2bOnHnPcxRC3J/Dh9UcPWrPwIFq/Pxqm7scIe5LswWkW7duERcXp1wbDAb8/PwASE9PZ/jw4QQHB7N7925WrVrF7NmzG+xr3759+Pr6Mn78eMxmMzdv3kSv17Np0yYSEhLQaDRs2bKF7du3ExYWBoCLiwuJiYns3LmTzMxMIiMjycjIoFevXsyePZvjx4+zYsUKkpKSrMZavXo1o0aNIigoiKysLOX1goICLl26xAcffIDFYuHDDz+kqKgIrVZLeXk5r732GtOnT7+j9srKSq5du4aHhweBgYHk5eUxZswYrl69ysaNG0lMTESj0TBv3jwlrK1evZoxY8bQr18/KisrWbBgAUuWLKGkpIRdu3YRGRn5qz6LnTt3smfPHnr37s2UKVNo27Zto+13797N0KFDAaipqWHr1q0kJCQ0uL02dOhQZcXJwcGBnJwcIiIiKCsrIy8vj/nz5+Pg4MCnn37K3r17CQoKYtKkSbRt2xaz2cy8efP4/vvvlfmr1Wrmz58PwIwZM1ixYgVqtfqObT8h7kdY2JP3dJ9a7UBt7b3d25r9+KMdRUVqzGawt9fi7V2Li4uluct66O7l89+w4coDqkbcj2YLSI6OjlbhIycnh5KSEgBOnz5NbGwsAMOHD2fdunWN9uXu7k5aWhpGoxF/f3969uxJUVERZWVlJCQkAGA0GvH09FTuGTJkCAC9e/fm0KFDAJw8eVI5ozNgwAAMBgPV1dVWYxUXFyttfl5bQUEBR48eVYJcTU0Nly9fRqvVotVqrcb+uby8PAIDAwEYNmwYK1euZMyYMZw5cwYvLy8lrAQEBHDp0iUAjh07RllZmdJHdXU1P/30E+7u7ri7uzf6rGyNGjVKCY3r16/niy++ICoqqsH2mzZtQqVS8dxzzwF1Z5hCQ0OVlbn6aDQa+vfvT35+Pl26dMFkMtG9e3eysrI4d+4c8fHxQF1odnV1VZ7L119/jclkoqqqirKyMiUg3Q5nAN27d2fZsmUMHjwYf3//esfPzs4mOzsbgEWLFqHVau/28dwzBweHhzJOS/SozF2tvrd/Hu3s7FCr1U1cTctnMIDZDGCH2WzBYHDgfxfDHyv38vk/Cj8vtz0qP//QQrfYGqJSqTDX/QRisVgwGo1A3fbR3Llzyc/PZ/ny5YwdOxZnZ2d8fHwa3HJxcKibur29PSaTSenzbtjZ2dX7+osvvnjHGSKdTtdoeMjNzeXatWvs27cPgKtXrypBqCEWi4UFCxbg6Oh4V/U25oknnlC+HjlyJImJiUDdoe5z587RoUMHJcDk5ORw5MgR/uM//kN5BmfOnOHgwYOsW7eOGzduYGdnh6OjI6NHj7YaZ+TIkWzevBk3NzeCg4OVeQQFBfHSSy9ZtdXpdGRmZrJw4ULatm1LSkoKtbX/t1z/8628+Ph4ioqKOHz4MBs3bmTx4sWoVCqr/kJCQggJCVGuKysr7/Vx3TWtVvtQxmmJHpW5f/nlvd33qMz/1zp8WM2f/vQktbWgVltITr7yWG6z3cvn/yh9u7S27383N7cG32uRJ1w9PT3Jy8sD6rbPbp+v6dixI2fPngXg22+/VYJNRUUF7dq1IyQkhBEjRnDu3Dk8PT0pLi7m8uXLANy8eZPy8vJGx/Xy8mLv3r0AFBYW4uLiQps2baza9O3bl9zcXKW223x9ffnmm2+oqakB6oLO9evXGx2vvLycmpoaPvroI1JSUkhJSWHcuHHk5ubi4eHBiRMnMBgMmEwmDh48qNJ3w+AAACAASURBVNw3cOBAq+290tLSRsdpTFVVlfL1oUOH6NatGwBRUVEkJSUp4ei7775j69atvP3221YBZd68eUrtL7zwAuPGjbsjHAH06dOHK1eukJuby7BhwwDw8fHhwIEDynMyGAxUVFRQXV2NRqOhTZs2XLt2je+++67e2s1mM5WVlQwYMIDJkydTXV2tPH8hxMPl51fL+vVXeO89E+vXP57hSDxaWuQK0tSpU0lLS2Pbtm3KIW2oW4W4/Uvbx8dH+UVdWFhIZmYmKpUKjUbD66+/jqurK9HR0SQnJyurDxMnTmw0LU6YMIHU1FRiY2NxcnIiOjq63tqSk5PZsWOHsk0HdQHp4sWLzJkzB6jbVnrjjTca/Surffv23bEtNGTIEJYuXUpYWBjjxo1jzpw5tG/fnq5duyphberUqaSnpxMbG4vJZMLLy4uIiIhGzyAtXbqUoqIifvzxRyIjI5kwYQIjRoxg7dq1lJaWYmdnR8eOHYmIiKi31vT0dIxGo3L2p0+fPg22bUhgYCClpaXKtmHXrl2ZOHEi77//PhaLBZVKxbRp0/D09KRnz57ExMTQqVMn+vbtW29/ZrOZ5cuXK9ugoaGhODs7/6qahBBNx8+vltGjzVRWSjgSrZ+d5W73lcRDV1NTg0ajwWQykZSUxIgRIxo8Z9MaLFq0iNDQUHx8fJq1jl9aSWwKrW2ZuSk9znMHmb/MX+bfmubf2KJJi1xBEnUyMjI4duwYtbW1DBw4kMGDBzd3Sffkxo0bvPvuu/To0aPZw5EQQghxNyQgtWBTpkxp7hKahLOzM8nJyc1dhhBCCHHXWuQhbSGEEEKI5iQBSQghhBDChgQkIYQQQggbEpCEEEIIIWxIQBJCCCGEsCEBSQghhBDChgQkIYQQQggbEpCEEEIIIWxIQBJCCCGEsCEBSQghhBDChgQkIYQQQggbEpCEEEIIIWxIQBJCCCGEsCEBSQghhBDChgQkIYQQQggbEpCEEEIIIWxIQBJCCCGEsCEBSQghhBDChgQkIYQQQggbzRKQwsPDra5zcnJIT09/KGNHR0ej1+vvun1jtdnO47ZNmzYxa9YsYmNjiYuL4/Tp0wCsXLmSsrKyX1/0L6isrCQ8PJxt27Y1ed/NpbCwkEWLFlm9lpKSwoEDBwB47733KCkpUd7T6XTExMQ81BqFEEI8uhyau4BHzalTpzhy5AiJiYmo1Wr0ej1GoxGAyMjIBzLmZ599xrPPPlvve4WFheTk5BAdHf1Axjabzdjby0KkEEKIR0uLC0gVFRWkpaWh1+txdXUlKioKrVZLSkoKgwYNIiAgAKhbvVmzZg1VVVUsXbqU6upqzGYz06dPx8vLi4KCAjIyMjAajXTu3JmoqCg0Gg0AWVlZHDlyBKPRyKxZs+jSpQsGg4HU1FR0Oh1OTk5ERETQo0cPq9p0Oh3JycmYzWZ8fX3rrb+qqgoXFxfUajUArq6uynvvvfce4eHhVFVVsX79egBu3bqF0WgkJSWFs2fP8vnnn1NTU6PMvX379o0+r0OHDtG5c2ecnJzu7YFTtzKjVqspKyvj+vXrTJkyhUGDBmE2m1m3bh1FRUXU1tbyb//2bzz//PMUFhayYcMGnnjiCUpLS1m4cCFLlizh6tWrmM1m/vjHPzJ06FCOHTvGmjVrMJlMuLu78+c//xm1Wk10dDRBQUF3fAZCiNbr8GE1+/c78f/+nx0eHs1djRD3r1kC0q1bt4iLi1OuDQYDfn5+AKSnpzN8+HCCg4PZvXs3q1atYvbs2Q32tW/fPnx9fRk/fjxms5mbN2+i1+vZtGkTCQkJaDQatmzZwvbt2wkLCwPAxcWFxMREdu7cSWZmJpGRkWRkZNCrVy9mz57N8ePHWbFiBUlJSVZjrV69mlGjRhEUFERWVla99fj6+rJhwwbefPNNfHx8GDp0KN7e3lZt/Pz8lPkuXrwYb29vjEajMldXV1fy8vL48ssviYqK4quvvgJg1KhRVv3U1NSwdetWEhIS7nt7raKigvfee48ffviBuXPn4uPjw549e2jTpg0LFy6ktraWhIQEJRieOXOGv/3tb3Tq1IkDBw7Qvn174uPjAaiurubWrVukpqaSkJCAm5sbK1as4KuvviI0NLTBz8DWiRMnrL5PKisrGTRokHK9bNkyHB0dATAajbKSJUQTCQt78le1//FHO4qK1JjN8OGH4O2txcXFctf3b9hw5deWKMQD1ywBydHR0Sp85OTkKOdJTp8+TWxsLADDhw9n3bp1jfbl7u5OWloaRqMRf39/evbsSVFREWVlZSQkJAB1vzw9PT2Ve4YMGQJA7969OXToEAAnT55UzrAMGDAAg8FAdXW11VjFxcVKm4Zq02g0JCYmcuLECQoLC1myZAkvv/wywcHBd7TdunUrjo6OjB49mvPnz3PhwgXmz58P1G1d3V49sg1Gt2VkZBAaGqqsjP3cu+++S21tLTU1NRgMBiVovPzyyzzzzDN3tA8MDMTe3p6nn36azp07U15eTkFBAefPn1fO/VRXV3Pp0iUcHBzw8PCgU6dOAHTv3p01a9awdu1aBg0ahJeXF6WlpXTq1Ak3NzcAgoKC2LlzpxKQ6vsMbHl5efHOO+8o1ykpKVbv/+Uvf8Hd3R2oW91LTEyst5/s7Gyys7MBWLRoEVqttt52TcnBweGhjNMSPc5zh0dj/mr1r/vVYDCA2Qxgh9lswWBwoEOHu7+/tT+vn3sUPv/78SjNv8VtsTVEpVJhrvsJxGKxKOd6vL29mTt3Lvn5+SxfvpyxY8fi7OyMj48PM2fOrLcvB4e6advb22MymZQ+74adnd0vtrG3t6d///7079+f7t27k5OTc0dAOnbsGAcOHGDu3LnKa127dmXBggV3VQfUreIcPHiQdevWcePGDezs7JTA9cEHHwB3fwapvnlZLBamTp16R6AqLCy02tJzc3MjMTGR/Px8/v73v+Pr66uskDWkvs/gQQkJCSEkJES5rqysfKDjQd0/+A9jnJbocZ47PBrz//LLX9f+8GE1f/rTk9TWgqMjJCdfwc+v9q7vb+WPy8qj8Pnfj9Y2/9v/I74+LW5PwtPTk7y8PKBu+6xfv34AdOzYkbNnzwLw7bffKr9UKyoqaNeuHSEhIYwYMYJz587h6elJcXExly9fBuDmzZuUl5c3Oq6Xlxd79+4F6gKAi4sLbdq0sWrTt29fcnNzldrqU15ezqVLl5Tr0tJSOnbsaNWmoqKCTz/9lLfeekvZInJzc0Ov13Pq1CmgbtXrwoULjdY8b948UlJSSElJ4YUXXmDcuHGMHj260XsacuDAAcxmM5cvX+aHH37Azc2NZ555hq+++koJo+Xl5dTU1Nxx79WrV3F0dGT48OH84Q9/4OzZs7i5uaHT6ZTPYM+ePXdsNQohHg1+frWsX3+FuLgfycoy/qpwJERL1eJWkKZOnUpaWhrbtm1TDioDjBw5kqSkJOLj4/Hx8VFWMAoLC8nMzESlUqHRaHj99ddxdXUlOjqa5ORkamvrflAnTpzYaFKcMGECqampxMbG4uTkVO+Ky9SpU0lOTmbHjh3KFpGtmpoaVq1axY0bN1CpVDz11FNERERYtcnJycFgMCjbjB06dCA+Pp6YmBhWr15NdXU1JpOJF154gW7dujV4BqkpPf3007z33ntcv36dP//5zzg6OjJixAh0Oh1vv/02UHfg/Odngm47f/48a9euxc7ODgcHB6ZPn46joyNRUVEsXrxYOaT9/PPPP7D6hRDNy8+vFj+/WrRazSO1IiQeX3aWu91bEo8s278QfNT90mpiU2hty8xN6XGeO8j8Zf4y/9Y0/1a1xSaEEEII0dxa3BabePge1P+JpBBCCNFayQqSEEIIIYQNCUhCCCGEEDYkIAkhhBBC2JCAJIQQQghhQwKSEEIIIYQNCUhCCCGEEDYkIAkhhBBC2JCAJIQQQghhQwKSEEIIIYQNCUhCCCGEEDYkIAkhhBBC2JCAJIQQQghhQwKSEEIIIYQNCUhCCCGEEDYkIAkhhBBC2JCAJIQQQghhQwKSEEIIIYQNCUhCCCGEEDYkIAkhhBBC2GixASk8PNzqOicnh/T09IcydnR0NHq9/q7bN1ab7Txu27RpE7NmzSI2Npa4uDhOnz4NwMqVKykrK/v1RTfgzJkzxMXFKf85dOhQk/X9oKWkpHDgwAGr124/T51OR0xMjNV7GRkZbNu27aHVJ4QQ4tHl0NwFPI5OnTrFkSNHSExMRK1Wo9frMRqNAERGRjbpWN26dWPRokWoVCqqqqqIi4tj0KBBqFSqJhvDZDI1aX9CCCFEc2uVAamiooK0tDT0ej2urq5ERUWh1WpJSUlh0KBBBAQEAHWrDWvWrKGqqoqlS5dSXV2N2Wxm+vTpeHl5UVBQQEZGBkajkc6dOxMVFYVGowEgKyuLI0eOYDQamTVrFl26dMFgMJCamopOp8PJyYmIiAh69OhhVZtOpyM5ORmz2Yyvr2+99VdVVeHi4oJarQbA1dVVee+9994jPDycqqoq1q9fD8CtW7cwGo2kpKRw9uxZPv/8c2pqapS5t2/fvsFn5eTkpHxdW1uLnZ1dve3Cw8N5/vnnKSwsxNnZmZkzZ+Lq6srly5dJT09Hr9fj5OTEjBkz6NKlCykpKbRt25bS0lJ69eqFn58fq1evBsDOzo65c+ei0WhYu3Yt3333HQB//OMfGTp0KIWFhfzjH//AxcWFCxcu0Lt3b954440GaxNCtB4HDtixY0dbAgNv4udX29zlCHHPWmxAunXrFnFxccq1wWDAz88PgPT0dIYPH05wcDC7d+9m1apVzJ49u8G+9u3bh6+vL+PHj8dsNnPz5k30ej2bNm0iISEBjUbDli1b2L59O2FhYQC4uLiQmJjIzp07yczMJDIykoyMDHr16sXs2bM5fvw4K1asICkpyWqs1atXM2rUKIKCgsjKyqq3Hl9fXzZs2MCbb76Jj48PQ4cOxdvb26qNn5+fMt/Fixfj7e2N0WhU5urq6kpeXh5ffvklUVFRfPXVVwCMGjXqjvFOnz5NWloaFRUVvPHGG/Wu9ty8eZNevXoxZcoUNmzYwD/+8Q+mTZvGxx9/zJ///GeefvppTp8+zaeffsp//ud/AnDp0iUSEhKwt7dn0aJFTJs2jX79+lFTU4NarebgwYOUlpaSlJSEXq8nPj4eLy8vAM6dO8fixYtp3749CQkJFBcX069fvzvqWrNmDRs3bqz3OV6+fNnqe+TatWv84Q9/qLetEOKXhYU9eV/3//ijHUVFDpjNLtjbu+DtXYuLi+We+tqw4cp91SLE/WqxAcnR0dEqfOTk5FBSUgLU/cKPjY0FYPjw4axbt67Rvtzd3UlLS8NoNOLv70/Pnj0pKiqirKyMhIQEAIxGI56enso9Q4YMAaB3797KuZ2TJ08q514GDBiAwWCgurraaqzi4mKlTUO1aTQaEhMTOXHiBIWFhSxZsoSXX36Z4ODgO9pu3boVR0dHRo8ezfnz57lw4QLz588HwGw2K6tH9QWj2/r06cPixYspKysjJSWFZ555BkdHR6s2dnZ2DB06FIDnnnuOv/71r9TU1FBcXMzixYuVdre3AgECAgKwt687xtavXz+++OILfve73zFkyBCefPJJTp48ybBhw7C3t+eJJ57A29ubkpISfvOb3+Dh4cGTT9b9Y9yzZ090Ol29ASk8PFxZEbx9fdtTTz1l9T2SkZFR7/yzs7PJzs4GYNGiRWi12gafVVNxcHB4KOO0RI/z3KF1z1+tvr9fCQYDmM0AdpjNFgwGBzp0uLe+WuszbM2ff1N4lObfYgPSvVCpVJjrfjqxWCzKL3Nvb2/mzp1Lfn4+y5cvZ+zYsTg7O+Pj48PMmTPr7cvBoe7R2NvbYzKZlD7vxt1sFdnb29O/f3/69+9P9+7dycnJuSMgHTt2jAMHDjB37lzlta5du7JgwYK7qsNW165d0Wg0XLhwAXd391+cg9lsxtnZ+Y5Vsttub0cCvPjii/z2t78lPz+fOXPmKMGzIbe3F6HuWdz+3B6EkJAQQkJClOvKysoHNtZtWq32oYzTEj3Oc4fWPf8vv7y/+w8fVjNxopZbtyyo1RaSk6/c8zZbK32Erfrzbwqtbf5ubm4Nvtdi/4qtMZ6enuTl5QF122e3Vx46duzI2bNnAfj222+VYFNRUUG7du0ICQlhxIgRnDt3Dk9PT4qLi7l8+TJQt8VUXl7e6LheXl7s3bsXgMLCQlxcXGjTpo1Vm759+5Kbm6vUVp/y8nIuXbqkXJeWltKxY0erNhUVFXz66ae89dZbymqPm5sber2eU6dOAXWrORcuXGi0Zp1OZ/UcysvL7xgL6sLf7b8Yu/1M27RpQ6dOndi/f7/SprS0tN5xLl++TPfu3XnxxRfp3bs3Fy9exMvLi/3792M2m9Hr9Zw4cQIPD49G6xVCtF5+frVkZRmJi/uR9evvPRwJ0RK0yhWkqVOnkpaWxrZt25SDygAjR44kKSmJ+Ph4fHx8lAPKhYWFZGZmolKp0Gg0vP7667i6uhIdHU1ycjK1tXU/xBMnTmw0TU6YMIHU1FRiY2NxcnIiOjq63tqSk5PZsWOHsk1nq6amhlWrVnHjxg1UKhVPPfUUERERVm1ycnIwGAzK6k2HDh2Ij48nJiaG1atXU11djclk4oUXXqBbt24NnkE6efIkW7ZsQaVSYW9vz7Rp06wOhd/m5OTEhQsXePvtt2nTpg1vvfUWAH/5y1/45JNP2LRpE0ajkWHDhtGzZ8877v/Xv/5FYWEh9vb2dOnShWeffRYHBwdOnTqlnBOaPHkyTzzxBBcvXmzwGQshWreAAAseHobmLkOI+2Znudt9I/FIu/0Xf4+DX1opbAqtbZm5KT3OcweZv8xf5t+a5v/IbbEJIYQQQjxIEpAEwGOzeiSEEELcDQlIQgghhBA2JCAJIYQQQtiQgCSEEEIIYUMCkhBCCCGEDQlIQgghhBA2JCAJIYQQQtiQgCSEEEIIYUMCkhBCCCGEDQlIQgghhBA2JCAJIYQQQtiQgCSEEEIIYUMCkhBCCCGEDQlIQgghhBA2JCAJIYQQQtiQgCSEEEIIYUMCkhBCCCGEDQlIQgghhBA2JCAJIYQQQtiQgCSEEEIIYaNFBqTw8HCr65ycHNLT0x/K2NHR0ej1+rtu31httvO4bdOmTcyaNYvY2Fji4uI4ffo0ACtXrqSsrOzXF92Ao0eP8vbbbxMTE8Pbb7/N8ePHm6zvBy0jI4Nt27ZZvfbzz6Y5v0eEEEI8+hyau4DHzalTpzhy5AiJiYmo1Wr0ej1GoxGAyMjIJh3LxcWFt99+mw4dOnD+/HkWLFjARx991KRjmEwmVCpVk/YphBBCNLdWF5AqKipIS0tDr9fj6upKVFQUWq2WlJQUBg0aREBAAFC3wrBmzRqqqqpYunQp1dXVmM1mpk+fjpeXFwUFBWRkZGA0GuncuTNRUVFoNBoAsrKyOHLkCEajkVmzZtGlSxcMBgOpqanodDqcnJyIiIigR48eVrXpdDqSk5Mxm834+vrWW39VVRUuLi6o1WoAXF1dlffee+89wsPDqaqqYv369QDcunULo9FISkoKZ8+e5fPPP6empkaZe/v27Rt8Vr169VK+7tatG7W1tdTW1ipj3xYdHU1gYCCFhYUAvPnmmzz11FPo9Xo+/vhjrly5AsArr7xCv379yMjIoKqqioqKClxcXBg/fjypqakYjUYsFgsxMTE8/fTTbN++nW+++QaAESNGEBoaik6nY+HChfTt25dTp07RoUMHZs+ejaOj4y988kKI1uDAATt27GhLYOBN/Pxqm7scIe5ZiwxIt27dIi4uTrk2GAz4+fkBkJ6ezvDhwwkODmb37t2sWrWK2bNnN9jXvn378PX1Zfz48ZjNZm7evIler2fTpk0kJCSg0WjYsmUL27dvJywsDKhbeUlMTGTnzp1kZmYSGRlJRkYGvXr1Yvbs2Rw/fpwVK1aQlJRkNdbq1asZNWoUQUFBZGVl1VuPr68vGzZs4M0338THx4ehQ4fi7e1t1cbPz0+Z7+LFi/H29sZoNCpzdXV1JS8vjy+//JKoqCi++uorAEaNGtXgczh48CC9evW6Ixzd1qZNGxYuXMh///d/89lnn/HOO++wevVqxowZQ79+/aisrGTBggUsWbIEgLNnzzJ//nwcHR1ZtWoVL7zwAs899xxGoxGz2czZs2f55ptvWLBgAQDvvvsu3t7eODs7c+nSJd58800iIyNZvHgxBw4cYPjw4XfU9M9//pO9e/cq11evXlW+bux7RAjx4IWFPXnHaz/+aEdRkQNmswv29i54e9fi4mJR3t+w4crDLFGI+9IiA5Kjo6NV+MjJyaGkpASA06dPExsbC8Dw4cNZt25do325u7uTlpaG0WjE39+fnj17UlRURFlZGQkJCQAYjUY8PT2Ve4YMGQJA7969OXToEAAnT54kJiYGgAEDBmAwGKiurrYaq7i4WGnTUG0ajYbExEROnDhBYWEhS5Ys4eWXXyY4OPiOtlu3bsXR0ZHRo0dz/vx5Lly4wPz58wEwm83K6lFjwQjgwoULrFu3jjlz5jTYZtiwYcp/f/755wAcO3bM6kxUdXU1P/30E1AX4m6v+nh6erJp0yauXLnCkCFDePrppzl58iT+/v7Kqpy/vz8nTpzAz8+PTp060bNnT6DuGVdUVNRbU2hoKGPHjlWuo6Ojla8b+x6xlZ2dTXZ2NgCLFi1Cq9U2+ByaioODw0MZpyX6/+3cf1BVdf7H8SdcrpAGKmCilquGKCjQ1vXHVv5YZZ2WWrd1nNItZ3NnlyXItRQUWW11GlbNkrBApxHRqabRKTM1M9c1zGKdQCyMQiu1ckD5WXglhMu93z/4elYOQprg5cfr8Y/3nHs45/0+5+J93c/nXLpz79B9+rdam7992O3gdAJ44HS6sNu98Pf/3/Pd4bx0l+vfkq7Uf4cMSD+HxWLB2fibicvlMu7rCQsLY8WKFeTn5/Piiy8yffp0evXqRXh4OE8++eQV9+Xl1XhaPD09aWhoMPZ5NTw8PH5yG09PT0aNGsWoUaMYPHgw2dnZzQLSsWPHOHz4MCtWrDDW3XrrrcaIzNWqqKjgueeeIz4+nqCgoKuq+9Jjl8tFSkrKFae/vL29jcf33nsvwcHB5Ofnk5KSQmxsbKvn6/JRLE9PT+rq6q6pp2sVFRVFVFSUsVxeXt6ux4PGN4IbcZyOqDv3Dt2n/9dfb74uL8/KrFmB1NW5sFpdpKVVNJlm6wanpdtc/5Z0tv4HDhzY4nMd8ltsrQkJCSEnJwdonD4bOXIkAP369ePkyZMA5ObmGsGmrKyM3r17ExUVxZQpUzh16hQhISEcP36cs2fPAnDx4kWKi4tbPW5oaKgx3VNYWIivry89e/Zsss2IESP46KOPjNqupLi4mJKSEmP59OnT9OvXr8k2ZWVlbNy4kaeeesoIJwMHDqS6upoTJ04AjaNe3333Xas1X7hwgVWrVjF79mzjPLXk0jnNyclh+PDhAERERDSZKjx9+vQVf/bcuXP079+f6OhobDYb33zzDaGhoeTm5nLx4kVqa2vJzc0lNDS01RpEpHOz2erZu9dBYuJ5tm6t0D1I0ql1uhGkuXPnsn79enbu3GncqAwwdepU1qxZw5IlSwgPDzdGOAoLC9m1axcWiwUfHx+eeOIJ/Pz8iI+PJy0tjfr6xl/gWbNmtZokH3roITIyMkhISMDb27vJdM/ltaWlpfHuu+8a03RmtbW1bNq0iQsXLmCxWAgKCiImJqbJNtnZ2djtdmMKyd/fnyVLlrBw4UKysrKoqamhoaGB6OhobrvtthbvQdq7dy9nz57lzTff5M033wRg6dKl9O7du1ld9fX1JCcn43K5mD9/vtFPZmYmCQkJNDQ0EBoa2qxWaAxVhw4dwmKx0KdPH2bOnMnNN9/M5MmTSU5OBhpv0h46dCilpaUtnmMR6fzGj3cRHGx3dxki183DdbVzR9JlxcfHs3LlyibfqOvKfmq0sC10tmHmttSdewf1r/7Vf2fqv0tNsYmIiIi0t043xSZtLz093d0liIiIdCgaQRIRERExUUASERERMVFAEhERETFRQBIRERExUUASERERMVFAEhERETFRQBIRERExUUASERERMVFAEhERETFRQBIRERExUUASERERMVFAEhERETFRQBIRERExUUASERERMVFAEhERETFRQBIRERExUUASERERMVFAEhERETFRQBIRERExUUASERERMemQAWnOnDlNlrOzs8nMzLwhx46Pj6e6uvqqt2+tNnMfl2zfvp0FCxaQkJBAYmIiX375JQAbNmzgzJkz1150C86fP8+KFSuYM2fODTt/bWXbtm3s3LmzybrLr407XyMiItL1ebm7gO7mxIkTHDlyhNWrV2O1WqmursbhcAAQGxvbpseyWq08/PDDfPvtt3z33Xdtuu9LGhoasFgs7bJvEelc8vKsFBR4EhFhxWard3c5Itel0wWksrIy1q9fT3V1NX5+fsTFxREYGEh6ejp33XUX48ePBxpHGF555RWqqqp44YUXqKmpwel08pe//IXQ0FA+/fRTtm3bhsPhoH///sTFxeHj4wPA3r17OXLkCA6HgwULFjBo0CDsdjsZGRmUlpbi7e1NTEwMv/jFL5rUVlpaSlpaGk6nk8jIyCvWX1VVha+vL1arFQA/Pz/jueXLlzNnzhyqqqrYunUrAHV1dTgcDtLT0zl58iRbtmyhtrbW6L1v374tnisfHx9GjhzJ2bNnWz2n8fHx/OpXv6KwsBCA+fPnExQURHV1NS+//DIVFRUA/OlPf2LkyJFs27aNqqoqysrK8PX1ZcaMGWRkZOBwOHC5XCxcuJABAwawe/du3n//fQCmTJnC/fffT2lpKStXrmTEiBGcOHECf39/Fi1aRI8ePVqtUUQ6jpkzA5qthutMCwAAEvJJREFUO3/eg88/t+J0gqdnIGFh9fj6uppt98YbFTeiRJHr1iEDUl1dHYmJicay3W7HZrMBkJmZycSJE5k8eTIHDhxg06ZNLFq0qMV9ffjhh0RGRjJjxgycTicXL16kurqa7du3s2zZMnx8fNixYwe7d+9m5syZAPj6+rJ69Wree+89du3aRWxsLNu2bWPo0KEsWrSIzz77jJdeeok1a9Y0OVZWVhbTpk1j0qRJ7N2794r1REZG8sYbbzB//nzCw8O5++67CQsLa7KNzWYz+l27di1hYWE4HA6jVz8/P3Jycnj99deJi4tj3759AEybNu0az/T/9OzZk5UrV3Lw4EE2b95MUlISWVlZPPDAA4wcOZLy8nJSUlJITU0F4OTJkzzzzDP06NGDTZs2ER0dzYQJE3A4HDidTk6ePMn7779PSkoKAMnJyYSFhdGrVy9KSkqYP38+sbGxrF27lsOHDzNx4sRmNb3zzjscOnTIWK6srDQet/YaMdu/fz/79+8HYNWqVQQGBv7s83S1vLy8bshxOqLu3Dt0j/6t1uZvHXY7OJ0AHjidLux2L/z9m/9sVz833eH6t6Yr9d8hA1KPHj2ahI/s7Gy+/vprAL788ksSEhIAmDhxIq+99lqr+7r99ttZv349DoeDsWPHMmTIED7//HPOnDnDsmXLAHA4HISEhBg/M27cOACGDRvGxx9/DEBRURELFy4EYPTo0djtdmpqapoc6/jx48Y2LdXm4+PD6tWr+eKLLygsLCQ1NZVHHnmEyZMnN9v27bffpkePHtx3333GNNkzzzwDgNPpNEaPricYXXLPPfcY/27ZsgWAY8eONbknqqamhh9//BFoDHGXRn1CQkLYvn07FRUVjBs3jgEDBlBUVMTYsWONUbmxY8fyxRdfYLPZuOWWWxgyZAjQeI7LysquWNP999/P9OnTjeX4+HjjcWuvEbOoqCiioqKM5fLy8qs7KdchMDDwhhynI+rOvUP36P/115uvy8uz8vDDAdTXg9XqIi2t4orTbF381HSL69+aztb/wIEDW3yuQwakn8NiseBs/PiCy+Uy7usJCwtjxYoV5Ofn8+KLLzJ9+nR69epFeHg4Tz755BX35eXVeFo8PT1paGgw9nk1PDw8fnIbT09PRo0axahRoxg8eDDZ2dnNAtKxY8c4fPgwK1asMNbdeuutxohMW7u87kuPXS4XKSkpV5z+8vb2Nh7fe++9BAcHk5+fT0pKCrGxsa2er0vTi9B4Lurq6tqiBRFxI5utnq1bKygo6EtERJXuQZJOr0N+i601ISEh5OTkAI3TZyNHjgSgX79+nDx5EoDc3Fwj2JSVldG7d2+ioqKYMmUKp06dIiQkhOPHjxv35ly8eJHi4uJWjxsaGmpM9xQWFuLr60vPnj2bbDNixAg++ugjo7YrKS4upqSkxFg+ffo0/fr1a7JNWVkZGzdu5KmnnjLCycCBA6murubEiRNA46hXW954femc5uTkMHz4cAAiIiKaTBWePn36ij977tw5+vfvT3R0NDabjW+++YbQ0FByc3O5ePEitbW15ObmEhoa2mb1ikjHY7PVs2iRU+FIuoRON4I0d+5c1q9fz86dO40blQGmTp3KmjVrWLJkCeHh4cYIR2FhIbt27cJiseDj48MTTzyBn58f8fHxpKWlUV/f+Is8a9asVofaHnroITIyMkhISMDb27vJdM/ltaWlpfHuu+8a03RmtbW1bNq0iQsXLmCxWAgKCiImJqbJNtnZ2djtdmMKyd/fnyVLlrBw4UKysrKoqamhoaGB6OhobrvttlbvQYqPj6empgaHw0Fubi5Lly7l1ltvbbZdfX09ycnJuFwu5s+fb/STmZlJQkICDQ0NhIaGNqsVGkPVoUOHsFgs9OnTh5kzZ3LzzTczefJkkpOTgcabtIcOHUppaWmL51hERKSj8HBd7dyRdFnx8fGsXLmyyTfqurKfGi1sC51tHr4tdefeQf2rf/XfmfpvbWCk002xiYiIiLS3TjfFJm0vPT3d3SWIiIh0KBpBEhERETFRQBIRERExUUASERERMVFAEhERETFRQBIRERExUUASERERMVFAEhERETFRQBIRERExUUASERERMVFAEhERETFRQBIRERExUUASERERMVFAEhERETFRQBIRERExUUASERERMVFAEhERETFRQBIRERExUUASERERMVFAEhERETFRQHKj8+fPk5iYSGJiIn/961/529/+Ziw7HI5m29vtdvbt2/eT+21oaOCxxx67qvX/+c9/2Lx588/s4NrExsZy4cKFq96+pdpa6k9ERKSteLm7gO7M19eXNWvWALBt2zZ8fHyYPn16i9vb7Xb+/e9/M23atBtVoojIVcvLs1JQ4ElEhBWbrd7d5YhcFwWkDurtt9/mgw8+ACAqKorf/va3vPbaaxQXF5OYmMgdd9zBH/7wB9asWUNNTQ0NDQ3Mnj2bu+6662cfs7S0lPXr13P+/Hl69+5NXFwcAQEBrFu3jvHjxzN27FgA5syZwyuvvEJlZSWpqanU1tbidDqJiYlhxIgRHD16lDfeeAOHw0FQUBCPP/44Pj4+ALzzzjvk5eXhdDpZsGABAwcOpLq6mvXr11NWVoaPjw8xMTEMHjy4SW1nz55l3bp1uFwuIiMjjfUt1SAiN1ZenpWHHw6gvt4DqzWArVsrFJKkU1NA6oC++uorPvzwQ/71r3/hdDpJTk4mLCyMRx55hLNnzxqjTg6Hg0WLFnHTTTfxww8/sGzZsp8MSD/++COJiYnGst1uZ9y4cQBs3LiRKVOmMGHCBPbv38/mzZtZuHBhi/v64IMPuOuuu3jwwQdxOp3U1dXxww8/sGPHDp5++mm8vb3Zvn07e/bsYcaMGQD06dOHZ599lj179rB7925iYmLYunUrw4cPZ/HixXz66adkZGSwatWqJsfKysoiOjqae++9lz179rRag9n+/fvZv38/AKtWrSIwMLDVc9QWvLy8bshxOqLu3Dt03/4LCjypr/egocHj/5f7ct99TjdXdeN11+t/SVfqXwGpA/riiy8YN24c3t7eAIwZM4aioqImIyeXvPbaaxQVFeHh4UFFRQXV1dX06tWrxX3fdNNNRsCCxvt8vvvuOwC+/PJLkpKSAJg4cSJbt25ttc7g4GBefvll6uvrGTNmDEOGDKGgoIAzZ86wdOlSoDHEjRw50viZS6NQw4YN4+jRowAUFRWxZMkSACIjI8nIyKC2trbJsU6cOMHixYuN2rZt29ZiDWZRUVFERUUZy+Xl5a321RYCAwNvyHE6ou7cO3Tf/iMirFitAQBYrS4iIqooL+9+I0jd9fpf0tn6HzhwYIvPKSB1QC6X66q2O3jwIDU1NaxevRqLxUJsbCz19W3/H5LFYjFqcjqdOJ2NnwpHjx7N8uXLyc/P58UXX+TBBx/E29ubO+64g3nz5l1xX1arFQBPT09jP2ZX239LNUyYMOFa2hORNmCz1bN1awUFBX2JiKjS9Jp0evoWWwcUFhbGxx9/TF1dHbW1teTm5hIaGoqPj0+TkZWamhr8/PywWCwUFBRQWVl5XccNCQkhJycHgEOHDhEaGgpAv379OHnyJAAff/yxEWzKysro06cPUVFRTJo0iVOnThESEsLnn3/OuXPnAKitraWkpKTV44aGhnLo0CEACgoKCAgIMO5Zury2//73v0Ztl1ypBhFxD5utnkWLnApH0iVoBKkDCg4O5p577jGmnaZNm2bctDxs2DAWLlzInXfeyQMPPMDq1atJSkpi6NChDBgw4LqO++c//5kNGzawY8cO4yZtgN/85jc8++yzFBQUEBkZiZdX48vm2LFjvPPOO1gsFnx8fJg3bx59+vTh8ccf54UXXjD+VMHs2bNbre2hhx4iIyODhIQEfHx8ePzxx5ttM3fuXNatW8fu3buNabqWahAREbleHq5rmc8Q6QKKi4vb/RidbR6+LXXn3kH9q3/135n6b+0eJE2xiYiIiJgoIImIiIiYKCCJiIiImCggiYiIiJgoIImIiIiYKCCJiIiImCggiYiIiJgoIImIiIiYKCCJiIiImCggiYiIiJgoIImIiIiYKCCJiIiImCggiYiIiJgoIImIiIiYKCCJiIiImCggiYiIiJgoIImIiIiYKCCJiIiImCggiYiIiJgoIImIiIiYKCCJiIiImCggiYiIiJgoIImIiIiYKCCJiIiImCggiYiIiJgoIImIiIiYKCCJiIiImCggiYiIiJgoIImIiIiYKCCJiIiImCggiYiIiJgoIImIiIiYKCCJiIiImCggiYiIiJgoIImIiIiYKCCJiIiImCggiYiIiJgoIImIiIiYKCCJiIiImHi4XC6Xu4sQERER6Ug0giTSDpKSktxdgtt0595B/at/9d9VKCCJiIiImCggiYiIiJhYli9fvtzdRYh0RcOGDXN3CW7TnXsH9a/+1X9XoJu0RUREREw0xSYiIiJiooAkIiIiYuLl7gJEupJ3332XvXv3YrFYuPPOO3n00UcBeOuttzhw4ACenp7MnTuXO+64w82Vtp+dO3fy6quvsnHjRvz8/HC5XGRlZXH06FG8vb2Ji4vrMvcoXO6VV17hyJEjeHl50b9/f+Li4ujVqxfQfa7/J598QlZWFk6nk6lTp/Lggw+6u6R2VV5eTnp6Ot9//z0eHh5ERUURHR2N3W4nNTWVsrIy+vXrx1NPPcXNN9/s7nLbhdPpJCkpCX9/f5KSkigtLeWFF17AbrczdOhQ5s2bh5dX54waGkESaSOfffYZeXl5PPfcc6xdu5bf/e53AJw5c4acnBzWrl3LP/7xDzIzM3E6nW6utn2Ul5dz7NgxAgMDjXVHjx7l7NmzrFu3jpiYGDZu3OjGCttPREQEzz//PM899xwDBgzgrbfeArrP9Xc6nWRmZpKcnExqaiofffQRZ86ccXdZ7cpisTBnzhxSU1NJSUnhvffe48yZM+zYsYPw8HDWrVtHeHg4O3bscHep7WbPnj0MGjTIWH711Ve5//77WbduHb169eLAgQNurO76KCCJtJF9+/bx+9//HqvVCkDv3r0ByM3N5e6778ZqtXLLLbcQFBTEV1995c5S282WLVt45JFH8PDwMNbl5eUxceJEPDw8CAkJ4cKFC1RVVbmxyvYRGRmJxWIBICQkhMrKSqD7XP+vvvqKoKAg+vfvj5eXF3fffTe5ubnuLqtd9e3b1xgNvemmmxg0aBCVlZXk5uYyadIkACZNmtRlz0NFRQX5+flMnToVAJfLRWFhIePHjwdg8uTJnbp3BSSRNlJSUkJRURHJycn885//NN4EKysrCQgIMLbz9/c33jy7kry8PPz9/RkyZEiT9ZWVlU1GlAICArpk/5c7cOCAMY3WXa6/uc/ucJ0vV1payqlTpwgODuaHH36gb9++QGOIqq6udnN17WPz5s08+uijxgei8+fP07NnT+ODQmd/rXfOiUERN3nmmWf4/vvvm62fNWsWTqcTu91OSkoKX3/9Nampqbz00kt0pb+k0Vr/b731FkuXLm323JX6v3yEqTNprf8xY8YAsH37diwWCxMmTACu3H9X1JWu87Wqra3l+eef57HHHqNnz57uLueGOHLkCL1792bYsGEUFha6u5x2oYAkcg2WLVvW4nP79u1j3LhxeHh4EBwcjKenJ+fPnycgIICKigpju8rKSvz9/W9EuW2upf6//fZbSktLSUxMBBqH3hcvXszKlSsJCAigvLzc2LaiosL4dN3ZtHb9AbKzszly5AhPP/20EQ660vVvjbnPznydr4XD4eD5559nwoQJjBs3DmicXq+qqqJv375UVVXh5+fn5irb3vHjx8nLy+Po0aPU1dXx448/snnzZmpqamhoaMBisXT617qm2ETayJgxY/jss88AKC4uxuFw4Ovri81mIycnh/r6ekpLSykpKSE4ONjN1batwYMHs3HjRtLT00lPTycgIIDVq1fTp08fbDYbH3zwAS6XixMnTtCzZ88u+cb5ySef8Pbbb7N48WK8vb2N9d3h+gPcfvvtlJSUUFpaisPhICcnB5vN5u6y2pXL5WLDhg0MGjSIBx54wFhvs9k4ePAgAAcPHjRGF7uSP/7xj2zYsIH09HSefPJJRo8ezd///ndGjRrF4cOHgcYPDJ35NaC/pC3SRhwOBxkZGXzzzTd4eXkxZ84cRo8eDTROu7z//vt4enry2GOP8ctf/tLN1bav+Ph4Vq5caXzNPzMzk08//ZQePXoQFxfH7bff7u4S29y8efNwOBzG17mHDx9OTEwM0H2uf35+Plu2bMHpdPLrX/+aGTNmuLukdlVUVMTTTz/N4MGDjRHD2bNnM3z4cFJTUykvLycwMJAFCxZ02a/5AxQWFrJr1y6SkpI4d+5cs6/5X/riSmejgCQiIiJioik2ERERERMFJBERERETBSQREREREwUkERERERMFJBERERETBSQREREREwUkEREREZP/A/PIGYazaRE+AAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkgAAAQMCAYAAABtB2bvAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzce1hU170//vfAzKBcRiCTQUcM4GBEOeKNE1CDQEAeqLWnVy9pp3JKOVrFBBUwXxPU9JKKWmtz1FSFxhO0gaPYtDYaFC9BexTEVFFsUGwQDE50iAYRGJiZ9fuDun+yBbwgIOH9eh6fx5nZs9bnszcwb9asQSGEECAiIiIiiUNvF0BERET0tGFAIiIiIpJhQCIiIiKSYUAiIiIikmFAIiIiIpJhQCIiIiKSYUCir7X4+Hi88cYbj/18V1dX/POf/3yCFd3v2LFjGDlyZLfO8bQ4evQovL29e7uMfikwMBBHjx4FAAgh8J//+Z/w8PDACy+8AAB455134OXlBVdXV9TW1vZipURPBwYk6jG+vr4YOHAgXF1d4eXlhfj4eNTX1/d2WZKIiAhkZma2ua++vh7Dhw/v8thlZWWIiYmBp6cn3N3dMXHiROzbtw8AEBYWhvLy8i7PcVddXR2Sk5Px3HPPwdXVFQaDAcnJyTCbzV0eW6FQoKKi4glU+Wji4+OhVqvh6uoKT09PTJs2DZ9++mmP19GR3gx+lZWVUCgUcHV1lb63vvnNb+LgwYNtjisrK0NERAQA4Pjx4zh48CCuXr2K4uJitLS0YMmSJThw4ADq6+vxzDPP9EInRE8XBiTqUXv37kV9fT0++eQTlJSU4Je//GVvl9QjZsyYgWnTpsFkMuH69et4++23odFonvg8zc3NiIqKQllZGT766CPU1dXhxIkTeOaZZ1BcXPzE55OzWq3dNnZaWhrq6+tx9epV6HQ6xMfHP/IY3Vlfb7t16xbq6+tx9uxZTJs2Dd/5znewffv2do+9cuUKfH194eLiAgD44osv0NTUhMDAwMea22azPW7ZRE8vQdRDfHx8xMGDB6XbKSkpYvr06UIIIf785z+L0aNHi0GDBonw8HBx4cKFNs976623xKhRo4S7u7uIj48XjY2NQggh3n33XTFlypQ28wAQly5dEkIIMXfuXPH6668LIYT48ssvxfTp04VWqxXu7u5i+vTporq6WgghxPLly4WDg4NwcnISLi4uYuHChfeNdevWLWE0GoVWqxXPPfec+MUvfiFsNlubOpYuXSrc3d2Fr6+v2LdvnxBCiBs3bggA4ubNm+2elyNHjoihQ4e26XfNmjVizJgxwtnZWfzkJz8RJpNJxMbGCldXVxEVFSW+/PLLdsfatm2b0Ol04vbt2x1ehwsXLojw8HAxaNAgMXr0aPHnP/9Zemzu3LliwYIF4hvf+IZwdXUVL7zwgqioqBBCCBEWFiYACGdnZ+Hi4iJycnKk2levXi28vLzEj370I9HU1CReffVVMWTIEDFkyBDx6quviqampnZ7Xb16tdDr9cLV1VU8//zzoqCgoN2a772OQgjx17/+Vbi4uAghhPj888/Fd7/7XaHVaoWvr6/43e9+Jx23cuVK8b3vfU/88Ic/FG5ubmLbtm2itrZWxMfHiyFDhgh3d3fxH//xH9Lxe/fuFWPHjhWDBg0SkyZNEmfPnm1zXdauXSvGjBkjNBqNmDlzpmhsbBT19fViwIABQqFQCBcXF+Hi4iI+//xzUVRUJEJDQ8WgQYPE4MGDxcKFC4XFYpHGy8/PF88//7zQaDTiZz/7mZg6darYtm2b9HhWVpYICAgQ7u7uIiYmRlRWVrZ7bj777DMBQLS0tLS5f+3atUKn00lfo3e//zIzM4WTk5NwcHAQLi4uYvbs2cLZ2VkAEC4uLiIyMlIIIcQ//vEPER0dLTw8PMTzzz8vcnNz21yP+fPni7i4OOHs7CwOHjz4wOvwgx/8QBiNRuHq6ipGjx4tTp06JT1eVVUlvvOd7witVis8PT2l779HOQ9ETxoDEvWYewNSVVWVGD16tHjjjTdEeXm5cHZ2FgcOHBDNzc0iIyNDGAwG6cXEx8dHBAYGiqqqKlFbWysmT54svVg+SkAym81i9+7d4s6dO6Kurk58//vfb/PiGB4e3uYFSj6W0WgU3/rWt0RdXZ347LPPxIgRI0RmZqZUh1KpFFu3bhVWq1Vs3rxZDBkyRNjtdmG324W/v7+YPn26+NOf/iRMJlObOdoLSCEhIcJkMomrV6+KZ599VowfP1588sknorGxUURGRopVq1a1e45nzZolfvzjH3d4DZqbm4XBYBC/+tWvhMViEYcOHRKurq7i008/lc6Xp6enKCoqEi0tLeLll18Ws2bNavd83K3d0dFRpKWliaamJtHQ0CDS09NFSEiI+OKLL8T169fFpEmTxBtvvHFfr59++qnw9vYWn3/+uRCi9YX+bhiTu/c63r59W8yZM0e8+OKLwmaziQkTJog333xTWCwWcfnyZeHn5yc++ugjIUTrC7NSqRR/+tOfhM1mEw0NDeIb3/iGmDlzpvjyyy9Fc3OzOHr0qBBCiE8++UQ8++yz4uTJk8JqtYrt27cLHx8fKdz5+PiIf//3fxeff/65qK2tFQEBAeKdd95p9xoKIURJSYk4ceKEaGlpEZ999pkICAgQv/3tb4UQraHZzc1N5OXliZaWFrFhwwahVCqlr78PPvhAGAwGceHCBdHS0iJ+8YtfiEmTJrV7bjoKSJcvXxYApF827v3+k3/fyMeor68X3t7e4g9/+INoaWkRn3zyiXjmmWdEWVmZdD00Go04fvy4sNls4s6dOw+8Dk5OTuLDDz8UVqtVvPbaayIkJEQIIYTVahVBQUEiOTlZ1NfXi8bGRnHs2LFHPg9ETxoDEvUYHx8f4eLiIgYNGiSee+458bOf/Uw0NDSIn//85+IHP/iBdJzNZhN6vV4cOXJEet7dFyIhhPjwww/F8OHDhRCPFpDk/v73vwt3d3fpdmcByWq1CpVKJb1ACCHE73//exEeHi7VYTAYpMfu3LkjAIhr164JIYSorq4WCxcuFMOHDxcKhUKEhYWJixcvCiHaD0g7duyQbn/3u98V8+fPl26//fbbbYLdvaKjo8WyZcvafUwIIQoLC4WXl5e0qiCEELNnzxYrV64UQrSer4SEBOmxDz/8UIwcOfK+83HXkSNHhEqlklb0hBBi+PDh4sMPP5Ruf/TRR8LHx+e+Xi9duiSeffZZcfDgQdHc3NxhzXfrcnJyEoMGDRJeXl5ixowZoqKiQpw8eVIMGzaszbFvvfWWiI+PF0K0vjCHhYVJj9XU1AiFQtHuCtz8+fOlIHfX888/LwUoHx8fkZ2dLT2Wmpoq5s2bd19fHfntb38rvv3tbwshhPif//kfERoaKj1mt9uFt7e39PUXGxsrhW8hWr8nBg4c2O7qSUcBqbGxUQAQx48fl+p/2ICUk5MjXnzxxTbj/dd//ZcUzOfOnSuMRqP02MNch6ioKOmxsrIyMWDAACGEEP/3f/8ntFrtffU/6nkgetK4B4l61AcffIBbt27hypUr2Lx5MwYOHIiamhr4+PhIxzg4OGDYsGH4/PPPpfuGDRsm/d/Hxwc1NTWPPHdDQwPmzZsHHx8faDQaTJ06Fbdu3Xqo/RNmsxktLS1t6vTx8WlT4+DBg6X/Ozs7A4C0Cd3b2xsbN27E5cuXceXKFbi4uODHP/5xh/N5eXlJ/x84cOB9tzva3P7MM8/g2rVrHY5bU1ODYcOGwcHh///Wf1AfD9pI/+yzz2LAgAFt5pCfp/aul7+/PzZs2IBVq1ZBp9Nh9uzZnV7XlJQU3Lp1CyaTCX/5y19gMBhw5coV1NTUwN3dXfr31ltv4YsvvpCed+/XTnV1NTw9PeHh4XHf+FeuXMFvfvObNmNVV1e3qelRzs3FixfxzW9+E4MHD4ZGo8Hy5culjfJ3r8NdCoWizSbvK1eu4NVXX5Xq8PT0hBCizXV6kLvHenp6PvRz7p2/qKiozbnYuXMnTCaTdMy99T/MdZCfu6amJlitVlRXV8PHxwdKpbLdOrp6HogeFwMS9Tq9Xo8rV65It4UQqK6uxtChQ6X7qqurpf9XVVVBr9cDAFxcXNDQ0CA9du8PcLnf/OY3KC8vR1FREerq6lBYWCjNB7S+SHVEq9VCpVK1qbOqqqpNjQ9r2LBhWLhwIc6fP//Iz32Q6Oho5Ofn486dO+0+rtfrUV1dDbvdLt33uH3cJT9v8ut57/WSe/nll3H8+HFcuXIFCoUCy5Yte6S5hw0bBj8/P9y6dUv6d/v2bekTgvL6hg0bhi+//BK3bt1qd6zXX3+9zVgNDQ2YM2fOA+to72vnZz/7GQICAnDp0iXU1dXhrbfekr7WhgwZgqtXr0rHCiHa3B42bBi2bNnSppbGxkZMnjz54U4MgD/96U/Q6XSP9Sckhg0bhvDw8Dbz19fX45133mm354e5Dp3NVVVV1e4G+idxHogeFwMS9bqZM2fiww8/xKFDh9DS0oLf/OY3cHJyavNDcNOmTbh69Sq+/PJL/OpXv8KsWbMAAGPHjkVZWRnOnDmDpqYmrFq1qsN5bt++jYEDB8Ld3R1ffvkl3nzzzTaPe3l5dfg3jxwdHTFz5ky8/vrruH37Nq5cuYL169fjRz/60QP7u3nzJlauXImKigrY7XaYzWb84Q9/QGho6EOcnUdjNBoxbNgwfO9738Onn34Ku92O2tpavPXWW9i3bx9CQkLg7OyMNWvWoKWlBUePHsXevXsxe/bshxq/s3N015w5c/DLX/4SN27cgNlsxs9//vN2z1N5eTkOHz4Mi8WCAQMGYODAgW1Wth7GCy+8ADc3N2RkZKCxsRE2mw3nz5/HqVOn2j1+yJAhiIuLw4IFC3Dz5k20tLRIQTkxMRG///3vUVRUBCEE7ty5gw8//BC3b99+YB1eXl6ora3FV199Jd13+/ZtaDQauLq64tNPP20TLqZPn45z587hgw8+gNVqxaZNm9qE+/nz5+PXv/41ysrKAABfffUVdu3a9VDn5IsvvsDGjRvx5ptv4te//vUjn1MA+OY3v4mLFy8iOzsbLS0taGlpwalTp/CPf/yj3eMf9TrInztkyBC89tpruHPnDpqamvC3v/0NQNfOA1FXMSBRrxs5ciR27NiBRYsWQavVYu/evdi7dy/UarV0zMsvv4yYmBgMHz4cBoNB+uOPzz//PFasWIHo6GiMGDECL774YofzJCcno7GxEVqtFqGhoYiNjW3z+Kuvvordu3fDw8MDr7zyyn3P/+///m+4uLhg+PDhePHFF/Hyyy/jJz/5yQP7U6vVqKysRHR0NDQaDf7t3/4NTk5OHX4EuyucnJxQUFCAgIAATJs2DRqNBi+88ALMZjNCQkKgVquxd+9e7N+/H1qtFgsWLMB7772HgICAhxp/1apVmDt3Ltzd3fG///u/7R7zxhtvIDg4GEFBQRgzZgwmTJjQ7h/rtFgseO2116DVajF48GBcv34dv/71rx+pX0dHR/z1r3/FmTNn4OfnB61Wi5/+9KdtgopcdnY2VCoVAgICoNPpsGHDBgBAcHAwtm3bhqSkJHh4eMDf3/+hr1FAQADmzJmD4cOHw93dHTU1NVi3bh3++Mc/ws3NDYmJiVKoB1pXJHft2oW0tDQ888wzuHDhAoKDg+Hk5AQA+M53voNly5Zh9uzZ0tfM/v37O63B3d0dLi4uGDNmDPbt24ddu3Y91Ndne9zc3HDgwAHk5ORAr9dj8ODBWLZsGSwWS7vHP851uPe5e/fuRUVFBZ577jl4e3sjNzcXwOOdB6InRSHurvkSPaV8fX2RmZmJ6Ojo3i6FqFvY7XZ4e3tj586diIyM7O1yiAhcQSIi6hX5+fm4desWLBaLtD+pO952JaLHw4BERNQLTpw4AYPBIL2t/MEHH2DgwIG9XRYR/QvfYiMiIiKS4QoSERERkcz9f5mL6Gvucf7I5KPQarXSHwTsj9g/+2f/7L+v6OhvtAFcQSIiIiK6DwMSERERkQwDEhEREZEMAxIRERGRDAMSERERkQwDEhEREZEMAxIRERGRDAMSERERkQwDEhEREZEMAxIRERGRDAMSERERkQwDEhEREZEMAxIRERGRDAMSERERkQwDEhEREZEMAxIRERGRDAMSERERkQwDEhEREZEMAxIRERGRDAMSERERkQwDEhEREZEMAxIRERGRDAMSERERkQwDEhEREZEMAxIRERGRDAMSERERkQwDEhEREZEMAxIRERGRDAMSERERkQwDEhEREZEMAxIRERGRDAMSERERkQwDEhEREZEMAxIRERGRDAMSERERkQwDEhEREZEMAxIRERGRDAMSERERkQwDEhEREZEMAxIRERGRjLK3C+gvamtrkZWVhatXr0IIgQkTJsBoNEKp7L1LUFxcDL1eD29vbwBAbm4uRo0ahaCgoMce88yZM9i5cycAwGQywdPTE2q1Gj4+PkhKSnoidd/V0NCAt99+G7W1tbDZbJgxYwYiIyOf6BxERNQ/MSD1ACEE1q1bh5iYGKSlpcFut2PLli14//33YTQae62uU6dOYeLEiVJAmjVrVpfHHDduHMaNGwcAWLVqFYxGIwwGQ5fHbc9HH30Eb29vvPbaa6irq8Orr76KsLCwXg2dRASUlKhw4oQTJk2yIDi4pbfLIXosfCXpAefPn4darZZWNxwcHDB37lwkJSVh5syZUKlU2LFjB86ePQuFQoGoqCjExcWhoqIC27dvh8VigVKpxIoVK1BUVITLly8jISEBALB69WrMmDEDgYGBMBqNiIqKQmlpKdzd3ZGcnAyNRoOCggIcOnQIVqsVXl5eWLRoESorK1FSUoILFy4gLy8PS5cuRV5eHiZOnIjQ0FCcO3cO2dnZsNlsMBgMSExMhEqlwsKFCxEeHo7Tp0/DarViyZIlGDp06AP737dvH9LS0gAApaWlyM/PR2pqaoc1m0wmZGVloa6uDk5OTpg3b9598ygUCjQ1NUEIgaamJri6usLBge8aE/WmkycVmDXrGbS0KKBSuSI3t5YhifokBqQeUF1dDT8/vzb3OTs7Q6vVwmQyoby8HDdu3MCaNWvg6OiI+vp6WK1WbNiwAcnJyfD390dDQwPUanWn81gsFhgMBsTHx2P37t3YtWsXEhISEBISgujoaABATk4ODh8+jLi4OAQHB0uB6F7Nzc3YvHkz0tPTodfrsXHjRhw4cADTp08HALi5uSEjIwP5+fnYu3cv5s+f32ldgYGByMzMRF1dHTQaDY4cOSKFxY5q3rp1KxITEzFkyBBcunQJmZmZWLlyZZtxY2NjsWbNGsybNw+NjY1YvHhxuwGpoKAABQUFAFoDpVar7bTerlIqld0+x9OM/ffv/rdvd0RLiwI2mwIAUFrqgdhYey9X1XP6+/X/OvXPgPQUKC0tRUxMDBwdHQEArq6uqKqqgoeHB/z9/QG0BqoHUSgUmDx5MgAgLCwM69atA9Aa0HJycnDnzh00NTVh7NixnY5TU1MDnU4HvV4PAAgPD0d+fr4UkEJCQgAAw4cPR3Fx8UPVNXXqVBQWFiIyMhIXL16U9iO1V3NTUxPKy8uxfv16aQyr1XrfuGfPnoWPjw9WrFiBL774Ar/4xS8QEBBw37mKjo6WAiIAmM3mB9bcFVqtttvneJqx//7d/4svPguVqvVnmUolEBR0E2Zz/1lB6u/Xv6/1f/d1rj0MSD3A29sbRUVFbe5raGiA2WzG4MGDH2ksBwcHCCGk2y0tHf/gUShaf4PbtGkTUlNT4evri6NHj6KsrOyR5pS7u8fHwcEBNpvtoZ4TERGBjIwMqNVqTJo0SQqD7dVst9vh4uKCtWvXdjrmkSNH8O1vfxsKhQKDBw+GTqdDTU2NFCqJqOeFhgrk5tZyDxL1edyw0QPGjBkDi8WCjz/+GABgt9vx3nvvISIiAk5OTggKCsLBgwelsFFfXw+9Xo+bN2+ioqICANDY2AibzQadTofKykrY7XaYzWbpcaB1M/jJkycBAMePH0dAQAAAoKmpCR4eHrBarTh27Jh0/MCBA9HY2HhfvXq9HtevX4fJZAIAFBYWYvTo0V06B56envDw8EBeXh4iIiI6rdnZ2Rk6nQ4nTpyQjqmsrLxvTK1Wi3PnzgEAbt26Ja18EVHvCg5uwaJF9QxH1KdxBakHKBQKpKSkIDMzE3l5eRBCYPz48ZgzZw4AICoqCteuXUNKSgqUSiWioqIQGxuL5ORkvPvuu2huboZarUZ6ejpGjhwJnU4nbY6+d2+Tk5MTKioqsGfPHmg0GixevBhA66fTli9fDo1GgxEjRkihaPLkydiyZQv279+PJUuWSOOo1WosWLAA69evlzZpT5s2rcvnISwsDLdv35Y+NddZza+88gq2bduGPXv2wGq1YsqUKfD19W0z3ve+9z1s3rwZS5cuBQD88Ic/hEaj6XKdRERECnHv+zXUpxmNRmRnZ/d2GR3KysqCn58fXnrpJem+3qi5pqamW8fva+/BP2nsn/2zf/bfV3S2B4lvsVGPWLZsGaqqqhAWFtbbpRARET0QV5Co3+EKUvdi/+yf/bP/voIrSERERESPgAGJiIiISIYBiYiIiEiGAYmIiIhIhgGJiIiISIYBiYiIiEiGAYmIiIhIhgGJiIiISIYBiYiIiEiGAYmIiIhIhgGJiIiISIYBiYiIiEiGAYmIiIhIhgGJiIiISIYBiYiIiEiGAYmIiIhIhgGJiIiISIYBiYiIiEiGAYmIiIhIRtnbBfQXtbW1yMrKwtWrVyGEwIQJE2A0GqFU9t4lKC4uhl6vh7e3NwAgNzcXo0aNQlBQ0GOPeebMGezcuRMAYDKZ4OnpCbVaDR8fHyQlJT2Ruu/6y1/+gmPHjgEA7HY7rl69iqysLLi6uj7ReYiIqP9hQOoBQgisW7cOMTExSEtLg91ux5YtW/D+++/DaDT2Wl2nTp3CxIkTpYA0a9asLo85btw4jBs3DgCwatUqGI1GGAyGLo/bnm9961v41re+BQAoKSnBhx9+yHBE9JQoKVHhxAknTJpkQXBwS2+XQ/TIGJB6wPnz56FWqxEZGQkAcHBwwNy5c5GUlISZM2dCpVJhx44dOHv2LBQKBaKiohAXF4eKigps374dFosFSqUSK1asQFFRES5fvoyEhAQAwOrVqzFjxgwEBgbCaDQiKioKpaWlcHd3R3JyMjQaDQoKCnDo0CFYrVZ4eXlh0aJFqKysRElJCS5cuIC8vDwsXboUeXl5mDhxIkJDQ3Hu3DlkZ2fDZrPBYDAgMTERKpUKCxcuRHh4OE6fPg2r1YolS5Zg6NChD+x/3759SEtLAwCUlpYiPz8fqampHdZsMpmQlZWFuro6ODk5Yd68eZ3O87e//Q1Tpkx5QleMiLqipESFWbOeQUuLAiqVK3JzaxmSqM9hQOoB1dXV8PPza3Ofs7MztFotTCYTysvLcePGDaxZswaOjo6or6+H1WrFhg0bkJycDH9/fzQ0NECtVnc6j8VigcFgQHx8PHbv3o1du3YhISEBISEhiI6OBgDk5OTg8OHDiIuLQ3BwsBSI7tXc3IzNmzcjPT0der0eGzduxIEDBzB9+nQAgJubGzIyMpCfn4+9e/di/vz5ndYVGBiIzMxM1NXVQaPR4MiRI1JY7KjmrVu3IjExEUOGDMGlS5eQmZmJlStXdtj3mTNnpNAoV1BQgIKCAgCtgVKr1XZab1cplcpun+Npxv7Zf2mpB1paFLDZFACA0lIPxMbae7mynsHr//XpnwHpKVBaWoqYmBg4OjoCAFxdXVFVVQUPDw/4+/sDaA1UD6JQKDB58mQAQFhYGNatWwegNaDl5OTgzp07aGpqwtixYzsdp6amBjqdDnq9HgAQHh6O/Px8KSCFhIQAAIYPH47i4uKHqmvq1KkoLCxEZGQkLl68KO1Haq/mpqYmlJeXY/369dIYVqu1w/FPnz6NkSNHdvj2WnR0tBQQAcBsNj+w5q7QarXdPsfTjP2z/6Cgr6BSPQMAUKkEgoJuwmzuHytIvP59q/+7r3PtYUDqAd7e3igqKmpzX0NDA8xmMwYPHvxIYzk4OEAIId1uaen4h45C0frb26ZNm5CamgpfX18cPXoUZWVljzSn3N2N5Q4ODrDZbA/1nIiICGRkZECtVmPSpElSGGyvZrvdDhcXF6xdu/ahxv7b3/6GF1988eGKJ6JuFxzcgtzcWu5Boj6NH/PvAWPGjIHFYsHHH38MoPUTV++99x4iIiLg5OSEoKAgHDx4UAob9fX10Ov1uHnzJioqKgAAjY2NsNls0Ol0qKyshN1uh9lslh4HWjeDnzx5EgBw/PhxBAQEAACamprg4eEBq9UqfeoLAAYOHIjGxsb76tXr9bh+/TpMJhMAoLCwEKNHj+7SOfD09ISHhwfy8vIQERHRac3Ozs7Q6XQ4ceKEdExlZWW74zY0NODChQsIDg7uUn1E9GQFB7dg0aJ6hiPqs7iC1AMUCgVSUlKQmZmJvLw8CCEwfvx4zJkzBwAQFRWFa9euISUlBUqlElFRUYiNjUVycjLeffddNDc3Q61WIz09HSNHjoROp5M2R9+7t8nJyQkVFRXYs2cPNBoNFi9eDKD102nLly+HRqPBiBEjpFA0efJkbNmyBfv378eSJUukcdRqNRYsWID169dLm7SnTZvW5fMQFhaG27dvS5+a66zmV155Bdu2bcOePXtgtVoxZcoU+Pr63jdmcXExxo4diwEDBnS5PiIiorsU4t73a6hPMxqNyM7O7u0yOpSVlQU/Pz+89NJL0n29UXNNTU23jt/X3oN/0tg/+2f/7L+v6GwPEt9iox6xbNkyVFVVISwsrLdLISIieiCuIFG/wxWk7sX+2T/7Z/99BVeQiIiIiB4BAxIRERGRDAMSERERkQwDEhEREZEMAxIRERGRDAMSERERkQwDEhEREZEMAxIRERGRDAMSERERkQwDEhEREZEMAxIRERGRDAMSERERkQwDEhEREZEMAxIRERGRDAMSERERkQwDEhEREZEMAxIRERGRDAMSERERkQwDEhEREZGMsrcL6C9qa2uRlZWFq1evQgiBCRMmwGg0QqnsvUtQXA0ClqIAACAASURBVFwMvV4Pb29vAEBubi5GjRqFoKCgxx7zzJkz2LlzJwDAZDLB09MTarUaPj4+SEpKeiJ136usrAzbt2+HzWaDm5sb3nzzzSc+BxER9T8MSD1ACIF169YhJiYGaWlpsNvt2LJlC95//30YjcZeq+vUqVOYOHGiFJBmzZrV5THHjRuHcePGAQBWrVoFo9EIg8HQ5XHbc+fOHWRmZuL111+HVqvFV1991S3zENHDO3lSgf37XTFpkgXBwS29XQ7RY2NA6gHnz5+HWq1GZGQkAMDBwQFz585FUlISZs6cCZVKhR07duDs2bNQKBSIiopCXFwcKioqsH37dlgsFiiVSqxYsQJFRUW4fPkyEhISAACrV6/GjBkzEBgYCKPRiKioKJSWlsLd3R3JycnQaDQoKCjAoUOHYLVa4eXlhUWLFqGyshIlJSW4cOEC8vLysHTpUuTl5WHixIkIDQ3FuXPnkJ2dDZvNBoPBgMTERKhUKixcuBDh4eE4ffo0rFYrlixZgqFDhz6w/3379iEtLQ0AUFpaivz8fKSmpnZYs8lkQlZWFurq6uDk5IR58+bdN8/x48cREhICrVYLABg0aNCTvnRE9AhKSlSYPVuJ5mY3qFSuyM2tZUiiPosBqQdUV1fDz8+vzX3Ozs7QarUwmUwoLy/HjRs3sGbNGjg6OqK+vh5WqxUbNmxAcnIy/P390dDQALVa3ek8FosFBoMB8fHx2L17N3bt2oWEhASEhIQgOjoaAJCTk4PDhw8jLi4OwcHBUiC6V3NzMzZv3oz09HTo9Xps3LgRBw4cwPTp0wEAbm5uyMjIQH5+Pvbu3Yv58+d3WldgYCAyMzNRV1cHjUaDI0eOSGGxo5q3bt2KxMREDBkyBJcuXUJmZiZWrlzZZtxr167BarVi1apVaGxsxDe+8Q2Eh4ffN39BQQEKCgoAtAbKu4GquyiVym6f42nG/vtv/6WlDmhuBmw2xb9ueyA21t7LVfWs/nz9ga9X/wxIT4HS0lLExMTA0dERAODq6oqqqip4eHjA398fQGugehCFQoHJkycDAMLCwrBu3ToArQEtJycHd+7cQVNTE8aOHdvpODU1NdDpdNDr9QCA8PBw5OfnSwEpJCQEADB8+HAUFxc/VF1Tp05FYWEhIiMjcfHiRWk/Uns1NzU1oby8HOvXr5fGsFqt941rs9nw2WefIT09Hc3NzXjjjTcwYsQIqe67oqOjpYAIAGaz+YE1d4VWq+32OZ5m7L//9h8UpIJarUVzs4BKJRAUdBNmc/9aQerP1x/oe/3LXy/uxYDUA7y9vVFUVNTmvoaGBpjNZgwePPiRxnJwcIAQQrrd0tLxDx+FovW3uE2bNiE1NRW+vr44evQoysrKHmlOubsbyx0cHGCz2R7qOREREcjIyIBarcakSZOkMNhezXa7HS4uLli7dm2nYz7zzDNwc3PDgAEDMGDAAIwaNQpXrlzp9AueiLpPcHALPvrIiv37G7kHifo8fsy/B4wZMwYWiwUff/wxAMBut+O9995DREQEnJycEBQUhIMHD0pho76+Hnq9Hjdv3kRFRQUAoLGxETabDTqdDpWVlbDb7TCbzdLjQOtm8JMnTwJo3Z8TEBAAAGhqaoKHhwesViuOHTsmHT9w4EA0NjbeV69er8f169dhMpkAAIWFhRg9enSXzoGnpyc8PDyQl5eHiIiITmt2dnaGTqfDiRMnpGMqKyvvGzM4OBiffvopbDYbLBYLKioqHrgfioi6V2iowKJF9QxH1OdxBakHKBQKpKSkIDMzE3l5eRBCYPz48ZgzZw4AICoqCteuXUNKSgqUSiWioqIQGxuL5ORkvPvuu2huboZarUZ6ejpGjhwJnU4nbY6+d2+Tk5MTKioqsGfPHmg0GixevBhA66fTli9fDo1GgxEjRkihaPLkydiyZQv279+PJUuWSOOo1WosWLAA69evlzZpT5s2rcvnISwsDLdv35Y+NddZza+88gq2bduGPXv2wGq1YsqUKfD19W0znre3N8aNG4eUlBQ4ODjgpZdewnPPPdflOomIiBTi3vdrqE8zGo3Izs7u7TI6lJWVBT8/P7z00kvSfb1Rc01NTbeO39feg3/S2D/7Z//sv6/obEsG32KjHrFs2TJUVVUhLCyst0shIiJ6IK4gUb/DFaTuxf7ZP/tn/30FV5CIiIiIHgEDEhEREZEMAxIRERGRDAMSERERkQwDEhEREZEMAxIRERGRDAMSERERkQwDEhEREZEMAxIRERGRDAMSERERkQwDEhEREZEMAxIRERGRDAMSERERkQwDEhEREZEMAxIRERGRDAMSERERkQwDEhEREZEMAxIRERGRDAMSERERkYyytwvoL2pra5GVlYWrV69CCIEJEybAaDRCqey9S1BcXAy9Xg9vb28AQG5uLkaNGoWgoKDHHvPMmTPYuXMnAMBkMsHT0xNqtRo+Pj5ISkp6InXfVVZWhjVr1kCn0wEAQkJC8P3vf/+JzkFERP0TA1IPEEJg3bp1iImJQVpaGux2O7Zs2YL3338fRqOx1+o6deoUJk6cKAWkWbNmdXnMcePGYdy4cQCAVatWwWg0wmAwdHncjowaNQqvvfZat41PRI/m5EkF9u93xaRJFgQHt/R2OUSPjQGpB5w/fx5qtRqRkZEAAAcHB8ydOxdJSUmYOXMmVCoVduzYgbNnz0KhUCAqKgpxcXGoqKjA9u3bYbFYoFQqsWLFChQVFeHy5ctISEgAAKxevRozZsxAYGAgjEYjoqKiUFpaCnd3dyQnJ0Oj0aCgoACHDh2C1WqFl5cXFi1ahMrKSpSUlODChQvIy8vD0qVLkZeXh4kTJyI0NBTnzp1DdnY2bDYbDAYDEhMToVKpsHDhQoSHh+P06dOwWq1YsmQJhg4d+sD+9+3bh7S0NABAaWkp8vPzkZqa2mHNJpMJWVlZqKurg5OTE+bNm/fAeYiod5WUqDB7thLNzW5QqVyRm1vLkER9FgNSD6iuroafn1+b+5ydnaHVamEymVBeXo4bN25gzZo1cHR0RH19PaxWKzZs2IDk5GT4+/ujoaEBarW603ksFgsMBgPi4+Oxe/du7Nq1CwkJCQgJCUF0dDQAICcnB4cPH0ZcXByCg4OlQHSv5uZmbN68Genp6dDr9di4cSMOHDiA6dOnAwDc3NyQkZGB/Px87N27F/Pnz++0rsDAQGRmZqKurg4ajQZHjhyRwmJHNW/duhWJiYkYMmQILl26hMzMTKxcufK+sS9evIjU1FR4eHjAaDRi2LBh9x1TUFCAgoICAK2BUqvVdlpvVymVym6f42nG/vtv/6WlDmhuBmw2xb9ueyA21t7LVfWs/nz9ga9X/wxIT4HS0lLExMTA0dERAODq6oqqqip4eHjA398fQGugehCFQoHJkycDAMLCwrBu3ToArQEtJycHd+7cQVNTE8aOHdvpODU1NdDpdNDr9QCA8PBw5OfnSwEpJCQEADB8+HAUFxc/VF1Tp05FYWEhIiMjcfHiRWk/Uns1NzU1oby8HOvXr5fGsFqt943r5+eHzZs3Y8CAAfjkk0+wdu1avP322/cdFx0dLQVEADCbzQ+suSu0Wm23z/E0Y//9t/+gIBXUai2amwVUKoGgoJswm/vXClJ/vv5A3+v/7utcexiQeoC3tzeKiora3NfQ0ACz2YzBgwc/0lgODg4QQki3W1o6/uGjULT+Frdp0yakpqbC19cXR48eRVlZ2SPNKXd3Y7mDgwNsNttDPSciIgIZGRlQq9WYNGmSFAbbq9lut8PFxQVr167tdMx7Q+OECROkt+Q0Gs1DdkJET1JwcAs++siK/fsbuQeJ+jx+zL8HjBkzBhaLBR9//DEAwG6347333kNERAScnJwQFBSEgwcPSmGjvr4eer0eN2/eREVFBQCgsbERNpsNOp0OlZWVsNvtMJvN0uNA62bwkydPAgCOHz+OgIAAAEBTUxM8PDxgtVpx7Ngx6fiBAweisbHxvnr1ej2uX78Ok8kEACgsLMTo0aO7dA48PT3h4eGBvLw8REREdFqzs7MzdDodTpw4IR1TWVl535i3bt2SwmJFRQXsdjvc3Ny6VCcRdU1oqMCiRfUMR9TncQWpBygUCqSkpCAzMxN5eXkQQmD8+PGYM2cOACAqKgrXrl1DSkoKlEoloqKiEBsbi+TkZLz77rtobm6GWq1Geno6Ro4cCZ1OJ22Ovndvk5OTEyoqKrBnzx5oNBosXrwYQOun05YvXw6NRoMRI0ZIoWjy5MnYsmUL9u/fjyVLlkjjqNVqLFiwAOvXr5c2aU+bNq3L5yEsLAy3b9+WPjXXWc2vvPIKtm3bhj179sBqtWLKlCnw9fVtM97Jkydx4MABODo6Qq1WIzk5WVo1IyIi6gqFuPf9GurTjEYjsrOze7uMDmVlZcHPzw8vvfSSdF9v1FxTU9Ot4/e19+CfNPbP/tk/++8rOtuDxLfYqEcsW7YMVVVVCAsL6+1SiIiIHogrSNTvcAWpe7F/9s/+2X9fwRUkIiIiokfAgEREREQkw4BEREREJMOARERERCTDgEREREQkw4BEREREJMOARERERCTDgEREREQkw4BEREREJMOARERERCTDgEREREQkw4BEREREJMOARERERCTDgEREREQkw4BEREREJMOARERERCTDgEREREQkw4BEREREJMOARERERCSj7O0C+ova2lpkZWXh6tWrEEJgwoQJMBqNUCp77xIUFxdDr9fD29sbAJCbm4tRo0YhKCjoscc8c+YMdu7cCQAwmUzw9PSEWq2Gj48PkpKSnkjdchUVFXjjjTeQnJyM0NDQbpmDiIj6FwakHiCEwLp16xATE4O0tDTY7XZs2bIF77//PoxGY6/VderUKUycOFEKSLNmzerymOPGjcO4ceMAAKtWrYLRaITBYOjyuB2x2+3YuXMnxo4d221zENHDO3lSgf37XTFpkgXBwS29XQ7RY2NA6gHnz5+HWq1GZGQkAMDBwQFz585FUlISZs6cCZVKhR07duDs2bNQKBSIiopCXFwcKioqsH37dlgsFiiVSqxYsQJFRUW4fPkyEhISAACrV6/GjBkzEBgYCKPRiKioKJSWlsLd3R3JycnQaDQoKCjAoUOHYLVa4eXlhUWLFqGyshIlJSW4cOEC8vLysHTpUuTl5WHixIkIDQ3FuXPnkJ2dDZvNBoPBgMTERKhUKixcuBDh4eE4ffo0rFYrlixZgqFDhz6w/3379iEtLQ0AUFpaivz8fKSmpnZYs8lkQlZWFurq6uDk5IR58+a1O8/+/fsREhKCy5cvP+GrRkSPqqREhdmzlWhudoNK5Yrc3FqGJOqzGJB6QHV1Nfz8/Nrc5+zsDK1WC5PJhPLycty4cQNr1qyBo6Mj6uvrYbVasWHDBiQnJ8Pf3x8NDQ1Qq9WdzmOxWGAwGBAfH4/du3dj165dSEhIQEhICKKjowEAOTk5OHz4MOLi4hAcHCwFons1Nzdj8+bNSE9Ph16vx8aNG3HgwAFMnz4dAODm5oaMjAzk5+dj7969mD9/fqd1BQYGIjMzE3V1ddBoNDhy5IgUFjuqeevWrUhMTMSQIUNw6dIlZGZmYuXKlW3G/fLLL1FcXIyVK1finXfe6XD+goICFBQUAGgNlFqtttN6u0qpVHb7HE8z9t9/+y8tdUBzM2CzKf512wOxsfZerqpn9efrD3y9+mdAegqUlpYiJiYGjo6OAABXV1dUVVXBw8MD/v7+AFoD1YMoFApMnjwZABAWFoZ169YBaA1oOTk5uHPnDpqamh74dlRNTQ10Oh30ej0AIDw8HPn5+VJACgkJAQAMHz4cxcXFD1XX1KlTUVhYiMjISFy8eFHaj9RezU1NTSgvL8f69eulMaxW633jbt++HT/84Q/h4ND5Zw2io6OlgAgAZrP5gTV3hVar7fY5nmbsv//2HxSkglqtRXOzgEolEBR0E2Zz/1pB6s/XH+h7/d99nWsPA1IP8Pb2RlFRUZv7GhoaYDabMXjw4Ecay8HBAUII6XZLS8c/fBSK1t/iNm3ahNTUVPj6+uLo0aMoKyt7pDnl7m4sd3BwgM1me6jnREREICMjA2q1GpMmTZLCYHs12+12uLi4YO3atZ2OefnyZfzud78DANTV1eHvf/87HBwc8MILLzxCN0T0pAQHt+Cjj6zYv7+Re5Coz+PH/HvAmDFjYLFY8PHHHwNo3Vj83nvvISIiAk5OTggKCsLBgwelsFFfXw+9Xo+bN2+ioqICANDY2AibzQadTofKykrY7XaYzWbpcaB1M/jJkycBAMePH0dAQAAAoKmpCR4eHrBarTh27Jh0/MCBA9HY2HhfvXq9HtevX4fJZAIAFBYWYvTo0V06B56envDw8EBeXh4iIiI6rdnZ2Rk6nQ4nTpyQjqmsrLxvzE2bNkn/QkND8dOf/pThiKiXhYYKLFpUz3BEfR5XkHqAQqFASkoKMjMzkZeXByEExo8fjzlz5gAAoqKicO3aNaSkpECpVCIqKgqxsbFITk7Gu+++i+bmZqjVaqSnp2PkyJHQ6XTS5uh79zY5OTmhoqICe/bsgUajweLFiwG0fjpt+fLl0Gg0GDFihBSKJk+ejC1btmD//v1YsmSJNI5arcaCBQuwfv16aZP2tGnTunwewsLCcPv2belTc53V/Morr2Dbtm3Ys2cPrFYrpkyZAl9f3y7XQERE9DAU4t73a6hPMxqNyM7O7u0yOpSVlQU/Pz+89NJL0n29UXNNTU23jt/X3oN/0tg/+2f/7L+v6GwPEt9iox6xbNkyVFVVISwsrLdLISIieiCuIFG/wxWk7sX+2T/7Z/99BVeQiIiIiB4BAxIRERGRDAMSERERkQwDEhEREZEMAxIRERGRDAMSERERkQwDEhEREZEMAxIRERGRDAMSERERkQwDEhEREZEMAxIRERGRDAMSERERkQwDEhEREZEMAxIRERGRDAMSERERkQwDEhEREZEMAxIRERGRDAMSERERkQwDEhEREZGMsrcL6C9qa2uRlZWFq1evQgiBCRMmwGg0QqnsvUtQXFwMvV4Pb29vAEBubi5GjRqFoKCgxx7zzJkz2LlzJwDAZDLB09MTarUaPj4+SEpKeiJ133Xq1Cnk5uZCoVDA0dER8fHxCAgIeKJzEBFR/6QQQojeLuLrTgiB5cuXIyYmBpGRkbDb7diyZQtcXV1hNBp7ra5NmzZh4sSJCA0N7ZbxV61aBaPRCIPB0C3jNzU1wcnJCQqFAleuXMFvf/tbbNiw4YHPq6mp6ZZ67tJqtTCbzd06x9OM/ffv/isqnsX+/Y2YNMmC4OCW3i6nx/X369/X+tfr9R0+xhWkHnD+/Hmo1WpERkYCABwcHDB37lwkJSVh5syZUKlU2LFjB86ePQuFQoGoqCjExcWhoqIC27dvh8VigVKpxIoVK1BUVITLly8jISEBALB69WrMmDEDgYGBMBqNiIqKQmlpKdzd3ZGcnAyNRoOCggIcOnQIVqsVXl5eWLRoESorK1FSUoILFy4gLy8PS5cuRV5enhSYzp07h+zsbNhsNhgMBiQmJkKlUmHhwoUIDw/H6dOnYbVasWTJEgwdOvSB/e/btw9paWkAgNLSUuTn5yM1NbXDmk0mE7KyslBXVwcnJyfMmzfvvnkGDBgg/d9isUChUDzJy0ZEj6ikRIXZs5VobnaDSuWK3NzafhmS6OuBAakHVFdXw8/Pr819zs7O0Gq1MJlMKC8vx40bN7BmzRo4Ojqivr4eVqsVGzZsQHJyMvz9/dHQ0AC1Wt3pPBaLBQaDAfHx8di9ezd27dqFhIQEhISEIDo6GgCQk5ODw4cPIy4uDsHBwe2uIDU3N2Pz5s1IT0+HXq/Hxo0bceDAAUyfPh0A4ObmhoyMDOTn52Pv3r2YP39+p3UFBgYiMzMTdXV10Gg0OHLkiBQWO6p569atSExMxJAhQ3Dp0iVkZmZi5cqV941dXFyMP/7xj/jqq6/w//7f/2t3/oKCAhQUFABoDZRarbbTertKqVR2+xxPM/bff/svLXVAczNgsyn+ddsDsbH2Xq6qZ/Xn6w98vfpnQHoKlJaWIiYmBo6OjgAAV1dXVFVVwcPDA/7+/gBaA9WDKBQKTJ48GQAQFhaGdevWAWgNaDk5Obhz5w6ampowduzYTsepqamBTqeTlh7Dw8ORn58vBaSQkBAAwPDhw1FcXPxQdU2dOhWFhYWIjIzExYsXpf1I7dXc1NSE8vJyrF+/XhrDarW2O/YLL7yAF154ARcuXEBubi7S09PvOyY6OloKiAC6ffm3ry0xP2nsv//2HxSkglqtRXOzgEolEBR0E2Zz/1pB6s/XH+h7/fMttl7m7e2NoqKiNvc1NDTAbDZj8ODBjzSWg4MD7t021tLS8Q+fu285bdq0CampqfD19cXRo0dRVlb2SHPK3d1Y7uDgAJvN9lDPiYiIQEZGBtRqNSZNmiSFwfZqttvtcHFxwdq1ax+6ptGjR2Pz5s3SKhUR9bzg4BZ89JG1X+9Boq8Pfsy/B4wZMwYWiwUff/wxAMBut+O9995DREQEnJycEBQUhIMHD0pho76+Hnq9Hjdv3kRFRQUAoLGxETabDTqdDpWVlbDb7TCbzdLjQOtm8JMnTwIAjh8/Ln2iq6mpCR4eHrBarTh27Jh0/MCBA9HY2HhfvXq9HtevX4fJZAIAFBYWYvTo0V06B56envDw8EBeXh4iIiI6rdnZ2Rk6nQ4nTpyQjqmsrLxvTJPJJIXFf/7zn2hpaYGbm1uX6iSirgkNFVi0qJ7hiPo8riD1AIVCgZSUFGRmZiIvLw9CCIwfPx5z5swBAERFReHatWtISUmBUqlEVFQUYmNjkZycjHfffRfNzc1Qq9VIT0/HyJEjodPppM3R9+5tcnJyQkVFBfbs2QONRoPFixcDAGbNmoXly5dDo9FgxIgRUiiaPHkytmzZgv3792PJkiXSOGq1GgsWLMD69eulTdrTpk3r8nkICwvD7du3pT8r0FnNr7zyCrZt24Y9e/bAarViypQp8PX1bTPeyZMnUVhYCEdHR6jVaixevJgbtYmI6Ingx/y/RoxGI7Kzs3u7jA5lZWXBz88PL730knRfb9TMj/l3L/bP/tk/++8rOtuDxLfYqEcsW7YMVVVVCAsL6+1SiIiIHogrSNTvcAWpe7F/9s/+2X9fwRUkIiIiokfAgEREREQkw4BEREREJMOARERERCTDgEREREQkw4BEREREJMOARERERCTDgEREREQkw4BEREREJMOARERERCTDgEREREQkw4BEREREJMOARERERCTDgEREREQkw4BEREREJMOARERERCTDgEREREQkw4BEREREJMOARERERCSj7O0C+ova2lpkZWXh6tWrEEJgwoQJMBqNUCp77xIUFxdDr9fD29sbAJCbm4tRo0YhKCjoscc8c+YMdu7cCQAwmUzw9PSEWq2Gj48PkpKSnkjddx07dgx//vOfIYTAwIED8dOf/hS+vr5PdA4iIuqfFEII0dtFfN0JIbB8+XLExMQgMjISdrsdW7ZsgaurK4xGY6/VtWnTJkycOBGhoaHdMv6qVatgNBphMBi6Zfzy8nIMHToUrq6u+Pvf/45du3bhrbfeeuDzampquqWeu7RaLcxmc7fO8TRj//27/4qKZ7F/fyMmTbIgOLilt8vpcf39+ve1/vV6fYePcQWpB5w/fx5qtRqRkZEAAAcHB8ydOxdJSUmYOXMmVCoVduzYgbNnz0KhUCAqKgpxcXGoqKjA9u3bYbFYoFQqsWLFChQVFeHy5ctISEgAAKxevRozZsxAYGAgjEYjoqKiUFpaCnd3dyQnJ0Oj0aCgoACHDh2C1WqFl5cXFi1ahMrKSpSUlODChQvIy8vD0qVLkZeXJwWmc+fOITs7GzabDQaDAYmJiVCpVFi4cCHCw8Nx+vRpWK1WLFmyBEOHDn1g//v27UNaWhoAoLS0FPn5+UhNTe2wZpPJhKysLNTV1cHJyQnz5s27b56RI0dK/x8xYgRqa2uf5GUjokdUUqLC7NlKNDe7QaVyRW5ubb8MSfT1wIDUA6qrq+Hn59fmPmdnZ2i1WphMJpSXl+PGjRtYs2YNHB0dUV9fD6vVig0bNiA5ORn+/v5oaGiAWq3udB6LxQKDwYD4+Hjs3r0bu3btQkJCAkJCQhAdHQ0AyMnJweHDhxEXF4fg4OB2V5Cam5uxefNmpKenQ6/XY+PGjThw4ACmT58OAHBzc0NGRgby8/Oxd+9ezJ8/v9O6AgMDkZmZibq6Omg0Ghw5ckQKix3VvHXrViQmJmLIkCG4dOkSMjMzsXLlyg7nOHz4MMaPH9/uYwUFBSgoKADQGii1Wm2n9XaVUqns9jmeZuy///ZfWuqA5mbAZlP867YHYmPtvVxVz+rP1x/4evXPgPQUKC0tRUxMDBwdHQEArq6uqKqqgoeHB/z/P3buPy7KMt//+GuGmYFQKHWiFjf8gfHDEjTJ1FQ0sdxifZxjHXV3D7WmeTpibhlY7S6btdsmaRqmuG1pFrobZm6plRpbrL8iF9kVBYUyTQ0JEQsRkRlmvn9wmG/cAmrKL3k//+qeuee6P5/7xnh7XdfYpw9QG6jOx2QyMXToUACGDx/O/PnzgdqA9tZbb3H69GmqqqqIjIxscpyioiICAgI8U4/R0dFs2rTJE5Buu+02AHr37s3OnTsvqK4RI0awZcsWRo0aRWFhoWc/UkM1V1VVUVBQwIIFCzxjOJ3ORsffu3cvn3zyCc8++2yD78fExHgCItDs07/tbYr5clP/Hbf/iAgrNpud6mo3VqubiIiTlJZ2rBmkjvz8of31ryW2VvbjH/+Yzz77rN5rlZWVlJaWcv3111/UWGazme9vG3M4Gv+fj8lU+7e4JUuWkJiYSM+ePcnMzCQvL++irmlUt7HcbDZTU1NzQZ8ZOXIkycnJ2Gw2hgwZ4gmDDdXscrnomEBYfAAAIABJREFU1KkT8+bNO++4X331Fa+88gpPPfUUfn5+F96EiFx2UVEONm50dug9SHLl0Nf8W0C/fv04e/Ys//jHPwBwuVy8+eabjBw5Em9vbyIiIvjoo488YaOiooLAwEBOnjzJF198AcCZM2eoqakhICCAQ4cO4XK5KC0t9bwPtZvBs7KyANi2bRthYWEAVFVV0aVLF5xOJ1u3bvWcf9VVV3HmzJlz6g0MDKSkpITi4mIAtmzZQt++fS/pHnTt2pUuXbrwzjvvMHLkyCZr9vX1JSAggE8//dRzzqFDh84Zs7S0lPnz5zNjxowm/xYgIi1n8GA3jzxSoXAk7Z5mkFqAyWQiISGB1157jXfeeQe3282AAQP42c9+BsDo0aM5duwYCQkJWCwWRo8ezdixY3n00Ud5/fXXqa6uxmazkZSURGhoKAEBAZ7N0d/f2+Tt7c0XX3zB2rVr8ff357HHHgNg4sSJ/PrXv8bf358bb7zRE4qGDh3KK6+8wocffsisWbM849hsNqZPn86CBQs8m7THjBlzyfdh+PDhnDp1yvPPCjRV88yZM3n11VdZu3YtTqeT22+//Zyv8K9Zs4aKigpee+01ALy8vJg7d+4l1ykiIqKv+V9B4uLiSEtLa+0yGrVs2TJ69erFHXfc4XmtNWrW1/ybl/pX/+pf/bcXTa0+aIlNWsQTTzzB4cOHGT58eGuXIiIicl6aQZIORzNIzUv9q3/1r/7bC80giYiIiFwEBSQRERERAwUkEREREQMFJBEREREDBSQRERERAwUkEREREQMFJBEREREDBSQRERERAwUkEREREQMFJBEREREDBSQRERERAwUkEREREQMFJBEREREDBSQRERERAwUkEREREQMFJBEREREDBSQRERERAwUkEREREQMFJBEREREDS2sX0FGcOHGCZcuWcfToUdxuN7fccgtxcXFYLK33CHbu3ElgYCA//vGPAUhPTyc8PJyIiIgfPOa///1vVq1aBUBxcTFdu3bFZrPRo0cPZsyYcVnqrvP111+TmprKwYMHmTRpEuPGjbus44uISMelgNQC3G438+fP584772T27Nm4XC5eeeUV/vrXvxIXF9dqdf3zn/9k4MCBnoA0ceLESx6zf//+9O/fH4A5c+YQFxdHcHDwJY/bkM6dOzN58mT++c9/Nsv4InLxsrJMfPhhZ4YMOUtUlKO1yxH5wRSQWsDevXux2WyMGjUKALPZzAMPPMCMGTOYMGECVquVlStXsnv3bkwmE6NHj+YnP/kJX3zxBStWrODs2bNYLBZ+97vf8dlnn3HgwAGmTJkCwNy5c/npT3/KTTfdRFxcHKNHjyY3N5drrrmGRx99FH9/fzIyMvj73/+O0+nkuuuu45FHHuHQoUNkZ2eTn5/PO++8w+OPP84777zDwIEDGTx4MHv27CEtLY2amhqCg4N56KGHsFqtxMfHEx0dza5du3A6ncyaNYvu3buft/8PPviA2bNnA5Cbm8umTZtITExstObi4mKWLVtGeXk53t7e/M///M8517n66qu5+uqrycnJaYanJiIXKzvbyqRJFqqr/bBaO5OefkIhSdotBaQWcOTIEXr16lXvNV9fX+x2O8XFxRQUFHD8+HFeeOEFvLy8qKiowOl08tJLL/Hoo4/Sp08fKisrsdlsTV7n7NmzBAcH88tf/pI1a9bw9ttvM2XKFG677TZiYmIAeOutt/j444/5yU9+QlRUlCcQfV91dTWpqakkJSURGBjI4sWL2bx5M/fccw8Afn5+JCcns2nTJtavX8/DDz/cZF033XQTr732GuXl5fj7+/PJJ594wmJjNf/5z3/moYce4kc/+hGff/45r732Gk8//fRF3fc6GRkZZGRkALWB0m63/6BxLpTFYmn2a7Rl6r/j9p+ba6a6GmpqTP933IWxY12tXFXL6sjPH66s/hWQ2oDc3FzuvPNOvLy8gNqlo8OHD9OlSxf69OkD1Aaq8zGZTAwdOhSA4cOHM3/+fKA2oL311lucPn2aqqoqIiMjmxynqKiIgIAAAgMDAYiOjmbTpk2egHTbbbcB0Lt3b3bu3HlBdY0YMYItW7YwatQoCgsLPfuRGqq5qqqKgoICFixY4BnD6XSe9zqNiYmJ8QREgNLS0h881oWw2+3Nfo22TP133P4jIqzYbHaqq91YrW4iIk5SWtqxZpA68vOH9td/3e+5higgtYAf//jHfPbZZ/Veq6yspLS0lOuvv/6ixjKbzbjdbs+xw9H4/3xMptq/xS1ZsoTExER69uxJZmYmeXl5F3VNo7qN5WazmZqamgv6zMiRI0lOTsZmszFkyBBPGGyoZpfLRadOnZg3b94l1SkiLSsqysHGjU4+/PCM9iBJu6ev+beAfv36cfbsWf7xj38A4HK5ePPNNxk5ciTe3t5ERETw0UcfecJGRUUFgYGBnDx5ki+++AKAM2fOUFNTQ0BAAIcOHcLlclFaWup5H2o3g2dlZQGwbds2wsLCAKiqqqJLly44nU62bt3qOf+qq67izJkz59QbGBhISUkJxcXFAGzZsoW+ffte0j3o2rUrXbp04Z133mHkyJFN1uzr60tAQACffvqp55xDhw5d0vVFpGUMHuzmkUcqFI6k3dMMUgswmUwkJCTw2muv8c477+B2uxkwYAA/+9nPABg9ejTHjh0jISEBi8XC6NGjGTt2LI8++iivv/461dXV2Gw2kpKSCA0NJSAgwLM5+vt7m7y9vfniiy9Yu3Yt/v7+PPbYY0Dtt9N+/etf4+/vz4033ugJRUOHDuWVV17hww8/ZNasWZ5xbDYb06dPZ8GCBZ5N2mPGjLnk+zB8+HBOnTrl+dZcUzXPnDmTV199lbVr1+J0Orn99tvp2bNnvfG+/fZbnnzySc6cOYPJZOKDDz5gwYIFF7QcKSIi0hST+/vrNdKuxcXFkZaW1tplNGrZsmX06tWLO+64w/Naa9RcVFTUrOO3tzX4y039q3/1r/7bi6b2IGmJTVrEE088weHDhxk+fHhrlyIiInJemkGSDkczSM1L/at/9a/+2wvNIImIiIhcBAUkEREREQMFJBEREREDBSQRERERAwUkEREREQMFJBEREREDBSQRERERAwUkEREREQMFJBEREREDBSQRERERAwUkEREREQMFJBEREREDBSQRERERAwUkEREREQMFJBEREREDBSQRERERAwUkEREREQMFJBEREREDBSQRERERgwsKSHFxcfWOMzMzWbZsWbMUZBQfH095efkFn99UbcY+AFasWMH777/vOX7uuef405/+5Dl+88032bBhwwVff86cORw4cOCCz78U//znP0lISCAxMZEnn3yS/fv3t8h1G7N69WrWrVt3WcZasmQJWVlZ9V6re34lJSU8/vjjzXZtERGRDj+DFBYWRkFBAQAul4vy8nKOHDnieb+goICQkJALGsvlcv3gOmpqai76M/369WPevHnMmzeP//3f/60X7OpkZmayevXqH1zXhfoh9X/fpdw7EWld2dlWXn65M9nZ1tYuReSysVzqACUlJSxdupRTp07h7+/P9OnTsdvtLFmyhIEDBzJ48GCg9m//aWlpnDx5kpdeeonKykpcLhdTp04lPDyc3bt3s3r1apxOJ9dddx3Tp0/Hx8cHgI0bN7Jr1y6cTiezZs2ie/fuVFRUkJqaSklJCd7e3kybNo0ePXqcU1tKSgpVVVXceuutDdYfEhLCG2+8AcDRo0e54YYb+Pbbb6moqMDb25uvv/6a3r17s2fPHtLS0qipqSE4OJiHHnoIq9VKfHw8Q4YMYc+ePYwbN84zrsvlYunSpXTr1o0JEyawatUq8vPzcTgc3HXXXYwZM4a8vDzS09Pp1KkTRUVFJCcns3DhQsrKynC5XNx7770MHTq00Xtfd38Azp49i8lkuujn99133/HHP/6R5ORkDh06xOzZs0lNTcVut/PII48wf/58vvvuu0afsdVq5dChQ4SGhnLVVVd5xs3IyGDnzp0kJCSQlZXFhx9+iNPp5MYbb2Tq1KmYzWbi4uIYM2YMe/bsYcqUKYSFhV10/SLSeu67rxunTpnIz7ficoHZ7EdEhJvvTcqLtFsXFJCqq6tJTEz0HFdUVBAVFQXA8uXLiY6OZuTIkXz88ccsX76c2bNnNzrWtm3biIyMZPz48bhcLs6ePUt5eTlr164lKSkJHx8f3n33XTZs2MB9990HgJ+fH8nJyWzatIn169fz8MMPs3r1anr16sXs2bPZu3cvixcvZt68efWu9frrr3PnnXcSHR3Nxo0bG6yna9eumM1mSktLPbNFZWVlFBYW4uvrS1BQEC6Xi9TUVJKSkggMDGTx4sVs3ryZe+65p159AB999BE1NTUsWrSIoKAgxo8fT0ZGBr6+vjz//PM4HA6SkpKIjIwE4ODBg7z44osEBASQlZVFly5deOqppwCorKwEID09neDgYM89/76dO3fyl7/8he+++87zuYtx9dVX43A4qKysZP/+/QQHB7Nv3z7CwsLw9/fH29u7yWdcVlbGH/7wB8xms2emauPGjeTm5pKYmMg333zDjh07+P3vf4/FYuG1115j69atREdHc/bsWfr06cP999/fYG1paWm88847Db5XXFxc72fy22+/5ac//WmD52ZkZJCRkQHA3LlzsdvtF32fLobFYmn2a7Rl6r/j9G+1WqiogNoJYBMul5vvvjN1mP4b0pGef0OupP4vKCDZbLZ64SMzM9Ozz+bzzz8nISEBgBEjRrBq1aomxwoODmbp0qU4nU4GDRpEz549yc/P5+jRoyQlJQHgdDrrLWvddtttAPTu3ZudO3cCsH//fs8+lJtvvpmKigpPoKhTUFDgOaep2kJDQykoKKCgoIDY2Nh6ASk0NJSioiICAgIIDAwEIDo6mk2bNnkCknGW59VXX2XIkCGMHz8egN27d3P48GHPnprKykqOHTuGxWKhT58+BAQEABAUFERaWhorV65k4MCBhIeHAzBx4sRG7+egQYMYNGgQ+fn5pKenk5SUxKlTp3j22WeB2jDrdDr55z//CcAjjzxCUFBQvTFCQkIoKCggPz+f//zP/+Tf//43brfbc/2mnvHgwYMxm///Su2WLVvo1q0biYmJWCwW9u7dy8GDBz3hrbq6Gn9/fwDMZrNnhrEhcXFx9d7//h6y66+/vt7PZFPLiDExMcTExHiOS0tLGz33crDb7c1+jbZM/Xec/v/619rltYkTu+FwgNXqZsWKmg7Tf0M60vNvSHvrv+73ekMueYmtMV5eXp59JS6XC6fTCUDfvn155plnyMnJYcmSJcTGxtKpUyf69evHo48+2nCRltoyzWbzRe91uZBlp7qAdOTIEYKCgrDb7WzYsIGrrrqKUaNGnffz3t7e9Y5DQkLIy8sjNjYWm82G2+1m8uTJ9O/fv955eXl59T4bGBhIcnIyOTk5vPXWW/Tr188zi3Y+ffv2JTU1lfLycvz9/T3hITMzk5KSEiZMmNDkZ/ft20dpaSlRUVG89957ANxyyy3nve73l/mgNuQdOnSIsrIyAgICcLvdREdH8/Of//ycz1qt1nrhSkTan6goB+npJ/j0U2+GDDnL4MFX045+P4o06pJ/O4WEhLBjxw6gdvmsbh/Jtddey5dffglAdna2J9gcP36ca665hpiYGEaPHs3Bgwc9MxjFxcUAVFVVUVRU1OR1w8LC2Lp1K1AbNPz8/PD19a13TmhoKNu3b/fU1pjQ0FBycnLo3LkzZrOZzp07c/r0aQoLCwkJCSEwMJCSkhJPfVu2bKFv376NjnfHHXcwYMAAFi5cSE1NDf3792fz5s2ekFhUVERVVdU5nysrK8NmszFixAjGjRvnuX+NKS4uxu12A/Dll1/icDjw8/Nr8jMNqbuX119/vaf/f/3rX55n2dgzbkjPnj2ZNm0aycnJlJWV0a9fP7Kysvjuu++A2hmt48ePX3SNItJ2RUU5eOSRCqKiHK1dishlc8kzSA8++CCpqamsW7fOs4EXYPTo0cybN4/ExEQiIyM9MyV5eXmsX78eLy8vfHx8mDFjBv7+/sTHx5OSkoLDUfsHbNKkSU1OfU2YMIHU1FQSEhLw9vYmPj7+nHMmT55MSkoK7733XqObtKF21uPUqVMMGzas3mtVVVWe5aDp06ezYMECzybtMWPGNHlfYmNjqays5OWXX2bmzJmUlJTwxBNPAODv719v/0ydw4cPs3LlSkwmExaLhalTpwKN70HKyspiy5YteHl5YbPZeOyxx37QRu26Jb660BcaGsqJEyfo3Lkz0PgzbkxYWBhxcXHMnTuX3/72t0yaNIk//OEPuN1uvLy8mDJlCtdee+1F1ykiItJSTO66KQiRDuJ8s5OXqr2twV9u6l/9q3/13140NRGjDSAiIiIiBgpIIiIiIgYKSCIiIiIGCkgiIiIiBgpIIiIiIgYKSCIiIiIGCkgiIiIiBgpIIiIiIgYKSCIiIiIGCkgiIiIiBgpIIiIiIgYKSCIiIiIGCkgiIiIiBgpIIiIiIgYKSCIiIiIGCkgiIiIiBgpIIiIiIgYKSCIiIiIGCkgiIiIiBgpIIiIiIgYKSCIiIiIGlyUgxcXF1TvOzMxk2bJll2Po84qPj6e8vPyCz2+qNmMfACtWrOD999/3HD/33HP86U9/8hy/+eabbNiw4YKvP2fOHA4cOHDB51+KrVu3kpCQwOOPP85vf/tbDh061KzXu5y9GZ9rXl4ec+fOBRp+hi15X0VE5MqnGaTzCAsLo6CgAACXy0V5eTlHjhzxvF9QUEBISMgFjeVyuX5wHTU1NRf9mYCAAObMmcOLL77Ivffey5///OcffP3zaeneRKTtyc628sILZrKzra1disglszT3BUpKSli6dCmnTp3C39+f6dOnY7fbWbJkCQMHDmTw4MFA7exNWloaJ0+e5KWXXqKyshKXy8XUqVMJDw9n9+7drF69GqfTyXXXXcf06dPx8fEBYOPGjezatQun08msWbPo3r07FRUVpKamUlJSgre3N9OmTaNHjx7n1JaSkkJVVRW33nprg/WHhITwxhtvAHD06FFuuOEGvv32WyoqKvD29ubrr7+md+/e7Nmzh7S0NGpqaggODuahhx7CarUSHx/PkCFD2LNnD+PGjfOM63K5WLp0Kd26dWPChAmsWrWK/Px8HA4Hd911F2PGjCEvL4/09HQ6depEUVERycnJLFy4kLKyMlwuF/feey9Dhw5t9N6HhoZ6/vvGG2/kxIkT55zz6aefUlhYyAMPPMAHH3zABx98wOLFi/nmm29YvHgxv//971ukt5SUlPP9KIlIG3bXXXby8624XODj04309BNERTlauyyRH+yyBKTq6moSExM9xxUVFURFRQGwfPlyoqOjGTlyJB9//DHLly9n9uzZjY61bds2IiMjGT9+PC6Xi7Nnz1JeXs7atWtJSkrCx8eHd999lw0bNnDfffcB4OfnR3JyMps2bWL9+vU8/PDDrF69ml69ejF79mz27t3L4sWLmTdvXr1rvf7669x5551ER0ezcePGBuvp2rUrZrOZ0tJSz2xRWVkZhYWF+Pr6EhQUhMvlIjU1laSkJAIDA1m8eDGbN2/mnnvuqVcfwEcffURNTQ2LFi0iKCiI8ePHk5GRga+vL88//zwOh4OkpCQiIyMBOHjwIC+++CIBAQFkZWXRpUsXnnrqKQAqKysBSE9PJzg42HPPG/Lxxx8zYMCAc14PDw9n3bp1AOzbtw8/Pz/KysrYt28f4eHhVFdXt0hvDXnmmWcwm2snOauqqujevbvnvR07drB//37PcXFxcaO9Z2RkkJGRAcDcuXOx2+2Nnns5WCyWZr9GW6b+O2b/FRUWaieSTTgckJvbhbFjf/jMcnvVUZ9/nSup/8sSkGw2W73wkZmZ6dkP8vnnn5OQkADAiBEjWLVqVZNjBQcHs3TpUpxOJ4MGDaJnz57k5+dz9OhRkpKSAHA6nfWWtW677TYAevfuzc6dOwHYv38/jz/+OAA333wzFRUVnkBRp6CgwHNOU7WFhoZSUFBAQUEBsbGx9QJSaGgoRUVFBAQEEBgYCEB0dDSbNm3yhAjjLM+rr77KkCFDGD9+PAC7d+/m8OHDZGVlAbXB59ixY1gsFvr06eMJEEFBQaSlpbFy5UoGDhxIeHg4ABMnTmzynu7du5dPPvmEZ5999pz3rrnmGqqqqjhz5gwnTpzg9ttvJz8/n/379zNo0KAW660hTz/9NP7+/kDtHqT169d73hs6dChTpkzxHM+ZM6fRcWJiYoiJifEcl5aWNnru5WC325v9Gm2Z+u+Y/aekWJk4sRsOB1itbiIiTlJa2vFmkDrq86/T3vqv+93WkGZfYmuMl5eXZ9+Ky+XC6XQC0LdvX5555hlycnJYsmQJsbGxdOrUiX79+vHoo482OJbFUtuG2Wy+6P0sJpPpvOfUBaQjR44QFBSE3W5nw4YNXHXVVYwaNeq8n/f29q53HBISQl5eHrGxsdhsNtxuN5MnT6Z///71zsvLy6v32cDAQJKTk8nJyeGtt96iX79+nlm0xnz11Ve88sorPPXUU/j5+TV4TkhICJ988gmBgYGEh4fzySefUFhYyP33309JSUmL9CYi7VtUlIP09BPk5nYhIuKkltek3Wv2TdohISHs2LEDqF0+CwsLA+Daa6/lyy+/BCA7O9sTbI4fP84111xDTEwMo0eP5uDBg4SEhFBQUOBZRqmqqqKoqKjJ64aFhbF161ag9pexn58fvr6+9c4JDQ1l+/btntoaExoaSk5ODp07d8ZsNtO5c2dOnz5NYWEhISEhBAYGUlJS4qlvy5Yt9O3bt9Hx7rjjDgYMGMDChQupqamhf//+bN682RMSi4qKqKqqOudzZWVl2Gw2RowYwbhx4zz3rzGlpaXMnz+fGTNmNJmSw8PDWb9+PeHh4fTq1Yu8vDysViu+vr4t1puItH9RUQ5mz3YpHMkVodlnkB588EFSU1NZt26dZ5M2wOjRo5k3bx6JiYlERkZ6ZhPqllK8vLzw8fFhxowZ+Pv7Ex8fT0pKCg5H7R+8SZMmNflLf8KECaSmppKQkIC3tzfx8fHnnDN58mRSUlJ47733Gt2kDbVLW6dOnWLYsGH1XquqqvIsAU2fPp0FCxZ4NjKPGTOmyfsSGxtLZWUlL7/8MjNnzqSkpIQnnngCAH9//3p7uuocPnyYlStXYjKZsFgsTJ06FWh8D9KaNWuoqKjgtddeA2pn7eq+Kv99YWFhnDhxgvDwcMxmM926dfPcW5vN1iK9iYiItCUmt9vtbu0iRFrS+WYfL1V7W4O/3NS/+lf/6r+9aGqiRf8OkoiIiIiBApKIiIiIgQKSiIiIiIECkoiIiIiBApKIiIiIgQKSiIiIiIECkoiIiIiBApKIiIiIgQKSiIiIiIECkoiIiIiBApKIiIiIgQKSiIiIiIECkoiIiIiBApKIiIiIgQKSiIiIiIECkoiIiIiBApKIiIiIgQKSiIiIiIECkoiIiIiBApKIiIiIgQKSiIiIiMFlCUhxcXH1jjMzM1m2bNnlGPq84uPjKS8vv+Dzm6rN2AfAihUreP/99z3Hzz33HH/60588x2+++SYbNmy44OvPmTOHAwcOXPD5l+Lrr7/mN7/5DT//+c9Zt25ds1/vcvZmfK55eXnMnTsXaPgZtuR9FRGRK59mkM4jLCyMgoICAFwuF+Xl5Rw5csTzfkFBASEhIRc0lsvl+sF11NTUXPRnOnfuzOTJk/npT3/6g697oVq6NxFpe7KzrbzwgpnsbGtrlyJyySzNfYGSkhKWLl3KqVOn8Pf3Z/r06djtdpYsWcLAgQMZPHgwUDt7k5aWxsmTJ3nppZeorKzE5XIxdepUwsPD2b17N6tXr8bpdHLdddcxffp0fHx8ANi4cSO7du3C6XQya9YsunfvTkVFBampqZSUlODt7c20adPo0aPHObWlpKRQVVXFrbfe2mD9ISEhvPHGGwAcPXqUG264gW+//ZaKigq8vb35+uuv6d27N3v27CEtLY2amhqCg4N56KGHsFqtxMfHM2TIEPbs2cO4ceM847pcLpYuXUq3bt2YMGECq1atIj8/H4fDwV133cWYMWPIy8sjPT2dTp06UVRURHJyMgsXLqSsrAyXy8W9997L0KFDG733V199NVdffTU5OTmNnvPpp59SWFjIAw88wAcffMAHH3zA4sWL+eabb1i8eDG///3vW6S3lJSU8/wkiUhblp1t5T//047LBT4+3UhPP0FUlKO1yxL5wS5LQKquriYxMdFzXFFRQVRUFADLly8nOjqakSNH8vHHH7N8+XJmz57d6Fjbtm0jMjKS8ePH43K5OHv2LOXl5axdu5akpCR8fHx499132bBhA/fddx8Afn5+JCcns2nTJtavX8/DDz/M6tWr6dWrF7Nnz2bv3r0sXryYefPm1bvW66+/zp133kl0dDQbN25ssJ6uXbtiNpspLS31zBaVlZVRWFiIr68vQUFBuFwuUlNTSUpKIjAwkMWLF7N582buueeeevUBfPTRR9TU1LBo0SKCgoIYP348GRkZ+Pr68vzzz+NwOEhKSiIyMhKAgwcP8uKLLxIQEEBWVhZdunThqaeeAqCyshKA9PR0goODPff8YoSHh3uW3/bt24efnx9lZWXs27eP8PBwqqurW6S3hjzzzDOYzbWTnFVVVXTv3t3z3o4dO9i/f7/nuLi4uNEeMzIyyMjIAGDu3LnY7faLvk8Xw2KxNPs12jL13zH7z801UzuRbMLhgNzcLowd+8Nnlturjvr861xJ/V+WgGSz2eqFj8zMTM9+kM8//5yEhAQARowYwapVq5ocKzg4mKVLl+J0Ohk0aBA9e/YkPz+fo0ePkpSUBIDT6ay3rHXbbbcB0Lt3b3bu3AnA/v37efzxxwG4+eabqaio8ASKOgUFBZ5zmqotNDSUgoICCgovsKSWAAAgAElEQVQKiI2NrReQQkNDKSoqIiAggMDAQACio6PZtGmTJ0QYZ3leffVVhgwZwvjx4wHYvXs3hw8fJisrC6gNPseOHcNisdCnTx9PgAgKCiItLY2VK1cycOBAwsPDAZg4cWKT97Qp11xzDVVVVZw5c4YTJ05w++23k5+fz/79+xk0aFCL9daQp59+Gn9/f6B2D9L69es97w0dOpQpU6Z4jufMmdPoODExMcTExHiOS0tLL+TW/GB2u73Zr9GWqf+O2X9EhBUfn244HGC1uomIOElpacebQeqoz79Oe+u/7ndbQ5p9ia0xXl5enn0rLpcLp9MJQN++fXnmmWfIyclhyZIlxMbG0qlTJ/r168ejjz7a4FgWS20bZrP5ovezmEym855TF5COHDlCUFAQdrudDRs2cNVVVzFq1Kjzft7b27vecUhICHl5ecTGxmKz2XC73UyePJn+/fvXOy8vL6/eZwMDA0lOTiYnJ4e33nqLfv36eWbRLkVISAiffPIJgYGBhIeH88knn1BYWMj9999PSUlJi/QmIu1bVJSD9PQT5OZ2ISLipJbXpN1r9k3aISEh7NixA6hdPgsLCwPg2muv5csvvwQgOzvbE2yOHz/ONddcQ0xMDKNHj+bgwYOEhIRQUFDgWUapqqqiqKioyeuGhYWxdetWoPaXsZ+fH76+vvXOCQ0NZfv27Z7aGhMaGkpOTg6dO3fGbDbTuXNnTp8+TWFhISEhIQQGBlJSUuKpb8uWLfTt27fR8e644w4GDBjAwoULqampoX///mzevNkTEouKiqiqqjrnc2VlZdhsNkaMGMG4ceM89+9ShYeHs379esLDw+nVqxd5eXlYrVZ8fX1brDcRaf+iohzMnu1SOJIrQrPPID344IOkpqaybt06zyZtgNGjRzNv3jwSExOJjIz0zCbULaV4eXnh4+PDjBkz8Pf3Jz4+npSUFByO2j94kyZNanJqbMKECaSmppKQkIC3tzfx8fHnnDN58mRSUlJ47733Gt2kDbVLW6dOnWLYsGH1XquqqvIsAU2fPp0FCxZ4NjKPGTOmyfsSGxtLZWUlL7/8MjNnzqSkpIQnnngCAH9//3p7uuocPnyYlStXYjKZsFgsTJ06FWh8D9K3337Lk08+yZkzZzCZTHzwwQcsWLDgnKAYFhbGiRMnCA8Px2w2061bN8+9tdlsLdKbiIhIW2Jyu93u1i5CpCWdb/bxUrW3NfjLTf2rf/Wv/tuLpiZa9O8giYiIiBgoIImIiIgYKCCJiIiIGCggiYiIiBgoIImIiIgYKCCJiIiIGCggiYiIiBgoIImIiIgYKCCJiIiIGCggiYiIiBgoIImIiIgYKCCJiIiIGCggiYiIiBgoIImIiIgYKCCJiIiIGCggiYiIiBgoIImIiIgYKCCJiIiIGCggiYiIiBgoIImIiIgYKCCJiIiIGFy2gBQXF1fvODMzk2XLll2u4ZsUHx9PeXn5BZ/fVG3GPgBWrFjB+++/7zl+7rnn+NOf/uQ5fvPNN9mwYcMFX3/OnDkcOHDggs+/FG63m+XLl/PII4+QkJDAl19+2azXu9hn0ZSmfqZWr17NunXrmu3aIiLSsWkG6QKEhYVRUFAAgMvlory8nCNHjnjeLygoICQk5ILGcrlcP7iOmpqai/7Mv/71L4qLi1m0aBHTpk3jtdde+8HXP5+W7k1E2p6sLBMvv9yZ7Gxra5cickksLXGRkpISli5dyqlTp/D392f69OnY7XaWLFnCwIEDGTx4MFA7Y5CWlsbJkyd56aWXqKysxOVyMXXqVMLDw9m9ezerV6/G6XRy3XXXMX36dHx8fADYuHEju3btwul0MmvWLLp3705FRQWpqamUlJTg7e3NtGnT6NGjxzm1paSkUFVVxa233tpg/SEhIbzxxhsAHD16lBtuuIFvv/2WiooKvL29+frrr+nduzd79uwhLS2NmpoagoODeeihh7BarcTHxzNkyBD27NnDuHHjPOO6XC6WLl1Kt27dmDBhAqtWrSI/Px+Hw8Fdd93FmDFjyMvLIz09nU6dOlFUVERycjILFy6krKwMl8vFvffey9ChQxu999nZ2YwYMQKTyURISAinT5/m5MmTdOnSxXPOunXrsFgs3H333axYsYKvvvqKp59+mr179/Lxxx8zc+ZMtm3bxt/+9jcABgwYwH//9397ntmYMWPYs2cPU6ZM8YxZXV3N/PnzGTRoEMOGDWP58uUcOXKEmpoa/uu//otbb72VzMxMPvvsM6qqqnC5XDzzzDMX/DMlIm1PdraVSZMsnDnjh49PZ9LTTxAV5WjtskR+kMsWkKqrq0lMTPQcV1RUEBUVBcDy5cuJjo5m5MiRfPzxxyxfvpzZs2c3Ota2bduIjIxk/PjxuFwuzp49S3l5OWvXriUpKQkfHx/effddNmzYwH333QeAn58fycnJbNq0ifXr1/Pwww+zevVqevXqxezZs9m7dy+LFy9m3rx59a71+uuvc+eddxIdHc3GjRsbrKdr166YzWZKS0s9s0VlZWUUFhbi6+tLUFAQLpeL1NRUkpKSCAwMZPHixWzevJl77rmnXn0AH330ETU1NSxatIigoCDGjx9PRkYGvr6+PP/88zgcDpKSkoiMjATg4MGDvPjiiwQEBJCVlUWXLl146qmnAKisrAQgPT2d4OBgzz2vU1ZWht1u9xx369aNsrKyegEpLCyMDRs2cPfdd/Pll1/icDhwOp3s27eP8PBwysrKWLVqFcnJyXTq1Ik//OEP7Ny5k0GDBnH27Fn69OnD/fff7xmvqqqKlJQURowYQXR0NH/5y1+4+eabmT59OqdPn+bXv/41/fr18/Q2f/58OnfufM59b+pnCuD9999n69at9XptSEZGBhkZGQDMnTu33v1oDhaLpdmv0Zap/47bf26umepqABMOB+TmdmHs2B8+s9wedeTnD1dW/5ctINlstnrhIzMz07PP5vPPPychIQGAESNGsGrVqibHCg4OZunSpTidTgYNGkTPnj3Jz8/n6NGjJCUlAeB0Ousta912220A9O7dm507dwKwf/9+Hn/8cQBuvvlmKioqPIGiTkFBgeecpmoLDQ2loKCAgoICYmNj6wWk0NBQioqKCAgIIDAwEIDo6Gg2bdrkCUjGWZ5XX32VIUOGMH78eAB2797N4cOHycrKAmqDz7Fjx7BYLPTp04eAgAAAgoKCSEtLY+XKlQwcOJDw8HAAJk6c2OQ9bUrv3r358ssvqaysxGq10qtXL7788kv279/P5MmTOXDgADfddBP+/v4ADB8+nH379jFo0CDMZrNnBrDOvHnzGDduHMOHDwcgNzeXXbt2sX79eqA2+JSWlgIQERHRYDiCpn+mAO655556M3Lx8fENjhMTE0NMTIznuO7azcVutzf7Ndoy9d9x+4+IsGKz2amudmO1uomIOElpaceaQerIzx/aX/91v7Mb0iJLbI3x8vLy7FtxuVw4nU4A+vbtyzPPPENOTg5LliwhNjaWTp060a9fPx599NEGx7JYalsxm80XvZ/FZDKd95y6gHTkyBGCgoKw2+1s2LCBq666ilGjRp33897e3vWOQ0JCyMvLIzY2FpvNhtvtZvLkyfTv37/eeXl5efU+GxgYSHJyMjk5Obz11lv069fPM4vWkK5du9b7YT1x4gRdu3atd47FYiEgIIDMzExCQkLo0aMHe/fupbi4mO7du3Ps2LFGx7darZjN9beyhYaG8u9//5thw4ZhMplwu908/vjj5/wgfvHFF+fcFxFpv6KiHGzc6OTDD88wZMhZLa9Ju9Yim7RDQkLYsWMHULt8FhYWBsC1117r+VZVdna2J9gcP36ca665hpiYGEaPHs3BgwcJCQmhoKCA4uJioHYZp6ioqMnrhoWFeZZg8vLy8PPzw9fXt945oaGhbN++3VNbY0JDQ8nJyaFz586YzWY6d+7M6dOnKSwsJCQkhMDAQEpKSjz1bdmyhb59+zY63h133MGAAQNYuHAhNTU19O/fn82bN3tCYlFREVVVVed8rqysDJvNxogRIxg3btx5v5UWFRXFli1bcLvdnhmv7y+vff9erV+/nvDwcMLCwvjoo4/o2bMnJpOJPn36kJ+fT3l5OS6Xi+3btzfZ24QJE+jUqZPnG2eRkZF8+OGHuN1uoHZZTUSuTIMHu3nkkQqFI2n3WmQG6cEHHyQ1NZV169Z5NmkDjB49mnnz5pGYmEhkZKRnNiEvL4/169fj5eWFj48PM2bMwN/fn/j4eFJSUnA4av/gTZo0qcnpsQkTJpCamkpCQgLe3t4NLsFMnjyZlJQU3nvvvUY3aUPt0tapU6cYNmxYvdeqqqo8S0/Tp09nwYIFnk3aY8aMafK+xMbGUllZycsvv8zMmTMpKSnhiSeeAMDf37/e/ps6hw8fZuXKlZhMJiwWC1OnTgUa34M0YMAAcnJymDlzJjabzXPvjcLDw/nb3/5GSEgIPj4+2Gw2z/Jdly5d+PnPf+7ZRD1gwIAm7xXU3telS5eycuVKJkyYwIoVK0hISMDtdhMQEMCTTz7Z5OdFRERak8ld99d6kQ7ifDOPl6q9rcFfbupf/at/9d9eNDXJon8HSURERMRAAUlERETEQAFJRERExEABSURERMRAAUlERETEQAFJRERExEABSURERMRAAUlERETEQAFJRERExEABSURERMRAAUlERETEQAFJRERExEABSURERMRAAUlERETEQAFJRERExEABSURERMRAAUlERETEQAFJRERExEABSURERMRAAUlERETEQAFJRERExMDS2gWITJw4kaCgIGpqavDy8mLEiBHcc889mM3K7yIi0joUkKTV2Ww25s2bB8B3333HokWLOHPmDBMmTGjlykTkYmRnW8nNNRMRYSUqytHa5YhcEv0VXdqUq6++mmnTprFx40bcbjeZmZksW7bM8/7cuXPJy8sDIC4ujhUrVjBr1iyeffZZysvLW6tskQ4vO9vKxIndmDPHi4kTu5GdbW3tkkQuiWaQpM257rrrcLlcfPfdd02ed/bsWYKDg/nlL3/JmjVrePvtt5kyZco552VkZJCRkQHUBiy73d4sddexWCzNfo22TP13zP5zc804HCZqakz/d9yFsWNdrVxVy+uoz7/OldS/ApK0WyaTiaFDhwIwfPhw5s+f3+B5MTExxMTEeI5LS0ubtS673d7s12jL1H/H7D8iworV2g0Aq9VNRMRJSks73jJbR33+ddpb/4GBgY2+p4Akbc4333yD2Wzm6quvxmw243a7Pe85HI3/D9dkMrVEeSLSgKgoB+npJ8jN7UJExEntQZJ2T3uQpE0pLy/n1VdfZezYsZhMJgICAjh06BAul4vS0lK++OILz7lut5usrCwAtm3bRlhYWGuVLSLUhqTZs10KR3JF0AyStLrq6moSExM9X/MfPnw4sbGxAISGhhIQEMCsWbPo3r07vXr18nzO29ubL774grVr1+Lv789jjz3WWi2IiMgVRgFJWl16enqj75lMJmbOnNno+w888EBzlCQiIh2clthEREREDBSQpN1KS0tr7RJEROQKpYAkIiIiYqCAJCIiImKggCQiIiJioIAkIiIiYqCAJCIiImKggCQiIiJioIAkIiIiYqCAJCIiImKggCQiIiJioIAkIiIiYqCAJCIiImKggCQiIiJioIAkIiIiYqCAJCIiImKggCQiIiJioIAkIiIiYqCAJCIiImKggCQiIiJioIAkIiIiYqCAJG3OhAkTWLRokee4pqaGKVOmMHfuXAAyMzNZtmxZvc/MmTOHAwcOtGidIiJy5bK0dgEiRt7e3hw5coTq6mpsNhu5ubl07dq1tcsSkfPIzraSm2smIsJKVJSjtcsRuSSaQZI2acCAAeTk5ACwfft2br/99lauSESakp1tZeLEbsyZ48XEid3Izra2dkkil0QzSNIm3X777axZs4ZbbrmFr776ilGjRrF//37P+zt27Kh3XFxc3OhYGRkZZGRkADB37lzsdnvzFQ5YLJZmv0Zbpv47Zv+5uWYcDhM1Nab/O+7C2LGuVq6q5XXU51/nSupfAUnapB49enD8+HG2b9/OgAEDznl/6NChTJkyxXM8Z86cRseKiYkhJibGc1xaWnpZazWy2+3Nfo22TP13zP4jIqxYrd0AsFrdREScpLS04y2zddTnX6e99R8YGNjoe1pikzYrKiqKtLQ0hg0b1tqliMh5REU5SE8/wZw5NaSnn9AeJGn3NIMkbdaoUaPw9fUlKCiIvLy81i5HRM4jKsrB2LGuDjlzJFcezSBJm9WtWzfuvvvu1i5DREQ6IJPb7Xa3dhEiLamoqKhZx29va/CXm/pX/+pf/bcX2oMkIiIichEUkEREREQMFJBEREREDBSQRERERAwUkEREREQMFJBEREREDBSQRERERAwUkEREREQMFJBEREREDBSQRERERAwUkEREREQMFJBEREREDBSQRERERAwUkEREREQMFJBEREREDBSQRERERAwUkEREREQMFJBEREREDBSQRERERAwUkEREREQMFJBEREREDCytXYBIYyZMmMCwYcOYOXMmADU1NUybNo0bb7yRJ598kszMTNLS0ujatSsAPXr0YMaMGa1ZsoiIXCEUkKTN8vb25siRI1RXV2Oz2cjNzfWEoTpDhw5lypQprVShiNTJzrby6afe/OQnJvr0ae1qRC6dApK0aQMGDCAnJ4fBgwezfft2br/9dvbv39/aZYl0SPfd163B10+dMpGfb8XlghdegL597fj5uc85b82aE81doshlo4Akbdrtt9/OmjVruOWWW/jqq68YNWpUvYC0Y8cOz/Hdd9/NqFGjzhkjIyODjIwMAObOnYvdbm/Wmi0WS7Nfoy1T/1du/1Zrw78yKirA5QIw4XK5qaiwYJjsBbhi78v3XcnP/0JcSf0rIEmb1qNHD44fP8727dsZMGDAOe9fyBJbTEwMMTExnuPS0tLLXuf32e32Zr9GW6b+r9z+//rXhl/PzrYycWI3HA6w2SAl5QRRUY5zzrtCb0s9V/LzvxDtrf/AwMBG39O32KTNi4qKIi0tjWHDhrV2KSLSgKgoB+npJ0hMPMXGjc4Gw5FIe6MZJGnzRo0aha+vL0FBQeTl5bV2OSLSgKgoB1FRDux2nw4xUyRXPs0gSZvXrVs37r777tYuQ0REOhCT2+0+96sGIlewoqKiZh2/va3BX27qX/2rf/XfXmgPkoiIiMhFUEASERERMVBAEhERETFQQBIRERExUEASERERMVBAEhERETFQQBIRERExUEASERERMVBAEhERETFQQBIRERExUEASERERMVBAEhERETFQQBIRERExUEASERERMVBAEhERETFQQBIRERExUEASERERMVBAEhERETFQQBIRERExUEASERERMVBAEhERETGwtHYBIhdi7dq1bNu2DbPZjMlkYtq0aaxatYqTJ09is9kAuPfeexk8eHArVyoiIlcCBSRp8woLC9m1axfJyclYrVbKy8txOp0AzJw5k+Dg4FauUEQAsrOt5OaaiYiwEhXlaO1yRC6JApK0eSdPnsTPzw+r1QqAv79/K1ckIkbZ2VYmTuxGVZUJH59upKefUEiSdk0BSdq8yMhI1qxZw69+9Sv69evH0KFD6du3LwCLFi3yLLH97ne/w8/P75zPZ2RkkJGRAcDcuXOx2+3NWq/FYmn2a7Rl6r9j9p+ba8bhMAEmHA7Ize3C2LGu1i6rxXXU51/nSurf5Ha73a1dhMj5uFwu9u3bR15eHh999BG/+MUvyMzMJC4u7qKX2IqKipqpylp2u53S0tJmvUZbpv47Zv91M0gOhwmr1d1hZ5A66vOv0976DwwMbPQ9zSBJu2A2m7npppu46aabCAoKIjMzs7VLEpHviYpykJ5+gtzcLkREnOyQ4UiuLApI0uYVFRVhMpn40Y9+BMChQ4e49tprOXLkSCtXJiLfFxXlYOxYF6WlCkfS/ikgSZtXVVXF8uXLOX36NF5eXlx//fVMmzaNBQsWtHZpIiJyhVJAkjavd+/e/OEPfzjn9Tlz5rR8MSIi0iHoX9IWERERMVBAEhERETFQQBIRERExUEASERERMVBAEhERETFQQBIRERExUEASERERMVBAEhERETFQQBIRERExUEASERERMVBAEhERETFQQBIRERExUEASERERMVBAEhERETFQQBIRERExUEASERERMVBAEhERETFQQBIRERExUEASERERMVBAEhERETFQQBIRERExUEAC1q5dy6xZs0hISCAxMZHPP/8cgPfff5+zZ89e9HhxcXE/uJbMzEzKysou+PzVq1ezbt26H3y95rJv3z5mzZpFYmIi1dXVlzRWdnY27777LtB2+xURkSuLpbULaG2FhYXs2rWL5ORkrFYr5eXlOJ1OAD744AOGDx+Ot7d3i9WTmZnJDTfcQNeuXVvsms1h69at/Md//AcjRoy45LGioqKIioq6DFWJSHPJzrby6afe/OQnJvr0ae1qRC5dhw9IJ0+exM/PD6vVCoC/vz9QG47Kysp45pln8Pf35+mnnyYuLo60tDQAsrKy2LVrF/Hx8ZSUlJCSkkJVVRW33nprvfHXrVvHp59+isPhYNCgQUyYMIGSkhKef/55QkNDKSwspGvXrsyePZucnBwOHDjAokWLsNlsPPfcc7z99ttkZ2fj5eVFREQE999//zk9fPXVV/zmN7/h1KlTjBs3jpiYGBYvXsygQYMYNGgQAIsWLWLIkCH16svLy+Ptt9/Gz8+PI0eO0Lt3bx555BFMJhN79uwhLS2NmpoagoODeeihh7BarcTHxxMdHc2uXbtwOp3MmjWL7t2716vn73//O59++im7d+/m3//+N9OmTeOFF17g9OnTOJ1OJk2axK233kpJSQl//OMfufHGGyksLCQ4OJiRI0fy9ttv89133zFz5kz69OlDZmYmBw4cYMqUKZ5rFBcXs3DhQpKTkwE4duwYL730kudY/r/77uvWotezWi04HC17zbakI/Z/6pSJ/HwrLhe88AL07WvHz8/d2mW1io74/L+vpfpfs+ZEs1+jwwekyMhI1qxZw69+9Sv69evH0KFD6du3L3fffTfvv/8+Tz/9tCc0Neb111/nzjvvJDo6mo0bN3pe3717N8eOHeOPf/wjbrebF154gfz8fOx2O8eOHeNXv/oVDz/8MAsWLCArK4sRI0awceNG4uLiCA4O5tSpU+zcuZOXXnoJk8nE6dOnG7z+4cOHee6556iqquKJJ57glltu4Y477mDDhg0MGjSIyspKCgoKiI+PP+ezBw8eZMGCBXTp0oWkpCQKCgro3bs3qampJCUlERgYyOLFi9m8eTP33HMPAH5+fiQnJ7Np0ybWr1/Pww8/XG/M0aNHs3//fgYOHMjgwYOpqakhISEBX19fysvL+c1vfuOZESouLmbWrFn8+Mc/5qmnnmLbtm08++yzZGdns3btWmbPnt1gz9dffz2+vr4cOnSInj178sknnzBy5MgGz83IyCAjIwOAuXPnYrfbm3yel8pisTT7NS6G1dqyf8xNJpPnLxwdUUfsv6ICXC4AEy6Xm4oKC+18EvwH64jP//taqv+W+H9shw9IPj4+JCcns2/fPvLy8li4cCG/+MUvGv1l25CCggIef/xxAEaMGMGqVauA2oCUm5vr+SVfVVVFcXExdrudgIAAevbsCUDv3r05fvz/sXfvcVGW+f/HX8wMA3JScTxiiIoIgqGBaFpiwfqz1F3XXHXX9VRmfkHMVDx8C03LE5Q5rsCWiO7a0fxaHnKpzEhFjUXNEpQE8YCIiKKAI4dh5vcH670xIOCBEPs8H499PJiZ+76uz+cekjfXfQ17udq4dnZ2aLVaYmNj8fPzw8/Pr8b5/f390Wq1aLVavL29ycjIICAggLi4OAoLCzl06BB9+/ZFrVZXO9fd3Z1WrSrTvpubG3l5edja2tKmTRs6dOgAQGBgIF9++aUSkPr27avUnZycXOf1MZvNfPTRR5w4cQIrKyuuXr3K9evXAWjTpg2urq4APPLII/Ts2RMrKytcXV1rvCa/9PTTT/Ptt98yceJEDh48yLJly2o8Ljg4mODgYOVxfn5+nTXfC51O1+Bz3ImPPvp153vQ+v+1/Rb7T0mxZsyYVpSXg1YLev0V/P3LG7usRvFbfP9/6dfq/35NcevnXE1+8wEJQKVS4e3tjbe3N66uriQmJtYYkKysrJSvLTce//K1XxoxYgS/+93vqjyXl5dXJWGrVKoaNzKr1WqWLVvGTz/9xKFDh0hISGDRokW11vXLxwMHDmTv3r0cOHCAkJCQGuuzrMNU+WtgrTQajXJ8RUUFAEuXLuXatWt07dq12orS/v37KSwsZMWKFWg0GkJDQ5V+fzn/L3/zsLKyqrOWvn37smXLFnx8fOjcuTOOjo511i6EuP/8/cv55JMr/9mD1Ax3999mOBIPl9/8p9hycnK4ePGi8vjMmTO0bt0aqFxdKikpUV5r3rw52dnZmEymKisn3bt3JykpCagMA7f4+vry7bffKmP8cuXkdmxtbbl58yZQueJkMBh47LHHmDRpEmfPnq3xnH//+9+UlZVRVFREamoqXbt2BWDQoEHs2rULgI4dO9bvglCZqPPy8sjNzQVg79699OjRo9ZzXn31VaKioqqFIwCDwUDz5s3RaDQcP368zpWh+tJqtfj6+hIXF8dTTz11X8YUQtwdf/9ywsKK6dfvt7n3SDx8fvMrSCUlJcTHx3Pjxg3UajXt2rVj6tSpQOWtmaVLl+Ls7MyiRYsYN24cK1euxMnJiS5duijBZ/Lkyej1erZt21ZlE7Svry8XLlzg1VdfBSrDT1hYGCrV7XPpoEGDWLduHVqtlv/93/8lMjKS8vJyzGZzjRu0ATp16sTixYspKiriueeeUz4B16JFC1xcXKptHK+LVqslJA8RcVsAACAASURBVCSEVatWKZu0LVfB7sQTTzzBypUrmT17Nl27dq22qftePPHEEyQnJ+Pr63vfxhRCCCGszGazxP2HVGlpKXPmzGHlypXY2dk1djkNYvv27RgMBsaOHVvvc3JychqwItmDIP1L/9K/9N9U1LYH6Td/i+1h9eOPP/LKK68wZMiQhzYcRUVFsXfvXp599tnGLkUIIcRD5jd/i+1h9eijjxITE9PYZTSo8PDwxi5BCCHEQ0pWkIQQQgghLEhAEkIIIYSwIAFJCCGEEMKCBCQhhBBCCAsSkIQQQgghLEhAEkIIIYSwIAFJCCGEEMKCBCQhhBBCCAsSkIQQQgghLEhAEkIIIYSwIAFJCCGEEMKCBCQhhBBCCAsSkIQQQgghLEhAEkIIIYSwIAFJCCGEEMKCBCQhhBBCCAsSkIQQQgghLEhAEkIIIYSwIAFJCCGEEMKCBKQGtnXrVmbNmsWcOXMIDw/n1KlTAHzxxReUlpbe8Xjjx4+/61oSExO5evVqvY/fvHkz27dvv+v5Nm3axKxZs9i0adNdj3HL3//+d7KzswEIDQ2lsLDwnscUQgghbkfT2AU8zH7++WcOHz7MypUrsba2prCwEKPRCMCuXbt48sknsbGx+dXqSUxM5JFHHsHZ2flXmW/37t1s2LABlerec/i0adPuQ0VCPBxSUqw5eNCGxx8vxd+/vLHLEeKhJAGpARUUFODo6Ii1tTUATk5OQGU4unr1KosXL8bJyYlFixYxfvx4ZaXl0KFDHD58mNDQUPLy8tDr9ZSUlNCnT58q42/fvp2DBw9SXl5OQEAAo0ePJi8vj+XLl9O9e3d+/vlnnJ2dmTt3LkeOHCEzM5M1a9ag1WpZunQpn376KSkpKajVah599FEmTJhQrYezZ8/y6quvUlRUxO9//3uCg4NZu3YtAQEBBAQEALBmzRoef/zxKvWtXLmSkpIS5s2bxx//+Ee0Wi1bt27FaDTi6OhIWFgYLVq0YPPmzeTl5ZGXl0d+fj4TJ07k1KlTHD16FGdnZ+bNm4dGo+H1119n/PjxdO3aVZnjk08+wcHBgaFDhwLw0Ucf0bx5c5599tn7+C5WN2pUq1pft7bWUF5e+zEPM+m/YfsvKrIiLc0akwlUKkd69CjH0dHcYPPdKXn/fzv9b9lypbFLaFASkBqQr68vW7Zs4eWXX6Znz57079+fHj168Oyzz/LFF1+waNEiJTTdzoYNGxg8eDCBgYEkJCQozx87doyLFy+ybNkyzGYzkZGRpKWlodPpuHjxIi+//DLTpk1j1apVHDp0iIEDB5KQkKCEjKKiIpKTk1m9ejVWVlbcuHGjxvnPnTvH0qVLlbDz2GOP8fTTT7Nz504CAgIwGAykp6cTGhpa5bx58+Yxfvx4oqKiACguLmbp0qVYWVnxzTffsH37diWQXbp0iUWLFpGdnc1rr73G7Nmz+etf/0pUVBRHjhxRgpilp556irfffpuhQ4diMpk4cOAAy5Ytq3bc7t272b17NwArVqxAp9PVes3rYm1d+382VlZWSij+LZL+G7b/4mIwmQCsMJnMFBdr+JUWhetF3v/fTv81/Vuq0Wju+d/YB4UEpAZka2vLypUrOXHiBKmpqbzzzjuMGzeOQYMG1XuM9PR0Zs+eDcDAgQP54IMPgMqA9OOPPzJ37lwASkpKyM3NRafT0aZNG9zc3ADo0qULly9frjaunZ0dWq2W2NhY/Pz88PPzq3F+f39/tFotWq0Wb29vMjIyCAgIIC4ujsLCQg4dOkTfvn1Rq9W19nH16lVWr15NQUEBRqORNm3aKK/17t0bjUaDq6srJpOJXr16AeDq6lpj7be0adMGBwcHsrKyuH79Om5ubjg6OlY7Ljg4mODgYOVxfn5+rbXW5aOPan9dp9Pd8xxNmfTfsP2npFgzZkwrysvB2tqMXn/lgbrNJu//b6f/mtpsav136NDhtq9JQGpgKpUKb29vvL29cXV1JTExscaAZGVlpXxdVlZ229d+acSIEfzud7+r8lxeXl6V315UKlW18QDUajXLli3jp59+4tChQyQkJLBo0aJa6/rl44EDB7J3714OHDhASEhIjfX9Unx8PMOGDcPf35/U1FQ+/fRT5TWNRqPUqlarlTmsrKyoqKioddygoCASExO5du0aTz31VJ11CNHU+fuX88knV2QPkhANTD7F1oBycnK4ePGi8vjMmTO0bt0aqFxdKikpUV5r3rw52dnZmEwmkpOTlee7d+9OUlISAPv371ee9/X15dtvv1XGuHr1KtevX6+1HltbW27evAlUrjgZDAYee+wxJk2axNmzZ2s859///jdlZWUUFRWRmpqq7AEaNGgQu3btAqBjx451XguDwaBsDv/uu+/qPL6+AgIC+OGHH8jMzFRWnoR42Pn7lxMWVizhSIgGJCtIDaikpIT4+Hhu3LiBWq2mXbt2TJ06Fai87bN06VKcnZ1ZtGgR48aNY+XKlTg5OdGlSxcl+EyePBm9Xs+2bduqbIL29fXlwoULvPrqq0Bl+AkLC6v1E2ODBg1i3bp1aLVa/vd//5fIyEjKy8sxm801btAG6NSpE4sXL6aoqIjnnntOCTktWrTAxcWl2sbx2/nTn/7EqlWrsLe3x8fHh7y8vHqdVxeNRoO3tzf29vb35dNyQgghBICV2Wx+cD7+IJqM0tJS5syZw8qVK7Gzs2u0OkwmE/PmzWPWrFm0b9++Xufk5OQ0aE1N7R78/Sb9S//Sv/TfVNS2B0l+5RZ37Mcff+SVV15hyJAhjRqOsrOzmTFjBj179qx3OBJCCCHqQ26xiTv26KOPEhMT09hl0LFjR9auXdvYZQghhHgIyQqSEEIIIYQFCUhCCCGEEBYkIAkhhBBCWJCAJIQQQghhQQKSEEIIIYQFCUhCCCGEEBYkIAkhhBBCWJCAJIQQQghhQQKSEEIIIYQFCUhCCCGEEBYkIAkhhBBCWJCAJIQQQghhQQKSEEIIIYQFCUhCCCGEEBYkIAkhhBBCWJCAJIQQQghhQQKSEEIIIYQFCUhCCCGEEBYkIAkhhBBCWJCAJIQQQghh4b4GpPHjx1d5nJiYyPr16+/nFLcVGhpKYWFhvY+vrTbLPup6/kGTmprKxIkTWb58ufLc+++/z6xZs3jllVeIj4/HbDYD8Prrr/Pyyy8THh5OeHg4169fByAtLY158+YxduxYDh06VGX8Ox3rTtXnOp84cYJZs2YRHh5Ofn4+S5cuvau5hBD316FDVvztbw6kpFg3dilC3BNNYxcgGoaXlxfz588HID09nfT0dN566y0AIiIiSEtLw9vbG4AZM2bQtWvXKufrdDpCQkLYsWNHlefvZqzbiY6OZtCgQcq5d2Lfvn2MGDGCgQMHAtCyZUtOnjyJp6fnHY8lxG/ZqFGt7ttYRUVWpKVpMJkcUakc6dGjHEdH8z2Pu2XLlftQnRB35lcLSHl5ecTGxlJUVISTkxMhISHodDqio6Px8/OjX79+QOXqwaZNmygoKGD16tUYDAZMJhNTpkzBy8uLY8eOsXnzZoxGI23btiUkJARbW1sAEhISOHz4MEajkVmzZuHi4kJxcTExMTHk5eVhY2PD1KlT6dSpU7Xa9Ho9JSUl9OnTp85eUlNT+fTTT3F0dOT8+fN06dKFsLAwrKysyMjIYOPGjZSWlqLRaFi4cCFqtZq4uDgyMzNRq9VMmDABHx8fEhMTSU5OprS0lNzcXIYPH47RaGTv3r1YW1uzYMECHBwcyM3NZf369RQWFmJjY8NLL72Ei4tLva+9lZUVZWVlGI1GzGYzFRUVNG/evNZz2rRpo5x7r2Pdrdtd5z179nDw4EGOHTvGDz/8wIwZM+jTpw/79++vMSDt3r2b3bt3A7BixQp0Ol2D1HuLRqNp8DkeZNJ/0+rf2vr+/RgoLgaTCcAKk8lMcbEGZ+d7H7cpXc+m9v7fbw9T//c1IJWVlREeHq48Li4uxt/fH4D4+HgCAwMZNGgQe/bsIT4+nrlz5952rP379+Pr68vIkSMxmUyUlpZSWFjI1q1biYiIwNbWls8//5ydO3cyatQoABwdHVm5ciVffvklO3bsYNq0aWzevJnOnTszd+5cjh8/ztq1a4mKiqoy14YNGxg8eDCBgYEkJCTUq9esrCxWrVpFy5YtiYiIID09HXd3d1avXs3MmTNxd3fHYDCg1WrZtWsXAG+//TYXLlzgzTffRK/XA3D+/HkiIyMpLy8nLCyMcePGERkZycaNG/nuu+8YOnQo7733Hi+++CLt27fn1KlTxMXFsWjRIlJSUsjMzGTMmDG11urh4YG3tzdTp07FbDYzZMgQOnbsqLweExODSqWib9++PPfcc9VCUUONVR81XeegoCBOnjxZJVh37dqVjz/+uMYxgoODCQ4OVh7n5+ffU0110el0DT7Hg0z6b1r9f/TR/RsrJcWasWN1lJWZsbY2o9dfwd+//J7HbUKXs8m9//dbU+u/Q4cOt33tvgYkrVZbJXwkJiaSmZkJwKlTp5gzZw4AAwcO5IMPPqh1rK5duxIbG4vRaCQgIAA3NzfS0tLIzs4mIiICAKPRiIeHh3JO3759AejSpQvJyckAnDx5ktmzZwPg4+NDcXExBoOhylzp6enKMfWpDcDd3Z1WrSqXpt3c3MjLy8POzo6WLVvi7u4OgJ2dnVLDM888A4CLiwutW7fm4sWLAHh7e9OsWTOaNWuGnZ2dEihdXV05d+4cJSUlpKens2rVKmVuo9EIgL+/v3J8bXJzc7lw4QJ///vfAXjjjTc4ceIEXl5ezJgxA2dnZ27evMnbb7/N3r17CQwMbLCxfvjhB+X65ufnc/LkSWxtbbG2tmbZsmX1us41rRI5OTlRUFBQ57UQQjQcf/9yEhKM/OtfN3n88dL7Eo6EaCyNvgdJrVZjqlyTxWQyKT/8e/ToweLFizly5AjR0dEMGzYMe3t7evbsycyZM2scS6OpbEelUlFRUXFHddzpSoe19X83IKpUKqWHO2U5jmUPJpMJe3v7aqtedyI5OZlu3boptyJ79+7Nzz//jJeXF87/Wf9u1qwZTzzxBBkZGbUGpHsdq1evXvTq1Quo3x6k+l7n8vJytFptXZdCCNHA+vUz4+5e3NhlCHHPfrWP+Xt4eHDgwAGAKntFWrduzenTpwFISUlRgs3ly5dp0aIFwcHBBAUFkZWVhYeHB+np6eTm5gJQUlJCTk5OrfN6enqyb98+oHJPi6Ojo7Kyc0v37t1JSkpSartbHTp0oKCggIyMDABu3rxJRUUFXl5eSg05OTnk5+fXuqz3S3Z2drRp04aDBw8CYDabOXPmzB3VpdPpOHHiBBUVFRiNRtLS0nBxcaGiokL55J/RaOTw4cM88sgj932s5ORkPvzwwzuq+U5dvHixztqFEEKI+vrVVpCef/55YmJi2L59u7JJGyAoKIioqCjCw8Px9fXFxsYGqAwzO3bsQK1WY2try/Tp03FyciI0NBS9Xk95eeXS7dixY2sNG6NHjyYmJoY5c+ZgY2NDaGhotWMmT56MXq9n27Zt9dqkfTsajYaZM2eyYcMGysrK0Gq1REREMHjwYOLi4pg9ezZqtZqQkJAqKyN1mTFjBuvWrWPr1q0YjUYGDBiAm5tbvfcg9evXj+PHjyu3OHv16oW/vz8lJSUsXbpUWanq2bOnslcnIyODt956ixs3bnD48GE2b97MqlWr7mqs3NxcmjVrdjeXtN6OHz/OY4891qBzCCGE+O2wMt/6IzbioXErXN76mH9jW7NmDZMmTcLJyanB5li0aBHh4eE4ODjUeWxdq473qqltUrzfpH/pX/qX/puK2hZY5C9pP4Q0Gg3nz5+v8ociG9OMGTMaNBwVFhYydOjQeoUjIYQQoj4afZO2uP+6d+9OdHR0Y5fxq3FyciIgIKCxyxBCCPEQkRUkIYQQQggLEpCEEEIIISxIQBJCCCGEsCABSQghhBDCggQkIYQQQggLEpCEEEIIISxIQBJCCCGEsCABSQghhBDCggQkIYQQQggLEpCEEEIIISxIQBJCCCGEsCABSQghhBDCggQkIYQQQggLEpCEEEIIISxIQBJCCCGEsCABSQghhBDCggQkIYQQQggLEpCEEEIIISxIQBJCCCGEsKCp64Dx48ezadMm5XFiYiKZmZm88MILDVoYQGhoKMuXL8fJyalex9dWm2UfdT3/oElNTSUyMhJPT08WLFigPG8wGJg1axZ9+vThhRdeoLS0lFWrVnHp0iVUKhV+fn6MGzcOqLw+mzZtwtnZGYAhQ4YQFBQEwPvvv8/Ro0cBeO655+jfvz8AsbGxnD59GrPZTPv27QkNDcXW1rZKbQaDgTVr1nDlyhUqKioYPnw4Tz31FABjxozB1dUVAJ1Ox7x58wBISEjgiy++4NKlS8TFxSnv8d2MtXr1asaMGUP79u3v5yUXQtyhlBRrfvxRxaOPWuPvX97Y5QhxT+oMSOLB4eXlxfz586s898knn+Dl5VXlueHDh+Pj44PRaGTJkiUcPXqU3r17A9C/f/9qAfLIkSNkZWURGRlJeXk5ixcvplevXtjZ2TFx4kTs7OwA+Mc//kFCQgIjRoyocn5CQgIdO3Zk/vz5FBYW8vLLL/Pkk0+i0WjQarVERUVV66V79+489thjLF68+J7HGjx4MNu2bWPatGn1vJJCiDsxalSrOo8pKrIiLc0akwlUKh09epTj6Giu9ZwtW67crxKFuO/uKSDl5eURGxtLUVERTk5OhISEoNPpiI6Oxs/Pj379+gH/XaUpKChg9erVGAwGTCYTU6ZMwcvLi2PHjrF582aMRiNt27YlJCREWaVISEjg8OHDGI1GZs2ahYuLC8XFxcTExJCXl4eNjQ1Tp06lU6dO1WrT6/WUlJTQp0+fOntJTU3l008/xdHRkfPnz9OlSxfCwsKwsrIiIyODjRs3UlpaikajYeHChajVauLi4sjMzEStVjNhwgR8fHxITEwkOTmZ0tJScnNzGT58OEajkb1792Jtbc2CBQtwcHAgNzeX9evXU1hYiI2NDS+99BIuLi53dP1Pnz7N9evX6dWrF5mZmQDY2Njg4+MDgEajoXPnzly5Uvs/QtnZ2Xh5eaFWq1Gr1bi6uvLDDz/Qv39/JRyZzWbKyspqPN/KyoqSkhLMZjMlJSU4ODigUtV+97Zz5873bSxPT0+io6OpqKhArVZXe3337t3s3r0bgBUrVqDT6Wod715pNJoGn+NBJv0/fP1bW9f9o6K4GEwmACtMJjPFxRr+s1h9Ww/bdYKH8/2/Ew9T/3V+15eVlREeHq48Li4uxt/fH4D4+HgCAwMZNGgQe/bsIT4+nrlz5952rP379+Pr68vIkSMxmUyUlpZSWFjI1q1biYiIwNbWls8//5ydO3cyatQoABwdHVm5ciVffvklO3bsYNq0aWzevJnOnTszd+5cjh8/ztq1a6utLGzYsIHBgwcTGBhIQkJCvS5GVlYWq1atomXLlkRERJCeno67uzurV69m5syZuLu7YzAY0Gq17Nq1C4C3336bCxcu8Oabb6LX6wE4f/68shoTFhbGuHHjiIyMZOPGjXz33XcMHTqU9957jxdffJH27dtz6tQp4uLiWLRoESkpKWRmZjJmzJhaazWZTPzzn/8kLCyMn376qcZjbty4weHDh3n22WeV577//ntOnDhB+/btmThxIjqdjk6dOrFlyxaGDx9OaWkpqampdOzYUTknJiaGo0eP0rFjRyZMmFBtniFDhhAZGclLL73EzZs3eeWVV5RQU15ezvz581Gr1fzhD38gICCg1r7uZiyVSkW7du04e/YsXbp0qTZmcHAwwcHByuP8/Pxaa7hXOp2uwed4kEn/D1//H31U9zEpKdaMGdOK8nKwtjaj11+p8zbbQ3aZgIfz/b8TTa3/Dh063Pa1OgOS5W2NW/t8AE6dOsWcOXMAGDhwIB988EGtY3Xt2pXY2FiMRiMBAQG4ubmRlpZGdnY2ERERABiNRjw8PJRz+vbtC0CXLl1ITk4G4OTJk8yePRsAHx8fiouLMRgMVeZKT09XjqlPbQDu7u60alW5lOzm5kZeXh52dna0bNkSd3d3AGVF5eTJkzzzzDMAuLi40Lp1ay5evAiAt7c3zZo1o1mzZtjZ2SmB0tXVlXPnzlFSUkJ6ejqrVq1S5jYajQD4+/srx9fmq6++onfv3kq9lioqKtDr9TzzzDO0bdsWAD8/PwYMGIC1tTVff/010dHRLFq0CF9fXzIzM3nttddwcnLCw8OjyqpNSEgIJpOJ+Ph4Dhw4oOwJuuXYsWN06tSJhQsXcunSJd544w08PT2xs7MjJiYGZ2dnLl26xJIlS3B1daVdu3a37etux2revDlXr16tMSAJIRqev385n3xyhR9/bMmjjxbIHiTR5DXIHiS1Wo2pcq0Vk8mk/PDv0aMHixcv5siRI0RHRzNs2DDs7e3p2bMnM2fOrLlATWWJKpWKioqKO6rDysrqjo63trZWvlapVEoPd8pyHMseTCYT9vb2Ne6nqa+ff/6ZEydO8NVXX1FSUoLRaMTW1lbZkP3uu+/Srl07hg4dqpzj6OiofB0UFMT777+vPB45ciQjR44EQK/XV9vwrFKp6N+/P9u3b68WkL799ltGjBiBlZUV7dq1o02bNuTk5ODu7q5sCG/bti09evTgzJkztQakux2rrKwMrVZ7x9dRCHH/+PuXM2SIifx8CUei6bunj/l7eHhw4MABoPL2maenJwCtW7fm9OnTAKSkpCjB5vLly7Ro0YLg4GCCgoLIysrCw8OD9PR0cnNzASgpKSEnJ6fWeT09Pdm3bx9QuXfI0dFRWdm5pXv37iQlJSm13a0OHTpQUFBARkYGADdv3qSiogIvLy+lhpycHPLz82tdqvslOzs72rRpw8GDB4HK/T1nzpy5o7pmzJhBbGws0dHRjB8/noEDByrh6OOPP8ZgMDBp0qQq5xQUFChfp6SkKLfRTCYTRUVFAJw9e5Zz587h6+uL2WxW3hez2UxKSorSY3JyMh9++CFQuaR66zbftWvXyMnJoU2bNhQXF1NeXvkPZWFhIenp6VVu3dXkbse6ePGi8gk3IYQQ4l7d0wrS888/T0xMDNu3b1c2aUPl6kRUVBTh4eH4+vpiY2MDVIaZHTt2oFarsbW1Zfr06Tg5OREaGoper1d+AI4dO7bWsDF69GhiYmKYM2cONjY2hIaGVjtm8uTJ6PV6tm3bVq9N2rej0WiYOXMmGzZsUFYpIiIiGDx4MHFxccyePRu1Wk1ISEiVlaO6zJgxg3Xr1rF161aMRiMDBgzAzc2t3nuQbufKlSts3boVFxcX5WPwtz7O/69//YuUlBTUajUODg7K+2U0Glm4cCFQGd7CwsKUVcDo6Gjl9mWnTp2YMmUKALm5uTRr1gyo/LMAMTExyi3NcePG4eTkRHp6Ou+9956yGjdixAgl1OzatYvt27dz7do1wsPD6d27N9OmTbursa5du4ZWq6VFixZ3dc2EEEIIS1Zms7n2z2GKB8KtcGn5Mf/GsmbNGiZNmlTvv1HVkHbu3ImdnR1PP/10vY6va4XyXjW1TYr3m/Qv/Uv/0n9TUdtijPwl7SZCo9Fw/vx5li9f3tilAJUrYA9COAKwt7cnMDCwscsQQgjxEJE/FNlEdO/enejo6MYu44FkuWlcCCGEuFeygiSEEEIIYUECkhBCCCGEBQlIQgghhBAWJCAJIYQQQliQgCSEEEIIYUECkhBCCCGEBQlIQgghhBAWJCAJIYQQQliQgCSEEEIIYUECkhBCCCGEBQlIQgghhBAWJCAJIYQQQliQgCSEEEIIYUECkhBCCCGEBQlIQgghhBAWJCAJIYQQQliQgCSEEEIIYUECkhBCCCGEBQlIQgghhBAWNHUdMH78eDZt2qQ8TkxMJDMzkxdeeKFBCwMIDQ1l+fLlODk51ev42mqz7KOu5x80qampREZG4unpyYIFCzhz5gzr1q3j5s2bqFQqRo4cSf/+/QFISEjgiy++4NKlS8TFxSnXb9++fWzbtg2z2UyzZs2YMmUKbm5uAOzatYtvvvkGs9lMUFAQQ4cOBeCdd94hJycHAIPBgJ2dHVFRUTXWaDAYmDVrFn369OGFF16gtLSUVatWcenSJVQqFX5+fowbNw6ofK82bdqEs7MzAEOGDCEoKAiA999/n6NHjwLw3HPPKX3FxsZy+vRpzGYz7du3JzQ0FFtbWxISEtBqtTz99NP3+7ILIeopJcWagwdteOYZK9zdG7saIe5dnQFJPDi8vLyYP38+AFqtlunTp9O+fXuuXr3K/Pnz8fX1xd7enu7du/PYY4+xePHiKue3adOG119/HQcHB44ePcp7773HsmXLOHfuHN988w3Lli1Do9GwbNky/Pz8aNeuHa+88opy/j//+U/s7OxuW98nn3yCl5dXleeGDx+Oj48PRqORJUuWcPToUXr37g1A//79q4XZI0eOkJWVRWRkJOXl5SxevJhevXphZ2fHxIkTlfn/8Y9/kJCQwIgRI3jqqaeIiIiQgCTEPRg1qtVdn1tUZEVamjUmE0RGQo8eOhwdzXc93pYtV+76XCHul3sKSHl5ecTGxlJUVISTkxMhISHodDqio6Px8/OjX79+wH9XaQoKCli9ejUGgwGTycSUKVPw8vLi2LFjbN68GaPRSNu2bQkJCcHW1haoXA05fPgwRqORWbNm4eLiQnFxMTExMeTl5WFjY8PUqVPp1KlTtdr0ej0lJSX06dOnzl5SU1P59NNPcXR05Pz583Tp0oWwsDCsrKzIyMhg48aNlJaWotFoWLhwIWq1mri4ODIzM1Gr1UyYMAEfHx8SExNJTk6mtLSU3Nxchg8fjtFoZO/evVhbW7NgwQIcHBzIzc1l/fr1FBYWYmNjw0svvYSLi0u9r32HDh2Ur52dnWnevDmFhYXY29vTuXPnGs/p3r27NlFHuwAAIABJREFU8nW3bt24cqXyH6ELFy7g7u6OjY0NUBnEvv/+e/7whz8ox5vNZg4ePMjChQtrHPv06dNcv36dXr16kZmZCYCNjQ0+Pj4AaDQaOnfurMx5O9nZ2Xh5eaFWq1Gr1bi6uvLDDz/Qv39/JRyZzWbKysqUc2xsbGjdujUZGRm41/Cr6+7du9m9ezcAK1asQKfT1VrDvdJoNA0+x4NM+m+a/Vtb3/2Pg+JiMJkArDCZzBQXa/jP4vBdaYrX75am+v7fLw9T/3X+F1FWVkZ4eLjyuLi4GH9/fwDi4+MJDAxk0KBB7Nmzh/j4eObOnXvbsfbv34+vry8jR47EZDJRWlpKYWEhW7duJSIiAltbWz7//HN27tzJqFGjAHB0dGTlypV8+eWX7Nixg2nTprF582Y6d+7M3LlzOX78OGvXrq1222fDhg0MHjyYwMBAEhIS6nUxsrKyWLVqFS1btiQiIoL09HTc3d1ZvXo1M2fOxN3dHYPBgFarZdeuXQC8/fbbXLhwgTfffBO9Xg/A+fPnlRWQsLAwxo0bR2RkJBs3buS7775j6NChvPfee7z44ou0b9+eU6dOERcXx6JFi0hJSSEzM5MxY8bUq2aAjIwMJVzW1549e5SVnEceeYSPP/6YoqIitFotR48epWvXrlWOP3HiBM2bN6d9+/bVxjKZTPzzn/8kLCyMn376qcb5bty4weHDh3n22WeV577//ntOnDhB+/btmThxIjqdjk6dOrFlyxaGDx9OaWkpqampdOzYUTknJiaGo0eP0rFjRyZMmKA837VrV06cOFFjQAoODiY4OFh5nJ+fX8+rdHd0Ol2Dz/Egk/6bZv8ffXT356akWDNmTCvKy0GrBb3+Cv7+5Xc9XhO8fIqm+v7fL02t/18uNliqMyBptdoq4ePWPh+AU6dOMWfOHAAGDhzIBx98UOtYXbt2JTY2FqPRSEBAAG5ubqSlpZGdnU1ERAQARqMRDw8P5Zy+ffsC0KVLF5KTkwE4efIks2fPBsDHx4fi4mIMBkOVudLT05Vj6lMbgLu7O61aVS4zu7m5kZeXh52dHS1btlR+8N5axTh58iTPPPMMAC4uLrRu3ZqLFy8C4O3tTbNmzWjWrBl2dnZKoHR1deXcuXOUlJSQnp7OqlWrlLmNRiMA/v7+yvH1UVBQwN/+9jdCQ0NRqeq35/748eN8++23LFmyBICOHTvyhz/8gTfffBNbW1vc3NyqjZWUlMSAAQNqHO+rr76id+/eyrWzVFFRgV6v55lnnlFCnJ+fHwMGDMDa2pqvv/6a6OhoFi1ahK+vL5mZmbz22ms4OTnh4eFRpZaQkBBMJhPx8fEcOHCAp556CgAnJydlr5QQ4tfl71/OJ59c+c8epGa4u999OBLiQdEge5DUajWmyvVWTCaT8sO/R48eLF68mCNHjhAdHc2wYcOwt7enZ8+ezJw5s+YCNZUlqlQqKioq7qgOKyurOzre2tpa+VqlUik93CnLcSx7MJlM2Nvb33azc30ZDAZWrFjBn//85yqhsjZnz57l3XffZcGCBTg6OirPP/3008oeng8//LBK2KmoqCA5OZkVK1bUOObPP//MiRMn+OqrrygpKcFoNGJra6tsyH733Xdp166dsvEbqDJ3UFAQ77//vvJ45MiRjBw5EgC9Xl9t1UqlUtG/f3+2b9+uBKTy8nK0Wm29roEQ4v7z9y/H378cnc62Sa8ACXHLPX3M38PDgwMHDgCVt888PT0BaN26NadPnwYgJSVFCTaXL1+mRYsWBAcHExQURFZWFh4eHqSnp5ObmwtASUlJnSsBnp6e7Nu3D6jcO+To6Fht83D37t1JSkpSartbHTp0oKCggIyMDABu3rxJRUUFXl5eSg05OTnk5+fXulT3S3Z2drRp04aDBw8ClXtqzpw5c0d1GY1G3nrrLQYOHKjs9apLfn4+b731FtOnT69W6/Xr15VjkpOTeeKJJ5TXfvrpJzp06FAlNF29elVZgZoxYwaxsbFER0czfvx4Bg4cqISjjz/+GIPBwKRJk6rMV1BQoHydkpKi3EYzmUwUFRUBlWHu3Llz+Pr6Yjable8Rs9lMSkpKlR4uXrzII488Uq/rIIQQQtTlnlaQnn/+eWJiYti+fbuySRsqVwSioqIIDw/H19dX2fybmprKjh07UKvV2NraMn36dJycnAgNDUWv11NeXrksO3bs2FrDxujRo4mJiWHOnDnY2NgQGhpa7ZjJkyej1+vZtm1bvTZp345Go2HmzJls2LCBsrIytFotERERDB48mLi4OGbPno1arSYkJKTKylFdZsyYwbp169i6dStGo5EBAwbg5uZW7z1IBw4c4MSJExQVFZGYmAhU/lkENzc3du3axfbt27l27Rrh4eH07t2badOmsWXLFoqLi4mLiwMqV/purQq9/fbbFBUVodFoeOGFF7C3t1fmqun2WkFBAWq1utYar1y5wtatW3FxcWHevHnAfz/O/69//YuUlBTUajUODg7K947RaFQ2gtvZ2REWFqasSEZHRyu3Ujt16sSUKVOUudLT0/nTn/5Uaz1CCCFEfVmZzea7/yym+NXcCpe3Pubf2BISEtDpdHe0X6qhZGVlsXPnTsLCwup1fEPvVWpqmxTvN+lf+pf+pf+morbFGPlL2k2ERqPh/PnzLF++vLFLASpXgh6EcARQVFR0R5/6E0IIIeoifyiyiejevTvR0dGNXcYD6dFHH23sEoQQQjxkZAVJCCGEEMKCBCQhhBBCCAsSkIQQQgghLEhAEkIIIYSwIAFJCCGEEMKCBCQhhBBCCAsSkIQQQgghLEhAEkIIIYSwIAFJCCGEEMKCBCQhhBBCCAsSkIQQQgghLEhAEkIIIYSwIAFJCCGEEMKCBCQhhBBCCAsSkIQQQgghLEhAEkIIIYSwIAFJCCGEEMKCBCQhhBBCCAsSkIQQQgghLDRoQBo/fnyVx4mJiaxfv74hp1SEhoZSWFhY7+Nrq82yj7qefxAVFBSwYsWKGl+Ljo7m0KFDtZ5fXl7OG2+8QXh4OAcOHKjy2qZNm5g5cyZz5swhKiqKGzduAFBUVMTixYsZP358lWtbWlrK8uXLmTlzJrNmzeKDDz5QXrt8+TJLlixhzpw5vP7661y5cgWA48ePEx4ervxv3LhxJCcnA7B69WouXrx45xdFCNFgUlKs+dvfHEhJsW7sUoS4K5rGLkD8Onbu3ElQUNBdn5+VlQVAVFRUtdceffRR/vKXv6BWq3n//ff57LPP+Otf/4q1tTVjxozh3LlznD9/vso5w4cPx8fHB6PRyJIlSzh69Ci9e/dm06ZNDBw4kEGDBnH8+HE+/PBDwsLC8PHxUeYuLi4mLCwMX19fAAYPHsy2bduYNm3aXfcnRFM3alSrxi4BAGtrDVev6khLs8ZkApXKkR49ynF0NDd2aYotW640dgmiCWi0gJSXl0dsbCxFRUU4OTkREhKCTqcjOjoaPz8/+vXrB1Su0mzatImCggJWr16NwWDAZDIxZcoUvLy8OHbsGJs3b8ZoNNK2bVtCQkKwtbUFICEhgcOHD2M0Gpk1axYuLi4UFxcTExNDXl4eNjY2TJ06lU6dOlWrTa/XU1JSQp8+fersJTU1lU8//RRHR0fOnz9Ply5dCAsLw8rKioyMDDZu3EhpaSkajYaFCxeiVquJi4sjMzMTtVrNhAkT8PHxITExkeTkZEpLS8nNzWX48OEYjUb27t2LtbU1CxYswMHBgdzcXNavX09hYSE2Nja89NJLuLi41Frj999/z9ixY+vsJTQ0lMDAwCrXzcHBgb/97W8UFhYSHh7O7NmzadeunXLOraAC4OHhoaxG2dra4unpSW5ubpU5bGxs8PHxAUCj0dC5c2dlpSg7O5sJEyYA4O3tXWMgO3ToEL1798bGxgYAT09PoqOjqaioQK1WVzt+9+7d7N69G4AVK1ag0+nqvA73QqPRNPgcDzLpv3H6t7Z+MH7ftbKyorhYg8kEYIXJZKa4WIOzc2NX9l8N+f7I9//D03+D/hdVVlZGeHi48ri4uBh/f38A4uPjCQwMZNCgQezZs4f4+Hjmzp1727H279+Pr68vI0eOxGQyUVpaSmFhIVu3biUiIgJbW1s+//xzdu7cyahRowBwdHRk5cqVfPnll+zYsYNp06axefNmOnfuzNy5czl+/Dhr166t9kN4w4YNDB48mMDAQBISEurVa1ZWFqtWraJly5ZERESQnp6Ou7s7q1evZubMmbi7u2MwGNBqtezatQuAt99+mwsXLvDmm2+i1+sBOH/+PJGRkZSXlxMWFsa4ceOIjIxk48aNfPfddwwdOpT33nuPF198kfbt23Pq1Cni4uJYtGgRKSkpZGZmMmbMmCq15eXlYW9vj7V1/Za6a7pu06ZNY8eOHcyfP7/Wc/fs2UP//v3rNQ/AjRs3OHz4MM8++ywAnTp1Ijk5mWeffZbk5GRu3rxJUVERjo6OyjlJSUkMGzZMeaxSqWjXrh1nz56lS5cu1eYIDg4mODhYeZyfn1/v+u6GTqdr8DkeZNJ/4/T/0Ue/+pQ10ul0JCRcZ8yYVpSXg7W1Gb3+Cv7+5Y1dmqIh3x75/m9a/Xfo0OG2rzVoQNJqtVXCR2JiIpmZmQCcOnWKOXPmADBw4MAq+1Bq0rVrV2JjYzEajQQEBODm5kZaWhrZ2dlEREQAYDQa8fDwUM7p27cvAF26dFH2q5w8eZLZs2cD4OPjQ3FxMQaDocpc6enpyjH1qQ3A3d2dVq0ql7jd3NzIy8vDzs6Oli1b4u7uDoCdnZ1SwzPPPAOAi4sLrVu3VvbQeHt706xZM5o1a4adnZ0SKF1dXTl37hwlJSWkp6ezatUqZW6j0QiAv7+/cvwvFRQU4OTkVGcPt9R03epj69atqNVqnnzyyXodX1FRgV6v55lnnqFt27ZA5YphfHw8iYmJeHl54ezsjEr1361yBQUFnDt3rsqqFUDz5s25evVqjQFJCPHr8vcv55NPrnDwoA2PP176QIUjIerrwViT/QW1Wo2pcm0Wk8mk/PDv0aMHixcv5siRI0RHRzNs2DDs7e3p2bMnM2fOrHEsjaayPZVKRUVFxR3VYWVldUfH/3J1RqVSKT3cKctxLHswmUzY29vXeOvpdrRaLeXl//0HKiYmhqysLJydnVmwYEG14+/muiUmJnL48GEWLlxY72v37rvv0q5dO4YOHao85+zsrATnkpISvv/+e+zt7ZXXDx48SEBAgFLjLWVlZWi12nrNK4RoeP7+5RKMRJPWaB/z9/DwUD4NtX//fjw9PQFo3bo1p0+fBiAlJUX5AX358mVatGhBcHAwQUFBZGVl4eHhQXp6urLHpaSkhJycnFrn9fT0ZN++fUDl3iFHR0dlZeeW7t27k5SUpNR2tzp06EBBQQEZGRkA3Lx5k4qKCry8vJQacnJyyM/Pr3WZ75fs7Oxo06YNBw8eBMBsNnPmzJlaz2nfvj2XL19WHoeEhBAVFVVjOKqvDz/8UFld+uGHH9i2bRvz5s1T9gXV5eOPP8ZgMDBp0qQqzxcWFirh8rPPPuOpp56q8npSUhIDBgyoNt7FixdxdXW9i06EEEKI6hptBen5558nJiaG7du3K5u0AYKCgoiKiiI8PBxfX1/lB25qaio7duxArVZja2vL9OnTcXJyIjQ0FL1er6yQjB07ttawMXr0aGJiYpgzZw42NjaEhoZWO2by5Mno9Xq2bdtWr03at6PRaJg5cyYbNmxQVjgiIiIYPHgwcXFxzJ49G7VaTUhISL33BwHMmDGDdevWsXXrVoxGIwMGDMDNze22e5BsbW1p27Ytubm5VTZX34tz584pt/PWr1+P0WjkjTfeAKBbt25MnToVqNz0bTAYMBqN/Pvf/+a1116jWbNmbN26FRcXF+bNmwfAkCFDCAoKIi0tjQ8//BArKyu8vLx44YUXlDnz8vLIz8+nR48eVWq5du0aWq2WFi1a3JfehBBCCCuz2fzgfPZSNJjk5GROnz5dr0+y1cfSpUt59dVX78tY92rnzp3Y2dnx9NNP1+v4ulYZ71VT26R4v0n/0r/0L/03FY22SVs8OAICAigqKrpv4z0o4QjA3t6egQMHNnYZQgghHiISkH5D7uUPRT7ILPcpCSGEEPdK/r/YhBBCCCEsSEASQgghhLAgAUkIIYQQwoIEJCGEEEIICxKQhBBCCCEsSEASQgghhLAgAUkIIYQQwoIEJCGEEEIICxKQhBBCCCEsSEASQgghhLAgAUkIIYQQwoIEJCGEEEIICxKQhBBCCCEsSEASQgghhLAgAUkIIYQQwoIEJCGEEEIICxKQhBBCCCEsSEASQgghhLDwwAak8ePHV3mcmJjI+vXrf5W5Q0NDKSwsrPfxtdVm2cfdKCws5M9//jNfffXVPY91t8xmMx999BEvv/wyr7zyCrt27QIgNTWViRMnEh4eTnh4OFu2bGm0GoUQQoj7RdPYBYj/MpvNmM1mVKqqufXQoUN069aNpKQkBg8e3CBzFxcX4+DgcNvXExMTuXLlCu+88w4qlYrr168rr3l5eTF//vwGqas2JpOp2rUSQggh7ocmGZDy8vKIjY2lqKgIJycnQkJC0Ol0REdH4+fnR79+/YDK1ZtNmzZRUFDA6tWrMRgMmEwmpkyZgpeXF8eOHWPz5s0YjUbatm1LSEgItra2ACQkJHD48GGMRiOzZs3CxcWF4uJiYmJiyMvLw8bGhqlTp9KpU6dqten1ekpKSujTp0+V17Zv387BgwcpLy8nICCA0aNHk5eXx9KlS+nWrRunT59mwYIFtG7dusp5SUlJTJgwAb1ez5UrV2jVqhUAe/bsYdu2bdjZ2dGpUyesra154YUXKCws5L333uPKlSsATJw4EU9Pz1qv6YIFC+jWrRtPP/003t7eWFlZVXn9q6++4uWXX1YCSfPmzev9fu3Zs4dz584xadIkAHbv3k12djaTJk1i7969/Otf/8JoNNKtWzemTJmCSqVi3bp1ZGZmUlZWRr9+/Rg9ejRQubr3+OOP89NPP/H73/+e69ev8/XXX6NWq+nYsSMzZ86sd11CiIaRkmLNwYM2PP54Kf7+5Y1djhB35YENSGVlZYSHhyuPi4uL8ff3ByA+Pp7AwEAGDRrEnj17iI+PZ+7cubcda//+/fj6+jJy5EhMJhOlpaUUFhaydetWIiIisLW15fPPP2fnzp2MGjUKAEdHR1auXMmXX37Jjh07mDZtGps3b6Zz587MnTuX48ePs3btWqKioqrMtWHDBgYPHkxgYCAJCQnK88eOHePixYssW7YMs9lMZGQkaWlp6HQ6cnNzCQ0NxcPDo1rt+fn5FBQU4O7uzuOPP86BAwcYPnw4V69e5f/+7/9YuXIltra2LFmyRAlrGzZsYNiwYXh6epKfn8/SpUt55513yMzM5Ouvv2batGnV5tHr9Rw9epSEhATWr1/Pk08+yaBBg3B2dgbg0qVLHDhwgOTkZJycnJg8eTLt27cH4OeffyY8PJyWLVsyfvx4HnnkkSpj9+/fn88++4y//vWvaDQaEhMTmTp1KtnZ2Rw4cIA33ngDjUZDXFwc+/btIzAwkD//+c84ODhgMplYsmQJZ8+eVfq79d4AvPTSS6xduxZra2tu3Lhx2+8BIUTdRo1qdc9j3Lyp4ccfdZhMoFI50qNHOY6O5rseb8uWK/dckxB344ENSFqttkr4SExMJDMzE4BTp04xZ84cAAYOHMgHH3xQ61hdu3YlNjYWo9FIQEAAbm5upKWlkZ2dTUREBABGo7FKQOnbty8AXbp0ITk5GYCTJ08ye/ZsAHx8fCguLsZgMFSZKz09XTnml7UdO3aMH3/8UQlyJSUl5ObmotPp0Ol0NYYjgAMHDvD4448DMGDAAGJjYxk+fDgZGRl4eXkpt8X69evHxYsXAfjpp5/Izs5WxjAYDJSUlNC1a1e6du1a4zwqlQo/Pz/8/PwoLCzkww8/JCQkhDfffBN3d3fKy8uxtrZmxYoVfP/998TGxrJkyRI6d+5MTEwMtra2HDlyhKioKNasWVNlbFtbW7y9vTly5AguLi5UVFTg6upKQkICWVlZLFiwAKgMxU5OTkrf33zzDRUVFRQUFJCdna0EpP79+ytju7q6smbNGvr06UNAQECNve3evZvdu3cDsGLFCnQ6XY3H3S8ajabB53iQSf9Nt39r63v/kZCba4XJBGCFyWSmuFjDf37PuitN7Vo25ff/fniY+n9gA9LdUKvVmCr/y8RkMmE0GgHo0aMHixcv5siRI0RHRzNs2DDs7e3p2bPnbW/JaDSVl0alUlFRUXFHdVjenrplxIgR/O53v6vyXF5ennJbryZJSUlcu3aN/fv3A3D16lUlCN2O2Wxm6dKlaLXaO6rbYDCQlJREYmIiGo2G//mf/8HV1RWAVq1aKaExICCAmJgYAOzs7JTzH3vsMdavX09hYaESdG4JCgris88+o0OHDgwaNEipMzAwkL/85S9Vjs3Ly2PHjh0sX74cBwcHoqOjKS//7zK9jY2N8vWCBQtIS0vj8OHDfPbZZ7z11luo1eoq4wUHBxMcHKw8zs/Pv6Prcqd0Ol2Dz/Egk/6bbv8ffXTvY2RktOb//T815eVgbW1Gr79yT7fZmtqlbMrv//3Q1Prv0KHDbV9rkjtcPTw8OHDgAFB5++zW/prWrVtz+vRpAFJSUpRgc/nyZVq0aEFwcDBBQUFkZWXh4eFBeno6ubm5QOWKTk5OTq3zenp6sm/fPqDy01uOjo5VAgJA9+7dSUpKUmq7xdfXl2+//ZaSkhKgMuj8cqNzTXJycigpKeHdd98lOjqa6Oho/vjHP5KUlIS7uzsnTpyguLiYiooKvv/+e+W8Rx99tMrtvTNnztQ6D8CaNWuYN28eeXl5TJ8+ncWLFxMYGKiErD59+nD8+HEA0tLSlG+qa9euYTZXLp9nZGRgMplwdHSsNn63bt24cuUKSUlJDBgwAICePXty6NAh5ToUFxdz+fJlDAYDtra22NnZce3aNX744YcaazaZTOTn5+Pj48O4ceOUlTIhROPp18/MJ59cITy8iE8+ubdwJERjapIrSM8//zwxMTFs375d2aQNlasUUVFRhIeH4+vrq6w0pKamsmPHDtRqNba2tkyfPh0nJydCQ0PR6/XK6sTYsWNrTZOjR48mJiaGOXPmYGNjQ2hoaLVjJk+ejF6vZ9u2bVU2afv6+nLhwgVeffVVoPK2U1hYWK2fwkpKSqp226hv376sXr2aUaNG8cc//vH/s3PvYVXW+f7/n7BYsEaE8bDUwrMgAorUiAd0Ci8ht6m507wcO2CaDnpBTR7AwjbfnRopUSrlgk7gNvVqZEwFnQnNMbYKoaNOHsAzkhLSEiQXS1rCOvz+4Oe9W4tDHjDA3o/r2tfmXvfnvj/vz31DvObz+SBLliyhffv2eHl5KWFt1qxZpKWlERMTg8Viwd/fn8jIyCb3II0cOZLo6Oh6sy+3PP3007z//vv8/e9/R6PRMHfuXKDuL+x2796NSqXC1dWV+fPnNzqDFhISQnFxsbIs2KNHD6ZPn85bb72FzWZDpVIxe/ZsfH196dOnDwsWLKBz584MGDCgwftZrVY++OADZZnzySefxN3dvdHnKYT4dQQH10owEm2ek+3W//wXbY7JZEKj0WCxWEhKSmLMmDGN7sNpDVauXMmECRMIDAxs0Tp+aabwXrW1KebmJuOX8cv4ZfxtRVOTIm1yBknUycjI4MSJE9TW1jJ48OB6/6xAa3Hjxg2WLFlC7969WzwcCSGEELdDAlIbNmPGjJYu4ba4u7uTnJzc0mUIIYQQt61NbtIWQgghhLifJCAJIYQQQjiQgCSEEEII4UACkhBCCCGEAwlIQgghhBAOJCAJIYQQQjiQgCSEEEII4UACkhBCCCGEAwlIQgghhBAOJCAJIYQQQjiQgCSEEEII4UACkhBCCCGEAwlIQgghhBAOJCAJIYQQQjiQgCSEEEII4UACkhBCCCGEAwlIQgghhBAOJCAJIYQQQjiQgCSEEEII4aDFAlJERITdcU5ODmlpab9K39HR0RgMhttu31RtjuO4GwaDgWeffZbdu3ff870aEx0dzaJFi4iNjeX1119XPs/IyGDu3LnExsYSGxvL0aNHG73Hl19+yfz581m4cCEbN260O1deXk5ERARZWVn3bQxCCCHEr8WlpQv4LbHZbNhsNpyd7XNpfn4+/fv3Jzc3l7Fjx963/v/7v/8bT0/Pep9PmDCBSZMmNXntyZMnOXz4MElJSajVaq5fv253fv369Tz66KPNWu8vsVqt9Z6lEEII0RxaZUDS6/WkpqZSVVWFp6cnUVFRaLVadDodQ4YMYcSIEUDd7M2GDRuorKxkzZo1VFdXY7VamTNnDv7+/hw7doyMjAzMZjPdunUjKioKjUYDQHZ2NkeOHMFsNrNw4UK6d++O0WgkJSUFvV6Pm5sbkZGR9O7du15tycnJmEwmhg4dancuKyuLb775htraWoYNG8a0adPQ6/UkJCTQv39/ioqKiIuLo0uXLnbX5ebmMmPGDJKTk6moqKBz584A7N27l8zMTNq1a0fv3r1Rq9XMnj0bg8HAxx9/TEVFBQAvvvgifn5+9+Vd3LJ7927+8z//E7VaDcDvf/975dyhQ4fo2rUrbm5uDV67d+9eLl26xMyZMwHYs2cPJSUlzJw5k3379vHll19iNpvp378/c+bMwdnZmU8++YQLFy5QU1PDiBEjmDZtGlA3ExYSEsKJEyeYNGkS169f56uvvkKlUtGjRw/mz59/X5+DEKJxhw+rOX7cmcGD1QQH17Z0OULckxYLSDU1NcTGxirHRqOR4OBgANLT0wkNDWX06NHs3buX9PR0Fi9e3Oi9Dhw4QFBQEFOmTMFqtXLz5k0MBgNbt24lPj4ejUbD9u3b2blzJ1OnTgXAw8ODxMREdu3axY4dO5h2XWvxAAAgAElEQVQ3bx4ZGRn07duXxYsXc/LkSdauXUtSUpJdX+vWrWPs2LGEhoaSnZ2tfH7s2DGuXLnC22+/jc1m45133qGwsBCtVktZWRnR0dH4+vrWq728vJzKykp8fHwICQkhLy+Pp556imvXrvHFF1+QmJiIRqNh2bJlSlhbt24dEydOxM/Pj/LychISEli9ejUXLlzgq6++Yt68eQ0+p4SEBACeeOIJwsPDlc937drFvn376NevHzNmzKB9+/b1rr1y5QqnT5/mr3/9K2q1moiICHx8fDCZTGRmZhIfH9/o8trIkSPZtm0bL7zwAi4uLuTk5BAZGUlJSQl5eXksX74cFxcXPv30U/bv309oaCjPPvss7du3x2q1smzZMr777jtl/LfeHcDcuXNZu3YtarWaGzduNPwNIoSwM3Vq52a/Z1WVE4WFaqxWcHbWEhBQi4eHrVn72LKlolnvJ0RTWiwgubq62oWPnJwcLly4AMC5c+eIiYkB4PHHH2fTpk1N3svb25vU1FTMZjPDhg2jT58+FBYWUlJSQnx8PABms9kuoAwfPhyAfv36cejQIQBOnz7NokWLABg0aBBGo5Hq6mq7vs6cOaO0+Xltx44d4/jx40qQM5lMlJWVodVq0Wq1DYYjgLy8PEJCQgAYNWoUqampPPXUU5w/fx5/f38lrIwYMYIrV64AcOLECUpKSpR7VFdXYzKZ8Pb2xtvbu8F+li9fTqdOnbh+/TpvvfUWXl5eBAQEMHbsWCU0bt68mc8++4yoqKh611utVoxGIwkJCVy4cIHVq1ezdu1aMjIymDBhgjIz1xCNRsPAgQM5evQo3bt3x2Kx0KtXL7Kzs7l48SJxcXFAXWi+tQSYl5fHP//5TywWC5WVlZSUlCgBaeTIkcq9e/Xqxfvvv8/QoUMZNmxYg/3v2bOHPXv2ALBy5Uq0Wm2jtTYHFxeX+95Haybjb/3jV6ub/z/9RiNYrQBOWK02jEYXOnVq3j5a+3OFtvH+76cHafytcomtMSqVCmvdTyBWqxWz2QxAQEAAS5cu5ejRo+h0OiZOnIi7uzuBgYGNLrm4uNQN3dnZGYvFckd1ODk5Nfj5008/zRNPPGH3mV6vbzI85Obm8uOPP3LgwAEArl27pgShxthsNhISEnB1db3tmjv9//+l+v3vf8/QoUM5f/48AQEBdOjQQWkTFhamzMykpKRw8eJFOnXqRFxcHJ06dWLYsGE4OTnh4+ODs7MzVVVVnD9/noMHD7Jp0yZu3LiBk5MTrq6ujBs3zq7/sLAwtm3bhpeXF6NHj1bGERoaynPPPWfXVq/Xs2PHDlasWEH79u3R6XTU1v7fdP3Pl/Li4uIoLCzkyJEjbNu2jXfffReVSmV3v/DwcLsZs/Ly8tt+bndDq9Xe9z5aMxl/6x//5583/z0PH1bzpz91prYW1GobyckVzb7M1sofK9A23v/91NbG7+Xl1ei5VrnD1dfXl7y8PKBu+ezW/pouXbpQVFQEwOHDh5Vgc/XqVTp06EB4eDhhYWFcvHgRX19fzpw5Q1lZGVA3o1NaWtpkv35+fuzfvx+AgoICPDw8aNeunV2bAQMGkJubq9R2S1BQEF9//TUmkwmoCzqOG5kdlZaWYjKZ+Oijj9DpdOh0OiZPnkxubi4+Pj6cOnUKo9GIxWLh4MGDynWDBw+2W94rLi5ush+TycRPP/2kfH38+HF69eoFQGVlpdLu0KFD9OzZE4CoqCiSkpKU2Z2hQ4dSUFCg1G02m/Hw8GDZsmVK7ePHj2fy5Mn1whFA//79qaioIDc3l1GjRgEQGBhIfn6+8pyMRiNXr16luroajUZDu3bt+PHHH/n2228bHJfVaqW8vJxBgwbx/PPPKzNpQohfX3BwLZs3V/DmmxY2b27+cCTEr61VziC99NJLpKSkkJWVpWzShrpZiKSkJGJjYwkKClJmEgoKCtixYwcqlQqNRsPLL7+Mp6cn0dHRJCcnK7MP06dPbzItTps2jZSUFGJiYnBzcyM6Orpem1mzZpGcnExmZqbdJu2goCC+//573njjDaBuWemVV15p8q+scnNz6y0LDR8+nDVr1jB16lQmT57MkiVLaN++PV5eXkpYmzVrFmlpacTExGCxWPD39ycyMrLRPUjXr1/n3XffBcBisfDHP/6RRx55BICNGzdSXFyMk5MTXbp0ITIyssFax4wZQ0pKCosWLcLFxYXo6OhGZ9IaExISQnFxsbJs2KNHD6ZPn85bb72FzWZDpVIxe/ZsfH196dOnDwsWLKBz584MGDCgwftZrVY++OADZRn0ySefxN3d/Y5qEkI0n+DgWsaNs1JeLuFItH1ONputeXfRiWZjMpnQaDRYLBaSkpIYM2ZMo/ts2oKVK1cyYcIEAgMDW7SOX5pJvFdtbYq5ucn4Zfwyfhl/W9HUpEmrnEESdTIyMjhx4gS1tbUMHjy43j8r0FbcuHGDJUuW0Lt37xYPR0IIIcTtkIDUis2YMaOlS2gW7u7uJCcnt3QZQgghxG1rlZu0hRBCCCFakgQkIYQQQggHEpCEEEIIIRxIQBJCCCGEcCABSQghhBDCgQQkIYQQQggHEpCEEEIIIRxIQBJCCCGEcCABSQghhBDCgQQkIYQQQggHEpCEEEIIIRxIQBJCCCGEcCABSQghhBDCgQQkIYQQQggHEpCEEEIIIRxIQBJCCCGEcCABSQghhBDCgQQkIYQQQggHEpCEEEIIIRy0WECKiIiwO87JySEtLe1X6Ts6OhqDwXDb7ZuqzXEcd8NgMPDss8+ye/fue75XQ8rLy1m6dCkLFixg4cKF/OMf/1DOZWRkMHfuXGJjY4mNjeXo0aMN3uOX2pWXlxMREUFWVtZ9GYMQQgjxa3Jp6QJ+S2w2GzabDWdn+1yan59P//79yc3NZezYsc3er0qlIiIign79+vHTTz/x+uuvM3jwYHr06AHAhAkTmDRp0i/ep6l269ev59FHH23Wun+J1Wqt9yyFEEKI5tAqA5Jeryc1NZWqqio8PT2JiopCq9Wi0+kYMmQII0aMAOpmbzZs2EBlZSVr1qyhuroaq9XKnDlz8Pf359ixY2RkZGA2m+nWrRtRUVFoNBoAsrOzOXLkCGazmYULF9K9e3eMRiMpKSno9Xrc3NyIjIykd+/e9WpLTk7GZDIxdOhQu3NZWVl888031NbWMmzYMKZNm4ZerychIYH+/ftTVFREXFwcXbp0sbsuNzeXGTNmkJycTEVFBZ07dwZg7969ZGZm0q5dO3r37o1arWb27NkYDAY+/vhjKioqAHjxxRfx8/Nr9Hl27NiRjh07AvC73/2O7t27c+3aNSUg3atDhw7RtWtX3NzcGjy/d+9eLl26xMyZMwHYs2cPJSUlzJw5k3379vHll19iNpvp378/c+bMwdnZmU8++YQLFy5QU1PDiBEjmDZtGlA3+xcSEsKJEyeYNGkS169f56uvvkKlUtGjRw/mz5/fLGMSQtyd/HwnvvyyPSEhNwkOrm3pcoS4ay0WkGpqaoiNjVWOjUYjwcHBAKSnpxMaGsro0aPZu3cv6enpLF68uNF7HThwgKCgIKZMmYLVauXmzZsYDAa2bt1KfHw8Go2G7du3s3PnTqZOnQqAh4cHiYmJ7Nq1ix07djBv3jwyMjLo27cvixcv5uTJk6xdu5akpCS7vtatW8fYsWMJDQ0lOztb+fzYsWNcuXKFt99+G5vNxjvvvENhYSFarZaysjKio6Px9fWtV3t5eTmVlZX4+PgQEhJCXl4eTz31FNeuXeOLL74gMTERjUbDsmXLlLC2bt06Jk6ciJ+fH+Xl5SQkJLB69WouXLjAV199xbx58xp9Vnq9nosXL+Lj46N8tmvXLvbt20e/fv2YMWMG7du3b/DahtqZTCYyMzOJj49vdHlt5MiRbNu2jRdeeAEXFxdycnKIjIykpKSEvLw8li9fjouLC59++in79+8nNDSUZ599lvbt22O1Wlm2bBnfffedMv5b7w5g7ty5rF27FrVazY0bNxodtxDizkyd2vmOr6mqcqKw0AWr1QNnZw8CAmrx8LDd0T22bKm4436FuB9aLCC5urrahY+cnBwuXLgAwLlz54iJiQHg8ccfZ9OmTU3ey9vbm9TUVMxmM8OGDaNPnz4UFhZSUlJCfHw8AGaz2S6gDB8+HIB+/fpx6NAhAE6fPs2iRYsAGDRoEEajkerqaru+zpw5o7T5eW3Hjh3j+PHjSpAzmUyUlZWh1WrRarUNhiOAvLw8QkJCABg1ahSpqak89dRTnD9/Hn9/fyWsjBgxgitXrgBw4sQJSkpKlHtUV1djMpnw9vbG29u70edkMpl47733mDlzJu3atQNg7NixSmjcvHkzn332GVFRUfWubaxdRkYGEyZMUGbmGqLRaBg4cCBHjx6le/fuWCwWevXqRXZ2NhcvXiQuLg6oC82enp7Kc/nnP/+JxWKhsrKSkpISJSCNHDlSuXevXr14//33GTp0KMOGDWuw/z179rBnzx4AVq5ciVarbbTW5uDi4nLf+2jNZPwPxvjV6jv/9WA0gtUK4ITVasNodKFTpzu7R1t/dg/K+79bD9L4W+USW2NUKhXWup8+rFYrZrMZgICAAJYuXcrRo0fR6XRMnDgRd3d3AgMDG11ycXGpG7qzszMWi+WO6nBycmrw86effponnnjC7jO9Xt9keMjNzeXHH3/kwIEDAFy7dk0JQo2x2WwkJCTg6up62zWbzWbee+89HnvsMSUcAnTo0EH5OiwsTJmZSUlJ4eLFi3Tq1Im4uLhG250/f56DBw+yadMmbty4gZOTE66urowbN86u/7CwMLZt24aXlxejR49WxhEaGspzzz1n11av17Njxw5WrFhB+/bt0el01Nb+31T9z5fy4uLiKCws5MiRI2zbto13330XlUpld7/w8HDCw8OV4/Ly8tt+bndDq9Xe9z5aMxn/gzH+zz+/82sOH1YzfbqWmhobarWN5OSKO15ma+uP7kF5/3errY3fy8ur0XOtcoerr68veXl5QN3y2a39NV26dKGoqAiAw4cPK8Hm6tWrdOjQgfDwcMLCwrh48SK+vr6cOXOGsrIyoG72pLS0tMl+/fz82L9/PwAFBQV4eHgoMy23DBgwgNzcXKW2W4KCgvj6668xmUxAXdC5fv16k/2VlpZiMpn46KOP0Ol06HQ6Jk+eTG5uLj4+Ppw6dQqj0YjFYuHgwYPKdYMHD7Zb3isuLm6yH5vNxocffkj37t2ZOHGi3bnKykrl60OHDtGzZ08AoqKiSEpKUmZ3Gmu3bNkypfbx48czefLkeuEIoH///lRUVJCbm8uoUaMACAwMJD8/X3lORqORq1evUl1djUajoV27dvz44498++23DY7LarVSXl7OoEGDeP7555WZNCFEywgOriU720xsbBWbN995OBKiNWmVM0gvvfQSKSkpZGVlKZu0oW4WIikpidjYWIKCgpSZhIKCAnbs2IFKpUKj0fDyyy/j6elJdHQ0ycnJyuzD9OnTm0yL06ZNIyUlhZiYGNzc3IiOjq7XZtasWSQnJ5OZmWm3STsoKIjvv/+eN954A6hbVnrllVea/Cur3NzcestCw4cPZ82aNUydOpXJkyezZMkS2rdvj5eXlxLWZs2aRVpaGjExMVgsFvz9/YmMjGx0D9KZM2fYt28fvXr1UvZ9Pfvss/zhD39g48aNFBcX4+TkRJcuXYiMjGyw1ttt15SQkBCKi4uVZcMePXowffp03nrrLWw2GyqVitmzZ+Pr60ufPn1YsGABnTt3ZsCAAQ3ez2q18sEHHyjLoE8++STu7u53XJcQovmMGGHDx8fY0mUIcc+cbDbbne2gE78ak8mERqPBYrGQlJTEmDFjGt1n0xasXLmSCRMmEBgY2KJ1/NJM4r1qa1PMzU3GL+OX8cv424qmJk1a5QySqJORkcGJEyeora1l8ODB9f5Zgbbixo0bLFmyhN69e7d4OBJCCCFuhwSkVmzGjBktXUKzcHd3Jzk5uaXLEEIIIW5bq9ykLYQQQgjRkiQgCSGEEEI4kIAkhBBCCOFAApIQQgghhAMJSEIIIYQQDiQgCSGEEEI4kIAkhBBCCOFAApIQQgghhAMJSEIIIYQQDiQgCSGEEEI4kIAkhBBCCOFAApIQQgghhAMJSEIIIYQQDiQgCSGEEEI4kIAkhBBCCOFAApIQQgghhAMJSEIIIYQQDiQgCSGEEEI4kIAkhBBCCOGgxQJSRESE3XFOTg5paWm/St/R0dEYDIbbbt9UbY7juBsGg4Fnn32W3bt33/O9GpOSksKcOXNYtGiR3ecZGRnMnTuX2NhYYmNjOXr0aIPXb9iwgfnz5xMTE0NSUhI3btywO19eXk5ERARZWVn3bQxCCCHEr8WlpQv4LbHZbNhsNpyd7XNpfn4+/fv3Jzc3l7Fjx96XvkePHs24cePQ6XT1zk2YMIFJkyY1ef3gwYN57rnnUKlUbNy4kW3btvHCCy8o59evX8+jjz7a7HU3xWq11nuWQgghRHNolQFJr9eTmppKVVUVnp6eREVFodVq0el0DBkyhBEjRgB1szcbNmygsrKSNWvWUF1djdVqZc6cOfj7+3Ps2DEyMjIwm81069aNqKgoNBoNANnZ2Rw5cgSz2czChQvp3r07RqORlJQU9Ho9bm5uREZG0rt373q1JScnYzKZGDp0qN25rKwsvvnmG2praxk2bBjTpk1Dr9eTkJBA//79KSoqIi4uji5duthdl5uby4wZM0hOTqaiooLOnTsDsHfvXjIzM2nXrh29e/dGrVYze/ZsDAYDH3/8MRUVFQC8+OKL+Pn5NflMAwIC0Ov1d/1OgoKClK99fX3Jz89Xjg8dOkTXrl1xc3Nr8Nq9e/dy6dIlZs6cCcCePXsoKSlh5syZ7Nu3jy+//BKz2Uz//v2ZM2cOzs7OfPLJJ1y4cIGamhpGjBjBtGnTgLrZv5CQEE6cOMGkSZO4fv06X331FSqVih49ejB//vy7HqMQ4u4dPqzmm2/cePJJJ3x8WroaIe5diwWkmpoaYmNjlWOj0UhwcDAA6enphIaGMnr0aPbu3Ut6ejqLFy9u9F4HDhwgKCiIKVOmYLVauXnzJgaDga1btxIfH49Go2H79u3s3LmTqVOnAuDh4UFiYiK7du1ix44dzJs3j4yMDPr27cvixYs5efIka9euJSkpya6vdevWMXbsWEJDQ8nOzlY+P3bsGFeuXOHtt9/GZrPxzjvvUFhYiFarpaysjOjoaHx9fevVXl5eTmVlJT4+PoSEhJCXl8dTTz3FtWvX+OKLL0hMTESj0bBs2TIlrK1bt46JEyfi5+dHeXk5CQkJrF69mgsXLvDVV18xb968O3oXu3btYt++ffTr148ZM2bQvn37Jtvv3buXkSNHAmAymcjMzCQ+Pr7R5bWRI0cqM04uLi7k5OQQGRlJSUkJeXl5LF++HBcXFz799FP2799PaGgozz77LO3bt8dqtbJs2TK+++47Zfy33h3A3LlzWbt2LWq1ut6ynxD3YurUznd1nVrtQm3t3V3bVlVVOVFYqMZqhXfegYAALR4etpYuq0XczfvfsqXiPlUj7kWLBSRXV1e78JGTk8OFCxcAOHfuHDExMQA8/vjjbNq0qcl7eXt7k5qaitlsZtiwYfTp04fCwkJKSkqIj48HwGw22wWU4cOHA9CvXz8OHToEwOnTp5U9OoMGDcJoNFJdXW3X15kzZ5Q2P6/t2LFjHD9+XAlyJpOJsrIytFotWq22wXAEkJeXR0hICACjRo0iNTWVp556ivPnz+Pv76+ElREjRnDlyhUATpw4QUlJiXKP6upqTCYT3t7eeHt7N/msHI0dO1YJjZs3b+azzz4jKiqq0fZbt25FpVLx2GOPAXV7mCZMmKDMzDVEo9EwcOBAjh49Svfu3bFYLPTq1Yvs7GwuXrxIXFwcUBeaPT09lefyz3/+E4vFQmVlJSUlJUpAuhXOAHr16sX777/P0KFDGTZsWIP979mzhz179gCwcuVKtFrt7T6eu+Li4nLf+2jNHpTxq9V3959HJycn1Gp1M1fTuhmNYLUCOGG12jAaXejUqaWrahl38/4fhJ+XWx6Un39opUtsjVGpVFjrfgqxWq2YzWagbvlo6dKlHD16FJ1Ox8SJE3F3dycwMLDRJRcXl7qhOzs7Y7FY7qgOJyenBj9/+umneeKJJ+w+0+v1TYaH3NxcfvzxRw4cOADAtWvXlCDUGJvNRkJCAq6urndUd0M6dOigfB0WFqbMzKSkpHDx4kU6deqkBJicnByOHDnC//t//095BufPn+fgwYNs2rSJGzdu4OTkhKurK+PGjbPrJywsjG3btuHl5cXo0aOVcYSGhvLcc8/ZtdXr9ezYsYMVK1bQvn17dDodtbW1yvmfL+XFxcVRWFjIkSNH2LZtG++++y4qlcrufuHh4YSHhyvH5eXld/u4botWq73vfbRmD8r4P//87q57UMZ/Jw4fVvOnP3WmthZcXSE5uYLg4NpfvvABdDfv/0H6dmlr3/9eXl6NnmuVO1x9fX3Jy8sD6pbPbu2v6dKlC0VFRQAcPnxYCTZXr16lQ4cOhIeHExYWxsWLF/H19eXMmTOUlZUBdTM6paWlTfbr5+fH/v37ASgoKMDDw4N27drZtRkwYAC5ublKbbcEBQXx9ddfYzKZgLqgc/369Sb7Ky0txWQy8dFHH6HT6dDpdEyePJnc3Fx8fHw4deoURqMRi8XCwYMHlesGDx5st7xXXFzcZD9NqaysVL4+dOgQPXv2BCAqKoqkpCQlHH377bdkZmby2muv2QWUZcuWKbWPHz+eyZMn1wtHAP3796eiooLc3FxGjRoFQGBgIPn5+cpzMhqNXL16lerqajQaDe3atePHH3/k22+/bbB2q9VKeXk5gwYN4vnnn1dm0oQQv67g4Fo2b64gNraK7GzzbzYciQdLq5xBeumll0hJSSErK0vZpA11sxBJSUnExsYSFBSk/KIuKChgx44dqFQqNBoNL7/8Mp6enkRHR5OcnKzMPkyfPr3JtDht2jRSUlKIiYnBzc2N6Ojoem1mzZpFcnIymZmZdpu0g4KC+P7773njjTeAumWlV155pcm/ssrNza23LDR8+HDWrFnD1KlTmTx5MkuWLKF9+/Z4eXkpYW3WrFmkpaURExODxWLB39+fyMjIJvcgrVmzhsLCQqqqqpg3bx7Tpk1jzJgxbNy4keLiYpycnOjSpQuRkZEN1pqWlobZbGb58uVAXeBprG1jQkJCKC4uVpYNe/TowfTp03nrrbew2WyoVCpmz56Nr68vffr0YcGCBXTu3JkBAwY0eD+r1coHH3ygLIM++eSTuLu731FNQojmERxcS3BwLVqt5oGaERG/XU42m+23uZOuDTCZTGg0GiwWC0lJSYwZM6bRfTZtwcqVK5kwYQKBgYEtWscvzSTeq7Y2xdzcZPwyfhm/jL+taGrSpFXOIIk6GRkZnDhxgtraWgYPHlzvnxVoK27cuMGSJUvo3bt3i4cjIYQQ4nZIQGrFZsyY0dIlNAt3d3eSk5NbugwhhBDitrXKTdpCCCGEEC1JApIQQgghhAMJSEIIIYQQDiQgCSGEEEI4kIAkhBBCCOFAApIQQgghhAMJSEIIIYQQDiQgCSGEEEI4kIAkhBBCCOFAApIQQgghhAMJSEIIIYQQDiQgCSGEEEI4kIAkhBBCCOFAApIQQgghhAMJSEIIIYQQDiQgCSGEEEI4kIAkhBBCCOFAApIQQgghhAMJSEIIIYQQDlokIEVERNgd5+TkkJaW9qv0HR0djcFguO32TdXmOI5btm7dysKFC4mJiSE2NpZz584B8OGHH1JSUnLnRf+C8vJyIiIiyMrKavZ7t5SCggJWrlxp95lOpyM/Px+AN998kwsXLijn9Ho9ixYt+lVrFEII8eByaekCHjRnz57lyJEjJCYmolarMRgMmM1mAObNm3df+ly/fj2PPvpog+cKCgrIyckhOjr6vvRtsVhQqVT35d5CCCFES2l1AUmv15OamkpVVRWenp5ERUWh1WrR6XQMGTKEESNGAHWzNxs2bKCyspI1a9ZQXV2N1Wplzpw5+Pv7c+zYMTIyMjCbzXTr1o2oqCg0Gg0A2dnZHDlyBLPZzMKFC+nevTtGo5GUlBT0ej1ubm5ERkbSu3fverUlJydjMpkYOnRog/VXVlbi4eGBWq0GwNPTUzn35ptvEhERQWVlJZs3bwagpqYGs9mMTqejqKiI9evXYzKZlLF37Nixyed16NAhunbtipub2909cOpmZtRqNUVFRfz000/MmDGDIUOGYLVa2bRpE4WFhdTW1vIf//EfPPHEExQUFLB582bc3d0pLS0lMTGR1atXc+3aNaxWK8888wwjR47kxIkTbNiwAYvFgre3N3/+859Rq9VER0cTGhpa7x0IIdquw4fVfPONG08+6YSPT0tXI8S9a5GAVFNTQ2xsrHJsNBoJDg4GID09ndDQUEaPHs3evXtJT09n8eLFjd7rwIEDBAUFMWXKFKxWKzdv3sRgMLB161bi4+PRaDRs376dnTt3MnXqVAA8PDxITExk165d7Nixg3nz5pGRkUHfvn1ZvHgxJ0+eZO3atSQlJdn1tW7dOsaOHUtoaCjZ2dkN1hMUFMSWLVt49dVXCQwMZOTIkQQEBNi1CQ4OVsa7atUqAgICMJvNylg9PT3Jy8vj888/Jyoqit27dwMwduxYu/uYTCYyMzOJj4+/5+W1q1ev8vbbb/PDDz+wdOlSAgMD2bdvH+3atWPFihXU1tYSHx9PUFAQABcvXuS9996ja9eu5Ofn07FjR+Li4gCorq6mpqaGlJQU4uPj8fLyYu3atezevZsJEyY0+g4cnTp1yu77pLy8nCFDhijH77//Pq6urgCYzWacnWVLnRDNYerUznfUvqrKicJCNVYrvPMOBARo8fCw3fb1W7ZU3C1abToAACAASURBVGmJQtx3LRKQXF1d7cJHTk6Osp/k3LlzxMTEAPD444+zadOmJu/l7e1NamoqZrOZYcOG0adPHwoLCykpKSE+Ph6o++Xp6+urXDN8+HAA+vXrx6FDhwA4ffq0sodl0KBBGI1Gqqur7fo6c+aM0qax2jQaDYmJiZw6dYqCggJWr17N888/z+jRo+u1zczMxNXVlXHjxnHp0iUuX77M8uXLAbBarcrskWMwuiUjI4MJEyYoM2M/t2TJEmprazGZTBiNRiVoPP/88zzyyCP12oeEhODs7MzDDz9Mt27dKC0t5dixY1y6dEnZ91NdXc2VK1dwcXHBx8eHrl27AtCrVy82bNjAxo0bGTJkCP7+/hQXF9O1a1e8vLwACA0NZdeuXUpAaugdOPL39+f1119XjnU6nd35v/zlL3h7ewN1s3uJiYkN3mfPnj3s2bMHgJUrV6LVahts11xcXFzuex+tmYy/7Y9frb6zXw1GI1itAE5YrTaMRhc6dbr969v68/q5B+H934sHafytbomtMSqVCmvdTyBWq1XZ1xMQEMDSpUs5evQoOp2OiRMn4u7uTmBgIPPnz2/wXi4udcN2dnbGYrHcUR1OTk6/2MbZ2ZmBAwcycOBAevXqRU5OTr2AdPz4cfLz81m6dKnyWY8ePUhISLjtWs6fP8/BgwfZtGkTN27cwMnJSQlcb7/9NnD7e5AaGpfNZmPWrFn1AlVBQYHdkp6XlxeJiYkcPXqUv/71rwQGBiozZI25l3dwp8LDwwkPD1eOy8vL72t/Wq32vvfRmsn42/74P//8ztofPqzmT3/qTG0tuLpCcnIFwcG1t319G39cdh6E938v2tr4b/2P+Ia0ujUJX19f8vLygLrlMz8/PwC6dOlCUVERAIcPH1Z+qV69epUOHToQHh5OWFgYFy9exNfXlzNnzlBWVgbULUWVlpY22a+fnx/79+8H6gKAh4cH7dq1s2szYMAAcnNzldoaUlpaypUrV5Tj4uJiunTpYtfm6tWrpKWlsWDBAmWJyMvLC4PBwNmzZ4G6Wa/Lly83WfOyZcvQ6XTodDrGjx/P5MmTGTduXJPXNCY/Px+r1UpZWRk//PADXl5ePPLII+zevVsJo6WlpZhMpnrXXrt2DVdXVx5//HEmTZpEUVERXl5e6PV65R3s27ev3lKjEOLBEBxcy+bNFcTGVpGdbb6jcCREa9XqZpBeeuklUlJSyMrKUjYqA4SFhZGUlERsbCxBQUHKDEZBQQE7duxApVKh0Wh4+eWX8fT0JDo6muTkZGpr635Qp0+f3mRSnDZtGikpKcTExODm5tbgjMusWbNITk4mMzOz0U3aJpOJ9PR0bty4gUql4qGHHiIyMtKuTU5ODkajUVlm7NSpE3FxcSxatIh169ZRXV2NxWJh/Pjx9OzZs9E9SM2pc+fOLFmyhJ9++ok///nPuLq6MmbMGPR6Pa+99hpQt+H853uCbrl06RIbN27EyckJFxcX5syZg6urK1FRUaxatUrZpP3EE0/ct/qFEC0rOLiW4OBatFrNAzUjJH67nGw22+3vpBMPJMe/EHzQ/dJs4r1qa1PMzU3GL+OX8cv424o2tcQmhBBCCNHSWt0Sm/j13a9/RFIIIYRoq2QGSQghhBDCgQQkIYQQQggHEpCEEEIIIRxIQBJCCCGEcCABSQghhBDCgQQkIYQQQggHEpCEEEIIIRxIQBJCCCGEcCABSQghhBDCgQQkIYQQQggHEpCEEEIIIRxIQBJCCCGEcCABSQghhBDCgQQkIYQQQggHEpCEEEIIIRxIQBJCCCGEcCABSQghhBDCgQQkIYQQQggHEpCEEEIIIRy0yoAUERFhd5yTk0NaWtqv0nd0dDQGg+G22zdVm+M4btm6dSsLFy4kJiaG2NhYzp07B8CHH35ISUnJnRfdiPPnzxMbG6v836FDh5rt3vebTqcjPz/f7rNbz1Ov17No0SK7cxkZGWRlZf1q9QkhhHiwubR0Ab81Z8+e5ciRIyQmJqJWqzEYDJjNZgDmzZvXrH317NmTlStXolKpqKysJDY2liFDhqBSqZqtD4vF0qz3E0IIIVqDNheQ9Ho9qampVFVV4enpSVRUFFqtFp1Ox5AhQxgxYgRQN9uwYcMGKisrWbNmDdXV1VitVubMmYO/vz/Hjh0jIyMDs9lMt27diIqKQqPRAJCdnc2RI0cwm80sXLiQ7t27YzQaSUlJQa/X4+bmRmRkJL17965XW3JyMiaTiaFDhzZYf2VlJR4eHqjVagA8PT2Vc2+++SYRERFUVlayefNmAGpqajCbzeh0OoqKili/fj0mk0kZe8eOHRt9Vm5ubsrXtbW1ODk5NdguIiKCsLAwjh8/TocOHZg/fz6enp6UlZWRlpaGwWDAzc2NuXPn0r17d3Q6HWq1muLiYgYMGMDQoUNZt24dAE5OTixduhSNRsPGjRv59ttvAXjmmWcYOXIkBQUF/O1vf8PDw4PLly/Tr18/XnnllUZrE0K0HYcPqzl+3JnBg9UEB9e2dDlC3JNWGZBqamqIjY1Vjo1GI8HBwQCkp6cTGhrK6NGj2bt3L+np6SxevLjRex04cICgoCCmTJmC1Wrl5s2bGAwGtm7dSnx8PBqNhu3bt7Nz506mTp0KgIeHB4mJiezatYsdO3Ywb948MjIy6Nu3L4sXL+bkyZOsXbuWpKQku77WrVvH2LFjCQ0NJTs7u8F6goKC2LJlC6+++iqBgYGMHDmSgIAAuzbBwcHKeFetWkVAQABms1kZq6enJ3l5eXz++edERUWxe/duAMaOHVuvv3PnzpGamsrVq1d55ZVXGpztuXnzJt7e3sycOZMtW7bwt7/9jdmzZ/Pxxx/z5z//mYcffphz587x6aef8t///d8AXLt2jbfeegtnZ2dWrlzJ7Nmz8fPzw2QyoVarOXjwIMXFxSQlJWEwGIiLi8Pf3x+AixcvsmrVKjp27Eh8fDxnzpzBz8+vXl0bNmzgiy++aPA5lpWV2X2P/Pjjjzz11FMNthVC3J6pUzvf9bVVVU4UFqqxWsHZWUtAQC0eHra7vt+WLRV3fa0QzaFVBiRXV1e78JGTk8OFCxeAul/4MTExADz++ONs2rSpyXt5e3uTmpqK2Wxm2LBh9OnTh8LCQkpKSoiPjwfAbDbj6+urXDN8+HAA+vXrp+zbOX36tLLvZdCgQRiNRqqrq+36OnPmjNKmsdo0Gg2JiYmcOnWKgoICVq9ezfPPP8/o0aPrtc3MzMTV1ZVx48Zx6dIlLl++zPLlywGwWq3K7FFDweiW/v37s2rVKkpKStDpdDzyyCO4urratXFycmLkyJEAPPbYY7z77ruYTCbOnDnDqlWrlHa3lgIBRowYgbNz3RY2Pz8/PvvsM/74xz8yfPhwOnfuzOnTpxk1ahTOzs506NCBgIAALly4wO9+9zt8fHzo3LnuP8R9+vRBr9c3GJAiIiKUGcFbx7c89NBDdt8jGRkZjT6DPXv2sGfPHgBWrlyJVqtttG1zcHFxue99tGYy/rY7frX67n8lGI1gtQI4YbXaMBpd6NTp7mtpq8+wLb//5vAgjb9VBqS7oVKpsNb9dGK1WpVf5gEBASxdupSjR4+i0+mYOHEi7u7uBAYGMn/+/Abv5eJS91icnZ2xWCx3VMftLBU5OzszcOBABg4cSK9evcjJyakXkI4fP05+fj5Lly5VPuvRowcJCQl3VM/Pr9VoNFy+fBlvb+9fHIPVasXd3b3eLNktt5YjAZ5++mn+8Ic/cPToUeLj43njjTeavP+t5UWoexa33tv9Eh4eTnh4uHJcXl5+X/vTarX3vY/WTMbfdsf/+ed3f+3hw2r+9KfO1NaCWm0jObninpbZ2ugjbNPvvzm0tfF7eXk1eq5V/hVbU3x9fcnLywPqls9uzTx06dKFoqIiAA4fPqwEm6tXr9KhQwfCw8MJCwvj4sWL+Pr6cubMGcrKygAwmUyUlpY22a+fnx/79+8HoKCgAA8PD9q1a2fXZsCAAeTm5iq1NaS0tJQrV64ox8XFxXTp0sWuzdWrV0lLS2PBggXKbI+XlxcGg4GzZ88CdbM5ly9fbrJmvV5v9xxKS0vr9QVgs9mUvxi79UzbtWtH165d+eabb5Q2xcXFDfZTVlZGr169ePrpp/H29ub777/H39+fb775BqvVisFg4NSpU/j4+DRZrxCi7QoOrmXz5grefNPC5s33Fo6EaA3a3AzSSy+9REpKCllZWcpGZYCwsDCSkpKIjY0lKChI2aBcUFDAjh07UKlUaDQaXn75ZTw9PYmOjiY5OZna2rof4unTpzeZJKdNm0ZKSgoxMTG4ubkRHR1dr82sWbNITk4mMzOz0U3aJpOJ9PR0bty4gUql4qGHHiIyMtKuTU5ODkajUZm96dSpE3FxcSxatIh169ZRXV2NxWJh/Pjx9OzZs9E9SKdPn2b79u2oVCqcnZ2ZPXu23abwW9zc3Dh//jxbt27F09OTBQsWAPCXv/yFTz75hK1bt2I2mxk1ahR9+vSpd/0//vEPCgoKcHJyokePHjz66KO4uLhw9uxZZZ/QCy+8QIcOHfj+++8bfcZCiLYtOLiWceOslJdLOBJtn5PNZrv7XXTigXDrL/5+K35ptvBetbUp5uYm45fxy/hl/G3FA7XEJoQQQghxv0lAEr+p2SMhhBDidkhAEkIIIYRwIAFJCCGEEMKBBCQhhBBCCAcSkIQQQgghHEhAEkIIIYRwIAFJCCGEEMKBBCQhhBBCCAcSkIQQQgghHEhAEkIIIYRwIAFJCCGEEMKBBCQhhBBCCAcSkIQQQgghHEhAEkIIIYRwIAFJCCGEEMKBBCQhhBBCCAcSkIQQQgghHEhAEkIIIYRwIAFJCCGEEMKBBCQhhBBCCAetMiBFRETYHefk5JCWlvar9B0dHY3BYLjt9k3V5jiOW7Zu3crChQuJiYkhNjaWc+fOAfDhhx9SUlJy50U34vjx47z22mssWrSI1157jZMnTzbbve+3jIwMsrKy7D77+btpye8RIYQQDz6Xli7gt+bs2bMcOXKExMRE1Go1BoMBs9kMwLx585q1Lw8PD1577TU6derEpUuXSEhI4KOPPmrWPiwWCyqVqlnvKYQQQrS0NheQ9Ho9qampVFVV4enpSVRUFFqtFp1Ox5AhQxgxYgRQN8OwYcMGKisrWbNmDdXV1VitVubMmYO/vz/Hjh0jIyMDs9lMt27diIqKQqPRAJCdnc2RI0cwm80sXLiQ7t27YzQaSUlJQa/X4+bmRmRkJL17965XW3JyMiaTiaFDhzZYf2VlJR4eHqjVagA8PT2Vc2+++SYRERFUVlayefNmAGpqajCbzeh0OoqKili/fj0mk0kZe8eOHRt9Vn379lW+7tmzJzU1NdTW1ip93xIdHU1ISAj//ve/cXV15dVXX+Whhx7CYDDw8ccfU1FRAcCLL76In58fGRkZ/PDDD+j1ejp37swzzzxDSkoKZrMZm83GokWLePjhh9m5cydff/01AGPGjGHChAno9XpWrFjBgAEDOHv2LJ06dWLx4sW4urr+8ssXQrR6+flOfPlle0JCbhIcXNvS5Qhx11plQKqpqSE2NlY5NhqNBAcHA5Cenk5oaCijR49m7969pKens3jx4kbvdeDAAYKCgpgyZQpWq5WbN29iMBjYunUr8fHxaDQatm/fzs6dO5k6dSpQN/OSmJjIrl272LFjB/PmzSMjI4O+ffuyePFiTp48ydq1a0lKSrLra926dYwdO5bQ0FCys7MbrCcoKIgtW7bw6quvEhgYyMiRIwkICLBrExwcrIx31apVBAQEYDablbF6enqSl5fH559/TlRUFLt37wZg7NixjT6HgwcP0q9fv3rh6JZ27drx3nvv8b//+7/8z//8D6+//jrr1q1j4sSJ+Pn5UV5eTkJCAqtXrwagpKSE5cuX4+rqSnp6OuPHj+exxx7DbDZjtVopKiri66+/JiEhAYAlS5YQEBCAu7s7V65c4dVXX2XevHmsWrWK/Px8Hn/88Xo1/f3vf2f//v3K8bVr15Svm/oeEULcf1Ondq73WVWVE4WFLlitHjg7exAQUIuHh005v2VLxa9ZohD3pFUGJFdXV7vwkZOTw4ULFwA4d+4cMTExADz++ONs2rSpyXt5e3uTmpqK2Wxm2LBh9OnTh8LCQkpKSoiPjwfAbDbj6+urXDN8+HAA+vXrx6FDhwA4ffo0ixYtAmDQoEEYjUaqq6vt+jpz5ozSprHaNBoNiYmJnDp1ioKCAlavXs3zzz/P6NGj67XNzMzE1dWVcePGcenSJS5fvszy5csBsFqtyuxRU8EI4PLly2zatIk33nij0TajRo1S/v/69esBOHHihN2eqOrqakwmE1AX4m7N+vj6+rJ161YqKioYPnw4Dz/8MKdPn2bYsGHKrNywYcM4deoUwcHBdO3alT59+gB1z/jq1asN1jRhwgQmTZqkHEdHRytfN/U94mjPnj3s2bMHgJUrV6LVaht9Ds3BxcXlvvfRmsn4fxvjV6vr//owGsFqBXDCarVhNLrQqdP/nf8tPJffyvtvzIM0/lYZkO6GSqXCWveTidVqVfb1BAQEsHTpUo4ePYpOp2PixIm4u7sTGBjI/PnzG7yXi0vdY3F2dsZisdxRHU5OTr/YxtnZmYEDBzJw4EB69epFTk5OvYB0/Phx8vPzWbp0qfJZjx49lBmZ21VRUcG7775LdHQ0Dz300G3Vfetrm81GQkJCg8tfbm5uytd//OMf8fHx4ejRo6xYsYLIyMgma/r5LJazszM1NTW3PZ67ER4eTnh4uHJcXl5+X/vTarX3vY/WTMb/2xj/55/X/+zwYTXTp2upqbGhVttITq6wW2b7DTyW38z7b0xbG7+Xl1ej51rlX7E1xdfXl7y8PKBu+czPzw+ALl26UFRUBMDhw4eVYHP16lU6dOhAeHg4YWFhXLx4EV9fX86cOUNZWRkAJpOJ0tLSJvv18/NTlnsKCgrw8PCgXbt2dm0GDBhAbm6uUltDSktLuXLlinJcXFxMly5d7NpcvXqVtLQ0FixYoIQTLy8vDAYDZ8+eBepmvS5fvtxkzTdu3GDlypU899xzynNqzK1nmpeXR//+/QEYPHiw3VJhcXFxg9f+8MMPdOvWjfHjxxMcHMx3332Hn58f//rXv7h58yYmk4l//etf+Pv7N1mDEKJtCw6uJTvbTGxsFZs3V8geJNGmtbkZpJdeeomUlBSysrKUjcoAYWFhJCUlERsbS1BQkDLDUVBQwI4dO1CpVGg0Gl5++WU8PT2Jjo4mOTmZ2tq6H+Dp06c3mSSnTZtGSkoKMTExuLm52S333DJr1iySk5PJzMxsdJO2yWQiPT2dGzduoFKpeOihh+rNuOTk5GA0GpUlpE6dOhEXF8eiRYtYt24d1dXVWCwWxo8fT8+ePRvdg5SdnU1ZWRlbtmxhy5YtAPzXf/0Xv//97+vVZTQaiYmJQa1W8+qrryrjSUtLIyYmBovFgr+/f4OzQ9988w379u1DpVLRoUMHpkyZQvv27Rk9ejRLliwB6jZp9+3bF71e3+gzFkK0fSNG2PDxMbZ0GULcMyebzWb75WbiQRYdHc2KFSvs/qLuQfZLs4X3qq1NMTc3Gb+MX8Yv428rHqglNiGEEEKI+63NLbGJ5qfT6Vq6BCGEEKJVkRkkIYQQQggHEpCEEEIIIRxIQBJCCCGEcCABSQghhBDCgQQkIYQQQggHEpCEEEIIIRxIQBJCCCGEcCABSQghhBDCgQQkIYQQQggHEpCEEEIIIRxIQBJCCCGEcCABSQghhBDCgQQkIYQQQggHEpCEEEIIIRxIQBJCCCGEcCABSQghhBDCgQQkIYQQQggHEpCEEEIIIRxIQBJCCCGEcCABSQghhBDCQasMSBEREXbHOTk5pKWl/Sp9R0dHYzAYbrt9U7U5juOWrVu3snDhQmJiYoiNjeXcuXMAfPjhh5SUlNx50Y2oqqpi6dKlRERE/GrPr7lkZGSQlZVl99nP301Lfo8IIYR48Lm0dAG/NWfPnuXIkSMkJiaiVqsxGAyYzWYA5s2b16x9qdVq/vSnP3Hp0iUuX77crPe+xWKxoFKp7su9hRBty+HDao4fd2bwYDXBwbUtXY4Q96TNBSS9Xk9qaipVVVV4enoSFRWFVqtFp9MxZMgQRowYAdTNMGzYsIHKykrWrFlDdXU1VquVOXPm4O/vz7Fjx8jIyMBsNtOtWzeioqLQaDQAZGdnc+TIEcxmMwsXLqR79+4YjUZSUlLQ6/W4ubkRGRlJ796969WWnJyMyWRi6NChDdZfWVmJh4cHarUaAE9PT+Xcm2++SUREBJWVlWzevBmAmpoazGYzOp2OoqIi1q9fj8lkUsbesWPHRp+VRqPBz8+PsrKyJp9pdHQ0ISEh/Pvf/8bV1ZVXX32Vhx56CIPBwMcff0xFRQUAL774In5+fmRkZPDDDz+g1+vp3LkzzzzzDCkpKZjNZmw2G4sWLeLhhx9m586dfP311wCMGTOGCRMmoNfrWbFiBQMGDODs2bN06tSJxYsX4+rq2mSNQojWY+rUzvU+q6pyorBQjdUKzs5aAgJq8fCw1Wu3ZUvFr1GiEPesVQakmpoaYmNjlWOj0UhwcDAA6enphIaGMnr0aPbu3Ut6ejqLFy9u9F4HDhwgKCiIKVOmYLVauXnzJgaDga1btxIfH49Go2H79u3s3LmTqVOn8v+1c7dBUZ13H8e/7LJAUQkCooI1CoiCim1mRUbrQ0bqpGjSTjqTmMR0TDuaDNQYq0RjY4yxDGEoEK1gpgHRMZ1MMh2NpaaFWoOmQVvwoSYoGlHIUDArICpSAstuX3C7dzgqeRCyPPw+b9yzHM75/89Z3d9e17UCDBs2jLS0NAoLCykoKOCZZ57hnXfeYfz48Tz//PN8/PHHbNu2jfT09C7nys/PZ8GCBcydO5e//vWvt61n2rRp/PGPf2TlypVMnTqVmTNnEh0d3WUfq9Xq6jczM5Po6GjsdrurVz8/P0pKSnjrrbdITEykqKgIgAULFnzNK/3/fH19ycjI4NChQ+zcuZN169aRn5/PokWLmDRpEvX19aSkpJCVlQVATU0NmzdvxsvLix07dpCQkMDs2bOx2+04HA4uXLjA+++/T0pKCgDr168nOjqaIUOGUFdXx8qVK3nmmWfIzMzk6NGjzJkz55aa9u/fzwcffODabmxsdD3u7jVidODAAQ4cOADAq6++SlBQ0De+Tl+Fp6dnr5+jL1P/A79/i+XWt47mZnA4ADxwOJw0N3sSEHDr7w70azMY7n93BlL/fTIgeXl5dQkfxcXFVFZWAvDJJ5+wZs0aAObMmcMf/vCHbo8VHh7O9u3bsdvtxMbGMm7cOE6fPk1NTQ0bNmwAwG63ExkZ6fqdGTNmABAWFsa//vUvACoqKli9ejUAU6ZMobm5mZaWli7nOnv2rGufO9Xm4+NDWloaZ86coby8nKysLJ544gnmzZt3y7779u3Dy8uLBx54wDVNtnnzZgAcDodr9OhugtFNs2bNcv25a9cuAD766KMua6JaWlpobW0FOkPczVGfyMhI9uzZQ0NDAzNmzGD06NFUVFQQGxvrGpWLjY3lzJkzWK1WgoODGTduHNB5jS9fvnzbmhYuXMhDDz3k2k5KSnI97u41YhQfH098fLxru76+/qtdlG8oKCio18/Rl6n/gd//W2/d+lxZmYVHHw2kvR0sFidbtjTcdpptgF+aQXH/u9Pf+g8JCbnjz/pkQPomzGYzjs6PLzgcDte6nujoaDZt2sTx48fJzs5m0aJFDBkyhKlTp/Lcc8/d9lienp2XxWQy0dHR8bXq8PDw+NJ9TCYTkydPZvLkyYwdO5bi4uJbAtKpU6c4evQomzZtcj03ZswY14hMT/ti3TcfO51OUlJSbjv95e3t7Xr8gx/8gIiICI4fP05qairLly/v9lw3pxeh81q0tbXdbfki4mZWaztvv93AqVPDiYm5ojVI0u/1yW+xdScyMpKSkhKgc/ps0qRJAIwYMYILFy4AUFZW5go2ly9fxt/fn/j4eObPn8/FixeJjIzk7NmzrrU5ra2t1NbWdnveSZMmuaZ7ysvLGTZsGL6+vl32mThxIh9++KGrttupra2lrq7OtV1VVcWIESO67HP58mXy8vJYtWqVK5yEhIRw7do1zp07B3SOevXkwuub17SkpIQJEyYAEBMT02WqsKqq6ra/+9lnnzFy5EgSEhKwWq1UV1czadIkSktL+fzzz2ltbaW0tJSoqKgeq1dE+h6rtZ3nn3coHMmA0O9GkH7+85+Tk5PDn/70J9dCZYD58+eTnp5OcnIy06ZNc41wlJeXU1BQgNlsxsfHh1/+8pf4+fmRlJTEli1baG/v/Iu8ePHibofaHnnkEXJyclizZg3e3t5dpntueuqpp9iyZQv79u274yLt1tZWduzYwY0bNzCbzYwaNeqWEZfi4mKam5tdU0gBAQG88MILrF69mvz8fFpaWujo6CAhIYHvfve73a5BSkpKoqWlBbvdTmlpKS+++CJjxoy5Zb/m5mbWrFmDxWJh5cqVrn7y8vJYs2YNHR0dREVF3XZ06MiRIxw+fBiz2Yy/vz8PP/wwQ4cOZd68eaxfvx7oXKQ9fvx4bDbbHa+xiIhIX+HhdDpv/ZqBDCpJSUmkpqZ2+UbdQPZlo4V3q7/Nwfc09a/+1b/67y+6Gxjpd1NsIiIiIr2t302xSc/Lzs52dwkiIiJ9ikaQRERERAwUkEREREQMFJBEREREDBSQRERERAwUkEREREQMFJBEREREDBSQRERERAwUkEREREQMFJBEREREDBSQRERERAwUkEREREQMFJBEREREDBSQRERERAwUkEREREQMFJBEREREDBSQRERERAwUkEREREQMFJBEREREDBSQRERERAwUkNzs+vXrJCcnk5yczLJly3j66addqXY12wAADFpJREFU23a7vcu++/fv5/PPP//SY7788stUVlZ+6fM2m43Vq1fffRNfQXZ2NkePHv3K+3dX2536ExER6Sme7i5gsBs2bBjp6ekAvPPOO/j4+PDQQw/ddt/33nuP2bNn4+3t/W2WKCLylZSVWTh1ykRMjAWrtd3d5YjcFQWkPuijjz5i9+7ddHR0EB4ezrJly/jb3/5GY2MjmzZtws/Pj40bN/LGG29QWVlJW1sbcXFxPPLII9/4nG1tbeTm5lJZWYnZbOZnP/sZU6ZMobi4mMrKSn7xi18A8Oqrr/Lggw8SFRXF9u3buXDhAgD3338/ixYt4tKlS+Tl5XHt2jW8vb15+umnCQ0NBeD06dP8+c9/pqmpiSVLlhAXF4fT6eTNN9/k5MmTAPz0pz9l5syZt9SWk5NDdXU1ISEhtLW1AeBwOG5bg4h8+8rKLDz6aCDt7R5YLIG8/XaDQpL0awpIfUx7ezs5OTls2LCBkJAQtm3bRlFREQsXLmT//v1s3LgRPz8/AB577DGGDh2Kw+HglVdeobq6mnvvvbfb42/duhUvLy8A7HY7JlPnLGthYSEAGRkZ/Oc//+E3v/kNW7ZsueNxqqqqaGxsJCMjA4AbN24A8Pvf/55ly5YxevRoPvnkE3Jzc9m4cSMATU1NvPLKK9TW1pKWlkZcXBz//Oc/qaqqIj09nWvXrvHCCy8QFRXV5VxFRUV4eXmRlZVFdXU1a9eu7bYGowMHDnDgwAGgM+AFBQV1e43ulqenZ6+foy9T/4Oz/1OnTLS3e9DR4fF/28N54AGHm6v69g3W+3/TQOpfAamPcTgcBAcHExISAsDcuXMpLCxk4cKFt+xbUlLC3//+dzo6Orhy5Qo1NTVfGpCeffZZwsPDgc51PmlpaQBUVFTwox/9CIDQ0FBGjBhBXV3dHY8THByMzWZjx44d3HfffcTExNDa2srZs2fJzMx07ffFdVTTp0/HZDIxZswYrl696jrvrFmzMJlM+Pv7Ex0dTWVlJWPHjnX93unTp0lISADg3nvvdfV4uxpuJz4+nvj4eNd2fX19t9fobgUFBfX6Ofoy9T84+4+JsWCxBAJgsTiJiblCff3gG0EarPf/pv7W/8332ttRQOqnbDYbBQUFpKamMnToULKzs2lv7/l/jEwmE06n07V98xxDhw4lPT2dkydPUlRURElJCUuXLmXIkCGuNVVGFovF9fiLx/ymbldDYmLiXR9XRL4+q7Wdt99u4NSp4cTEXNH0mvR7+hZbH2MymbDZbFy6dAmAw4cPEx0dDYCPjw+tra0AtLS04OPjg6+vL01NTa41PN9UVFQUH3zwAQC1tbXU19cTEhJCcHAwVVVVOBwO6uvrOX/+PADXrl3D4XAQFxfH4sWLuXjxIr6+vgQHB3PkyBGgMwRVVVV96XmPHDmCw+Hg2rVrnDlzhoiIiC77REdH849//AOATz/9lOrq6jvWICLuY7W28/zzDoUjGRA0gtTHWCwWEhMTyczMdC3S/uEPfwh0ThWlpKQQEBDAxo0bGTduHKtWrSIwMJCJEyfe1XkXLFhAbm4uq1evxmw2k5iYiMViYeLEiQQHB/OrX/2K0NBQxo8fD0BjYyPbt2/H4ehcY/D4448DnVN4b7zxBnv27MFutzNr1izGjRt3x/PGxsZy7tw5kpOTAViyZAn+/v7YbLYuteXk5LBq1SpCQ0MJCwvrtgYREZG75eHsibkOkX6ktra2V4/f3+bge5r6V//qX/33F92tQdIUm4iIiIiBApKIiIiIgQKSiIiIiIECkoiIiIiBApKIiIiIgQKSiIiIiIECkoiIiIiBApKIiIiIgQKSiIiIiIECkoiIiIiBApKIiIiIgQKSiIiIiIECkoiIiIiBApKIiIiIgQKSiIiIiIECkoiIiIiBApKIiIiIgQKSiIiIiIECkoiIiIiBApKIiIiIgQKSiIiIiIECkoiIiIiBApKIiIiIgQKSiIiIiIECkoiIiIiBApKIiIiIgQKSiIiIiIECkoiIiIiBApKIiIiIgQKSiIiIiIECkoiIiIiBApKIiIiIgQKSiIiIiIECkoiIiIiBApKIiIiIgQKSiIiIiIECkoiIiIiBApKIiIiIgQKSiIiIiIGH0+l0ursIERERkb5EI0giPWzdunXuLsGt1L/6H8zU/8DpXwFJRERExEABSURERMTA/PLLL7/s7iJEBpqwsDB3l+BW6l/9D2bqf2D0r0XaIiIiIgaaYhMRERExUEASERERMfB0dwEiA8lf/vIXCgsLMZlM3HfffSxZsgSAvXv3cvDgQUwmE0899RTf+9733Fxp7ykoKGD37t3k5ubi5+eH0+kkPz+fEydO4O3tTWJi4oBZo/BFu3fv5tixY3h6ejJy5EgSExMZMmQIMHju/8mTJ8nPz8fhcDB//nx+8pOfuLukXlVfX092djZNTU14eHgQHx9PQkICzc3NZGVlcfnyZUaMGMGqVasYOnSou8vtFQ6Hg3Xr1hEQEMC6deuw2Wy89tprXL9+nbCwMFasWIGnZ/+MGhpBEukhH3/8MWVlZaSnp5OZmcmDDz4IQE1NDSUlJWRmZvLrX/+avLw8HA6Hm6vtHfX19Zw6dYqgoCDXcydOnODSpUts3bqV5cuXk5ub68YKe09MTAwZGRn89re/ZfTo0ezduxcYPPff4XCQl5fH+vXrycrK4sMPP6SmpsbdZfUqs9nMk08+SVZWFikpKRQWFlJTU8O7777L1KlT2bp1K1OnTuXdd991d6m95r333iM0NNS1/eabb7Jw4UJ+97vfMWTIEA4ePOjG6u6OApJIDykqKuLHP/4xFosFgHvuuQeA0tJSZs6cicViITg4mFGjRnH+/Hl3ltprdu3axRNPPIGHh4frubKyMubMmYOHhweRkZHcuHGDK1euuLHK3jFt2jTMZjMAkZGRNDY2AoPn/p8/f55Ro0YxcuRIPD09mTlzJqWlpe4uq1cNHz7cNRr6ne98h9DQUBobGyktLWXu3LkAzJ07d8Beh4aGBo4fP878+fMBcDqdlJeXExcXB8C8efP6de8KSCI9pK6ujoqKCtavX8/GjRtdb4KNjY0EBga69gsICHC9eQ4kpaWlBAQEMG7cuC7PNzY2dhlRCgwMHJD9f9HBgwdd02iD5f4b+xwM9/mLbDYbFy9eJCIigqtXrzJ8+HAA/P39uXr1qpur6x07d+5kyZIlrg9E169fx9fX1/VBob+/1vvnxKCIm2zevJmmpqZbnl+8eDEOh4Pm5mZSUlKorKwkKyuLbdu2uaHK3tNd/3v37uXFF190Q1Xfnu76nz59OgB79uzBbDYze/bsb7s8cZPW1lYyMjJYunQpvr6+XX7m4eHRZUR1oDh27Bj33HMPYWFhlJeXu7ucXqGAJPI1bNiw4Y4/KyoqIjY2Fg8PDyIiIjCZTFy/fp2AgAAaGhpc+zU2NhIQEPBtlNvj7tT/p59+is1mIzk5Gegcel+7di2pqakEBARQX1/v2rehoWHA9X9TcXExx44d46WXXnK9KQ6k+98dY5/9+T5/HXa7nYyMDGbPns2MGTOAzun1K1euMHz4cK5cuYKfn5+bq+x5Z8+epaysjBMnTtDW1sZ///tfdu7cSUtLCx0dHZjN5n7/WtcUm0gPmT59uuuTVG1tLXa7nWHDhmG1WikpKaG9vR2bzUZdXR0RERFurrZnjR07ltzcXLKzs8nOziYwMJC0tDT8/f2xWq0cPnwYp9PJuXPn8PX1dU0/DCQnT55k3759rF27Fm9vb9fzg+H+A4SHh1NXV4fNZsNut1NSUoLVanV3Wb3K6XTy+uuvExoayqJFi1zPW61WDh06BMChQ4dco4sDyeOPP87rr79OdnY2zz33HFOmTOHZZ59l8uTJHD16FOj8wNCfXwP6n7RFeojdbicnJ4fq6mo8PT158sknmTJlCtA57fL+++9jMplYunQp3//+991cbe9KSkoiNTXV9TX/vLw8/v3vf+Pl5UViYiLh4eHuLrHHrVixArvd7vo694QJE1i+fDkweO7/8ePH2bVrFw6Hg/vvv5+HH37Y3SX1qoqKCl566SXGjh3rGjF87LHHmDBhAllZWdTX1w/4r/kDlJeXU1BQwLp16/jss8947bXXaG5uZvz48axYscL1xZX+RgFJRERExEBTbCIiIiIGCkgiIiIiBgpIIiIiIgYKSCIiIiIGCkgiIiIiBgpIIiIiIgYKSCIiIiIG/wPOQAQFdv28eAAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -1086,16 +1086,16 @@ " 0.800157\n", " 0.0\n", " 12.0\n", - " 1.101312\n", + " 1.09444\n", " \n", " \n", "\n", "" ], "text/plain": [ - " W Z N EXP EXP_MIN EXP_MAX RMSE\n", - "PUMA \n", - "600 77536 62041.0 4841 0.800157 0.0 12.0 1.101312" + " W Z N EXP EXP_MIN EXP_MAX RMSE\n", + "PUMA \n", + "600 77536 62041.0 4841 0.800157 0.0 12.0 1.09444" ] }, "execution_count": 14, @@ -1145,7 +1145,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtgAAAKWCAYAAABzge4ZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOzde5zWdZ338fcwIycRGBhEARUQS0XzBEoqQTrZPrTdxe6iTDLzTu88i22rtkrdjztXNkVYEo952PQ2desOD3e2OUvSprkSeErR9ZyKBiNnARGG+w/vZiMxx+0711wjz+fj4SOuw++6Pl1fDy9+fOf61WzatGlTAACAIrp09AAAAPBBIrABAKAggQ0AAAUJbAAAKEhgAwBAQQIbAAAKEtgAAFCQwAaogOOPPz41NTWpqalJXV1ddtlll3z1q1/N66+/niR54YUXUlNTk1/+8pfvOPbb3/52hg4d2nr7W9/6VmpqanLAAQe847mPPPJI6/u8/PLL73j8tNNOS21tbWbOnNnm2Zubm3PyySdn0KBB6datW4YNG5Yrr7xys+f8+7//ew4++OB07949O+64Y84777xs3Lhxs+e8+uqrmThxYnr37p3evXvn85//fBYvXtzmOQA6C4ENUCFjx47Nq6++mhdeeCEzZ87Mj370oxx33HH/pdcaMGBAFi5cmAULFmx2/1VXXZVddtlli8esWbMmN910U77xjW/k6quvbtP7rF69Oh/72MfyzDPP5Ac/+EGeeuqp3Hzzzdlzzz1bn/PSSy/lE5/4RD784Q9n/vz5ueKKK3LVVVfl7/7u71qf09LSkk996lN5/vnnc8899+RnP/tZ/uM//iMTJkyI650BHzR1HT0AwNaia9eu2WGHHZIkQ4YMyW9+85tMmTIla9eufd+v1bt37/zFX/xFrrnmmlxxxRVJ3g7om2++OV/72tcyZcqUdxxz6623Zvjw4Tn//PMza9as3H///Tn44IP/5PtcfPHFWbNmTe66665069YtSTY7m54kV1xxRXr37p1rr702Xbp0yciRI/PKK6/kb//2b3PBBRdk2223TVNTUxYsWJAnn3wyH/7wh5MkN954Y/baa6/MnTs348ePf9+fAUC1cgYboIP06NEjLS0t2bBhw3/p+JNOOik333xz3njjjSTJLbfckh133DFjx47d4vOvuuqqHH/88enWrVs+//nPt+ks9o9+9KMceuihmTx5cnbcccfsvvvu+frXv541a9a0Pue+++7LEUcckS5d/vM/KX/xF3+RNWvW5KGHHmp9zrBhw1rjOklGjhyZIUOGbHFbDEBnJrABOsATTzyRWbNm5aCDDsp22233X3qNQw89NEOGDMltt92WJLn66qtz4oknbvG5jzzySBYsWJBjjjkmydt7wm+77bYsX778T77Hs88+mx/+8Id54403cuedd+Y73/lObr311s3e59VXX209M/97v7/96quvvutzfv+83z8H4INCYANUyL333ptevXqlR48e2WuvvTJ8+PDcfPPNf9Zrnnjiibnmmmvy6KOP5uGHH37XPd1XXXVVjjzyyAwYMCBJcuCBB2bYsGG56aab/uTrt7S0pH///rn22mszatSo/NVf/VUuvfTS3HzzzVm6dOm7HldTU7PZ//4pbXkOQGcisAEq5KCDDsrDDz+chQsXZu3atbnnnnsyfPjwJGnd37xixYp3HLd8+fJ07959i6/5pS99KQ899FAmT56co48+Og0NDe94zhtvvJH//b//d+64447U1dW1/rVw4cL33Cay4447Zrfddktd3X/+yM7IkSOTJC+++GLrc1577bXNjvv97d+ftd7Sc5Lkd7/73RbPbAN0ZgIboEJ69OiRESNGZOjQoa1B/XsDBw5M37598+CDD77juAcffDC77777Fl+zvr4+n/nMZzJnzpx33R5yyy23pLa2No888kgefvjh1r/+7d/+LY8//ngeeOCBd5157NixefbZZzf7yr2nnnoqyX/+sOMhhxySe+65Jy0tLa3P+elPf5qePXtmv/32a33O888/n6effrr1OQsXLsxLL72UQw899F3fH6Az8i0iAFWgS5cuOfPMMzNt2rQMHjw448ePz7p163LjjTfmvvvuS1NT07see80112T69OlbPHudvL095Oijj87ee+/9jscOOeSQXH311RkzZswWj/2bv/mb3HbbbTnttNNy1llnZdGiRfmbv/mbHHfccamvr0+SnHzyybnsssty4okn5uyzz86zzz6bCy64IKeffnq23XbbJEljY2P233//TJo0Kd/97nezadOmnHrqqRkzZkzGjRv3fj8ugKrmDDZAlfjmN7+ZGTNm5KqrrsqoUaPS2NiYBQsW5Oc//3k+/vGPv+tx3bt3f9e4fvjhhzNv3rxMnDhxi49/7nOfy6233rrFrSlJss8+++QnP/lJfv3rX2efffbJl7/85Rx99NGtXw2YJDvttFN+9rOfZeHChTnggANy0kkn5aSTTsqFF17Y+pwuXbrkrrvuys4775zDDz88n/jEJ7Lrrrvm9ttvtwcb+MCp2eQb/gEAoBhnsAEAoCCBDQAABQlsAAAoSGADAEBBAhsAAAoS2AAAUFCnvNDMokWLOuR9Gxoa0tzc3CHvzbuzLtXL2lQva1OdrEv1sjbVqSPXZdCgQe/6mDPYAABQkMAGAICCBDYAABQksAEAoCCBDQAABQlsAAAoSGADAEBBAhsAAAoS2AAAUJDABgCAggQ2AAAUJLABAKAggQ0AAAUJbAAAKEhgAwBAQQIbAAAKEtgAAFCQwAYAgIIENgAAFCSwAQCgIIENAAAFCWwAAChIYAMAQEECGwAACqqr1BvdddddmTNnTmpqarLTTjvllFNOyfLlyzNjxoysXr06w4YNy+mnn566uoqNBAAAxVXkDPbSpUtz9913Z+rUqZk2bVpaWlpy//3356abbspRRx2VmTNnZtttt82cOXMqMQ4AALSbip0ubmlpyfr161NbW5v169enb9++efzxx3PmmWcmScaPH59//ud/zhFHHFGpkd63bt26JhnU0WNU1CuvLOroEQAAOpWKBHa/fv3yl3/5lzn55JPTtWvX7LPPPhk+fHh69uyZ2tra1ucsXbq0EuMAAEC7qUhgr169OvPmzcusWbPSs2fPXHrppXn44YfbfHxTU1OampqSJFOnTk1DQ0N7jcof6QyfdV1dXaeYc2tkbaqXtalO1qV6WZvqVK3rUpHAfuyxx7L99tund+/eSZKDDjooTz31VNasWZONGzemtrY2S5cuTb9+/bZ4fGNjYxobG1tvNzc3V2LsLdi6tockHflZt11DQ0OnmHNrZG2ql7WpTtalelmb6tSR6zJo0Lt3YUV+yLGhoSFPP/103nzzzWzatCmPPfZYhgwZkpEjR+aBBx5Iktx7770ZNWpUJcYBAIB2U5Ez2LvttlvGjBmTc845J7W1tRk6dGgaGxuz//77Z8aMGbnlllsybNiwHHbYYZUYBwAA2k3FvkVk4sSJmThx4mb3DRw4MBdddFGlRgAAgHbnSo4AAFCQwAYAgIIENgAAFCSwAQCgIIENAAAFCWwAAChIYAMAQEECGwAAChLYAABQkMAGAICCBDYAABQksAEAoCCBDQAABQlsAAAoSGADAEBBAhsAAAoS2AAAUJDABgCAggQ2AAAUJLABAKAggQ0AAAUJbAAAKEhgAwBAQQIbAAAKEtgAAFCQwAYAgIIENgAAFCSwAQCgIIENAAAFCWwAAChIYAMAQEECGwAAChLYAABQkMAGAICCBDYAABQksAEAoCCBDQAABQlsAAAoSGADAEBBAhsAAAoS2AAAUJDABgCAggQ2AAAUJLABAKAggQ0AAAUJbAAAKEhgAwBAQQIbAAAKEtgAAFCQwAYAgIIENgAAFCSwAQCgIIENAAAFCWwAAChIYAMAQEECGwAAChLYAABQkMAGAICCBDYAABQksAEAoCCBDQAABQlsAAAoqK4Sb7Jo0aJMnz699fbixYszceLEjBs3LtOnT8+SJUsyYMCATJ48Ob169arESAAA0C4qEtiDBg3KxRdfnCRpaWnJ//gf/yMHHnhgZs+enb333jsTJkzI7NmzM3v27EyaNKkSIwEAQLuo+BaRxx57LDvssEMGDBiQefPmZdy4cUmScePGZd68eZUeBwAAiqp4YN9333055JBDkiQrVqxIfX19kqS+vj4rV66s9DgAAFBURbaI/N6GDRsyf/78fOELX3hfxzU1NaWpqSlJMnXq1DQ0NLTHeGxBZ/is6+rqOsWcWyNrU72sTXWyLtXL2lSnal2Xigb2Qw89lGHDhqVv375Jkj59+mTZsmWpr6/PsmXL0rt37y0e19jYmMbGxtbbzc3NFZn3nQZ10Pt2nI77rNuuoaGhU8y5NbI21cvaVCfrUr2sTXXqyHUZNOjdu7CiW0T+cHtIkowaNSpz585NksydOzejR4+u5DgAAFBcxQL7zTffzKOPPpqDDjqo9b4JEybk0UcfzRlnnJFHH300EyZMqNQ4AADQLiq2RaRbt2657rrrNrtvu+22y5QpUyo1AgAAtDtXcgQAgIIENgAAFCSwAQCgIIENAAAFCWwAAChIYAMAQEECGwAAChLYAABQkMAGAICCBDYAABQksAEAoCCBDQAABQlsAAAoSGADAEBBAhsAAAoS2AAAUJDABgCAggQ2AAAUJLABAKAggQ0AAAUJbAAAKEhgAwBAQQIbAAAKEtgAAFCQwAYAgIIENgAAFCSwAQCgIIENAAAFCWwAAChIYAMAQEECGwAAChLYAABQkMAGAICCBDYAABQksAEAoCCBDQAABQlsAAAoSGADAEBBAhsAAAoS2AAAUJDABgCAggQ2AAAUJLABAKAggQ0AAAUJbAAAKEhgAwBAQQIbAAAKEtgAAFCQwAYAgIIENgAAFCSwAQCgIIENAAAFCWwAAChIYAMAQEECGwAAChLYAABQkMAGAICCBDYAABQksAEAoCCBDQAABQlsAAAoSGADAEBBdZV6ozfeeCNXXnllXnrppdTU1OTkk0/OoEGDMn369CxZsiQDBgzI5MmT06tXr0qNBAAAxVUssK+//vrsu++++drXvpYNGzbkzTffzI9//OPsvffemTBhQmbPnp3Zs2dn0qRJlRoJAACKq8gWkTVr1mThwoU57LDDkiR1dXXZdtttM2/evIwbNy5JMm7cuMybN68S4wAAQLupyBnsxYsXp3fv3rn88svz4osvZvjw4Tn++OOzYsWK1NfXJ0nq6+uzcuXKLR7f1NSUpqamJMnUqVPT0NBQibFJOsVnXVdX1ynm3BpZm+plbaqTdale1qY6Veu6VCSwN27cmOeffz4nnHBCdtttt1x//fWZPXt2m49vbGxMY2Nj6+3m5ub2GLMNBnXQ+3acjvus266hoaFTzLk1sjbVy9pUJ+tSvaxNderIdRk06N27sCJbRPr375/+/ftnt912S5KMGTMmzz//fPr06ZNly5YlSZYtW5bevXtXYhwAAGg3FQnsvn37pn///lm0aFGS5LHHHsuQIUMyatSozJ07N0kyd+7cjB49uhLjAABAu6nYt4iccMIJmTlzZjZs2JDtt98+p5xySjZt2pTp06dnzpw5aWhoyNlnn12pcQAAoF1ULLCHDh2aqVOnvuP+KVOmVGoEAABod67kCAAABQlsAAAoSGADAEBBAhsAAAoS2AAAUJDABgCAggQ2AAAUJLABAKAggQ0AAAUJbAAAKEhgAwBAQQIbAAAKEtgAAFCQwAYAgIIENgAAFCSwAQCgIIENAAAFCWwAAChIYAMAQEECGwAAChLYAABQkMAGAICCBDYAABQksAEAoCCBDQAABQlsAAAoSGADAEBBAhsAAAoS2AAAUJDABgCAggQ2AAAUJLABAKAggQ0AAAUJbAAAKEhgAwBAQQIbAAAKEtgAAFCQwAYAgIIENgAAFCSwAQCgIIENAAAFCWwAAChIYAMAQEECGwAAChLYAABQkMAGAICCBDYAABQksAEAoCCBDQAABQlsAAAoSGADAEBBAhsAAAoS2AAAUJDABgCAggQ2AAAUJLABAKAggQ0AAAUJbAAAKEhgAwBAQQIbAAAKEtgAAFCQwAYAgILqKvVGp556arp3754uXbqktrY2U6dOzerVqzN9+vQsWbIkAwYMyOTJk9OrV69KjQQAAMVVLLCT5Jvf/GZ69+7denv27NnZe++9M2HChMyePTuzZ8/OpEmTKjkSAAAU1aFbRObNm5dx48YlScaNG5d58+Z15DgAAPBnq+gZ7AsvvDBJ8olPfCKNjY1ZsWJF6uvrkyT19fVZuXLlFo9rampKU1NTkmTq1KlpaGiozMB0is+6rq6uU8y5NbI21cvaVCfrUr2sTXWq1nWpWGD/r//1v9KvX7+sWLEi3/72tzNo0KA2H9vY2JjGxsbW283Nze0xYhu0feYPio77rNuuoaGhU8y5NbI21cvaVCfrUr2sTXXqyHX5Uy1bsS0i/fr1S5L06dMno0ePzjPPPJM+ffpk2bJlSZJly5Zttj8bAAA6o4oE9rp167J27drWXz/66KPZeeedM2rUqMydOzdJMnfu3IwePboS4wAAQLupyBaRFStW5JJLLkmSbNy4MYceemj23Xff7Lrrrpk+fXrmzJmThoaGnH322ZUYBwAA2k1FAnvgwIG5+OKL33H/dtttlylTplRiBAAAqAhXcgQAgIIENgAAFCSwAQCgIIENAAAFCWwAAChIYAMAQEECGwAAChLYAABQkMAGAICCBDYAABQksAEAoCCBDQAABQlsAAAoSGADAEBBAhsAAAoS2AAAUJDABgCAggQ2AAAUJLABAKAggQ0AAAXVvZ8nv/zyy3nggQeyfPnyfOUrX8krr7ySDRs2ZJdddmmv+QAAoFNp8xnsX/3qV/nWt76VpUuX5t/+7d+SJOvWrcv3v//9dhsOAAA6mzafwb7tttty/vnnZ+jQofnVr36VJNlll13ywgsvtNdsAADQ6bT5DPaKFSvesRWkpqYmNTU1xYcCAIDOqs2BPXz48PziF7/Y7L777rsvI0aMKD4UAAB0Vm3eIvLlL3853/72tzNnzpy8+eabufDCC7No0aKcf/757TkfAAB0Km0O7MGDB2fGjBmZP39+DjjggPTv3z8HHHBAunfv3p7zAQBAp/K+vqavW7duOfjgg9trFgAA6PTaHNhTpkzZ4g801tXVpX///jnwwAMzatSoosMBAEBn0+Yfctxzzz2zePHi7LHHHhk7dmz22GOPLFmyJLvuumv69OmTK664Irfffnt7zgoAAFWvzWewH3300fzd3/1dhgwZ0nrf2LFjM2vWrPz93/99DjrooMyYMSN//dd/3S6DAgBAZ9DmM9ivvPJKBg4cuNl9AwYMyKJFi5IkI0aMyIoVK8pOBwAAnUybA3uPPfbI5Zdfntdeey3r16/Pa6+9liuvvDK77757kuS3v/1t6uvr221QAADoDNq8ReS0007L9773vUyePDktLS2pra3NgQcemFNOOeXtF6qry5lnntlugwIAQGfQ5sDu1atXzjrrrLS0tGTlypXp3bt3unT5zxPggwYNapcBAQCgM3lf34OdJG+++WbWr1+fJUuWtN73x3uzAQBga9XmwH755Zczc+bMvPjii+947NZbby06FAAAdFZt/iHH733vexk5cmSuu+669OzZM9dff30+8YlP5NRTT23P+QAAoFNpc2C/+OKLOfbYY7Pttttm06ZN6dmzZyZNmuTsNQAA/IE2B/Y222yTjRs3Jkm22267NDc3Z9OmTVm9enW7DQcAAJ1Nm/dg77777vnVr36V8ePHZ8yYMfn7v//7bLPNNhk5cmR7zgcAAJ1KmwP77LPPbv31Mccck5122inr1q3LuHHj2mUwAADojNq8ReSOO+74z4O6dMnHPvaxHHHEEbnnnnvaZTAAAOiM2hzYP/rRj97X/QAAsDV6zy0iv/nNb5IkLS0trb/+vd/97nfp0aNH+0wGAACd0HsG9hVXXJEkWb9+feuvk6SmpiZ9+/bNCSec0H7TAQBAJ/OegT1r1qwkyWWXXZbTTjut3QcCAIDOrM3fIvKHcd3S0rLZY126tHkrNwAAfKC1ObCfe+65XHvttfntb3+b9evXb/aYqzkCAMDb2hzYs2bNygEHHJCTTz453bp1a8+ZAACg02pzYDc3N+eYY45JTU1Ne84DAACdWps3T48ePTqPPPJIe84CAACdXpvPYL/11lu55JJLsvvuu6dv376bPebbRQAA4G1tDuwhQ4ZkyJAh7TkLAAB0em0O7M9+9rPtOQcAAHwgtDmwk+TRRx/NfffdlxUrVuTcc8/Ns88+m7Vr12avvfZqr/kAAKBTafMPOd5999255pprsuOOO2bhwoVJkq5du+aWW25pt+EAAKCzaXNg/+QnP8kFF1yQCRMmtF65cfDgwVm0aFG7DQcAAJ1NmwN77dq1aWho2Oy+DRs2pK7ufe0yAQCAD7Q2B/Yee+yR2bNnb3bf3XffnZEjRxYfCgAAOqs2B/YJJ5yQBx98MKeeemrWrVuXM888Mw888EC+9KUvted8AADQqbR5f0d9fX0uuuiiPPvss1myZEn69++fESNGtO7HBgAA3kdgv/DCC+nVq1dGjBiRESNGJEmam5uzevXqDB06tE2v0dLSknPPPTf9+vXLueeem8WLF2fGjBlZvXp1hg0bltNPP92ebgAAOrU2n37+7ne/m40bN25234YNG3LZZZe1+c1+8pOfZPDgwa23b7rpphx11FGZOXNmtt1228yZM6fNrwUAANWozYHd3NycgQMHbnbfDjvskCVLlrTp+Ndffz0LFizI4YcfniTZtGlTHn/88YwZMyZJMn78+MybN6+t4wAAQFVq836Mfv365bnnnsvw4cNb73vuuedSX1/fpuNvuOGGTJo0KWvXrk2SrFq1Kj179kxtbW3r6y9dunSLxzY1NaWpqSlJMnXq1Hd8XSDtpzN81nV1dZ1izq2Rtale1qY6WZfqZW2qU7WuS5sD+6ijjsrFF1+cv/qrv8rAgQPzu9/9LnfeeWc+/elPv+ex8+fPT58+fTJ8+PA8/vjj73vIxsbGNDY2tt5ubm5+369RxqAOet+O03Gfdds1NDR0ijm3Rtamelmb6mRdqpe1qU4duS6DBr17F7Y5sBsbG1v3Sb/++uvp379/jjvuuNYtHn/KU089lV//+td56KGHsn79+qxduzY33HBD1qxZk40bN6a2tjZLly5Nv3792joOAABUpTYFdktLS/75n/85n/70p/PRj370fb/JF77whXzhC19Ikjz++OO58847c8YZZ+TSSy/NAw88kEMOOST33ntvRo0a9b5fGwAAqkmbfsixS5cu+Zd/+ZfW/dKlHHvssbnrrrty+umnZ/Xq1TnssMOKvj4AAFRam7eIjBs3Lvfcc08++clP/llvOHLkyNbLqw8cODAXXXTRn/V6AABQTdoc2M8880x++tOf5o477kj//v1TU1PT+tj//J//s12GAwCAzqbNgX344Ye3foc1AACwZW0O7PHjx7fjGAAA8MHQ5sDetGlT/vVf/zX33XdfVq1alUsuuSRPPPFEli9fnoMPPrg9ZwQAgE6jzZdKv/XWW/Pzn/88jY2NrV/o3b9//9x+++3tNhwAAHQ2bQ7suXPn5pxzzskhhxzS+gOO22+/fRYvXtxuwwEAQGfT5sBuaWlJ9+7dN7tv3bp177gPAAC2Zm0O7H333Tff//7389ZbbyV5e0/2rbfemgMOOKDdhgMAgM6mzYH9pS99KcuWLcvxxx+fNWvW5LjjjsuSJUty7LHHtud8AADQqbznt4i8+eab+dGPfpSXXnopw4YNy5e//OUsX748DQ0N6du3byVmBACATuM9A/vaa6/Ns88+m/322y///u//ntWrV+eEE06oxGwAANDpvOcWkYcffjjnn39+Jk2alPPOOy/z58+vxFwAANApvWdgv/nmm6mvr0+SNDQ0ZM2aNe0+FAAAdFbvuUVk48aN+c1vftN6u6WlZbPbSbLXXnuVnwwAADqh9wzsPn365Iorrmi93atXr81u19TU5LLLLmuf6QAAoJN5z8CeNWtWJeYAAIAPhDZ/DzYAAPDeBDYAABQksAEAoCCBDQAABQlsAAAoSGADAEBBAhsAAAoS2AAAUJDABgCAggQ2AAAUJLABAKAggQ0AAAUJbAAAKEhgAwBAQQIbAAAKEtgAAFCQwAYAgIIENgAAFCSwAQCgIIENAAAFCWwAAChIYAMAQEECGwAAChLYAABQkMAGAICCBDYAABQksAEAoCCBDQAABQlsAAAoSGADAEBBAhsAAAoS2AAAUJDABgCAggQ2AAAUJLABAKAggQ0AAAUJbAAAKEhgAwBAQQIbAAAKEtgAAFCQwAYAgIIENgAAFCSwAQCgIIENAAAFCWwAAChIYAMAQEF1lXiT9evX55vf/GY2bNiQjRs3ZsyYMZk4cWIWL16cGTNmZPXq1Rk2bFhOP/301NVVZCQAAGgXFanZbbbZJt/85jfTvXv3bNiwIVOmTMm+++6bu+66K0cddVQOOeSQXH311ZkzZ06OOOKISowEAADtoiJbRGpqatK9e/ckycaNG7Nx48bU1NTk8ccfz5gxY5Ik48ePz7x58yoxDgAAtJuK7cdoaWnJOeeck9deey2f/OQnM3DgwPTs2TO1tbVJkn79+mXp0qVbPLapqSlNTU1JkqlTp6ahoaFSY2/1OsNnXVdX1ynm3BpZm+plbaqTdale1qY6Veu6VCywu3TpkosvvjhvvPFGLrnkkrzyyittPraxsTGNjY2tt5ubm9tjxDYY1EHv23E67rNuu4aGhk4x59bI2lQva1OdrEv1sjbVqSPXZdCgd+/Cin+LyLbbbps999wzTz/9dNasWZONGzcmSZYuXZp+/fpVehwAACiqIoG9cuXKvPHGG0ne/kaRxx57LIMHD87IkSPzwAMPJEnuvffejBo1qhLjAABAu6nIFpFly5Zl1qxZaWlpyaZNm/LRj340BxxwQIYMGZIZM2bklltuybBhw3LYYYdVYhwAAGg3FQnsXXbZJd/5znfecf/AgQNz0UUXVWIEAACoCGPeE7EAABh4SURBVFdyBACAggQ2AAAUJLABAKAggQ0AAAUJbAAAKEhgAwBAQQIbAAAKEtgAAFCQwAYAgIIENgAAFCSwAQCgIIENAAAFCWwAAChIYAMAQEECGwAAChLYAABQkMAGAICCBDYAABQksAEAoCCBDQAABQlsAAAoSGADAEBBAhsAAAoS2AAAUJDABgCAggQ2AAAUJLABAKAggQ0AAAUJbAAAKEhgAwBAQQIbAAAKEtgAAFCQwAYAgIIENgAAFCSwAQCgIIENAAAFCWwAAChIYAMAQEECGwAAChLYAABQkMAGAICCBDYAABQksAEAoCCBDQAABQlsAAAoSGADAEBBAhsAAAoS2AAAUJDABgCAggQ2AAAUJLABAKAggQ0AAAUJbAAAKEhgAwBAQQIbAAAKEtgAAFCQwAYAgIIENgAAFCSwAQCgIIENAAAFCWwAACiorhJv0tzcnFmzZmX58uWpqalJY2NjjjzyyKxevTrTp0/PkiVLMmDAgEyePDm9evWqxEgAANAuKhLYtbW1+eIXv5jhw4dn7dq1Offcc/ORj3wk9957b/bee+9MmDAhs2fPzuzZszNp0qRKjAQAAO2iIltE6uvrM3z48CRJjx49Mnjw4CxdujTz5s3LuHHjkiTjxo3LvHnzKjEOAAC0m4rvwV68eHGef/75jBgxIitWrEh9fX2StyN85cqVlR4HAACKqsgWkd9bt25dpk2bluOPPz49e/Zs83FNTU1pampKkkydOjUNDQ3tNSJ/pDN81nV1dZ1izq2Rtale1qY6WZfqZW2qU7WuS8UCe8OGDZk2bVrGjh2bgw46KEnSp0+fLFu2LPX19Vm2bFl69+69xWMbGxvT2NjYeru5ubkiM7/ToA56347TcZ912zU0NHSKObdG1qZ6WZvqZF2ql7WpTh25LoMGvXsXVmSLyKZNm3LllVdm8ODB+dSnPtV6/6hRozJ37twkydy5czN69OhKjAMAAO2mImewn3rqqfziF7/IzjvvnK9//etJkmOOOSYTJkzI9OnTM2fOnDQ0NOTss8+uxDgAANBuKhLYu+++e2677bYtPjZlypRKjAAAABXhSo4AAFCQwAYAgIIENgAAFCSwAQCgIIENAAAFCWwAAChIYAMAQEECGwAAChLYAABQkMAGAICCBDYAABQksAEAoCCBDQAABQlsAAAoSGADAEBBAhsAAAoS2AAAUJDABgCAggQ2AAAUJLABAKAggQ0AAAUJbAAAKEhgAwBAQQIbAAAKEtgAAFCQwAYAgIIENgAAFCSwAQCgIIENAAAFCWwAAChIYAMAQEECGwAAChLYAABQkMAGAICCBDYAABQksAEAoCCBDQAABQlsAAAoSGADAEBBAhsAAAoS2AAAUJDABgCAggQ2AAAUJLABAKAggQ0AAAUJbAAAKEhgAwBAQQIbAAAKquvoAahugwcP6ugR2qjsnK+8sqjo6wEAWw9nsAEAoCCBDQAABQlsAAAoSGADAEBBAhsAAAoS2AAAUJDABgCAggQ2AAAUJLABAKAggQ0AAAUJbAAAKEhgAwBAQQIbAAAKqqvEm1x++eVZsGBB+vTpk2nTpiVJVq9enenTp2fJkiUZMGBAJk+enF69elViHAAAaDcVOYM9fvz4fOMb39jsvtmzZ2fvvffOzJkzs/fee2f27NmVGAUAANpVRQJ7zz33fMfZ6Xnz5mXcuHFJknHjxmXevHmVGAUAANpVh+3BXrFiRerr65Mk9fX1WblyZUeNAgAAxVRkD/afq6mpKU1NTUmSqVOnpqGhoYMn4oPO32Nl1NXV+SyrlLWpTtalelmb6lSt69Jhgd2nT58sW7Ys9fX1WbZsWXr37v2uz21sbExjY2Pr7ebm5kqMuAWDOuh9qbSO+3vsg6WhocFnWaWsTXWyLtXL2lSnjlyXQYPevQs7bIvIqFGjMnfu3CTJ3LlzM3r06I4aBQAAiqnIGewZM2bkiSeeyKpVq/LVr341EydOzIQJEzJ9+vTMmTMnDQ0NOfvssysxCgAAtKuKBPZZZ521xfunTJlSibcHAICKcSVHAAAoSGADAEBBAhsAAAoS2AAAUJDABgCAggQ2AAAUJLABAKAggQ0AAAUJbAAAKEhgAwBAQQIbAAAKEtgAAFCQwAYAgIIENgAAFCSwAQCgIIENAAAFCWwAAChIYAMAQEECGwAAChLYAABQkMAGAICCBDYAABQksAEAoCCBDQAABQlsAAAoSGADAEBBAhsAAAoS2AAAUJDABgCAggQ2AAAUJLABAKAggQ0AAAUJbAAAKEhgAwBAQXUdPQBUo8GDB3X0CBX3yiuLOnoEAPhAcAYbAAAKEtgAAFCQwAYAgIIENgAAFCSwAQCgIIENAAAFCWwAAChIYAMAQEECGwAAChLYAABQkMAGAICCBDYAABQksAEAoCCBDQAABQlsAAAoSGADAEBBAhsAAAoS2AAAUJDABgCAguo6egCgOgwePKidXrm9XreMV15Z1NEjAPAB4ww2AAAUJLABAKAggQ0AAAUJbAAAKEhgAwBAQQIbAAAKEtgAAFBQh38P9sMPP5zrr78+LS0tOfzwwzNhwoSOHgnYirTf939XtzffXN/RIwB8YHVoYLe0tOTaa6/N+eefn/79++e8887LqFGjMmTIkI4cC+ADr1u3rqn2iwCV5qJCQKV06BaRZ555JjvssEMGDhyYurq6HHzwwZk3b15HjgQAAH+WDj2DvXTp0vTv37/1dv/+/fP000934EQAfFB1nu1AnWXO6uVPK+hoHRrYmzZtesd9NTU177ivqakpTU1NSZKpU6dm0KCO+ZfPFsYFAKpO+3RCR/UHf1o1rkuHbhHp379/Xn/99dbbr7/+eurr69/xvMbGxkydOjVTp06t5HjvcO6553bo+7Nl1qV6WZvqZW2qk3WpXtamOlXrunRoYO+666559dVXs3jx4mzYsCH3339/Ro0a1ZEjAQDAn6VDt4jU1tbmhBNOyIUXXpiWlpZ8/OMfz0477dSRIwEAwJ+lw78He//998/+++/f0WO0SWNjY0ePwBZYl+plbaqXtalO1qV6WZvqVK3rUrNpSz9pCAAA/Je4VDoAABTU4VtEOgOXc69Ozc3NmTVrVpYvX56ampo0NjbmyCOP7Oix+P9aWlpy7rnnpl+/flX7U95bozfeeCNXXnllXnrppdTU1OTkk0/Ohz70oY4eiyR33XVX5syZk5qamuy000455ZRT0rVr144ea6t0+eWXZ8GCBenTp0+mTZuWJFm9enWmT5+eJUuWZMCAAZk8eXJ69erVwZNuXba0LjfeeGPmz5+furq6DBw4MKecckq23XbbDp7UGez39PvLuX/jG9/I9OnTc9999+Xll1/u6LHI2z8k+8UvfjHTp0/PhRdemH/5l3+xNlXkJz/5SQYPHtzRY/BHrr/++uy7776ZMWNGLr74YmtUJZYuXZq77747U6dOzbRp09LS0pL777+/o8faao0fPz7f+MY3Nrtv9uzZ2XvvvTNz5szsvffemT17dgdNt/Xa0rp85CMfybRp03LJJZdkxx13zI9//OMOmm5zAvs9uJx79aqvr8/w4cOTJD169MjgwYOzdOnSDp6K5O3vtF+wYEEOP/zwjh6FP7BmzZosXLgwhx12WJKkrq6uKs708LaWlpasX78+GzduzPr167d4XQgqY88993zH2el58+Zl3LhxSZJx48ZpgQ6wpXXZZ599UltbmyT50Ic+VDUdYIvIe3A5985h8eLFef755zNixIiOHoUkN9xwQyZNmpS1a9d29Cj8gcWLF6d37965/PLL8+KLL2b48OE5/vjj0717944ebavXr1+//OVf/mVOPvnkdO3aNfvss0/22Wefjh6LP7BixYrW3/TU19dn5cqVHTwRf2zOnDk5+OCDO3qMJM5gv6e2Xs6djrNu3bpMmzYtxx9/fHr27NnR42z15s+fnz59+rT+6QLVY+PGjXn++edzxBFH5Dvf+U66devmj7mrxOrVqzNv3rzMmjUrV111VdatW5df/OIXHT0WdBr/5//8n9TW1mbs2LEdPUoSgf2e2no5dzrGhg0bMm3atIwdOzYHHXRQR49Dkqeeeiq//vWvc+qpp2bGjBn5zW9+k5kzZ3b0WOTtf5/1798/u+22W5JkzJgxef755zt4KpLksccey/bbb5/evXunrq4uBx10UP7jP/6jo8fiD/Tp0yfLli1Lkixbtiy9e/fu4In4vXvvvTfz58/PGWecUTUnQQX2e3A59+q1adOmXHnllRk8eHA+9alPdfQ4/H9f+MIXcuWVV2bWrFk566yzstdee+WMM87o6LFI0rdv3/Tv3z+LFi1K8nbUDRkypIOnIkkaGhry9NNP580338ymTZvy2GOP+QHUKjNq1KjMnTs3STJ37tyMHj26gyciefub3m6//facc8456datW0eP08qFZtpgwYIF+ad/+qfWy7l/+tOf7uiRSPLkk09mypQp2XnnnVt/x3rMMcd0miuDbg0ef/zx3Hnnnb6mr4q88MILufLKK7Nhw4Zsv/32OeWUU3zVWJW47bbbcv/996e2tjZDhw7NV7/61WyzzTYdPdZWacaMGXniiSeyatWq9OnTJxMnTszo0aMzffr0NDc3p6GhIWeffbZ/dipsS+vy4x//OBs2bGhdi9122y0nnXRSB08qsAEAoChbRAAAoCCBDQAABQlsAAAoSGADAEBBAhsAAAoS2AAdrLm5OV/84hfT0tLS0aMAUICv6QM+kE499dQsX748Xbr853mE8ePH57//9//egVNV3sSJEze7+EJtbW1uuOGG//LrPfroo7nqqqsya9asAtO97V//9V9z9dVXp2vXrunSpUsGDhyYY445Jvvtt1+x9wCopLqOHgCgvZxzzjn5yEc+0tFjdLiLL744O+ywQ0ePkSTZuHFjamtr33H/HnvskW9961tpaWnJz372s0yfPj1XXXVVevTo0QFTAvx5BDaw1bnmmmuycuXKfO1rX0uS3HTTTXnuuedywQUX5Iknnsh3v/vdHHHEEfm///f/pnv37vn85z+fsWPHJnn7yq633HJLfve736Vnz575+Mc/nokTJyZJFi9enNNOOy2nnHJKbr311qxfvz5HHXVU69Vfn3nmmXzve9/Lq6++mq5du+bQQw/Nl770pdbjfvCDH6S2tjZLly7NNddckyeffDK9evXKX//1X6exsTHJ21f7e/nll9O1a9c8+OCDaWhoyKmnnppdd931fX0Gq1atymWXXZZnnnkmLS0t+fCHP5yTTjop/fr1a338+9//fh555JG89dZbGTlyZE455ZT8wz/8QzZs2JAvfvGLSZLLLrssPXr0yE033ZQHHnggNTU1Ofjgg3Psscemrq6u9Yz34Ycfnrvvvjv77bdfTjnllHedq0uXLvnYxz6W6667Lq+99lqGDRuWlpaWTJ8+PU8++WTeeuutDB06NF/5yldaL/M+c+bM9OrVK6+99lqefPLJ7LTTTjnzzDOz/fbbJ0keeuih3HDDDVm+fHnGjRuX559/PocffnjGjx+f5O0z6HfeeWdWrFjRehW4hoaG9/V5Avwhe7CBrc5xxx2X3/72t7n33nuzcOHC/PznP8+pp56ampqaJMny5cuzatWqXHnllTn11FNz9dVXZ9GiRUmSbt265bTTTsv111+fc889N/fcc08efPDBzV7/ySefzD/+4z/mggsuyA9/+MO8/PLLSZLrr78+Rx55ZP7pn/4p3/3ud/PRj350i/P94z/+Y/r375+rrroqX/va1/KDH/wgjz32WOvj8+fPz8EHH5wbbrgho0aNynXXXfe+P4NNmzbl8MMPzxVXXJFZs2alrq4u119/fevjM2fOzIYNG3LppZfmmmuuyZFHHpmePXvmnHPOSUNDQ2688cbceOON6dOnT374wx/mueeeyyWXXJLvfOc7eeqpp/LjH/+49bVef/31rFu3LldccUW+8pWv/Mm5Nm7cmHvvvTd1dXXp379/6/0HHHBAZs6cmauvvjo77bRTLrvsss2Ou++++/K5z30u1113XRoaGnLLLbckSVasWJHp06dn0qRJufbaa7P99tvnmWeeaT3ugQceyB133JG//du/zfe+972MGDEiM2fOfN+fJ8AfEtjAB9bFF1+c448/vvWvpqamJG9H8umnn94aul/+8pc3i7kk+dznPpdtttkme+65Z/bbb7/cf//9SZKRI0dm5513TpcuXbLLLrvkkEMOyRNPPLHZsZ/97GfTtWvXDB06NLvssktefPHFJEldXV1ee+21rFy5Mt27d8+HPvShd8zc3NycJ598Mscee2zraxx++OH5xS9+0fqc3XffPfvvv3/r2d4XXnjhT34O55xzTutn8PsY7927dw488MB07do1PXv2zNFHH936/6O5uTmPPfZYTjzxxPTq1St1dXXZc8893/X1f/nLX+azn/1sevfunT59+uQzn/nMZvPW1tZm4sSJqaurS9euXbf4Gk8++WSOP/74TJo0KTfffHPOOOOM9O7dO8nbZ7XHjx+fHj16pGvXrvnsZz+b5557LuvWrWs9/qCDDsquu+6aurq6jB07tvUznz9/foYOHZrRo0enrq4uRx11VLbbbrvW4+65554cffTRGTRoUGpra/Pf/tt/yzPPPJOlS5f+yc8U4E+xRQT4wPr617/+rnuwR4wYkYEDB2bFihU5+OCDN3ts2223Tffu3VtvDxgwIMuWLUuSPP3007n55pvz29/+Nhs2bMiGDRsyZsyYzY7v27dv66+7devWGoJf/epXc+utt2by5MnZfvvt85nPfCYHHHDAZscuW7YsvXr12mzvcUNDQ5599tnW23369Gn9ddeuXfPWW2+9697mJPmHf/iHd+zBXrduXW644YY88sgjWbNmTZJk7dq1Sd4+47zddtulZ8+eW3y9P7Zs2bIMGDBgs3n/MFD79OmTuro//Z+b3XffPd/61reydu3aXH755XnyySdbP9eWlpbcfPPNeeCBB7Jq1arWP2lYtWpV6zr94WfetWvX1s982bJlm/3mqaamZrPbzc3Nufbaazf7wc+ampq8/vrrrdtlAN4vgQ1slX7605/mrbfeSr9+/XL77bfn6KOPbn3sjTfeyLp161rjrbm5OTvttFOSt7dOfPKTn8x5552Xrl275oYbbsjKlSvb9J477rhjzjrrrLS0tOTBBx/MpZdemmuvvXaz59TX12f16tVZu3Zta2Q3NzcXj7077rgjixcvzkUXXZS+ffvm2WefzXnnnZck6d+/f1atWpU1a9a8I7J/H7d/PPOSJUsyaNCgLc67pWPeTY8ePXLiiSfm9NNPz8c//vHssssumTt3bh566KFMmTIlAwYMyKpVq/KVr3wlbfkSrPr6+jz66KOttzdt2rRZ/Pfv3z+f+9zn3vGbLIA/hy0iwFZn0aJFufXWW3P66afntNNOyx133PGObRa33XZbNmzYkIULF2bBggWt+6XXrl2bXr16pWvXrnnmmWfyy1/+ss3v+4v/194duzQOB1Ac/1K0g7ZWBCdROgjFQhVcpHYoHZwqOGVwFSWDQ7DU/0En0SyCKJLBKXV0FZwcWiiC4CSIq1MkSqotN8gFyx2c5+UolPdZu7zx9ZeXX66u8DyPWCwWFtfP1wjCx+lvJpPh7OyMVqvFw8MDl5eX4UuWUXl9fSUejzM8PMzz8zOu63ZlyOVyHB8f4/s+7+/v4XwklUrheV542g1QKBRwXRfP8/A8j1qt9k95R0ZGKJVK1Gq1MOvAwADJZJIgCMJ99VfMz89zf39PvV6n3W5zcXHR9YdoaWmJ8/PzcCfv+z7X19ffzi4iAjrBFpE+tru721VgZ2dnqVQq2LbNysoK6XQagNXVVWzbZmdnB/iYGyQSCUzTJB6Ps7GxwcTEBADr6+s4jsPJyQnZbJZ8Po/v+1/K02w2cRyHIAgYHx/HsqzfbpIty+Lo6AjTNEkkEhiGEfl1g8vLyxwcHLC2tsbY2BjlcplGoxH+/nOjblkW7XabXC5HNptlamqKhYUFNjc36XQ67O/vYxgGjuNQrVYBWFxc7Hoi8B3lchnLsnh8fKRUKnFzc4NpmiSTSQzDCPf0fzI6OsrW1hanp6fYtk2xWCSdToeTlXw+TxAE7O3t8fT0xNDQEHNzc7/MfkRE/oY+NCMi8snt7S22bXN4eNjrKPIfdDodTNOkUqkwMzPT6zgi0qc0ERERkb7WbDZ5eXnh7e0N13WJxWJMT0/3OpaI9DFNREREpK/d3d2F93pPTk6yvb3N4OBgr2OJSB/TREREREREJEKaiIiIiIiIREgFW0REREQkQirYIiIiIiIRUsEWEREREYmQCraIiIiISIRUsEVEREREIvQDHC4hV84P/4QAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtgAAAKWCAYAAABzge4ZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzde5TXdb3v8dcwI4yAXAdQxBteKpFERSFvmI7WUTvhWUVujym7iyXt3JrX3Ds765TJ1hAyUYm8ncxLO7e4c7t3NZF4jpYiYJJ3Td2WFxjBEYXRmOH84WlOJMhUn/n9fujjsZZr8bt+385nXD7ny2d+37p169atCwAAUESvag8AAADvJAIbAAAKEtgAAFCQwAYAgIIENgAAFCSwAQCgIIENAAAFCWyACpg6dWrq6upSV1eXhoaG7LDDDvn85z+fl156KUny9NNPp66uLv/n//yft7z2f/yP/5Fddtllvdt1dXXZe++93/LcX/3qV13H+e1vf/uWx08++eTU19dn9uzZ3Z69tbU1J598ckaOHJk+ffpkp512yty5c9d7zj333JP9998/jY2N2WabbfLlL385HR0d6z3n+eefz5QpUzJgwIAMGDAgxx57bJYtW9btOQA2FwIboEIOOuigPP/883n66adzySWX5Oabb84JJ5zwF73XsGHD8sgjj2Tx4sXr3T9nzpzssMMOG3zNa6+9lu9///s599xz3xLIG/Pqq6/m4IMPzhNPPJEbbrghjz76aK6//vq8733v63rOs88+m8MPPzzvec97smjRolx++eWZM2dO/uEf/qHrOZ2dnTn66KPz1FNP5ac//Wl+8pOf5LHHHsvkyZPjemfAO01DtQcAeLfo3bt3tt566yTJqFGj8utf/zrnnXde1qxZ82e/14ABA/LhD384c+fOzeWXX54kWb16db7//e/njDPOyHnnnfeW19xwww3Zdddd84//+I+59NJLc88992TChAlve5yLLrooq1evzm233ZY+ffokSXbcccf1nnP55ZdnwIABufLKK9OrV6+MGTMmv/vd73LWWWflK1/5Svr165eWlpYsXrw4jzzySN7znvckSb73ve9ljz32yIIFC3LIIYf82V8DgFrlDDZAlWy55Zbp7OzM2rVr/6LXn3TSSbn++uuzevXqJMmNN96YkSNH5qCDDtrg8+fMmZOpU6emT58+OfbYYzNnzpxNHuPmm2/OgQcemNNOOy3bbLNN3vve9+bMM8/sOmaS3HXXXTniiCPSq9f//1/Khz/84axevTpLlizpes5OO+3UFddJMmbMmIwaNWqD22IANmcCG6AKHnroocyePTsTJkzIVltt9Re9x4EHHphRo0blpptuSpJ85zvfyWc/+9kNPvf+++/PAw88kOOOOy5JcuKJJ+amm25KW1vb2x7jySefzA9/+MO88sor+dGPfpQLL7wwN91003rHef7557vOzP/BH24///zzG33OH573h+cAvFMIbIAKueOOO9K/f/9sueWW2WOPPTJ69Ohcf/31f9V7fvazn83cuXPzwAMP5P7779/onu45c+bk6KOPztChQ5MkEydOzKhRo3Lddde97ft3dnZmyJAhufrqqzN+/Pj81//6X3PxxRfn+uuvz4oVK/6q2QHeqQQ2QIVMmDAh999/fx5++OG0t7fnpz/9aUaPHp0kGThwYJJs8Izyyy+/nMbGxg2+5wknnJAlS5bkS1/6Uo455pg0NTW95Tl/+OXGefPmpaGhoeufxx9/fJO/7LjNNttkt912yxZbbNF135gxY5IkzzzzTNdzXnjhhfVe9+KLL3Y9trHn/OF5f3gOwDuFwAaokC233DK77LJLdtxxx/Tu3Xu9xwYPHpzhw4fn3nvvfcvr7r333rz3ve/d4HsOGTIkH/vYx/Kzn/1so9tDbrjhhjQ0NOT+++9f75877rgjDzzwQO65556NznzQQQfliSeeWG+f+KOPPprk//+y4wEHHJCf/vSn6ezs7HrOf/zHf6Rv377Za6+9up7z1FNP5fHHH+96zkMPPZRnn302Bx544EaPD7A5EtgANeLMM8/MxRdfnO985zt57LHH8sADD+T000/PPffck7//+7/f6Ovmzp2b5cuX59BDD93g43PmzMkxxxyTsWPHZo899uj65+CDD87EiRPf9pcdzzjjjCxfvjzTpk3LI488kp///Oc544wzcsIJJ2Tw4MFJ3vxs7ba2tnz2s5/Ngw8+mH/913/NV77ylXzxi19Mv379kiTNzc3Ze++9c/zxx+fee+/NPffckxNOOCETJ07MpEmT/oqvGkDtEdgANeJLX/pSLr744lxxxRUZP358mpub86tf/SoLFizY6CeDJEljY+MGt4Ykb/5y43333ZcpU6Zs8PFPfOITb/vLjnvuuWduv/32LFmyJOPGjcvf/u3f5phjjun6aMAk2W677fKTn/wkDz/8cPbZZ5+cdNJJOemkk3L++ed3PadXr1657bbbsv322+ewww7L4Ycfnp133jm33npr6urquvPlAdhs1K3zCf8AAFCMM9gAAFCQwAYAgIIENgAAFCSwAQCgIIENAAAFCWwAACioodoD/CWee+65qhy3qakpra2tVTk2G2ddape1qV3WpjZZl9plbWpTNddl5MiRG33MGWwAAChIYAMAQEECGwAAChLYAABQkMAGAICCBDYAABQksAEAoCCBDQAABQlsAAAoSGADAEBBAhsAAAoS2AAAUJDABgCAggQ2AAAUJLABAKAggQ0AAAUJbAAAKEhgAwBAQQIbAAAKEtgAAFCQwAYAgIIENgAAFCSwAQCgIIENAAAFNVTqQLfddlvmz5+furq6bLfddpk2bVpefvnlzJo1K6tWrcro0aPzxS9+MQ0NFRsJAACKq8gZ7BUrVuTf//3fM3369MyYMSOdnZ25++67c9111+Woo47Kt7/97fTr1y/z58+vxDgAANBjKna6uLOzM2+88Ubq6+vzxhtvZNCgQXnwwQfz93//90mSQw45JP/8z/+cI444olIj/dmmTatPe/vAao9RURde2FbtEQAANisVCewhQ4bkIx/5SE4++eT07t07e+65Z0aPHp2+ffumvr6+6zkrVqyoxDgAANBjKhLYr776ahYuXJjZs2enb9++ufjii3P//fd3+/UtLS1paWlJkkyfPj1NTU09Nerb6tWrVxobG6ty7Gppatqi2iNsUkNDQ9W+J3h71qZ2WZvaZF1ql7WpTbW6LhUJ7KVLl2b48OEZMGBAkmTChAl59NFHs3r16nR0dKS+vj4rVqzIkCFDNvj65ubmNDc3d91ubW2txNhv0dk5Iu3t7VU5drW0ttb+FpGmpqaqfU/w9qxN7bI2tcm61C5rU5uquS4jR47c6GMV+SXHpqamPP7443n99dezbt26LF26NKNGjcqYMWPyy1/+Mklyxx13ZPz48ZUYBwAAekxFzmDvuuuumThxYs4+++zU19dnxx13THNzc/bee+/MmjUrN954Y3baaacceuihlRgHAAB6TMU+RWTKlCmZMmXKeveNGDEiF1xwQaVGAACAHudKjgAAUJDABgCAggQ2AAAUJLABAKAggQ0AAAUJbAAAKEhgAwBAQQIbAAAKEtgAAFCQwAYAgIIENgAAFCSwAQCgIIENAAAFCWwAAChIYAMAQEECGwAAChLYAABQkMAGAICCBDYAABQksAEAoCCBDQAABQlsAAAoSGADAEBBAhsAAAoS2AAAUJDABgCAggQ2AAAUJLABAKAggQ0AAAUJbAAAKEhgAwBAQQIbAAAKEtgAAFCQwAYAgIIENgAAFCSwAQCgIIENAAAFCWwAAChIYAMAQEECGwAAChLYAABQkMAGAICCBDYAABQksAEAoCCBDQAABQlsAAAoSGADAEBBAhsAAAoS2AAAUJDABgCAggQ2AAAUJLABAKAggQ0AAAUJbAAAKEhgAwBAQQIbAAAKEtgAAFCQwAYAgIIENgAAFCSwAQCgIIENAAAFCWwAACiooRIHee655zJz5syu28uWLcuUKVMyadKkzJw5M8uXL8+wYcNy2mmnpX///pUYCQAAekRFAnvkyJG56KKLkiSdnZ353Oc+l/322y/z5s3L2LFjM3ny5MybNy/z5s3L8ccfX4mRAACgR1R8i8jSpUuz9dZbZ9iwYVm4cGEmTZqUJJk0aVIWLlxY6XEAAKCoipzB/mN33XVXDjjggCRJW1tbBg8enCQZNGhQ2traNvialpaWtLS0JEmmT5+epqamygz7J3r16pXGxsaqHLtampq2qPYIm9TQ0FC17wnenrWpXdamNlmX2mVtalOtrktFA3vt2rVZtGhRjjvuuLc8VldXl7q6ug2+rrm5Oc3NzV23W1tbe2zGt9PZOSLt7e1VOXa1tLZu+IeeWtLU1FS17wnenrWpXdamNlmX2mVtalM112XkyJEbfayiW0SWLFmSnXbaKYMGDUqSDBw4MCtXrkySrFy5MgMGDKjkOAAAUFxFA/uPt4ckyfjx47NgwYIkyYIFC7LvvvtWchwAACiuYoHd3t6eBx54IBMmTOi6b/LkyXnggQdyyimnZOnSpZk8eXKlxgEAgB5RsT3YjY2Nueqqq9a7b6uttsp5551XqREAAKDHuZIjAAAUJLABAKAggQ0AAAUJbAAAKEhgAwBAQQIbAAAKEtgAAFCQwAYAgIIENgAAFCSwAQCgIIENAAAFCWwAAChIYAMAQEECGwAAChLYAABQkMAGAICCBDYAABQksAEAoCCBDQAABQlsAAAoSGADAEBBAhsAAAoS2AAAUJDABgCAggQ2AAAUJLABAKAggQ0AAAUJbAAAKEhgAwBAQQIbAAAKEtgAAFCQwAYAgIIENgAAFCSwAQCgIIENAAAFCWwAAChIYAMAQEECGwAAChLYAABQkMAGAICCBDYAABQksAEAoCCBDQAABQlsAAAoSGADAEBBAhsAAAoS2AAAUJDABgCAggQ2AAAUJLABAKAggQ0AAAUJbAAAKEhgAwBAQQIbAAAKEtgAAFCQwAYAgIIENgAAFCSwAQCgIIENAAAFCWwAAChIYAMAQEECGwAACmqo1IFee+21XHHFFXn22WdTV1eXk08+OSNHjszMmTOzfPnyDBs2LKeddlr69+9fqZEAAKC4igX21VdfnXHjxuX000/P2rVr8/rrr+eWW27J2LFjM3ny5MybNy/z5s3L8ccfX6mRAACguIpsEVm9enUefvjhHHrooUmShoaG9OvXLwsXLsykSZOSJJMmTcrChQsrMQ4AAPSYipzBXrZsWQYMGJDLLrsszzzzTEaPHp2pU6emra0tgwcPTpIMGjQobW1tG3x9S0tLWlpakiTTp09PU1NTJcZ+i169eqWxsbEqx66WpqYtqj3CJjU0NFTte4K3Z21ql7WpTdaldlmb2lSr61KRwO7o6MhTTz2VT33qU9l1111z9dVXZ968ees9p66uLnV1dRt8fXNzc5qbm7tut7a29ui8G9PZOSLt7e1VOXa1tLZu+IeeWtLU1FS17wnenrWpXdamNlmX2mVtalM112XkyJEbfawiW0SGDh2aoUOHZtddd02STJw4MU899VQGDhyYlStXJklWrlyZAQMGVGIcAADoMRUJ7EGDBmXo0KF57rnnkiRLly7NqFGjMn78+CxYsCBJsmDBguy7776VGAcAAHpMxT5F5FOf+lQuueSSrF27NsOHD8+0adOybt26zJw5M/Pnz+/6mD4AANicVSywd9xxx0yfPv0t95933nmVGgEAAHqcKzkCAEBBAhsAAAoS2AAAUJDABgCAggQ2AAAUJLABAKAggQ0AAAUJbAAAKEhgAwBAQQIbAAAKEtgAAFCQwAYAgIIENgAAFCSwAQCgIIENAAAFCWwAAChIYAMAQEECGwAAChLYAABQkMAGAICCBDYAABQksAEAoCCBDQAABQlsAAAoSGADAEBBAhsAAAoS2AAAUJDABgCAggQ2AAAUJLABAKAggQ0AAAUJbAAAKEhgAwBAQQIbAAAKEtgAAFCQwAYAgIIENgAAFCSwAQCgIIENAAAFCWwAAChIYAMAQEECGwAAChLYAABQkMAGAICCBDYAABQksAEAoCCBDQAABQlsAAAoSGADAEBBAhsAAAoS2AAAUJDABgCAggQ2AAAUJLABAKAggQ0AAAUJbAAAKEhgAwBAQQIbAAAKEtgAAFCQwAYAgIIENgAAFCSwAQCgoIZKHegLX/hCGhsb06tXr9TX12f69Ol59dVXM3PmzCxfvjzDhg3Laaedlv79+1dqJAAAKK5igZ0kX/3qVzNgwICu2/PmzcvYsWMzefLkzJs3L/Pmzcvxxx9fyZEAAKCoqm4RWbhwYSZNmpQkmTRpUhYuXFjNcQAA4K9W0TPY559/fpLk8MMPT3Nzc9ra2jJ48OAkyaBBg9LW1rbB17W0tKSlpSVJMn369DQ1NVVm4D/Rq1evNDY2VuXY1dLUtEW1R9ikhoaGqn1P8PasTe2yNrXJutQua1ObanVdKhbYX/va1zJkyJC0tbXl61//ekaOHLne43V1damrq9vga5ubm9Pc3Nx1u7W1tUdn3ZjOzhFpb2+vyrGrpbV1wz/01JKmpqaqfU/w9qxN7bI2tcm61C5rU5uquS5/2rJ/rGJbRIYMGZIkGThwYPbdd9888cQTGThwYFauXJkkWbly5Xr7swEAYHNUkcBub2/PmjVruv78wAMPZPvtt8/48eOzYMGCJMmCBQuy7777VmIcAADoMRXZItLW1pZvfvObSZKOjo4ceOCBGTduXHbeeefMnDkz8+fP7/qYPgAA2JxVJLBHjBiRiy666C33b7XVVjnvvPMqMQIAAFSEKzkCAEBBAhsAAAoS2AAAUJDABgCAggQ2AAAUJLABAKAggQ0AAAUJbAAAKEhgAwBAQQIbAAAKEtgAAFCQwAYAgIIENgAAFCSwAQCgIIENAAAFCWwAAChIYAMAQEECGwAAChLYAABQkMAGAICCBDYAABTU0N0n/v73v88Pf/jD3HXXXVm1alWuvfba/OpXv8rzzz+fD3/4wz05IwAAbDa6fQb72muvzbPPPptTTjkldXV1SZLtttsuP/nJT3psOAAA2Nx0+wz2vffem0suuSSNjY1dgT1kyJCsWLGix4YDAIDNTbfPYDc0NKSzs3O9+1555ZVstdVWxYcCAIDNVbcDe+LEibn00kuzbNmyJMnKlStz5ZVXZv/99++x4QAAYHPT7cA+7rjjMnz48Jx++ulZvXp1TjnllAwePDgf//jHe3I+AADYrHR7D3ZDQ0OmTp2aqVOndm0N+cNebAAA4E3dDuwXX3xxvdtr1qxJkmyxxRYZNGhQevXykdoAANDtwD7llFM2+livXr2yzz775DOf+UwGDRpUZDAAANgcdTuwP/e5z+XBBx/Mxz/+8TQ1NaW1tTU333xzdtttt+y+++75/ve/nyuvvDKnn356T84LAAA1rdv7On7wgx/kc5/7XLbeeus0NDRk6623zmc+85ncfPPN2XbbbTNt2rQ89NBDPTkrAADUvG4H9rp167J8+fL17mttbe36bOzGxsZ0dHSUnQ4AADYz3d4icuSRR+Z//s//mUMOOSRDhw7NihUr8vOf/zxHHnlkkmTx4sXZbbfdemxQAADYHHQ7sD/60Y9mhx12yC9+8Ys89dRTGTRoUE4++eSMGzcuSbLffvtlv/3267FBAQBgc9DtwE6ScePGdQU1AADwVn9WYD/99NN5+OGHs2rVqqxbt67r/k984hPFBwMAgM1RtwO7paUl1157bd7//vfn/vvvz7hx4/LAAw9k/PjxPTkfAABsVrr9KSK33nprzj333Jx55pnp3bt3zjzzzHzpS19KfX19T84HAACblW4H9iuvvJL3ve99SZK6urp0dnZmr732yqJFi3psOAAA2Nx0e4vIkCFDsmzZsgwfPjzbbLNN7rvvvmy11VZpaPiztnEDAMA72p/1MX2/+93vMnz48HzsYx/LxRdfnLVr12bq1Kk9OB4AAGxeuh3YhxxySNef99prr1x99dVZu3ZtGhsbe2IuAADYLHV7D/ZZZ5213u2GhoY0NjbmnHPOKT4UAABsrrod2C+88MJb7lu3bl1efPHFogMBAMDmbJNbRC699NIkydq1a7v+/AfLly/Pdttt1zOTAQDAZmiTgT1ixIgN/rmuri7vec978oEPfKBnJgMAgM3QJgP74x//eJJk1113zbhx43p8IAAA2Jx1+1NExo0bl+eeey5PP/102tvb13vs0EMPLT4YAABsjrod2P/yL/+Sm2++OTvssEP69Omz3mMCGwAA3tTtwL799tvzjW98IzvssENPzgMAAJu1bn9MX+/evbPtttv25CwAALDZ63Zgf+ITn8hVV12VlStXprOzc71/AACAN3V7i8hll12WJPnZz372lsduuummchMBAMBmrNuB/acXmQEAAN6q24E9bNiwJElnZ2fa2toyePDgHhsKAAA2V90O7Ndeey3f/e5388tf/jINDQ353ve+l/vuuy9PPPFEjj322J6cEQAANhvd/iXHuXPnpm/fvrnsssvS0PBml++22265++67e2w4AADY3HT7DPbSpUszZ86crrhOkgEDBqStra1HBgMAgM1Rt89g9+3bN6tWrVrvvtbWVnuxAQDgj3Q7sA877LDMmDEjv/71r7Nu3bo89thjmT17dg4//PCenA8AADYr3d4i8tGPfjS9e/fOlVdemY6Ojlx++eVpbm7OkUce2ZPzAQDAZqXbgV1XV5cjjzzyrwrqzs7OnHPOORkyZEjOOeecLFu2LLNmzcqqVasyevTofPGLX1xvjzcAAGxuur1FZN68eXniiSfWu++JJ57Irbfe2u2D3X777dl22227bl933XU56qij8u1vfzv9+vXL/Pnzu/1eAABQi7od2LfffntGjRq13n2jRo3K7bff3q3Xv/TSS1m8eHEOO+ywJMm6devy4IMPZuLEiUmSQw45JAsXLuzuOAAAUJO6vR9j7dq1b9m+0dDQkDfeeKNbr7/mmmty/PHHZ82aNUmSVatWpW/fvqmvr0+SDBkyJCtWrNjga1taWtLS0pIkmT59epqamro7dlG9evVKY2NjVY5dLU1NW1R7hE1qaGio2vcEb8/a1C5rU5usS+2yNrWpVtel24E9evTo/PjHP85RRx3Vdd9PfvKTjB49epOvXbRoUQYOHJjRo0fnwQcf/LOHbG5uTnNzc9ft1tbWP/s9SujsHJH29vaqHLtaWltr/3POm5qaqvY9wduzNrXL2tQm61K7rE1tqua6jBw5cqOPdTuwTzzxxHz961/PnXfemREjRuTFF1/Myy+/nK985SubfO2jjz6a++67L0uWLMkbb7yRNWvW5Jprrsnq1avT0dGR+vr6rFixIkOGDOnuOAAAUJO6Fdjr1q1L7969861vfSuLFi3KSy+9lAkTJmSfffbp1paJ4447Lscdd1yS5MEHH8yPfvSjnHLKKbn44ovzy1/+MgcccEDuuOOOjB8//q/7twEAgCrrVmDX1dXljDPOyLXXXpsDDjig2MH/+3//75k1a1ZuvPHG7LTTTjn00EOLvTcAAFRDt7eI7Ljjjnn++efX+5i9v8SYMWMyZsyYJMmIESNywQUX/FXvBwAAtaTbgT1mzJh84xvfyKRJk97y25rOPAMAwJu6HdiPPvpohg8fnocffvgtjwlsAAB4U7cD+6tf/WpPzgEAAO8I3b6SY/LmxWHuvPPO/Ou//muSZMWKFXnppZd6ZDAAANgcdTuwH3rooZx66qn53//7f+eHP/xhkuSFF17I3Llze2w4AADY3HQ7sK+55pqceuqp+Yd/+Ieuy5vvsssuefLJJ3tsOAAA2Nx0O7CXL1+esWPHrndfQ0NDOjo6ig8FAACbq24H9qhRo3L//fevd9/SpUuz/fbbFx8KAAA2V93+FJETTjgh06dPz1577ZU33ngj3/nOd7Jo0aKceeaZPTkfAABsVjYZ2K+//npuvvnmPPvss5kwYUKGDBmSD37wg2lqaso3vvGNDB06tBJzAgDAZmGTgX3llVfmySefzF577ZUlS5Zk9913z2c+85lKzAYAAJudTe7Bvv/++/OP//iPOf744/PlL385ixcvrsRcAACwWdpkYL/++usZPHhwkqSpqSmrV6/u8aEAAGBztcktIh0dHfn1r3/ddbuzs3O920myxx57lJ8MAAA2Q5sM7IEDB+byyy/vut2/f//1btfV1eXSSy/tmekAAGAzs8nAnj17diXmAACAd4RuX2gGAADYNIENAAAFCWwAAChIYAMAQEECGwAAChLYAABQkMAGAICCBDYAABQksAEAoCCBDQAABQlsAAAoSGADAEBBAhsAAAoS2AAAUJDABgCAggQ2AAAUJLABAKAggQ0AAAUJbAAAKEhgAwBAQQIbAAAKEtgAAFCQwAYAgIIENgAAFCSwAQCgIIENAAAFCWwAAChIYAMAQEECGwAAChLYAABQkMAGAICCBDYAABQksAEAoCCBDQAABQlsAAAoSGADAEBBAhsAAAoS2AAAUJDABgCAggQ2AAAUJLABAKAggQ0AAAUJbAAAKEhgAwBAQQIbAAAKaqjEQd5444189atfzdq1a9PR0ZGJEydmypQpWbZsWWbNmpVVq1Zl9OjR+eIXv5iGhoqMBAAAPaIiNbvFFlvkq1/9ahobG7N27dqcd955GTduXG677bYcddRROeCAA/Kd73wn8+fPzxFHHFGJkQAAoEdUZItIXV1dGhsbkyQdHR3p6OhIXV1dHnzwwUycODFJcsghh2ThwoWVGAcAAHpMxfZjdHZ25uyzz84LL7yQD33oQxkxYkT69u2b+vr6JMmQIUOyYsWKSo0DAAA9omKB3atXr1x00UV57bXX8s1vfjPPPfdct1/b0tKSlpaWJMn06dPT1NTUU2O+rV69enWdiX+3aGraotojbFJDQ0PVvid4e9amdlmb2mRdape1qU21ui4V/43Cfv36ZcyYMXnssceyevXqdHR0pL6+PitWrMiQIUM2+Jrm5uY0Nzd33W5tba3UuOvp7ByR9vb2qhy7Wlpb26o9wiY1NTVV7XuCt2dtape1qU3WpXZZm9pUzXUZOXLkRh+ryIHg5dcAABkaSURBVB7sV155Ja+99lqSNz9R5IEHHsi2226bMWPG5Je//GWS5I477sj48eMrMQ4AAPSYipzBXrlyZWbPnp3Ozs6sW7cuH/jAB7LPPvtk1KhRmTVrVm688cbstNNOOfTQQysxDgAA9JiKBPYOO+yQCy+88C33jxgxIhdccEElRgAAgIpwJUcAAChIYAMAQEECGwAAChLYAABQkMAGAICCBDYAABQksAEAoCCBDQAABQlsAAAoSGADAEBBAhsAAAoS2AAAUJDABgCAggQ2AAAUJLABAKAggQ0AAAUJbAAAKEhgAwBAQQIbAAAKEtgAAFCQwAYAgIIENgAAFCSwAQCgIIENAAAFCWwAAChIYAMAQEECGwAAChLYAABQkMAGAICCBDYAABQksAEAoCCBDQAABQlsAAAoSGADAEBBAhsAAAoS2AAAUJDABgCAggQ2AAAUJLABAKAggQ0AAAUJbAAAKEhgAwBAQQIbAAAKEtgAAFCQwAYAgIIENgAAFCSwAQCgIIENAAAFCWwAAChIYAMAQEECGwAAChLYAABQkMAGAICCBDYAABQksAEAoCCBDQAABQlsAAAoSGADAEBBAhsAAAoS2AAAUJDABgCAggQ2AAAU1FCJg7S2tmb27Nl5+eWXU1dXl+bm5hx55JF59dVXM3PmzCxfvjzDhg3Laaedlv79+1diJAAA6BEVCez6+vp88pOfzOjRo7NmzZqcc845ef/735877rgjY8eOzeTJkzNv3rzMmzcvxx9/fCVGAgCAHlGRLSKDBw/O6NGjkyRbbrlltt1226xYsSILFy7MpEmTkiSTJk3KwoULKzEOAAD0mIrvwV62bFmeeuqp7LLLLmlra8vgwYOTJIMGDUpbW1ulxwEAgKIqskXkD9rb2zNjxoxMnTo1ffv2Xe+xurq61NXVbfB1LS0taWlpSZJMnz49TU1NPT7rhvTq1SuNjY1VOXa1NDVtUe0RNqmhoaFq3xO8PWtTu6xNbbIutcva1KZaXZeKBfbatWszY8aMHHTQQZkwYUKSZODAgVm5cmUGDx6clStXZsCAARt8bXNzc5qbm7tut7a2VmTmP9XZOSLt7e1VOXa1tLbW/t8qNDU1Ve17grdnbWqXtalN1qV2WZvaVM11GTly5EYfq8gWkXXr1uWKK67Itttum6OPPrrr/vHjx2fBggVJkgULFmTfffetxDgAANBjKnIG+9FHH82dd96Z7bffPmeeeWaS5G/+5m8yefLkzJw5M/Pnz+/6mD4AANicVSSw3/ve9+YHP/jBBh8777zzKjECAABUhCs5AgBAQQIbAAAKEtgAAFCQwAYAgIIENgAAFCSwAQCgIIENAAAFCWwAAChIYAMAQEECGwAAChLYAABQkMAGAICCBDYAABQksAEAoCCBDQAABQlsAAAoSGADAEBBAhsAAAoS2AAAUJDABgCAggQ2AAAUJLABAKAggQ0AAAUJbAAAKEhgAwBAQQIbAAAKEtgAAFCQwAYAgIIENgAAFCSwAQCgIIENAAAFCWwAAChIYAMAQEECGwAAChLYAABQkMAGAICCBDYAABQksAEAoCCBDQAABQlsAAAoSGADAEBBAhsAAAoS2AAAUJDABgCAggQ2AAAUJLABAKAggQ0AAAUJbAAAKEhgAwBAQQ3VHoDadtZZA6s9wiY1Ntanvb3snBde2Fb0/QCAdw9nsAEAoCCBDQAABQlsAAAoSGADAEBBAhsAAAoS2AAAUJDABgCAggQ2AAAUJLABAKAggQ0AAAUJbAAAKEhgAwBAQQ2VOMhll12WxYsXZ+DAgZkxY0aS5NVXX83MmTOzfPnyDBs2LKeddlr69+9fiXEAAKDHVOQM9iGHHJJzzz13vfvmzZuXsWPH5pJLLsnYsWMzb968SowCAAA9qiKBvfvuu7/l7PTChQszadKkJMmkSZOycOHCSowCAAA9qmp7sNva2jJ48OAkyaBBg9LW1latUQAAoJiK7MHelLq6utTV1W308ZaWlrS0tCRJpk+fnqampkqNtp5evXqlsbGxKsdm43piXZqatij6fu9WDQ0NVfvvlbdnbWqTdald1qY21eq6VC2wBw4cmJUrV2bw4MFZuXJlBgwYsNHnNjc3p7m5uet2a2trJUZ8i87OEWlvb6/Ksdm4xsbG4uvS2upvVEpoamqq2n+vvD1rU5usS+2yNrWpmusycuTIjT5WtS0i48ePz4IFC5IkCxYsyL777lutUQAAoJiKnMGeNWtWHnrooaxatSqf//znM2XKlEyePDkzZ87M/Pnzuz6mDwAANncVCexTTz11g/efd955lTg8AABUjCs5AgBAQQIbAAAKEtgAAFCQwAYAgIIENgAAFCSwAQCgIIENAAAFCWwAAChIYAMAQEECGwAAChLYAABQkMAGAICCBDYAABQksAEAoCCBDQAABQlsAAAoSGADAEBBAhsAAAoS2AAAUJDABgCAggQ2AAAUJLABAKAggQ0AAAUJbAAAKEhgAwBAQQIbAAAKEtgAAFCQwAYAgIIENgAAFCSwAQCgIIENAAAFCWwAAChIYAMAQEECGwAACmqo9gBQi846a2C1R6i4Cy9sq/YIAPCO4Aw2AAAUJLABAKAggQ0AAAUJbAAAKEhgAwBAQQIbAAAKEtgAAFCQwAYAgIIENgAAFCSwAQCgIIENAAAFCWwAAChIYAMAQEECGwAAChLYAABQkMAGAICCBDYAABQksAEAoKCGag8A1IazzhpY/D0bG+vT3l7+fUu68MK2ao8AwDuMM9gAAFCQwAYAgIIENgAAFCSwAQCgIIENAAAFCWwAAChIYAMAQEECGwAACqr6hWbuv//+XH311ens7Mxhhx2WyZMnV3sk4F2kJy6wszm46qpqTwDwzlXVM9idnZ258sorc+6552bmzJm566678tvf/raaIwEAwF+lqmewn3jiiWy99dYZMWJEkmT//ffPwoULM2rUqGqOBfCON21a7V/GvrQLL2yr9gjAu0RVA3vFihUZOnRo1+2hQ4fm8ccfr+JEALxTbQ7bgRob330/+PQEP0xRbVXfg90dLS0taWlpSZJMnz49I0eOrMoc3/1ukvSryrHZFOtSu6xN7bI2tcm6/PV65mtYrf7g7dXiulR1D/aQIUPy0ksvdd1+6aWXMmTIkLc8r7m5OdOnT8/06dMrOd5bnHPOOVU9PhtmXWqXtald1qY2WZfaZW1qU62uS1UDe+edd87zzz+fZcuWZe3atbn77rszfvz4ao4EAAB/lapuEamvr8+nPvWpnH/++ens7MwHP/jBbLfddtUcCQAA/ipV34O99957Z++99672GN3S3Nxc7RHYAOtSu6xN7bI2tcm61C5rU5tqdV3q1q1bt67aQwAAwDuFS6UDAEBBVd8isjlwOffa1NramtmzZ+fll19OXV1dmpubc+SRR1Z7LP6fzs7OnHPOORkyZEjN/pb3u9Frr72WK664Is8++2zq6upy8sknZ7fddqv2WCS57bbbMn/+/NTV1WW77bbLtGnT0rt372qP9a502WWXZfHixRk4cGBmzJiRJHn11Vczc+bMLF++PMOGDctpp52W/v37V3nSd5cNrcv3vve9LFq0KA0NDRkxYkSmTZuWfv2q/1GXzmBvgsu51676+vp88pOfzMyZM3P++efnxz/+sbWpIbfffnu23Xbbao/Bn7j66qszbty4zJo1KxdddJE1qhErVqzIv//7v2f69OmZMWNGOjs7c/fdd1d7rHetQw45JOeee+56982bNy9jx47NJZdckrFjx2bevHlVmu7da0Pr8v73vz8zZszIN7/5zWyzzTa55ZZbqjTd+gT2Jvzx5dwbGhq6LudO9Q0ePDijR49Okmy55ZbZdttts2LFiipPRfLmZ9ovXrw4hx12WLVH4Y+sXr06Dz/8cA499NAkSUNDQ02c6eFNnZ2deeONN9LR0ZE33ngjgwcPrvZI71q77777W85OL1y4MJMmTUqSTJo0SQtUwYbWZc8990x9fX2SZLfddquZDrBFZBNczn3zsGzZsjz11FPZZZddqj0KSa655pocf/zxWbNmTbVH4Y8sW7YsAwYMyGWXXZZnnnkmo0ePztSpU9PY2Fjt0d71hgwZko985CM5+eST07t37+y5557Zc889qz0Wf6Stra3rh55Bgwalrc3l2GvN/Pnzs//++1d7jCTOYPMO0N7enhkzZmTq1Knp27dvtcd511u0aFEGDhzY9bcL1I6Ojo489dRTOeKII3LhhRemT58+/pq7Rrz66qtZuHBhZs+enTlz5qS9vT133nlntcdiI+rq6lJXV1ftMfgj//Iv/5L6+vocdNBB1R4licDepO5ezp3qWLt2bWbMmJGDDjooEyZMqPY4JHn00Udz33335Qtf+EJmzZqVX//617nkkkuqPRZ582/ghg4dml133TVJMnHixDz11FNVnookWbp0aYYPH54BAwakoaEhEyZMyGOPPVbtsfgjAwcOzMqVK5MkK1euzIABA6o8EX9wxx13ZNGiRTnllFNq5gcfgb0JLudeu9atW5crrrgi2267bY4++uhqj8P/c9xxx+WKK67I7Nmzc+qpp2aPPfbIKaecUu2xyJt/rT106NA899xzSd6MulGjRlV5KpKkqakpjz/+eF5//fWsW7cuS5cu9QuoNWb8+PFZsGBBkmTBggXZd999qzwRyZuf9Hbrrbfm7LPPTp8+fao9ThcXmumGxYsX59prr+26nPt/+2//rdojkeSRRx7Jeeedl+23377rJ9a/+Zu/2WyuDPpu8OCDD+ZHP/qRj+mrIU8//XSuuOKKrF27NsOHD8+0adN81FiN+MEPfpC777479fX12XHHHfP5z38+W2yxRbXHeleaNWtWHnrooaxatSoDBw7MlClTsu+++2bmzJlpbW31MX1VsqF1ueWWW7J27dqutdh1111z0kknVXlSgQ0AAEXZIgIAAAUJbAAAKEhgAwBAQQIbAAAKEtgAAFCQwAaostbW1nzyk59MZ2dntUcBoAAf0we8I33hC1/Iyy+/nF69/v95hEMOOSSf/vSnqzhV5U2ZMmW9iy/U19fnmmuu+Yve64477sjPfvazfO1rXys03Zuf/XzLLbekoaEh9fX1GTVqVE444YTstttuxY4BUGkN1R4AoKecffbZef/731/tMaruoosuytZbb13tMdLR0ZH6+vq33P+BD3wgp5xySjo6OvKDH/wgF198ca644ooqTAhQhsAG3nXmzp2btra2nHHGGUmS6667Lr/5zW/yla98JQ899FC+/e1v54gjjsi//du/pbGxMccee2wOOuigJG9e2fXGG2/Miy++mL59++aDH/xgpkyZkiRZtmxZ/u7v/i7Tpk3LTTfdlDfeeCNHHXVU19Vfn3jiiXz3u9/N888/n969e+fAAw/MiSee2PW6G264IfX19VmxYkXmzp2bRx55JP37989HP/rRNDc3J3nzjO9vf/vb9O7dO/fee2+ampryhS98ITvvvHO3//1feOGFzJkzJ88880zq6uqy55575tOf/nT69euX5M0tK9dcc00efvjhrFu3LgcccEA+9KEPZe7cuVm7dm0++clPdp0JX716da666qosWbIkffr0yWGHHZZjjjkmvXr16jrjvfPOO+fOO+/MEUcckWOPPXajc9XX1+eggw7KLbfckldeeSUDBgzIE088kauvvjq/+93v0rt370yYMCEnnnhiGhre/N/XlClT8pnPfCa33XZbXnnllRx44IH59Kc/nbq6unR2dua6667LggUL0tjYmI985CO56qqrur7Oq1evzrXXXpslS5akrq6uay3/+G89AP4SAht41znhhBNy1lln5Y477siIESPy85//PBdeeGHq6uqSJC+//HJWrVqVK664Io8//nguuOCC7Lzzzhk5cmT69OmTv/u7v8uoUaPy7LPP5utf/3p23HHH7Lfffl3v/8gjj+Rb3/pWnnvuuZx77rnZb7/9MmrUqFx99dU58sgjc/DBB6e9vT3/+Z//ucH5vvWtb2W77bbLnDlz8txzz+VrX/tatt566+yxxx5JkkWLFuX000/PtGnTcuONN+aqq67K+eef/2d9DY455pi8733vy5o1azJjxoz88z//c6ZOnZrOzs780z/9U8aMGZPZs2enV69e+c1vfpNRo0bls5/97Fu2iFx11VVZvXp1Lr300qxatSrnn39+Bg8enEMPPTRJ8vjjj2f//ffP3Llz09HR8bYzrV27NgsWLMhWW23VFfu9evXKiSeemJ133jkvvfRSLrjggvz4xz/OUUcd1fW6xYsX54ILLsiaNWty9tlnZ/z48Rk3blxaWlqyZMmSXHjhhenTp09mzpy53vFmz56dgQMH5pJLLsnrr7+e6dOnZ+jQoTn88MP/rK8lwJ8S2MA71kUXXbTeloTjjz8+zc3NXZH8jW98I1tuuWX+9m//NkOHDl3vtZ/4xCeyxRZbZPfdd89ee+2Vu+++Ox/72McyZsyYrufssMMOOeCAA/LQQw+tF9gf//jH07t37+y4447ZYYcd8swzz2TUqFFpaGjICy+80HV2dkP7jFtbW/PII4/knHPO6XqPww47LAsWLOgK7Pe+973Ze++9kyQHH3xw/u3f/u1tvw5nn3121w8PBx98cD71qU91bRnZYostctRRR+WHP/xhkjfPsq9YsaLrLPUfjrchnZ2dueuuu3LRRRdlyy23zJZbbpmjjz46d955Z1dgDx48OP/lv/yXJNng9pAk+cUvfpHFixdnzZo16devX04//fSu544ePbrrecOHD09zc3Meeuih9QJ78uTJ6devX/r165cxY8bk6aefzrhx4/KLX/wiRx55ZNfafvSjH83SpUuTvPlD1JIlS3LNNdekd+/eaWxszFFHHZWf/exnAhv4qwls4B3rzDPP3Oge7F133TUjRoxIW1tb9t9///Ue69evXxobG7tuDxs2LCtXrkzy5hnZ66+/Pv/5n/+ZtWvXZu3atZk4ceJ6rx80aFDXn/v06ZP29vYkyec///ncdNNNOe200zJ8+PB87GMfyz777LPea1euXJn+/ftnyy237LqvqakpTz75ZNftgQMHdv25d+/e+f3vf7/R/c1J8k//9E/r7cF++eWXu7aAtLe3p7OzM/3790/yZuAPGzZso+/1x1555ZV0dHSkqalpva/VihUr1pt9U/6wB/uVV17JjBkz8pvf/KbrB5nnnnsu/+t//a88+eSTeeONN9LR0bFedCcb/3qvXLlyvR+c/niW1tbWdHR05KSTTuq6b926dW/5QQvgLyGwgXel//iP/8jvf//7DBkyJLfeemuOOeaYrsdee+21tLe3d0V2a2trtttuuyTJJZdckg996EP58pe/nN69e+eaa67JK6+80q1jbrPNNjn11FPT2dmZe++9NxdffHGuvPLK9Z4zePDgvPrqq1mzZk1XZLe2tmbIkCEl/rWTJDfccEOSZMaMGenfv3/uvffeXHXV/23v7kGS6+Mwjn+zOKhIIBVFNRQERURC26mWcGpJGhoaIohCCEOQoOam2gKjIdNBsOhlsbehJYiGpmrobWiooQgKh6BOidUzxC3IPTw+T9480HN9JsHD32s4w+Xh9/+fGPBVQn+Vz78r2aWlpRQXF/P4+Ehtbe23s5aWluL3+5mcnKSzsxO3283i4iJ1dXUEg0EcDgfb29scHh7mtZ7b7c4p+4+Pj9nPZWVllJSUEI1G8/ozISLyT2gnh4j879zd3bGyssLY2BiBQICNjQ2ur69zrlldXSWTyXBxccHR0RGmaQJgWRYulwvDMLi6uuLg4CDv393f3+fp6QmbzYbT6QT4bUNdeXk5jY2NLC0tkU6nubm5YW9vL7vJshAsy8Jut+N0OkmlUmxubma/a2howO12k0gkeH19JZ1Oc3l5CXw9KU6lUmQymWx20zRZXl7GsiweHh7Y2tr6Vtbq6mo8Hg/JZDKb1el0Yrfbub29ZXd3N++1TNNkZ2eHVCrF8/Nzdk34Kt8ej4d4PM7LywsfHx/c399zfn7+r7OLiPyiJ9gi8mPNzMzkFNjW1lZCoRDhcBifz0ddXR0A/f39hMNhpqenga8i6XK58Pv9GIbByMgINTU1AAwPDxOPx4nFYjQ3N2OaJs/Pz3nlOTk5IR6P8/b2RkVFBcFgEMMwfrsuGAwSiUTw+/24XC76+voKetxgX18fc3NzDA4OUlVVlTPHbbPZmJiYIBaLMTo6SlFRER0dHTQ1NdHS0pLd7Giz2YhGowwNDRGLxQgEAhiGgdfrpaur61v5enp6mJqaore3l4GBARYWFkgmk9TX19Pe3s7p6Wle63i9Xu7u7hgfH8fhcNDd3c35+Xn2nggEAiQSCUKhEJZlUVlZic/n+1Z2ERHQi2ZERHKcnZ0RDod1DvMPdHx8TCQSYX5+/r+OIiI/nEZERETkR0qn0xwdHfH+/k4qlWJ9fT3ntBcRkT9FIyIiIvIjfX5+sra2xuzsLIZh0NbWln0pkIjIn6QRERERERGRAtKIiIiIiIhIAalgi4iIiIgUkAq2iIiIiEgBqWCLiIiIiBSQCraIiIiISAGpYIuIiIiIFNBfIRw+CLDpC54AAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -1164,7 +1164,7 @@ " ax = geog_fig.add_subplot(1, len(geogs), i+1)\n", " ax.set_title(f'{geog} {g}')\n", " ax.set_ylabel('Percentage'); ax.set_xlabel('Expansion Factor Range')\n", - " ax.hist(bins[:-1], bins, weights=counts*100/len(geog_df))" + " ax.hist(bins[:-1], bins, weights=counts*100/len(geog_df), alpha=0.6)" ] } ], From d3519d3988c9c7e143d97f27b3a9ef2df22aa0c1 Mon Sep 17 00:00:00 2001 From: bstabler Date: Tue, 20 Oct 2020 14:39:29 -0700 Subject: [PATCH 3/5] increment version --- docs/software.rst | 1 + setup.py | 2 +- 2 files changed, 2 insertions(+), 1 deletion(-) diff --git a/docs/software.rst b/docs/software.rst index 9895afc..21fbf4b 100644 --- a/docs/software.rst +++ b/docs/software.rst @@ -236,3 +236,4 @@ Release Notes * v0.4 - transfer to ActivitySim.org * v0.4.1 - package updates * v0.4.2 - validation script in Python + * v0.4.3 - allow non-binary incidence \ No newline at end of file diff --git a/setup.py b/setup.py index b23b211..397a795 100644 --- a/setup.py +++ b/setup.py @@ -5,7 +5,7 @@ setup( name='populationsim', - version='0.4.2', + version='0.4.3', description='Population Synthesis', author='contributing authors', author_email='ben.stabler@rsginc.com', From 1c04c38a15971c36b7180ce22b0cf42dfae35b95 Mon Sep 17 00:00:00 2001 From: Blake Rosenthal Date: Tue, 27 Oct 2020 13:44:52 -0700 Subject: [PATCH 4/5] deprecate py2.7 --- .travis.yml | 14 +++++++------- example_calm/run_populationsim.py | 1 - example_calm_repop/run_populationsim.py | 1 - example_survey_weighting/run_populationsim.py | 1 - example_test/convert_test_data.py | 1 - ez_setup.py | 2 -- populationsim/balancer.py | 2 -- populationsim/integerizer.py | 1 - populationsim/lp.py | 1 - populationsim/lp_cvx.py | 1 - populationsim/multi_integerizer.py | 2 -- populationsim/simul_balancer.py | 2 -- populationsim/steps/__init__.py | 2 -- populationsim/steps/expand_households.py | 2 -- populationsim/steps/final_seed_balancing.py | 1 - populationsim/steps/initial_seed_balancing.py | 1 - .../steps/integerize_final_seed_weights.py | 1 - populationsim/steps/meta_control_factoring.py | 3 --- populationsim/steps/repop_balancing.py | 1 - populationsim/steps/setup_data_structures.py | 2 -- populationsim/steps/sub_balancing.py | 1 - populationsim/steps/summarize.py | 1 - populationsim/tests/test_integerizer.py | 1 - populationsim/tests/test_multi_integerizer.py | 1 - populationsim/tests/test_tracing.py | 1 - setup.py | 5 +---- 26 files changed, 8 insertions(+), 44 deletions(-) diff --git a/.travis.yml b/.travis.yml index ca6b90b..673c3df 100644 --- a/.travis.yml +++ b/.travis.yml @@ -1,23 +1,23 @@ language: python -sudo: false - python: -- '2.7' - '3.6' - '3.7' install: -- wget http://repo.continuum.io/miniconda/Miniconda-3.7.0-Linux-x86_64.sh -O miniconda.sh +- wget https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh -O miniconda.sh - bash miniconda.sh -b -p $HOME/miniconda -- export PATH="$HOME/miniconda/bin:$PATH" +- source "$HOME/miniconda/etc/profile.d/conda.sh" - hash -r - conda config --set always_yes yes --set changeps1 no - conda update -q conda -- conda create -q -n test-environment python=$TRAVIS_PYTHON_VERSION future -- source activate test-environment +- conda info -a +- conda create -q -n test-environment python=$TRAVIS_PYTHON_VERSION +- conda activate test-environment - conda install pytest pytest-cov coveralls pycodestyle - pip install . +- pip freeze + script: - pycodestyle populationsim - py.test --cov populationsim --cov-report term-missing diff --git a/example_calm/run_populationsim.py b/example_calm/run_populationsim.py index ddb1d12..c5063f0 100644 --- a/example_calm/run_populationsim.py +++ b/example_calm/run_populationsim.py @@ -1,4 +1,3 @@ -from __future__ import print_function import os import logging diff --git a/example_calm_repop/run_populationsim.py b/example_calm_repop/run_populationsim.py index ddb1d12..c5063f0 100644 --- a/example_calm_repop/run_populationsim.py +++ b/example_calm_repop/run_populationsim.py @@ -1,4 +1,3 @@ -from __future__ import print_function import os import logging diff --git a/example_survey_weighting/run_populationsim.py b/example_survey_weighting/run_populationsim.py index 85e5979..9644b43 100755 --- a/example_survey_weighting/run_populationsim.py +++ b/example_survey_weighting/run_populationsim.py @@ -1,4 +1,3 @@ -from __future__ import print_function import os import logging diff --git a/example_test/convert_test_data.py b/example_test/convert_test_data.py index 89e85b8..457a8e3 100644 --- a/example_test/convert_test_data.py +++ b/example_test/convert_test_data.py @@ -1,4 +1,3 @@ -from __future__ import print_function import pandas as pd # settings diff --git a/ez_setup.py b/ez_setup.py index 44f749c..5c739be 100644 --- a/ez_setup.py +++ b/ez_setup.py @@ -13,8 +13,6 @@ This file can also be run as a script to install or upgrade setuptools. """ -from future import standard_library -standard_library.install_aliases() from builtins import next import os import shutil diff --git a/populationsim/balancer.py b/populationsim/balancer.py index 59a26b6..75935f7 100644 --- a/populationsim/balancer.py +++ b/populationsim/balancer.py @@ -1,5 +1,3 @@ -from __future__ import division -from __future__ import absolute_import # PopulationSim # See full license in LICENSE.txt. diff --git a/populationsim/integerizer.py b/populationsim/integerizer.py index 0abdd98..2042539 100644 --- a/populationsim/integerizer.py +++ b/populationsim/integerizer.py @@ -1,4 +1,3 @@ -from __future__ import absolute_import # PopulationSim # See full license in LICENSE.txt. diff --git a/populationsim/lp.py b/populationsim/lp.py index 9ec225b..d7ab7e8 100644 --- a/populationsim/lp.py +++ b/populationsim/lp.py @@ -1,4 +1,3 @@ -from __future__ import absolute_import # PopulationSim # See full license in LICENSE.txt. diff --git a/populationsim/lp_cvx.py b/populationsim/lp_cvx.py index 578fa32..1a6e8c2 100644 --- a/populationsim/lp_cvx.py +++ b/populationsim/lp_cvx.py @@ -1,4 +1,3 @@ -from __future__ import absolute_import # PopulationSim # See full license in LICENSE.txt. diff --git a/populationsim/multi_integerizer.py b/populationsim/multi_integerizer.py index cf0281c..06712e9 100644 --- a/populationsim/multi_integerizer.py +++ b/populationsim/multi_integerizer.py @@ -1,5 +1,3 @@ -from __future__ import print_function -from __future__ import absolute_import # PopulationSim # See full license in LICENSE.txt. diff --git a/populationsim/simul_balancer.py b/populationsim/simul_balancer.py index ad976a2..6a63482 100644 --- a/populationsim/simul_balancer.py +++ b/populationsim/simul_balancer.py @@ -1,5 +1,3 @@ -from __future__ import division -from __future__ import absolute_import # PopulationSim # See full license in LICENSE.txt. diff --git a/populationsim/steps/__init__.py b/populationsim/steps/__init__.py index a5bfb9b..d38df1f 100644 --- a/populationsim/steps/__init__.py +++ b/populationsim/steps/__init__.py @@ -1,8 +1,6 @@ # PopulationSim # See full license in LICENSE.txt. -from __future__ import absolute_import - from activitysim.core import inject as _inject from . import input_pre_processor diff --git a/populationsim/steps/expand_households.py b/populationsim/steps/expand_households.py index a7846b0..5d16b11 100644 --- a/populationsim/steps/expand_households.py +++ b/populationsim/steps/expand_households.py @@ -1,5 +1,3 @@ -from __future__ import division -from __future__ import absolute_import # PopulationSim # See full license in LICENSE.txt. diff --git a/populationsim/steps/final_seed_balancing.py b/populationsim/steps/final_seed_balancing.py index 398e33b..6ee347f 100644 --- a/populationsim/steps/final_seed_balancing.py +++ b/populationsim/steps/final_seed_balancing.py @@ -1,4 +1,3 @@ -from __future__ import absolute_import # PopulationSim # See full license in LICENSE.txt. diff --git a/populationsim/steps/initial_seed_balancing.py b/populationsim/steps/initial_seed_balancing.py index b75cb97..cf86103 100644 --- a/populationsim/steps/initial_seed_balancing.py +++ b/populationsim/steps/initial_seed_balancing.py @@ -1,4 +1,3 @@ -from __future__ import absolute_import # PopulationSim # See full license in LICENSE.txt. diff --git a/populationsim/steps/integerize_final_seed_weights.py b/populationsim/steps/integerize_final_seed_weights.py index a93d1fb..f41d76b 100644 --- a/populationsim/steps/integerize_final_seed_weights.py +++ b/populationsim/steps/integerize_final_seed_weights.py @@ -1,4 +1,3 @@ -from __future__ import absolute_import # PopulationSim # See full license in LICENSE.txt. diff --git a/populationsim/steps/meta_control_factoring.py b/populationsim/steps/meta_control_factoring.py index d62fa1a..6b0f338 100644 --- a/populationsim/steps/meta_control_factoring.py +++ b/populationsim/steps/meta_control_factoring.py @@ -1,6 +1,3 @@ -from __future__ import division -from __future__ import print_function -from __future__ import absolute_import # PopulationSim # See full license in LICENSE.txt. diff --git a/populationsim/steps/repop_balancing.py b/populationsim/steps/repop_balancing.py index cc89a42..bcfb87d 100644 --- a/populationsim/steps/repop_balancing.py +++ b/populationsim/steps/repop_balancing.py @@ -1,4 +1,3 @@ -from __future__ import absolute_import # PopulationSim # See full license in LICENSE.txt. diff --git a/populationsim/steps/setup_data_structures.py b/populationsim/steps/setup_data_structures.py index 5d0bcd3..eae01c9 100644 --- a/populationsim/steps/setup_data_structures.py +++ b/populationsim/steps/setup_data_structures.py @@ -1,5 +1,3 @@ -from __future__ import absolute_import - # PopulationSim # See full license in LICENSE.txt. diff --git a/populationsim/steps/sub_balancing.py b/populationsim/steps/sub_balancing.py index 3efbea2..9b23d74 100644 --- a/populationsim/steps/sub_balancing.py +++ b/populationsim/steps/sub_balancing.py @@ -1,4 +1,3 @@ -from __future__ import absolute_import # PopulationSim # See full license in LICENSE.txt. diff --git a/populationsim/steps/summarize.py b/populationsim/steps/summarize.py index 74e02a5..0ce1144 100644 --- a/populationsim/steps/summarize.py +++ b/populationsim/steps/summarize.py @@ -1,4 +1,3 @@ -from __future__ import absolute_import # PopulationSim # See full license in LICENSE.txt. diff --git a/populationsim/tests/test_integerizer.py b/populationsim/tests/test_integerizer.py index 691aae7..d955e6e 100644 --- a/populationsim/tests/test_integerizer.py +++ b/populationsim/tests/test_integerizer.py @@ -1,4 +1,3 @@ -from __future__ import (absolute_import, print_function) # PopulationSim # See full license in LICENSE.txt. diff --git a/populationsim/tests/test_multi_integerizer.py b/populationsim/tests/test_multi_integerizer.py index 94002e0..5038861 100644 --- a/populationsim/tests/test_multi_integerizer.py +++ b/populationsim/tests/test_multi_integerizer.py @@ -1,4 +1,3 @@ -from __future__ import print_function # PopulationSim # See full license in LICENSE.txt. diff --git a/populationsim/tests/test_tracing.py b/populationsim/tests/test_tracing.py index cacc29e..04abf3a 100644 --- a/populationsim/tests/test_tracing.py +++ b/populationsim/tests/test_tracing.py @@ -1,4 +1,3 @@ -from __future__ import (absolute_import, print_function) # ActivitySim # See full license in LICENSE.txt. diff --git a/setup.py b/setup.py index 397a795..b74577b 100644 --- a/setup.py +++ b/setup.py @@ -13,20 +13,17 @@ url='https://github.com/ActivitySim/populationsim', classifiers=[ 'Development Status :: 4 - Beta', - 'Programming Language :: Python :: 2.7', - 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'License :: OSI Approved :: BSD License' ], packages=find_packages(exclude=['*.tests']), include_package_data=True, - python_requires='>=2.7,!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*', + python_requires='>=3.6, <3.8', install_requires=[ 'activitysim >= 0.9.2', 'numpy >= 1.16.1', 'pandas >= 0.24.1', 'ortools >= 5.1.4045, < 7.5', - 'future >= 0.16.0' ] ) From 68fcba8d2991ec4adf5a28e2bda31970da834b2e Mon Sep 17 00:00:00 2001 From: Ben Stabler Date: Fri, 23 Apr 2021 14:06:05 -0700 Subject: [PATCH 5/5] Multiprocess (#130) --- .gitignore | 1 + .travis.yml | 5 +- LICENSE.txt | 2 + MANIFEST.in | 1 - docs/application_configuration.rst | 189 ++++++++++++------ docs/conf.py | 6 +- docs/getting_started.rst | 51 +++-- docs/index.rst | 75 ++++--- docs/software.rst | 10 +- docs/validation.rst | 37 ++-- example_calm/.gitignore | 2 + example_calm/configs/settings.yaml | 15 +- example_calm/configs_mp/settings.yaml | 76 +++++++ example_calm/output/.gitignore | 1 + example_calm/output_mp/.gitignore | 5 + example_calm/output_mp/log/.gitignore | 3 + example_calm/run_populationsim.py | 83 +++----- example_calm_repop/run_populationsim.py | 1 + example_survey_weighting/run_populationsim.py | 1 + example_test/.gitignore | 1 + example_test/convert_test_data.py | 1 + example_test/output/.gitignore | 2 + ez_setup.py | 18 +- populationsim/assign.py | 2 +- populationsim/balancer.py | 1 + populationsim/integerizer.py | 7 +- populationsim/lp.py | 1 + populationsim/lp_cvx.py | 1 + populationsim/multi_integerizer.py | 23 ++- populationsim/simul_balancer.py | 1 + populationsim/steps/__init__.py | 10 +- populationsim/steps/expand_households.py | 14 +- populationsim/steps/final_seed_balancing.py | 1 + populationsim/steps/initial_seed_balancing.py | 1 + populationsim/steps/input_pre_processor.py | 8 +- .../steps/integerize_final_seed_weights.py | 1 + populationsim/steps/meta_control_factoring.py | 3 +- populationsim/steps/repop_balancing.py | 1 + populationsim/steps/setup_data_structures.py | 16 +- populationsim/steps/sub_balancing.py | 18 +- populationsim/steps/summarize.py | 2 +- .../steps/write_synthetic_population.py | 2 +- populationsim/tests/configs_mp/settings.yaml | 48 +++++ populationsim/tests/output/.gitignore | 2 + populationsim/tests/run_mp.py | 72 +++++++ populationsim/tests/test_flex.py | 4 +- populationsim/tests/test_integerizer.py | 1 + populationsim/tests/test_multi_integerizer.py | 1 + populationsim/tests/test_steps_mp.py | 23 +++ populationsim/tests/test_tracing.py | 3 +- setup.cfg | 2 +- setup.py | 14 +- 52 files changed, 619 insertions(+), 250 deletions(-) create mode 100644 example_calm/.gitignore create mode 100644 example_calm/configs_mp/settings.yaml create mode 100644 example_calm/output_mp/.gitignore create mode 100644 example_calm/output_mp/log/.gitignore create mode 100644 example_test/.gitignore create mode 100644 populationsim/tests/configs_mp/settings.yaml create mode 100644 populationsim/tests/run_mp.py create mode 100644 populationsim/tests/test_steps_mp.py diff --git a/.gitignore b/.gitignore index 5a96d9a..195b984 100644 --- a/.gitignore +++ b/.gitignore @@ -1,6 +1,7 @@ sandbox/ regress/ example_test_no_integerizing/ +example_mtc/ .idea .ipynb_checkpoints diff --git a/.travis.yml b/.travis.yml index 673c3df..cce01c8 100644 --- a/.travis.yml +++ b/.travis.yml @@ -1,8 +1,10 @@ language: python +sudo: false + python: -- '3.6' - '3.7' +- '3.8' install: - wget https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh -O miniconda.sh @@ -21,6 +23,7 @@ install: script: - pycodestyle populationsim - py.test --cov populationsim --cov-report term-missing + after_success: - coveralls # Build docs diff --git a/LICENSE.txt b/LICENSE.txt index 99e7272..1654ca9 100644 --- a/LICENSE.txt +++ b/LICENSE.txt @@ -1,3 +1,5 @@ +BSD 3-Clause License + PopulationSim Contributions Copyright (C) by the contributing authors diff --git a/MANIFEST.in b/MANIFEST.in index 7bd7181..f078635 100644 --- a/MANIFEST.in +++ b/MANIFEST.in @@ -1,5 +1,4 @@ include ez_setup.py -include README.rst graft example_calm graft example_calm_repop graft example_survey_weighting diff --git a/docs/application_configuration.rst b/docs/application_configuration.rst index 450fc1c..b970c4c 100644 --- a/docs/application_configuration.rst +++ b/docs/application_configuration.rst @@ -7,20 +7,20 @@
Application & Configuration -============================= +=========================== This section describes how to set up a new PopulationSim implementation. In order to create a new PopulationSim implementation, the user must first understand the requirements of the project in terms of geographic resolution and details desired in the synthetic population. Once the requirements of the project have been established, the next step is to prepare the inputs to PopulationSim which includes seed population tables and geographic controls. Next, PopulationSim needs to be configured for available inputs and features desired in the final synthetic population. After this, the user needs to run PopulationSim and resolve any data related errors. Finally, the user should validate the output synthetic population against the controls to understand the precision of the synthetic population compared to controls and the amount of variance in the population for each control. Selecting Geographies ----------------------- +--------------------- -PopulationSim can represent both household and person level controls at multiple geographic levels. Therefore the user must define what geographic units to use for each control. This is an art; there is not necessarily any 'right' way to define geographic areas or to determine what geographic level to use for each control. However, there are important considerations for selecting geography, discussed below. +PopulationSim can represent both household and person level controls at multiple geographic levels. Therefore the user must define what geographic units to use for each control. There is not necessarily any 'right' way to define geographic areas or to determine what geographic level to use for each control. However, there are important considerations for selecting geography, discussed below. -Traditionally, travel forecasting models have followed the sequential four-step model framework. This required the modeling region to be divided into zones, typically the size of census block groups or tracts. The zones used in four-step process are typically known as Transportation Analysis Zones (TAZs). The spatial boundaries of TAZs varies across modeling region and ranges from a city block to a large area in the suburb within a modeling region. If building a synthetic population for a trip-based model, or an Activity-based model (ABM) whose smallest geography is the TAZ, then there is no reason to select a smaller geoegraphical unit than the TAZ for any of the controls. +Traditionally, travel forecasting models have followed the sequential four-step model framework. This required the modeling region to be divided into zones, typically the size of census block groups or tracts. The zones used in four-step process are typically known as Transportation Analysis Zones (TAZs). The spatial boundaries of TAZs varies across modeling region and ranges from a city block to a large area in the suburb within a modeling region. If building a synthetic population for a trip-based model, or an activity-based travel models (ABMs) whose smallest geography is the TAZ, then there is no reason to select a smaller geoegraphical unit than the TAZ for any of the controls. -Activity-based models (ABMs) operate in a micro-simulation framework, where travel decisions are modeled explicitly for persons and households in the synthetic population. Many ABMs (e.g., DaySim, CT-RAMP) operate at a finer spatial resolution than TAZs, wherein all location choices (e.g., usual work location, tour destination choice) are modeled at a sub-TAZ geography. This finer geography is typically referred to as Micro-Analysis Zones (MAZs) which are smaller zones nested within TAZs. Models that represent behavior at the MAZ level requires that MAZs are used as the lowest level of control, so that the synthetic population will identify the MAZ that each household resides in. +ABMs operate at the individual level, where travel decisions are modeled explicitly for persons and households in the synthetic population. Many ABMs operate at a finer spatial resolution than TAZs, wherein all location choices (e.g., usual work location, tour destination choice) are modeled at a sub-TAZ geography. This finer geography is typically referred to as Micro-Analysis Zones (MAZs) which are smaller zones nested within TAZs. Models that represent behavior at the MAZ level requires that MAZs are used as the lowest level of control, so that the synthetic population will identify the MAZ that each household resides in. As discussed earlier, two main inputs to a population synthesizer are a seed sample and controls. The seed sample can come from a household travel survey or from American Community Survey (ACS) Public Use Microdata Sample (PUMS), with latter being the most common source. The PUMS data contains a sample of actual responses to the ACS, but the privacy of each household is protected by aggregating all household residential locations into relatively large regions called Public Use Microdata Areas (PUMAs). PUMAs are special non-overlapping areas that partition each state into contiguous geographic units containing no fewer than 100,000 people each. Some larger regions are composed of many PUMAs, while other, smaller regions have only one PUMA, or may even be smaller than a PUMA. It is not a problem to use PopulationSim to generate a synthetic population if the region is smaller than a PUMA; PopulationSim will 'fit' the PUMA-level population to regional control data as an initial step. @@ -49,7 +49,7 @@ The hierarchy of geographies is important when making a decision regarding contr * Seed (e.g., PUMA) * Sub-Seed (e.g., TAZ, MAZ) -The Meta geography is the entire region. Currently, PopulationSim can handle only one Meta geography. The Seed geography is the geographic resolution of the seed data. There can be one or more Seed geographies. PopulationSim can handle any number of nested Sub-Seed geographies. More information on PopulationSim algorithm can be found from the PopulationSim specifications in the :ref:`docs` section. +The Meta geography is the entire region. PopulationSim can handle only one Meta geography. The Seed geography is the geographic resolution of the seed data. There can be one or more Seed geographies. PopulationSim can handle any number of nested Sub-Seed geographies. More information on PopulationSim algorithm can be found from the PopulationSim specifications in the :ref:`docs` section. Geographic Cross-walk ~~~~~~~~~~~~~~~~~~~~~ @@ -74,12 +74,12 @@ After selecting the geographies, the next step is to prepare a geographic cross- Preparing seed and control data --------------------------------- +------------------------------- Seed sample ~~~~~~~~~~~ -As mentioned in previous section, the seed sample is typically obtained from the ACS PUMS. One of the main requirements for the seed sample is that it should be representative of the modeling region. In case of ACS PUMS, this can be ensured by selecting PUMAs representing the modeling region both demographically and geographically. PUMA boundaries may not perfectly line up against the modeling region boundaries and overlaps are possible. Each sub-seed geography must be assigned to a Seed geography, and each Seed geography must be assigned to a Meta geography. +As mentioned in previous section, the seed sample is typically obtained from the ACS PUMS. One of the main requirements for the seed sample is that it should be representative of the modeling region. In the case of ACS PUMS, this can be ensured by selecting PUMAs representing the modeling region both demographically and geographically. PUMA boundaries may not perfectly line up against the modeling region boundaries and overlaps are possible. Each sub-seed geography must be assigned to a Seed geography, and each Seed geography must be assigned to a Meta geography. The seed sample must contain all of the specified control variables, as well as any variables that are needed for the travel model but not specified as controls. For population groups that use completely separate, non-overlapping controls, such as residential population and group-quarter population, separate seed samples are prepared. In the ACS PUMS datasets, it is possible to have zero-person households in the raw data table (`NP = 0`); these records must be filtered from the seed data. PopulationSim can be set up and run separately for each population segment using the same geographic system. The outputs from each run can be combined into a unified synthetic population as a post processing step. @@ -105,7 +105,7 @@ versions, and then add the error to the largest category by subtracting it from Configuration ------------- -Below is PopulationSim's directory structure followed by a description of inputs. +Below is PopulationSim's typical directory structure followed by a description of inputs. .. image:: images/PopulationSimFolderStructure.png @@ -117,15 +117,15 @@ PopulationSim is run via **run_populationsim.py**. The user needs to first activ activate popsim python run_populationsim.py -PopulationSim is configured using the settings.YAML file. PopulationSim can be configured to run in **base** mode or **repop** mode. +PopulationSim is configured using the settings.yaml file. PopulationSim can be configured to run in **regular** mode or **repop** mode. -:base mode: +:regular mode: - The base configuration runs PopulationSim from beginning to end and produces a new synthetic population. + The regular configuration runs PopulationSim from beginning to end and produces a new synthetic population. This can run either single-process or multi-processed to save on runtime. :repop mode: - The repop configuration is used for repopulating a subset of zones for an existing synthetic population. The user has the option to *replace* or *append* to the existing synthetic population. These options are specified from the settings.YAML file, details can be found in the :ref:`settings` section. + The repop configuration is used for repopulating a subset of zones for an existing synthetic population. The user has the option to *replace* or *append* to the existing synthetic population. These options are specified from the settings.yaml file, details can be found in the :ref:`settings` section. The following sections describes the inputs and outputs, followed by discussion on configuring the settings file and specifying controls. @@ -134,7 +134,7 @@ The following sections describes the inputs and outputs, followed by discussion .. _inputs_outputs: Inputs & Outputs -~~~~~~~~~~~~~~~~~~~ +~~~~~~~~~~~~~~~~ Please refer to the following definition list to understand the file names: @@ -147,17 +147,19 @@ Please refer to the following definition list to understand the file names: Working Directory Contents: -+-----------------------+----------------------------------------------------------------------------+ -| File | Description | -+=======================+============================================================================+ -| run_populationsim.py | Python script that orchestrates a PopulationSim run | -+-----------------------+----------------------------------------------------------------------------+ -| /configs | Sub-directory containing control specifications and configuration settings | -+-----------------------+----------------------------------------------------------------------------+ -| /data | Sub-directory containing all input files | -+-----------------------+----------------------------------------------------------------------------+ -| /output | Sub-directory containing all outputs, summaries and intermediate files | -+-----------------------+----------------------------------------------------------------------------+ ++-----------------------+--------------------------------------------------------------------------------------------------------+ +| File | Description | ++=======================+========================================================================================================+ +| run_populationsim.py | Python script that orchestrates a PopulationSim run | ++-----------------------+--------------------------------------------------------------------------------------------------------+ +| /configs | Sub-directory containing control specifications and configuration settings | ++-----------------------+--------------------------------------------------------------------------------------------------------+ +| /configs_mp | Sub-directory containing configuration settings for running multi-processed if applicable | ++-----------------------+--------------------------------------------------------------------------------------------------------+ +| /data | Sub-directory containing all input files | ++-----------------------+--------------------------------------------------------------------------------------------------------+ +| /output | Sub-directory containing all outputs, summaries and intermediate files | ++-----------------------+--------------------------------------------------------------------------------------------------------+ -------------------------------------------------------------- @@ -166,15 +168,25 @@ Working Directory Contents: +--------------------+------------------------------------------------------------+ | File | Description | +====================+============================================================+ -| logging.yaml | YAML-based file for setting up logging | +| logging.yaml | yaml-based file for setting up logging | +--------------------+------------------------------------------------------------+ -| settings.yaml | YAML-based settings file to configure a PopulationSim run | +| settings.yaml | yaml-based settings file to configure a PopulationSim run | +--------------------+------------------------------------------------------------+ | controls.csv | CSV file to specify controls | +--------------------+------------------------------------------------------------+ -------------------------------------------------------------- +*/configs_mp* Sub-directory Contents: + ++--------------------+---------------------------------------------------------------+ +| File | Description | ++====================+===============================================================+ +| settings.yaml | additional yaml-based settings file for multiprocess running | ++--------------------+---------------------------------------------------------------+ + +-------------------------------------------------------------- + */data* Sub-directory Contents: +-------------------------------------+----------------------------------------------------------------------+ @@ -208,10 +220,10 @@ This sub-directory is populated at the end of the PopulationSim run. The table b | | | this file with the seed sample to generate a fully expanded synthetic population | +---------------------------------+----------------------------+-----------------------------------------------------------------------------------------+ | synthetic_households.csv | Final Synthetic Population | Fully expanded synthetic population of households. User can specify the attributes |br| | -| | | to be included from the *seed sample* in the *settings.YAML* file | +| | | to be included from the *seed sample* in the *settings.yaml* file | +---------------------------------+----------------------------+-----------------------------------------------------------------------------------------+ | synthetic_persons.csv | Final Synthetic Population | Fully expanded synthetic population of persons. User can specify the attributes to |br| | -| | | be included from the *seed sample* in the *settings.YAML* file | +| | | be included from the *seed sample* in the *settings.yaml* file | +---------------------------------+----------------------------+-----------------------------------------------------------------------------------------+ | incidence_table.csv | Intermediate | Intermediate incidence table | +---------------------------------+----------------------------+-----------------------------------------------------------------------------------------+ @@ -249,11 +261,19 @@ This sub-directory is populated at the end of the PopulationSim run. The table b .. _settings: Configuring Settings File -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +~~~~~~~~~~~~~~~~~~~~~~~~~ + +PopulationSim is configured using the *configs/settings.yaml* file. The user has the flexibility to specify algorithm functionality, list geographies, invoke tracing, provide inputs specifications, select outputs, list the steps to run, and specify multiprocess settings. -PopulationSim is configured using the *configs/settings.YAML* file. The user has the flexibility to specify algorithm functionality, list geographies, invoke tracing, provide inputs specifications, select outputs and list the steps to run. The settings shown below are from the PopulationSim application for the CALM region as an example of how a run can be configured. The meta geography for CALM region is named as *Region*, the seed geography is *PUMA* and the two sub-seed geographies are *TRACT* and *TAZ*. The settings below are for this four geography application, but the user can configure PopulationSim for any number of geographies and use different geography names. +.. note:: + When running PopulationSim, multiple settings files can be specified so long as the ``inherit_settings: True`` setting is included in + subsequent files. This feature is used for the multi-processing configuration described below. To utilize this feature, once can run PopulationSim + with the following command: ``python run_populationsim.py -c configs_mp -c configs``. This command specifies two config folders, each with + a settings file, and the ``configs_mp`` settings inherit from the earlier ``configs`` settings. -Some of the setting are configured differently for the *repop* mode. The settings specific to the *repop* mode are described in the :ref:`settings_repop` section. +The settings shown below are from the PopulationSim application for the CALM region as an example of how a run can be configured. The meta geography for CALM region is named as *Region*, the seed geography is *PUMA* and the two sub-seed geographies are *TRACT* and *TAZ*. The settings below are for this four geography application, but the user can configure PopulationSim for any number of geographies and use different geography names. + +Some of the setting are configured differently for the *repop* mode. The settings specific to the *repop* mode are described in the :ref:`settings_repop` section. The settings specific to the *multiprocessing* setup are described in the :ref:`settings_mp` section. **Algorithm/Software Configuration**: @@ -267,6 +287,7 @@ These settings control the functionality of the PopulationSim algorithm. The set USE_SIMUL_INTEGERIZER: True USE_CVXPY: False max_expansion_factor: 30 + MAX_BALANCE_ITERATIONS_SIMULTANEOUS: 1000 +--------------------------------------+------------+---------------------------------------------------------------------------------+ | Attribute | Value | Description | @@ -299,7 +320,8 @@ These settings control the functionality of the PopulationSim algorithm. The set | | | The maximum expansion factor may have to be adjusted upwards if the target |br| | | | | is much greater than the seed number of households. |br| | +--------------------------------------+------------+---------------------------------------------------------------------------------+ - +| MAX_BALANCE_ITERATIONS_SIMULTANEOUS | Integer | Number of simultaneous list balancer iterations | ++--------------------------------------+------------+---------------------------------------------------------------------------------+ **Geographic Settings**: @@ -365,7 +387,7 @@ This setting is used to specify details of various inputs to PopulationSim. Belo * Geographic CrossWalk * Control data at each control geography -Note that Seed-Households, Seed-Persons and Geographic CrossWalk are all required tables and must be listed. There must be a control data file specified for each geography other than seed. For each input table, the user is required to specify an import table name, input CSV file name, index column name and column name map (only for renaming column names). The user can also specify a list of columns to be dropped from the input synthetic population seed data. An example is shown below followed by description of attributes. +Note that Seed-Households, Seed-Persons and Geographic CrossWalk are all required tables and must be listed. There must be a control data file specified for each geography other than seed. For each input table, the user is required to specify an import table name, input CSV file name, index column name and column name map (only for renaming column names). The user can also specify a list of columns to be dropped from the input synthetic population seed data. An example is shown below followed by description of attributes. :: @@ -542,7 +564,7 @@ This setting allows the user to specify the details of the expanded synthetic po -**Steps for base mode**: +**Steps for regular mode**: This setting lists the sub-modules or steps to be run by the PopulationSim orchestrator. The ActivitySim framework allows user to resume a PopulationSim run from a specific point. This is specified using the attribute ``resume_after``. The step, ``sub_balancing.geography`` is repeated for each sub-seed geography (the example below shows two, but there can be 0 or more). @@ -600,19 +622,78 @@ For detailed information on software implementation refer to :ref:`core_componen | :ref:`summarize` | Write aggregate summary files of controls and weights for all geographic levels to output dir | +--------------------------------------+-------------------------------------------------------------------------------------------------------------------------------------------------------------------+ +.. _settings_mp: + +Configuring Settings File for Multiprocessing +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +This sections describes the settings that are additionally configured for running PopulationSim with +multiprocessing to reduce runtime. PopulationSim uses ActivitySim's multiprocessing capabilities, which +are described in more detail `here `_. + +The example below can be found in the ``example_calm\configs_mp\settings.yaml`` file. The group of model steps +identified as ``mp_seed_balancing`` and starting with ``input_pre_processor`` +are run single process until the next group of model steps identified as ``mp_sub_balancing_TAZ`` and starting with +``sub_balancing.geography=TAZ`` is reached, at which time PopulationSim runs these steps in parallel using two processors +by slicing the problem into separate geographic batches based on the ``slice_geography: TRACT`` setting. It then +returns to single process with the final group of model steps identified as ``mp_summarize`` and +beginning with ``expand_households``. + +:: + + inherit_settings: True + multiprocess: True + num_processes: 2 + cleanup_pipeline_after_run: True + slice_geography: TRACT + + multiprocess_steps: + - name: mp_seed_balancing + begin: input_pre_processor + - name: mp_sub_balancing_TAZ + begin: sub_balancing.geography=TAZ + num_processes: 2 + slice: + tables: + - slice_crosswalk + - crosswalk + # don't slice any tables not explicitly listed above in slice.tables + except: True + # the following tables are added by sub_balancer and should be coalesced + coalesce: + - TAZ_weights + - TAZ_weights_sparse + - trace_TAZ_weights + - name: mp_summarize + begin: expand_households + + ++-------------------------------+--------------------------------------------------------------------------------------------------------------+ +| Attribute | Description | ++===============================+==============================================================================================================+ +| inherit_settings | True means this settings file inherits settings from settings file(s) identified earlier in the run command | ++-------------------------------+--------------------------------------------------------------------------------------------------------------+ +| num_processes | Number of processors to use for multiprocessing | ++-------------------------------+--------------------------------------------------------------------------------------------------------------+ +| cleanup_pipeline_after_run | Removes multiprocess process specific intermediate pipelines at the end of the run if desired | ++-------------------------------+--------------------------------------------------------------------------------------------------------------+ +| slice_geography | The geography used to separate the problem into parallel geographic batches for balancing | ++-------------------------------+--------------------------------------------------------------------------------------------------------------+ +| multiprocess_steps | Specifies which steps to run single process and multiprocess | ++-------------------------------+--------------------------------------------------------------------------------------------------------------+ .. _settings_repop: Configuring Settings File for repop Mode -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ This sections describes the settings that are configured differently for the *repop* mode. **Input Data Tables for repop mode** -The repop mode runs over an existing synthetic population and uses the data pipeline (HDF5 file) from the base run as an input. User should copy the HDF5 file from the base outputs to the *output* folder of the repop set up. The data input which needs to be specified in this setting is the control data for the subset of geographies to be modified. Input tables for the repop mode can be specified in the same manner as base mode. However, only one geography can be controlled. In the example below, TAZ controls are specified. The controls specified in TAZ_control_data do not have to be consistent with the controls specified in the data used to control the initial population. Only those geographic units to be repopulated should be specified in the control data (for example, TAZs 314 through 317). +The repop mode runs over an existing synthetic population and uses the data pipeline (HDF5 file) from the regular run as an input. User should copy the HDF5 file from the regular outputs to the *output* folder of the repop set up. The data input which needs to be specified in this setting is the control data for the subset of geographies to be modified. Input tables for the repop mode can be specified in the same manner as regular mode. However, only one geography can be controlled. In the example below, TAZ controls are specified. The controls specified in TAZ_control_data do not have to be consistent with the controls specified in the data used to control the initial population. Only those geographic units to be repopulated should be specified in the control data (for example, TAZs 314 through 317). :: @@ -641,7 +722,7 @@ It should be noted that only the summary_GEOG_NAME.csv summary file is available **Steps for repop mode**: -When running PoulationSim in repop mode, the steps specified in this setting are run. As mentioned earlier, the repop mode runs over an existing synthetic population. The default value for the ``resume_after`` setting under the repop mode is *summarize* which is the last step of a base run. In other words, the repop mode starts from the last step of the base run and modifies the base synthetic population as per the new controls. The user can choose either *append* or *replace* in the ``expand_households.repop`` attribute to modify the existing synthetic population. The *append* option adds to the existing synthetic population in the specified geographies, while the *replace* option replaces any existing synthetic population with newly synthesized population in the specified geographies. +When running PoulationSim in repop mode, the steps specified in this setting are run. As mentioned earlier, the repop mode runs over an existing synthetic population. The default value for the ``resume_after`` setting under the repop mode is *summarize* which is the last step of a regular run. In other words, the repop mode starts from the last step of the regular run and modifies the regular synthetic population as per the new controls. The user can choose either *append* or *replace* in the ``expand_households.repop`` attribute to modify the existing synthetic population. The *append* option adds to the existing synthetic population in the specified geographies, while the *replace* option replaces any existing synthetic population with newly synthesized population in the specified geographies. :: @@ -676,27 +757,27 @@ For information on software implementation of repop balancing refer to :ref:`rep .. _settings_weighting: How to prepare PopulationSim inputs for survey weighting -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The main difference in the seed sample for population synthesis and survey weighting is that in case of survey weighting the geographic allocation is known. PopulationSim operates at multiple geographies and performs geographic allocation of the sample to match controls at lower geographies. Since it is undesirable to change geographic allocation in case of survey weighting, controls should be specified only at one geographic level – the seed geography. All the other inputs must be prepared in the same fashion as for population synthesis. **Configuring PopulationSim for survey weighting**: -Since survey weighting does not involve expanding the survey sample, integerization is not needed. Integerization can be skipped by switching off integerization in the YAML settings file as follows: +Since survey weighting does not involve expanding the survey sample, integerization is not needed. Integerization can be skipped by switching off integerization in the yaml settings file as follows: :: NO_INTEGERIZATION_EVER: True -User may want to specify the maximum and minimum limit on expansion of initial weights in the YAML settings file as follows: +User may want to specify the maximum and minimum limit on expansion of initial weights in the yaml settings file as follows: :: max_expansion_factor: 4 # Default is 30 min_expansion_factor: 0.5 -The desired output for survey weighting is a list of final weights by household ID. In order to achieve this, the grouping of incidence must be switched off in the YAML settings file as follows: +The desired output for survey weighting is a list of final weights by household ID. In order to achieve this, the grouping of incidence must be switched off in the yaml settings file as follows: :: @@ -705,7 +786,7 @@ The desired output for survey weighting is a list of final weights by household **Output Tables for weighting mode**: -To obtain the final weights by household ID, the seed geography weights table must be specified in the YAML settings file as below: +To obtain the final weights by household ID, the seed geography weights table must be specified in the yaml settings file as below: :: @@ -731,7 +812,7 @@ The seed_geography_weights file contains the following columns: - It should be noted that under NO_INTEGERIZATION_EVER mode the expanded_household_ids file is empty. Specifying Controls -~~~~~~~~~~~~~~~~~~~~~ +~~~~~~~~~~~~~~~~~~~ The controls for a PopulationSim run are specified using the control specification CSV file. Following the ActivitySim framework, Python expressions are used for specifying control constraints. An example file is below. @@ -782,26 +863,10 @@ Some conventions for writing expressions: Error Handling & Debugging -------------------------- -It is recommended to do appropriate checks on input data before running PopulationSim. - -Checks on data inputs -~~~~~~~~~~~~~~~~~~~~~~~ - -While the PopulationSim algorithm is designed to work even with imperfect data, an error-free and consistent set of input controls guarantees optimal performance. Poor performance and errors are usually the result of inconsistent data and it is the responsibility of the user to do necessary QA/QC on the input data. Some data problems that are frequently encountered are as follows: +It is recommended to do appropriate checks on input data before running PopulationSim. While the PopulationSim algorithm is designed to work even with imperfect data, an error-free and consistent set of input controls guarantees optimal performance. Poor performance and errors are usually the result of inconsistent data and it is the responsibility of the user to do necessary QA/QC on the input data. Some data problems that are frequently encountered are as follows: * Miscoding of data * Inconsistent controls (for example, household-level households by size controls do not match person-level controls on total persons, or household-level workers per household controls do not match person-level workers by occupation) * Controls do not add to total number of households * Controls do not aggregate consistently across geographies - * missing or mislabelled controls - -Common run-time errors -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -Below is a list of common run-time errors: - -**Tabs in settings.YAML file** - -User should not use /t (tabs) while configuring the settings.YAML file. Presence of /t would result in the error shown below. {SPACE} should be used for indenting purposes and hard returns at the end of each line. - - .. image:: images/YAML_Tab_Error.JPG + * Missing or mislabelled controls diff --git a/docs/conf.py b/docs/conf.py index 9470f5c..2c5df3c 100644 --- a/docs/conf.py +++ b/docs/conf.py @@ -20,9 +20,9 @@ # -- Get Package Version -------------------------------------------------- with open("../setup.py") as file: lines = file.readlines() - for l in lines: - if "version" in l: - VERSION = l.replace("version='", "").replace("',", "").replace(" ", "") + for line in lines: + if "version" in line: + VERSION = line.replace("version='", "").replace("',", "").replace(" ", "") print("package version: " + VERSION) # If extensions (or modules to document with autodoc) are in another directory, diff --git a/docs/getting_started.rst b/docs/getting_started.rst index b775cfc..371d2a3 100644 --- a/docs/getting_started.rst +++ b/docs/getting_started.rst @@ -27,34 +27,35 @@ Installation :: - conda create -n popsim python=3.7 + conda create -n popsim python=3.8 - #Windows + # Windows activate popsim - #Mac + # Mac conda activate popsim 4. Get and install the PopulationSim package on the activated conda Python environment: :: + # best to use the conda version of pytables for consistency with activitysim + conda install pytables + pip install populationsim -.. _anaconda_notes : +.. _activitysim : -Python 2 or 3? -~~~~~~~~~~~~~~~ +ActivitySim +~~~~~~~~~~~ .. note:: - PopulationSim is a 64bit Python 2 or 3 library that uses a number of packages from the + PopulationSim is a 64bit Python 3 library that uses a number of packages from the scientific Python ecosystem, most notably `pandas `__ - and `numpy `__. It relies heavily on the - `ActivitySim `__ package. Both ActivitySim and PopulationSim - currently support Python 2, but Python 2 will be `retired `__ at the - end of 2019 so Python 3 is recommended. + and `numpy `__. It also relies heavily on the + `ActivitySim `__ package. The recommended way to get your own scientific Python installation is to install 64 bit Anaconda, which contains many of the libraries upon which @@ -67,7 +68,17 @@ Python 2 or 3? Run Examples ------------ -There are three examples for running PopulationSim, two created using data from the Corvallis-Albany-Lebanon Modeling (CALM) region in Oregon and the other using data from the Metro Vancouver region in British Columbia. The `example_calm`_ set-up runs PopulationSim in base mode, where a synthetic population is created for the entire modeling region. This takes approximately 12 minutes on a laptop with an Intel i7-4800MQ CPU @ 2.70GHz and 16 GB of RAM. The `example_calm_repop`_ set-up runs PopulationSim in the *repop* mode, which updates the synthetic population for a small part of the region. The `example_survey_weighting`_ set-up runs PopulationSim for the case of developing final weights for a household travel survey. More information on the configuration of PopulationSim can be found in the **Application & Configuration** section. +There are four examples for running PopulationSim, three created using data from the +Corvallis-Albany-Lebanon Modeling (CALM) region in Oregon and the other using data from +the Metro Vancouver region in British Columbia. + +1. The `example_calm`_ set-up runs PopulationSim, where a synthetic population is created single-processed for the entire modeling region. + +2. The `example_calm_mp`_ set-up runs PopulationSim `multi-processed `_, where a synthetic population is created for the entire modeling region by simultaneously balancing results using multiple processors on your computer, thereby reducing runtime. + +3. The `example_calm_repop`_ set-up runs PopulationSim in the *repop* mode, which updates the synthetic population for a small part of the region. + +4. The `example_survey_weighting`_ set-up runs PopulationSim for the case of developing final weights for a household travel survey. More information on the configuration of PopulationSim can be found in the **Application & Configuration** section. Example_calm ~~~~~~~~~~~~ @@ -84,6 +95,22 @@ Follow the steps below to run **example_calm** set up: * Review the outputs in the *output* folder +Example_calm_mp +~~~~~~~~~~~~~~~ + +Follow the steps below to run **example_calm_mp** multiprocessed set up: + + * Open a command prompt in the example_calm folder + * In ``configs_mp\setting.yaml``, set ``num_processes: 2`` to a reasonable number of processors for your machine + * Run the following commands: + + :: + + activate popsim + python run_populationsim.py -c configs_mp -c configs + + * Review the outputs in the *output* folder + Example_calm_repop ~~~~~~~~~~~~~~~~~~ diff --git a/docs/index.rst b/docs/index.rst index 5735632..08c065a 100644 --- a/docs/index.rst +++ b/docs/index.rst @@ -5,64 +5,75 @@ Introduction ============= -PopulationSim is an open platform for population synthesis and survey weighting. It emerged from Oregon DOT's desire to -build a shared, open, platform that could be easily adapted for statewide, regional, and urban -transportation planning needs. +PopulationSim is an open platform for population synthesis and survey weighting. It emerged from +`Oregon DOT `_'s desire to build a shared, open, platform that could +be easily adapted for statewide, regional, and urban transportation planning needs. What is population synthesis? ----------------------------- -Activity Based Models (ABMs) operate in a micro-simulation framework , wherein the travel choices of person and household decision-making agents are predicted by applying Monte Carlo methods to behavioral models. This requires a data set of households and persons representing the entire population in the modeling region. Population synthesis refers to the process used to create this data. - -The required inputs to population synthesis are a population sample and marginal distributions. The population -sample is commonly referred to as the *seed or reference sample* and the marginal distributions are referred to -as *controls or targets*. **The process of expanding the seed sample to match the marginal distribution -is termed population synthesis.** The software tool which implements this population synthesis process +Activity based travel demand models such as `ActivitySim `_ operate at an individual +level, wherein the travel choices of person and household decision-making agents are predicted by applying +Monte Carlo methods to behavioral models. This requires a data set of households and persons representing +the entire population in the modeling region. Population synthesis refers to the process used to create this data. + +The required inputs to population synthesis are a population sample and marginal distributions (or control totals). +The population sample is commonly referred to as the *seed or reference sample* and the marginal distributions are +commonly referred to as *controls or targets*. **The process of expanding the seed sample to match the marginal +distribution is termed population synthesis.** The software tool which implements this population synthesis process is termed as a **Population Synthesizer**. What does a Population Synthesizer produce? ------------------------------------------- The objective of a population synthesizer is to generate a synthetic population for -a modeling region. The main outputs from a population synthesizer include lists of persons and households -representing the entire population of the modeling region. These databases include household and person-level -attributes of interest. Examples of attributes at the household level include household income, household size, housing type, and number of vehicles. Examples of person attributes include +a modeling region. The main outputs from a population synthesizer include tables of persons and households +representing the entire population of the modeling region. These tables also include household and person-level +attributes of interest. Examples of attributes at the household level include household income, household size, housing +type, and number of vehicles. Examples of person attributes include age, gender, work\school status, and occupation. Depending on the use case, a population synthesizer may also produce multi-way distribution of demographic variables at different geographies to be used as an input -to aggregate travel models. In the case of PopulationSim specifically, an additional option is also included to -modify an existing regional synthetic population for a smaller geographical area. In this case, the outputs are a modified list of persons and households. +to aggregate (four-step) travel models. In the case of PopulationSim specifically, an additional option is also included to +modify an existing regional synthetic population for a smaller geographical area. In this case, the outputs are a modified +set of persons and households. How does a population synthesizer work? --------------------------------------- The main inputs to a population synthesizer are disaggregate population samples and marginal control -distributions. In the United States, the disaggregate population sample is typically obtained from the Census Public Use Microdata Sample (PUMS), but other sources, such as a household travel survey, can also be used. The seed sample should -include demographic variables corresponding to each marginal control termed as *controlled variables* (e.g., -household size, household income, etc.). The seed sample could also include other variables of interest but not -necessarily controlled via marginal controls. These are termed as *uncontrolled variables*. The seed sample should also include an initial weight on each household record. - -Base-year marginal distributions of person and household-level attributes of interest are available from Census. For future years, marginal distributions are either held constant, or forecasted. Marginal distributions can be for both household or person level variables and are specified at a specific geography (e.g., Block Groups, Traffic Analysis Zone or County). PopulationSim allows controls to be specified at multiple geographic levels. - -The objective of a population synthesizer is to -generate household weights which satisfies the marginal control distributions. This is achieved by use of -a data fitting technique. The most common fitting technique used by various population synthesizers is the -Iterative Proportional Fitting (IPF) procedure. Generally, the IPF procedure is used to obtain joint distributions of demographic -variables. Then, random sampling from PUMS generates the baseline synthetic population. +distributions. In the United States, the disaggregate population sample is typically obtained from the `Census Public Use +Microdata Sample (PUMS) `_, but other sources, such as a household +travel survey, can also be used. The seed sample should include demographic variables corresponding to each marginal control +termed as *controlled variables* (e.g., household size, household income, etc.). The seed sample could also include other +variables of interest but not necessarily controlled via marginal controls. These are termed as *uncontrolled variables*. +The seed sample should also include an initial weight on each household record. + +Current year marginal distributions of person and household-level attributes of interest are available from Census. For +future years, marginal distributions are either held constant, or forecasted. Marginal distributions can be for both +household or person level variables and are specified at a specific geography (e.g., Block Groups, Traffic Analysis Zone +or County). PopulationSim allows controls to be specified at multiple geographic levels. + +The objective of a population synthesizer is to generate household weights which satisfies the marginal control +distributions. This is achieved by use of a data fitting technique. The most common fitting technique used by various +population synthesizers is the Iterative Proportional Fitting (IPF) procedure. Generally, the IPF procedure is used +to obtain joint distributions of demographic variables. Then, random sampling from PUMS generates the baseline synthetic +population. One of the limitations of the simple IPF method is that it does not incorporate both household and person level attributes simulatenously. Some population synthesizers use a heuristic algorithm called the Iterative Proportional Updating Algorithm (IPU) to incorporate both person and household-level variables in the fitting procedure. -Besides IPF, entropy -maximization algorithms have been used as a fitting technique. In most of the entropy based methods, +Besides IPF, entropy maximization algorithms have been used as a fitting technique. In most of the entropy based methods, the relative entropy is used as the objective function. The relative entropy based optimization ensures that the least amount of new information is introduced in finding a feasible solution. The base entropy is defined by the initial weights in the seed sample. The weights generated by the entropy maximization algorithm preserves the distribution of initial weights while matching the marginal controls. This is an -advantage of the entropy maximization based procedures over the IPF based procedures. PopulationSim uses the entropy maximization based list balancing to match controls specified at various geographic levels. +advantage of the entropy maximization based procedures over the IPF based procedures. PopulationSim uses the entropy maximization +based list balancing to match controls specified at various geographic levels. -Once the final weights -have been assigned, seed sample is expanded using these weights to generate a synthetic population. Most +Once the final weights have been assigned, the seed sample is expanded using these weights to generate a synthetic population. Most population synthesizers create distributions using final weights and employ random sampling to expand the seed sample. PopulationSim uses Linear Programming to convert the final weights to integer values and expands -the seed sample using these integer weights. For detailed description of PopulationSim algorithm, please refer to the TRB paper link in the :ref:`docs` section. For information on software implementation refer to :ref:`core_components` and :ref:`model_steps`. To learn more about PopulationSim application and configuration, please follow the content index below. +the seed sample using these integer weights. For detailed description of PopulationSim algorithm, please refer to the TRB paper +link in the :ref:`docs` section. For information on software implementation refer to :ref:`core_components` and :ref:`model_steps`. To +learn more about PopulationSim application and configuration, please follow the content index below. How does population synthesis work for survey weighting? -------------------------------------------------------- diff --git a/docs/software.rst b/docs/software.rst index 21fbf4b..186e202 100644 --- a/docs/software.rst +++ b/docs/software.rst @@ -9,8 +9,8 @@ This page describes the PopulationSim software implementation and how to contrib The implementation starts with the ActivitySim framework, which serves as the foundation for the software. The framework, as briefly described -below, includes features for data pipeline management, expression handling, testing, etc. Built upon the -framework are additional core components for population synthesis such as balancers and integerizers. +below, includes features for data pipeline management, expression handling, multiprocessing, testing, etc. Built upon +the framework are additional core components for population synthesis such as balancers and integerizers. Built upon the population synthesis core components are the model steps that make up a PopulationSim run, such as the inputs pre-processor, setting up the data strucutres, doing the initial seed balancing, etc. @@ -42,7 +42,8 @@ being implemented in the ActivitySim framework means: * Model Orchestrator * `ORCA `__ is used for running the overall model system and for defining dynamic data tables, columns, and injectables (functions). ActivitySim wraps ORCA functionality to make a Data Pipeline tool, which allows for re-starting at any model step. - + * Support for `multiprocessing `_ to reduce runtime + * Expressions * Model expressions are in CSV files and contain Python expressions, mainly pandas/numpy expression that operate on the input data tables. This helps to avoid modifying Python code when making changes to the model calculations. @@ -236,4 +237,5 @@ Release Notes * v0.4 - transfer to ActivitySim.org * v0.4.1 - package updates * v0.4.2 - validation script in Python - * v0.4.3 - allow non-binary incidence \ No newline at end of file + * v0.4.3 - allow non-binary incidence + * v0.5 - support for multiprocessing \ No newline at end of file diff --git a/docs/validation.rst b/docs/validation.rst index a4f35c0..7097186 100644 --- a/docs/validation.rst +++ b/docs/validation.rst @@ -9,38 +9,49 @@ Validation of Results ===================== -One of the most critical steps in the population synthesis procedure is the validation of the synthetic population. Validation can give us clues about inconsistencies among controls, data processing errors or misspecification of settings. This section provides general guidelines on validation procedures. - -PopulationSim reports the difference between the synthesized totals and the control totals for all the controls at each geographic level. User can select these summaries using the ``output_tables:`` token as described in the :ref:`settings` section. The :ref:`inputs_outputs` section lists all the summaries available to user. Most population synthesizers will match each control very well at a regional level; therefore such summaries are useful but not very insightful into the goodness-of-fit of the tool at lower level geographies. Users can download a `validation script `_ to generate advanced summary statistics and validation plots. This *validation script* takes summaries and outputs from a PopulationSim run to generate plots and advanced summaries. The script is configured to run for the CALM region example and includes notes on inputs and configuration settings. To download and run the CALM region example refer to the :ref:`getting_started` section. +One of the most critical steps in the population synthesis procedure is the validation of the synthetic +population. Validation can give us clues about inconsistencies among controls, data processing errors or +misspecification of settings. This section provides general guidelines on validation procedures. + +PopulationSim reports the difference between the synthesized totals and the control totals for all the controls +at each geographic level. User can select these summaries using the ``output_tables:`` token as described in +the :ref:`settings` section. The :ref:`inputs_outputs` section lists all the summaries available to user. +Most population synthesizers will match each control very well at a regional level; therefore such summaries +are useful but not very insightful into the goodness-of-fit of the tool at lower level geographies. Users +can download a `validation Jupyter Notebook `_ to +generate advanced summary statistics and validation plots. This validation notebook takes summaries and +outputs from a PopulationSim run and generates plots and advanced summaries. The notebook is configured to run +for the CALM region example and includes notes on inputs and configuration settings. To download and run +the CALM region example refer to the :ref:`getting_started` section. Validation Summary Statistics -------------------------------- +----------------------------- + +Statistics related to the convergence at a more disaggregate level are generated by the validation notebook. These statistics are being computed for the geography at which the controls are specified i.e. MAZ, TAZ or Meta as the case might be. The following three statistics are computed: |br| + +1. The average percentage difference between the control totals and the synthesized totals, |br| +2. The standard deviation (STDEV) of the percentage difference – this measure describes how much dispersion from the average exists, and |br| +3. The percentage root mean square error (RMSE) - an indicator of the proximity of synthesized and control totals. |br| -Statistics that inform us of convergence at a more disaggregate level are generated by the *validation script* – please note that these statistics are being computed for the geography at which the controls are specified i.e. MAZ, TAZ or Meta as the case might be. The following three statistics are computed as a part of this exercise: |br| -(1) the average percentage difference between the control totals and the synthesized totals, |br| -(2) the standard deviation (STDEV) of the percentage difference – this measure informs us of how much dispersion from the average exists, and |br| -(3) the percentage root mean square error (RMSE) - an indicator of the proximity of synthesized and control totals. |br| The number of geographies for which the control is non-zero (N) are also reported. Charts & Plots -------------- -The *validation script* also produces charts and plots which includes frequency distribution and expansion factor distribution plots. +The validation notebook also produces charts and plots which includes frequency distribution and expansion factor distribution plots. Validation Charts ~~~~~~~~~~~~~~~~~ The validation chart is a visualization of the disaggregate summary statistics – mean percentage difference, STDEV and RMSE of percentage differences. A form of dot and whisker plot is generated for each control where the dots are the mean percentage differences and horizontal bars are twice the STDEV or RMSE centered around zero. An example validation chart is below: - - - .. image:: images/validation.jpeg + .. image:: images/validation.jpeg Frequency Distribution Plots ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -These are simply frequency distribution plots of differences between control and synthesized values across the geography at which the controls were specified. An example frequency distribution plot is below: +These are frequency distribution plots of differences between control and synthesized values across the geography at which the controls were specified. An example frequency distribution plot is below: .. image:: images/hh_inc_30_60_control.png diff --git a/example_calm/.gitignore b/example_calm/.gitignore new file mode 100644 index 0000000..520c87a --- /dev/null +++ b/example_calm/.gitignore @@ -0,0 +1,2 @@ +*_local/ + diff --git a/example_calm/configs/settings.yaml b/example_calm/configs/settings.yaml index ea95880..1b76fdf 100644 --- a/example_calm/configs/settings.yaml +++ b/example_calm/configs/settings.yaml @@ -38,18 +38,19 @@ input_table_list: - tablename: households filename : seed_households.csv index_col: hh_id - column_map: + rename_columns: # not sure what SERIALNO is, but it is not unique #SERIALNO: hh_id hhnum: hh_id - tablename: persons # expression_filename: seed_persons_expressions.csv filename : seed_persons.csv - column_map: + rename_columns: # SERIALNO: hh_id hhnum: hh_id SPORDER: per_num - # drop mixed type fields that appear to have been incorrectly generated + # drop unused mixed type fields to avoid PyTables pipeline performance issues + # (PyTables will pickle object types that it cannot map directly to c-types) drop_columns: - indp02 - naicsp02 @@ -120,10 +121,9 @@ output_synthetic_population: - OCCP -# Steps for base mode +# Model steps for base mode # ------------------------------------------------------------------ -run_list: - steps: +models: - input_pre_processor - setup_data_structures - initial_seed_balancing @@ -133,8 +133,9 @@ run_list: - sub_balancing.geography=TRACT - sub_balancing.geography=TAZ - expand_households + - write_data_dictionary - summarize - write_tables - write_synthetic_population - #resume_after: expand_households +resume_after: diff --git a/example_calm/configs_mp/settings.yaml b/example_calm/configs_mp/settings.yaml new file mode 100644 index 0000000..0a5212f --- /dev/null +++ b/example_calm/configs_mp/settings.yaml @@ -0,0 +1,76 @@ +inherit_settings: True + +multiprocess: True +num_processes: 2 +cleanup_pipeline_after_run: True + +slice_geography: TRACT + +# Steps for base mode +# ------------------------------------------------------------------ +models: + ### mp_seed_balancing step + - input_pre_processor + - setup_data_structures + - initial_seed_balancing + - meta_control_factoring + - final_seed_balancing + - integerize_final_seed_weights + - sub_balancing.geography=TRACT + ### mp_sub_balancing_TAZ step + - sub_balancing.geography=TAZ + ### mp_summarize step + - expand_households + - summarize + - write_synthetic_population + - write_data_dictionary + - write_tables + +#resume_after: integerize_final_seed_weights +resume_after: + +multiprocess_steps: + - name: mp_seed_balancing + begin: input_pre_processor + - name: mp_sub_balancing_TAZ + begin: sub_balancing.geography=TAZ + num_processes: 2 + slice: + tables: + - slice_crosswalk + - crosswalk + # don't slice any tables not explicitly listed above in slice.tables + except: True + # the following tables are added by sub_balancer and should be coalesced + coalesce: + - TAZ_weights + - TAZ_weights_sparse + - trace_TAZ_weights + - name: mp_summarize + begin: expand_households + +# Rather than using the 'except: True' wildcard, we could explicitly list the tables that shold not be sliced +# and let activitysim.mp_tasks deduce which created tables should be coalesced, but that requires a pathalogical +# knowledge of the names of esisting internal tables, whereas the coalesce directive allows us to simply specify +# the names of the new tables we expect mp_sub_balancing_TAZ to create, which seems less error-prone +# (especially since mp_tasks.coalesce_pipelines will complain if the tables int het coalesce list are not found.) + +# multiprocess_steps: +# - name: mp_seed_balancing +# begin: input_pre_processor +# - name: mp_sub_balancing_TAZ +# begin: sub_balancing.geography=TAZ +# num_processes: 2 +# slice: +# tables: +# - slice_crosswalk +# - crosswalk +# except: +# - geo_cross_walk +# - TRACT_control_data +# - TRACT_controls +# - TRACT_weights +# - TRACT_weights_sparse +# - trace_TRACT_weights +# - name: mp_summarize +# begin: expand_households diff --git a/example_calm/output/.gitignore b/example_calm/output/.gitignore index 0d39926..658e53b 100644 --- a/example_calm/output/.gitignore +++ b/example_calm/output/.gitignore @@ -1,3 +1,4 @@ *.csv *.h5 *.log +*.txt diff --git a/example_calm/output_mp/.gitignore b/example_calm/output_mp/.gitignore new file mode 100644 index 0000000..f5f20e4 --- /dev/null +++ b/example_calm/output_mp/.gitignore @@ -0,0 +1,5 @@ +*.csv +*.h5 +*.log +*.txt +*.yaml diff --git a/example_calm/output_mp/log/.gitignore b/example_calm/output_mp/log/.gitignore new file mode 100644 index 0000000..f8c0528 --- /dev/null +++ b/example_calm/output_mp/log/.gitignore @@ -0,0 +1,3 @@ +*.txt +*.log +*.csv diff --git a/example_calm/run_populationsim.py b/example_calm/run_populationsim.py index c5063f0..de9095f 100644 --- a/example_calm/run_populationsim.py +++ b/example_calm/run_populationsim.py @@ -1,68 +1,39 @@ -import os -import logging +# ActivitySim +# See full license in LICENSE.txt. -from activitysim.core import config -from populationsim import steps - -from activitysim.core import tracing -from activitysim.core import pipeline -from activitysim.core import inject - -from activitysim.core.config import handle_standard_args -from activitysim.core.tracing import print_elapsed_time +import sys +import argparse from activitysim.core.config import setting -from populationsim import lp -from populationsim import multi_integerizer - - -# Add (and handle) 'standard' activitysim arguments: -# --config : specify path to config_dir -# --output : specify path to output_dir -# --data : specify path to data_dir -# --models : specify run_list name -# --resume : resume_after -handle_standard_args() - -tracing.config_logger() - -t0 = print_elapsed_time() - -logger = logging.getLogger('populationsim') - -logger.info("GROUP_BY_INCIDENCE_SIGNATURE: %s" - % setting('GROUP_BY_INCIDENCE_SIGNATURE')) -logger.info("INTEGERIZE_WITH_BACKSTOPPED_CONTROLS: %s" - % setting('INTEGERIZE_WITH_BACKSTOPPED_CONTROLS')) -logger.info("SUB_BALANCE_WITH_FLOAT_SEED_WEIGHTS: %s" - % setting('SUB_BALANCE_WITH_FLOAT_SEED_WEIGHTS')) -logger.info("meta_control_data: %s" - % setting('meta_control_data')) -logger.info("control_file_name: %s" - % setting('control_file_name')) - -logger.info("USE_CVXPY: %s" % lp.use_cvxpy()) -logger.info("USE_SIMUL_INTEGERIZER: %s" % multi_integerizer.use_simul_integerizer()) +from activitysim.core import inject +from activitysim.cli.run import add_run_args, run +from populationsim import steps -# get the run list (name was possibly specified on the command line with the -m option) -run_list_name = inject.get_injectable('run_list_name', 'run_list') -# run list from settings file is dict with list of 'steps' and optional 'resume_after' -run_list = setting(run_list_name) -assert 'steps' in run_list, "Did not find steps in run_list" +@inject.injectable() +def log_settings(): -# list of steps and possible resume_after in run_list -steps = run_list.get('steps') -resume_after = run_list.get('resume_after', None) + return [ + 'multiprocess', + 'num_processes', + 'resume_after', + 'GROUP_BY_INCIDENCE_SIGNATURE', + 'INTEGERIZE_WITH_BACKSTOPPED_CONTROLS', + 'SUB_BALANCE_WITH_FLOAT_SEED_WEIGHTS', + 'meta_control_data', + 'control_file_name', + 'USE_CVXPY', + 'USE_SIMUL_INTEGERIZER' + ] -if resume_after: - print("resume_after", resume_after) -pipeline.run(models=steps, resume_after=resume_after) +if __name__ == '__main__': + assert inject.get_injectable('preload_injectables', None) -# tables will no longer be available after pipeline is closed -pipeline.close_pipeline() + parser = argparse.ArgumentParser() + add_run_args(parser) + args = parser.parse_args() -t0 = ("all models", t0) + sys.exit(run(args)) diff --git a/example_calm_repop/run_populationsim.py b/example_calm_repop/run_populationsim.py index c5063f0..51abd2f 100644 --- a/example_calm_repop/run_populationsim.py +++ b/example_calm_repop/run_populationsim.py @@ -1,3 +1,4 @@ + import os import logging diff --git a/example_survey_weighting/run_populationsim.py b/example_survey_weighting/run_populationsim.py index 9644b43..282d306 100755 --- a/example_survey_weighting/run_populationsim.py +++ b/example_survey_weighting/run_populationsim.py @@ -1,3 +1,4 @@ + import os import logging diff --git a/example_test/.gitignore b/example_test/.gitignore new file mode 100644 index 0000000..cfb7580 --- /dev/null +++ b/example_test/.gitignore @@ -0,0 +1 @@ +*_local/ diff --git a/example_test/convert_test_data.py b/example_test/convert_test_data.py index 457a8e3..c390a93 100644 --- a/example_test/convert_test_data.py +++ b/example_test/convert_test_data.py @@ -1,3 +1,4 @@ + import pandas as pd # settings diff --git a/example_test/output/.gitignore b/example_test/output/.gitignore index a81afc8..3352db7 100644 --- a/example_test/output/.gitignore +++ b/example_test/output/.gitignore @@ -1,2 +1,4 @@ *.csv *.h5 +*.txt +*.yaml diff --git a/ez_setup.py b/ez_setup.py index 5c739be..6f5b323 100644 --- a/ez_setup.py +++ b/ez_setup.py @@ -13,7 +13,7 @@ This file can also be run as a script to install or upgrade setuptools. """ -from builtins import next + import os import shutil import sys @@ -52,10 +52,10 @@ def _python_cmd(*args): def _install(archive_filename, install_args=()): with archive_context(archive_filename): # installing - log.warn('Installing Setuptools') + log.warning('Installing Setuptools') if not _python_cmd('setup.py', 'install', *install_args): - log.warn('Something went wrong during the installation.') - log.warn('See the error message above.') + log.warning('Something went wrong during the installation.') + log.warning('See the error message above.') # exitcode will be 2 return 2 @@ -63,10 +63,10 @@ def _install(archive_filename, install_args=()): def _build_egg(egg, archive_filename, to_dir): with archive_context(archive_filename): # building an egg - log.warn('Building a Setuptools egg in %s', to_dir) + log.warning('Building a Setuptools egg in %s', to_dir) _python_cmd('setup.py', '-q', 'bdist_egg', '--dist-dir', to_dir) # returning the result - log.warn(egg) + log.warning(egg) if not os.path.exists(egg): raise IOError('Could not build the egg.') @@ -95,7 +95,7 @@ def __new__(cls, *args, **kwargs): def archive_context(filename): # extracting the archive tmpdir = tempfile.mkdtemp() - log.warn('Extracting in %s', tmpdir) + log.warning('Extracting in %s', tmpdir) old_wd = os.getcwd() try: os.chdir(tmpdir) @@ -105,7 +105,7 @@ def archive_context(filename): # going in the directory subdir = os.path.join(tmpdir, os.listdir(tmpdir)[0]) os.chdir(subdir) - log.warn('Now working in %s', subdir) + log.warning('Now working in %s', subdir) yield finally: @@ -298,7 +298,7 @@ def download_setuptools(version=DEFAULT_VERSION, download_base=DEFAULT_URL, url = download_base + zip_name saveto = os.path.join(to_dir, zip_name) if not os.path.exists(saveto): # Avoid repeated downloads - log.warn("Downloading %s", url) + log.warning("Downloading %s", url) downloader = downloader_factory() downloader(url, saveto) return os.path.realpath(saveto) diff --git a/populationsim/assign.py b/populationsim/assign.py index c6204c1..df65273 100644 --- a/populationsim/assign.py +++ b/populationsim/assign.py @@ -51,7 +51,7 @@ def assign_variable(target, expression, df, locals_dict, df_alias=None, trace_ro def to_series(x, target=None): if x is None or np.isscalar(x): if target: - logger.warn("WARNING: assign_variables promoting scalar %s to series" % target) + logger.warning("WARNING: assign_variables promoting scalar %s to series" % target) return pd.Series([x] * len(df.index), index=df.index) return x diff --git a/populationsim/balancer.py b/populationsim/balancer.py index 75935f7..fef1c17 100644 --- a/populationsim/balancer.py +++ b/populationsim/balancer.py @@ -1,3 +1,4 @@ + # PopulationSim # See full license in LICENSE.txt. diff --git a/populationsim/integerizer.py b/populationsim/integerizer.py index 2042539..39d4f0b 100644 --- a/populationsim/integerizer.py +++ b/populationsim/integerizer.py @@ -1,3 +1,4 @@ + # PopulationSim # See full license in LICENSE.txt. @@ -159,8 +160,8 @@ def integerize(self): if (float_weights == 0).any(): # not sure this matters... - logger.warn("Integerizer: %s zero weights out of %s" % - ((float_weights == 0).sum(), sample_count)) + logger.warning("Integerizer: %s zero weights out of %s" % + ((float_weights == 0).sum(), sample_count)) assert False if (resid_weights == 0.0).any(): @@ -312,7 +313,7 @@ def do_integerizing( logger.error("Integerizer failed for %s status %s. " "Returning smart-rounded original weights" % (trace_label, status)) elif status != 'OPTIMAL': - logger.warn("Integerizer status non-optimal for %s status %s." % (trace_label, status)) + logger.warning("Integerizer status non-optimal for %s status %s." % (trace_label, status)) integerized_weights = pd.Series(0, index=zero_weight_rows.index) integerized_weights.update(integerizer.weights['integerized_weight']) diff --git a/populationsim/lp.py b/populationsim/lp.py index d7ab7e8..5da18d5 100644 --- a/populationsim/lp.py +++ b/populationsim/lp.py @@ -1,3 +1,4 @@ + # PopulationSim # See full license in LICENSE.txt. diff --git a/populationsim/lp_cvx.py b/populationsim/lp_cvx.py index 1a6e8c2..11fcb43 100644 --- a/populationsim/lp_cvx.py +++ b/populationsim/lp_cvx.py @@ -1,3 +1,4 @@ + # PopulationSim # See full license in LICENSE.txt. diff --git a/populationsim/multi_integerizer.py b/populationsim/multi_integerizer.py index 06712e9..6b67394 100644 --- a/populationsim/multi_integerizer.py +++ b/populationsim/multi_integerizer.py @@ -1,3 +1,4 @@ + # PopulationSim # See full license in LICENSE.txt. @@ -145,11 +146,11 @@ def integerize(self): # how could this not be the case? if not (parent_hh_constraint_ge_bound == parent_max_possible_control_values).all(): print("\nSimulIntegerizer integerizing", self.trace_label) - logger.warn("parent_hh_constraint_ge_bound != parent_max_possible_control_values") - logger.warn("parent_hh_constraint_ge_bound: %s" % - parent_hh_constraint_ge_bound) - logger.warn("parent_max_possible_control_values: %s" % - parent_max_possible_control_values) + logger.warning("parent_hh_constraint_ge_bound != parent_max_possible_control_values") + logger.warning("parent_hh_constraint_ge_bound: %s" % + parent_hh_constraint_ge_bound) + logger.warning("parent_max_possible_control_values: %s" % + parent_max_possible_control_values) print("\n") # assert (parent_hh_constraint_ge_bound == parent_max_possible_control_values).all() @@ -362,7 +363,7 @@ def do_simul_integerizing( logger.info("do_simul_integerizing succeeded for %s status %s. " % (trace_label, status)) return integerized_weights_df - logger.warn("do_simul_integerizing failed for %s status %s. " % (trace_label, status)) + logger.warning("do_simul_integerizing failed for %s status %s. " % (trace_label, status)) # if simultaneous integerization failed, sequentially integerize to detect infeasible subzones # infeasible zones will be smart rounded and returned in rounded_weights_df @@ -379,7 +380,7 @@ def do_simul_integerizing( if len(feasible_zone_ids) == 0: # if all subzones are infeasible, then we don't have any feasible zones to try # so the best we can do is return rounded_weights_df - logger.warn("do_sequential_integerizing failed for all subzones %s. " % trace_label) + logger.warning("do_sequential_integerizing failed for all subzones %s. " % trace_label) logger.info("do_simul_integerizing returning smart rounded weights for %s." % trace_label) return rounded_weights_df @@ -387,8 +388,8 @@ def do_simul_integerizing( if len(rounded_zone_ids) == 0: # if all subzones are feasible, then there are no zones to remove in order to retry # so the best we can do is return sequentially_integerized_weights_df - logger.warn("do_simul_integerizing failed but found no infeasible sub zones %s. " - % trace_label) + logger.warning("do_simul_integerizing failed but found no infeasible sub zones %s. " + % trace_label) logger.info("do_simul_integerizing falling back to sequential integerizing for %s." % trace_label) return sequentially_integerized_weights_df @@ -396,8 +397,8 @@ def do_simul_integerizing( if len(feasible_zone_ids) == 1: # if only one zone is feasible, not much point in simul_integerizing it # so the best we can do is return do_sequential_integerizing combined results - logger.warn("do_simul_integerizing failed but found no infeasible sub zones %s. " - % trace_label) + logger.warning("do_simul_integerizing failed but found no infeasible sub zones %s. " + % trace_label) return pd.concat([sequentially_integerized_weights_df, rounded_weights_df]) # - remove the infeasible subzones and retry simul_integerizing diff --git a/populationsim/simul_balancer.py b/populationsim/simul_balancer.py index 6a63482..99977eb 100644 --- a/populationsim/simul_balancer.py +++ b/populationsim/simul_balancer.py @@ -1,3 +1,4 @@ + # PopulationSim # See full license in LICENSE.txt. diff --git a/populationsim/steps/__init__.py b/populationsim/steps/__init__.py index d38df1f..b531b7c 100644 --- a/populationsim/steps/__init__.py +++ b/populationsim/steps/__init__.py @@ -1,7 +1,8 @@ # PopulationSim # See full license in LICENSE.txt. -from activitysim.core import inject as _inject + +from activitysim.core import inject from . import input_pre_processor from . import setup_data_structures @@ -19,7 +20,8 @@ from activitysim.core.steps.output import write_tables -@_inject.injectable(cache=True) +@inject.injectable(cache=True) def preload_injectables(): - _inject.add_step('write_data_dictionary', write_data_dictionary) - _inject.add_step('write_tables', write_tables) + inject.add_step('write_data_dictionary', write_data_dictionary) + inject.add_step('write_tables', write_tables) + return True diff --git a/populationsim/steps/expand_households.py b/populationsim/steps/expand_households.py index 5d16b11..003890e 100644 --- a/populationsim/steps/expand_households.py +++ b/populationsim/steps/expand_households.py @@ -1,3 +1,4 @@ + # PopulationSim # See full license in LICENSE.txt. @@ -53,6 +54,10 @@ def expand_households(): if setting('GROUP_BY_INCIDENCE_SIGNATURE'): + # get these in a repeatable order so np.random.choice behaves the same regardless of weight table order + # i.e. which could vary depending on whether we ran single or multi process due to apportioned/coalesce + expanded_weights = expanded_weights.sort_values(geography_cols + [household_id_col]) + # the household_id_col is really the group_id expanded_weights.rename(columns={household_id_col: 'group_id'}, inplace=True) @@ -72,12 +77,14 @@ def expand_households(): probs = list(df.sample_weight / df.sample_weight.sum()) group_hh_probs[group_id] = [hh_ids, probs] - # FIXME - should sample without replacement? + # get a repeatable random number sequence generator for consistent choice results + prng = pipeline.get_rn_generator().get_external_rng('expand_households') + # now make a hh_id choice for each group_id in expanded_weights def chooser(group_id): hh_ids = group_hh_probs[group_id][HH_IDS] hh_probs = group_hh_probs[group_id][HH_PROBS] - return np.random.choice(hh_ids, p=hh_probs) + return prng.choice(hh_ids, p=hh_probs) expanded_weights[household_id_col] = \ expanded_weights.group_id.apply(chooser, convert_dtype=True,) @@ -107,5 +114,8 @@ def chooser(group_id): logger.info("expand_households op: %s prev hh count %s dropped %s added %s final %s" % (op, prev_hhs, dropped_hhs, added_hhs, final_hhs)) + # sort this so results will be consistent whether single or multiprocessing, GROUP_BY_INCIDENCE_SIGNATURE, etc... + expanded_weights = expanded_weights.sort_values(geography_cols + [household_id_col]) + repop = inject.get_step_arg('repop', default=False) inject.add_table('expanded_household_ids', expanded_weights, replace=repop) diff --git a/populationsim/steps/final_seed_balancing.py b/populationsim/steps/final_seed_balancing.py index 6ee347f..c21d2df 100644 --- a/populationsim/steps/final_seed_balancing.py +++ b/populationsim/steps/final_seed_balancing.py @@ -1,3 +1,4 @@ + # PopulationSim # See full license in LICENSE.txt. diff --git a/populationsim/steps/initial_seed_balancing.py b/populationsim/steps/initial_seed_balancing.py index cf86103..96bf0f7 100644 --- a/populationsim/steps/initial_seed_balancing.py +++ b/populationsim/steps/initial_seed_balancing.py @@ -1,3 +1,4 @@ + # PopulationSim # See full license in LICENSE.txt. diff --git a/populationsim/steps/input_pre_processor.py b/populationsim/steps/input_pre_processor.py index 722f93b..3bb562c 100644 --- a/populationsim/steps/input_pre_processor.py +++ b/populationsim/steps/input_pre_processor.py @@ -7,11 +7,9 @@ import pandas as pd import numpy as np -from activitysim.core import ( - inject, - config, - input -) +from activitysim.core import inject +from activitysim.core import config +from activitysim.core import input logger = logging.getLogger(__name__) diff --git a/populationsim/steps/integerize_final_seed_weights.py b/populationsim/steps/integerize_final_seed_weights.py index f41d76b..8653e8e 100644 --- a/populationsim/steps/integerize_final_seed_weights.py +++ b/populationsim/steps/integerize_final_seed_weights.py @@ -1,3 +1,4 @@ + # PopulationSim # See full license in LICENSE.txt. diff --git a/populationsim/steps/meta_control_factoring.py b/populationsim/steps/meta_control_factoring.py index 6b0f338..ba74adc 100644 --- a/populationsim/steps/meta_control_factoring.py +++ b/populationsim/steps/meta_control_factoring.py @@ -1,3 +1,4 @@ + # PopulationSim # See full license in LICENSE.txt. @@ -54,7 +55,7 @@ def meta_control_factoring(settings, control_spec, incidence_table): # - if there are no meta controls, then we don't have to do anything if not (control_spec.geography == meta_geography).any(): - logger.warn("meta_control_factoring: no meta targets so nothing to do") + logger.warning("meta_control_factoring: no meta targets so nothing to do") return meta_controls_df = get_control_table(meta_geography) diff --git a/populationsim/steps/repop_balancing.py b/populationsim/steps/repop_balancing.py index bcfb87d..6a46376 100644 --- a/populationsim/steps/repop_balancing.py +++ b/populationsim/steps/repop_balancing.py @@ -1,3 +1,4 @@ + # PopulationSim # See full license in LICENSE.txt. diff --git a/populationsim/steps/setup_data_structures.py b/populationsim/steps/setup_data_structures.py index eae01c9..c0d5c5a 100644 --- a/populationsim/steps/setup_data_structures.py +++ b/populationsim/steps/setup_data_structures.py @@ -1,3 +1,5 @@ + + # PopulationSim # See full license in LICENSE.txt. @@ -305,6 +307,7 @@ def setup_data_structures(settings, households, persons): """ seed_geography = setting('seed_geography') + geographies = settings['geographies'] households_df = households.to_frame() persons_df = persons.to_frame() @@ -312,10 +315,21 @@ def setup_data_structures(settings, households, persons): crosswalk_df = build_crosswalk_table() inject.add_table('crosswalk', crosswalk_df) + slice_geography = settings.get('slice_geography', None) + if slice_geography: + assert slice_geography in geographies + assert slice_geography in crosswalk_df.columns + + # only want rows for slice_geography and higher + slice_geographies = geographies[:geographies.index(slice_geography) + 1] + slice_table = crosswalk_df[slice_geographies].groupby(slice_geography).max() + # it is convenient to have slice_geography column in table as well as index + slice_table[slice_geography] = slice_table.index + inject.add_table(f"slice_crosswalk", slice_table) + control_spec = read_control_spec(setting('control_file_name', 'controls.csv')) inject.add_table('control_spec', control_spec) - geographies = settings['geographies'] for g in geographies: controls = build_control_table(g, control_spec, crosswalk_df) inject.add_table(control_table_name(g), controls) diff --git a/populationsim/steps/sub_balancing.py b/populationsim/steps/sub_balancing.py index 9b23d74..f8b26ac 100644 --- a/populationsim/steps/sub_balancing.py +++ b/populationsim/steps/sub_balancing.py @@ -1,3 +1,4 @@ + # PopulationSim # See full license in LICENSE.txt. @@ -13,6 +14,7 @@ from activitysim.core.config import setting +from .helper import control_table_name from .helper import get_control_table from .helper import weight_table_name from .helper import get_weight_table @@ -243,20 +245,22 @@ def sub_balancing(settings, crosswalk, control_spec, incidence_table): seed_incidence_df = incidence_df[incidence_df[seed_geography] == seed_id] seed_crosswalk_df = crosswalk_df[crosswalk_df[seed_geography] == seed_id] + # expects seed geography is siloed by meta_geography + # (no seed_id is in more than one meta_geography zone) assert len(seed_crosswalk_df[meta_geography].unique()) == 1 # list of unique parent zone ids in this seed zone - # (there will be just one if parent geo is seed) + # (there will be just one if parent geography is seed) parent_ids = seed_crosswalk_df[parent_geography].unique() + # only want ones for which there are (non-zero) controls parent_ids = parent_controls_df.index.intersection(parent_ids) num_parent_ids = len(parent_ids) for idx, parent_id in enumerate(parent_ids, start=1): - log_msg = "balancing {}/{} seed {}, {} {}" - log_msg = log_msg.format(idx, num_parent_ids, seed_id, parent_geography, parent_id) - logger.info(log_msg) + logger.info(f"balancing {idx}/{num_parent_ids} seed {seed_id}, " + f"{parent_geography} {parent_id}") initial_weights = weights_df[weights_df[parent_geography] == parent_id] initial_weights = initial_weights.set_index(settings.get('household_id_col')) @@ -293,14 +297,12 @@ def sub_balancing(settings, crosswalk, control_spec, incidence_table): integer_weights_df = pd.concat(integer_weights_list) - # print "integer_weights_df\n", integer_weights_df.dtypes - # print integer_weights_df.head(10) - # bug - + logger.info(f"adding table {weight_table_name(geography)}") inject.add_table(weight_table_name(geography), integer_weights_df) if not NO_INTEGERIZATION_EVER: + inject.add_table(weight_table_name(geography, sparse=True), integer_weights_df[integer_weights_df['integer_weight'] > 0]) diff --git a/populationsim/steps/summarize.py b/populationsim/steps/summarize.py index 0ce1144..6076714 100644 --- a/populationsim/steps/summarize.py +++ b/populationsim/steps/summarize.py @@ -1,3 +1,4 @@ + # PopulationSim # See full license in LICENSE.txt. @@ -51,7 +52,6 @@ def summarize_geography(geography, weight_col, hh_id_col, for zone_id in zone_ids: zone_controls = controls_df.loc[zone_id].tolist() - controls.append(zone_controls) zone_row_map = results_df[geography] == zone_id diff --git a/populationsim/steps/write_synthetic_population.py b/populationsim/steps/write_synthetic_population.py index 5045005..a1c251e 100644 --- a/populationsim/steps/write_synthetic_population.py +++ b/populationsim/steps/write_synthetic_population.py @@ -23,7 +23,7 @@ def merge_seed_data(expanded_household_ids, seed_data_df, seed_columns, trace_la # warn of any columns that aren't in seed_data_df for c in seed_columns: if c not in df_columns and c != hh_col: - logger.warn("column '%s' not in %s" % (c, trace_label)) + logger.warning("column '%s' not in %s" % (c, trace_label)) # remove any columns that aren't in seed_data_df df_columns = [c for c in seed_columns if c in df_columns] diff --git a/populationsim/tests/configs_mp/settings.yaml b/populationsim/tests/configs_mp/settings.yaml new file mode 100644 index 0000000..93a2ce1 --- /dev/null +++ b/populationsim/tests/configs_mp/settings.yaml @@ -0,0 +1,48 @@ +inherit_settings: True + +multiprocess: True +num_processes: 2 + +slice_geography: TRACT + +# Steps for base mode +# ------------------------------------------------------------------ +models: + ### mp_seed_balancing step + - input_pre_processor + - setup_data_structures + - initial_seed_balancing + - meta_control_factoring + - final_seed_balancing + - integerize_final_seed_weights + - sub_balancing.geography=TRACT + ### mp_sub_balancing_TAZ step + - sub_balancing.geography=TAZ + ### mp_summarize step + - expand_households + - summarize + - write_synthetic_population + - write_data_dictionary + - write_tables + +resume_after: + +multiprocess_steps: + - name: mp_seed_balancing + begin: input_pre_processor + - name: mp_sub_balancing_TAZ + begin: sub_balancing.geography=TAZ + num_processes: 2 + slice: + tables: + - slice_crosswalk + - crosswalk + # don't slice any tables not explicitly listed above in slice.tables + except: True + # the following tables are added by sub_balancer and should be coalesced + coalesce: + - TAZ_weights + - TAZ_weights_sparse + - name: mp_summarize + begin: expand_households + diff --git a/populationsim/tests/output/.gitignore b/populationsim/tests/output/.gitignore index fe43411..d98bf24 100644 --- a/populationsim/tests/output/.gitignore +++ b/populationsim/tests/output/.gitignore @@ -1,3 +1,5 @@ *.csv *.log *.h5 +*.txt +*.yaml diff --git a/populationsim/tests/run_mp.py b/populationsim/tests/run_mp.py new file mode 100644 index 0000000..b0a4d59 --- /dev/null +++ b/populationsim/tests/run_mp.py @@ -0,0 +1,72 @@ +import os + +import pandas as pd + +from activitysim.core import config +from activitysim.core import tracing +from activitysim.core import pipeline +from activitysim.core import inject +from activitysim.core import mp_tasks + +from populationsim import steps + +TAZ_COUNT = 36 +TAZ_100_HH_COUNT = 33 +TAZ_100_HH_REPOP_COUNT = 26 + + +def setup_dirs(): + + configs_dir = os.path.join(os.path.dirname(__file__), 'configs') + mp_configs_dir = os.path.join(os.path.dirname(__file__), 'configs_mp') + inject.add_injectable("configs_dir", [mp_configs_dir, configs_dir]) + + output_dir = os.path.join(os.path.dirname(__file__), 'output') + inject.add_injectable("output_dir", output_dir) + + data_dir = os.path.join(os.path.dirname(__file__), 'data') + inject.add_injectable("data_dir", data_dir) + + tracing.config_logger() + + tracing.delete_output_files('csv') + tracing.delete_output_files('txt') + tracing.delete_output_files('yaml') + + +def regress(): + + expanded_household_ids = pipeline.get_table('expanded_household_ids') + assert isinstance(expanded_household_ids, pd.DataFrame) + taz_hh_counts = expanded_household_ids.groupby('TAZ').size() + assert len(taz_hh_counts) == TAZ_COUNT + assert taz_hh_counts.loc[100] == TAZ_100_HH_COUNT + + # output_tables action: skip + output_dir = inject.get_injectable('output_dir') + assert not os.path.exists(os.path.join(output_dir, 'households.csv')) + assert os.path.exists(os.path.join(output_dir, 'summary_DISTRICT_1.csv')) + + +def test_mp_run(): + + setup_dirs() + + run_list = mp_tasks.get_run_list() + mp_tasks.print_run_list(run_list) + + # do this after config.handle_standard_args, as command line args may override injectables + injectables = ['data_dir', 'configs_dir', 'output_dir'] + injectables = {k: inject.get_injectable(k) for k in injectables} + + # pipeline.run(models=run_list['models'], resume_after=run_list['resume_after']) + + mp_tasks.run_multiprocess(run_list, injectables) + pipeline.open_pipeline('_') + regress() + pipeline.close_pipeline() + + +if __name__ == '__main__': + + test_mp_run() diff --git a/populationsim/tests/test_flex.py b/populationsim/tests/test_flex.py index 6b8927c..f1a0d2e 100644 --- a/populationsim/tests/test_flex.py +++ b/populationsim/tests/test_flex.py @@ -41,8 +41,8 @@ def test_full_run2(): 'meta_control_factoring', 'final_seed_balancing', 'integerize_final_seed_weights', - 'sub_balancing.geography = DISTRICT', - 'sub_balancing.geography = TRACT', + 'sub_balancing.geography=DISTRICT', + 'sub_balancing.geography=TRACT', 'sub_balancing.geography=TAZ', 'expand_households', 'summarize', diff --git a/populationsim/tests/test_integerizer.py b/populationsim/tests/test_integerizer.py index d955e6e..9f14627 100644 --- a/populationsim/tests/test_integerizer.py +++ b/populationsim/tests/test_integerizer.py @@ -1,3 +1,4 @@ + # PopulationSim # See full license in LICENSE.txt. diff --git a/populationsim/tests/test_multi_integerizer.py b/populationsim/tests/test_multi_integerizer.py index 5038861..9eace50 100644 --- a/populationsim/tests/test_multi_integerizer.py +++ b/populationsim/tests/test_multi_integerizer.py @@ -1,3 +1,4 @@ + # PopulationSim # See full license in LICENSE.txt. diff --git a/populationsim/tests/test_steps_mp.py b/populationsim/tests/test_steps_mp.py new file mode 100644 index 0000000..cc5d76a --- /dev/null +++ b/populationsim/tests/test_steps_mp.py @@ -0,0 +1,23 @@ +# ActivitySim +# See full license in LICENSE.txt. +import os +import subprocess + +from activitysim.core import inject + + +def teardown_function(func): + inject.clear_cache() + inject.reinject_decorated_tables() + + +def test_mp_run(): + + file_path = os.path.join(os.path.dirname(__file__), 'run_mp.py') + + subprocess.check_call(['coverage', 'run', file_path]) + + +if __name__ == '__main__': + + test_mp_run() diff --git a/populationsim/tests/test_tracing.py b/populationsim/tests/test_tracing.py index 04abf3a..29877ac 100644 --- a/populationsim/tests/test_tracing.py +++ b/populationsim/tests/test_tracing.py @@ -1,3 +1,4 @@ + # ActivitySim # See full license in LICENSE.txt. @@ -38,7 +39,7 @@ def test_config_logger(capsys): logger.info('test_config_logger') logger.info('log_info') - logger.warn('log_warn1') + logger.warning('log_warn1') out, err = capsys.readouterr() diff --git a/setup.cfg b/setup.cfg index 048118d..0415e4a 100644 --- a/setup.cfg +++ b/setup.cfg @@ -1,5 +1,5 @@ [pycodestyle] -max-line-length = 100 +max-line-length = 120 exclude = ./example_calm_data_prep/convert_rsg_data.py,./sandbox/ [coverage:run] diff --git a/setup.py b/setup.py index b74577b..3b21063 100644 --- a/setup.py +++ b/setup.py @@ -5,25 +5,23 @@ setup( name='populationsim', - version='0.4.3', + version='0.5', description='Population Synthesis', author='contributing authors', author_email='ben.stabler@rsginc.com', license='BSD-3', url='https://github.com/ActivitySim/populationsim', classifiers=[ - 'Development Status :: 4 - Beta', - 'Programming Language :: Python :: 3.6', - 'Programming Language :: Python :: 3.7', + 'Development Status :: 5 - Production/Stable', + 'Programming Language :: Python :: 3.8', 'License :: OSI Approved :: BSD License' ], packages=find_packages(exclude=['*.tests']), include_package_data=True, - python_requires='>=3.6, <3.8', install_requires=[ - 'activitysim >= 0.9.2', + 'activitysim >= 0.9.9.1', 'numpy >= 1.16.1', - 'pandas >= 0.24.1', - 'ortools >= 5.1.4045, < 7.5', + 'pandas >= 1.1.0', + 'ortools >= 5.1.4045' ] )