This repository has been archived by the owner on Jan 13, 2021. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 31
/
Copy path05_Raster.Rmd
793 lines (563 loc) · 16.9 KB
/
05_Raster.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
---
title: "Introduction to Raster Package"
---
```{r, echo=FALSE, message=FALSE, results='hide', purl=FALSE}
source("knitr_header.R")
```
<div class="extraswell">
<button data-toggle="collapse" class="btn btn-link" data-target="#pres">View Presentation </button> [Open presentation in a new tab](presentations/PS_06_raster.html){target="_blank"}
<div id="pres" class="collapse">
<div class="embed-responsive embed-responsive-16by9">
<iframe class="embed-responsive-item" src="presentations/PS_06_raster.html" allowfullscreen></iframe>
_Click on presentation and then use the space bar to advance to the next slide or escape key to show an overview._
</div>
</div>
</div>
## Download
| [<i class="fas fa-code fa-2x" aria-hidden="true"></i><br> R Script](`r output_nocomment`) | [<i class="fa fa-file-code-o fa-2x"></i> <br> Commented R Script](`r output`) | [<i class="far fa-file-alt fa-2x"></i> <br> Rmd Script](`r fullinput`)|
|:--:|:-:|:-:|
## Libraries
```{r message=F,warning=FALSE, results='hide'}
library(dplyr)
library(tidyr)
library(sp)
library(ggplot2)
library(rgeos)
library(maptools)
# load data for this course
# devtools::install_github("adammwilson/DataScienceData")
library(DataScienceData)
# New libraries
library(raster)
library(rasterVis) #visualization library for raster
```
# Raster Package
## `getData()`
Raster package includes access to some useful (vector and raster) datasets with `getData()`:
* Elevation (SRTM 90m resolution raster)
* World Climate (Tmin, Tmax, Precip, BioClim rasters)
* Countries from CIA factsheet (vector!)
* Global Administrative boundaries (vector!)
`getData()` steps for GADM:
1. _Select Dataset_: ‘GADM’ returns the global administrative boundaries.
2. _Select country_: Country name of the boundaries using its ISO A3 country code
3. _Specify level_: Level of of administrative subdivision (0=country, 1=first level subdivision).
## GADM: Global Administrative Areas
Administrative areas in this database are countries and lower level subdivisions.
<img src="05_assets/gadm25.png" alt="alt text" width="70%">
Divided by country (see website for full dataset). Explore country list:
```{r}
getData("ISO3")%>%
as.data.frame%>%
filter(NAME=="South Africa")
```
Download data for South Africa
```{r, eval=F}
za=getData('GADM', country='ZAF', level=1)
```
Or use the version in the DataScienceData
```{r}
data(southAfrica)
za=southAfrica # rename for convenience
```
```{r, eval=F}
plot(za)
```
Danger: `plot()` works, but can be slow for complex polygons. If you want to speed it up, you can plot a simplified version as follows:
```{r}
za %>% gSimplify(0.01) %>% plot()
```
### Check out attribute table
```{r}
za@data
```
Plot a subsetted region:
```{r}
subset(za,NAME_1=="Western Cape") %>% gSimplify(0.01) %>%
plot()
```
<div class="well">
## Your turn
Use the method above to download and plot the boundaries for a country of your choice.
<button data-toggle="collapse" class="btn btn-primary btn-sm round" data-target="#demo1">Show Solution</button>
<div id="demo1" class="collapse">
```{r, purl=F}
getData("ISO3")%>%
as.data.frame%>%
filter(NAME=="Tunisia")
country=getData('GADM', country='TUN', level=2)
country%>%
gSimplify(0.01)%>%
plot()
```
</div>
</div>
# Raster Data
## Raster introduction
Spatial data structure dividing region ('grid') into rectangles (’cells’ or ’pixels’) storing one or more values each.
<small> Some examples from the [Raster vignette](http://cran.r-project.org/web/packages/raster/vignettes/Raster.pdf) by Robert J. Hijmans. </small>
* `rasterLayer`: 1 band
* `rasterStack`: Multiple Bands
* `rasterBrick`: Multiple Bands of _same_ thing.
```{r, echo=TRUE}
x <- raster()
x
```
```{r}
str(x)
```
```{r, echo=T, results=T}
x <- raster(ncol=36, nrow=18, xmn=-1000, xmx=1000, ymn=-100, ymx=900)
res(x)
res(x) <- 100
res(x)
ncol(x)
```
```{r}
# change the numer of columns (affects resolution)
ncol(x) <- 18
ncol(x)
res(x)
```
## Raster data storage
```{r}
r <- raster(ncol=10, nrow=10)
ncell(r)
```
But it is an empty raster
```{r}
hasValues(r)
```
Use `values()` function:
```{r}
values(r) <- 1:ncell(r)
hasValues(r)
values(r)[1:10]
```
<div class="well">
## Your turn
Create and then plot a new raster with:
1. 100 rows
2. 50 columns
3. Fill it with random values (`rnorm()`)
<button data-toggle="collapse" class="btn btn-primary btn-sm round" data-target="#demo2">Show Solution</button>
<div id="demo2" class="collapse">
```{r, purl=F}
x=raster(nrow=100,ncol=50,vals=rnorm(100*50))
# OR
x= raster(nrow=100,ncol=50)
values(x)= rnorm(5000)
plot(x)
```
</div>
</div>
Raster memory usage
```{r}
inMemory(r)
```
> You can change the memory options using the `maxmemory` option in `rasterOptions()`
## Raster Plotting
Plotting is easy (but slow) with `plot`.
```{r}
plot(r, main='Raster with 100 cells')
```
### ggplot and rasterVis
rasterVis package has `gplot()` for plotting raster data in the `ggplot()` framework.
```{r}
gplot(r,maxpixels=50000)+
geom_raster(aes(fill=value))
```
Adjust `maxpixels` for faster plotting of large datasets.
```{r}
gplot(r,maxpixels=10)+
geom_raster(aes(fill=value))
```
Can use all the `ggplot` color ramps, etc.
```{r}
gplot(r)+geom_raster(aes(fill=value))+
scale_fill_distiller(palette="OrRd")
```
## Spatial Projections
Raster package uses standard [coordinate reference system (CRS)](http://www.spatialreference.org).
For example, see the projection format for the [_standard_ WGS84](http://www.spatialreference.org/ref/epsg/4326/).
```{r}
projection(r)
```
## Warping rasters
Use `projectRaster()` to _warp_ to a different projection.
`method=` `ngb` (for categorical) or `bilinear` (continuous)
```{r}
r2=projectRaster(r,crs="+proj=sinu +lon_0=0",method = "ngb")
par(mfrow=c(1,2));plot(r);plot(r2)
```
# WorldClim
## Overview of WorldClim
Mean monthly climate and derived variables interpolated from weather stations on a 30 arc-second (~1km) grid.
See [worldclim.org](http://www.worldclim.org/methods)
## Bioclim variables
<small>
Variable Description
- -
BIO1 Annual Mean Temperature
BIO2 Mean Diurnal Range (Mean of monthly (max temp – min temp))
BIO3 Isothermality (BIO2/BIO7) (* 100)
BIO4 Temperature Seasonality (standard deviation *100)
BIO5 Max Temperature of Warmest Month
BIO6 Min Temperature of Coldest Month
BIO7 Temperature Annual Range (BIO5-BIO6)
BIO8 Mean Temperature of Wettest Quarter
BIO9 Mean Temperature of Driest Quarter
BIO10 Mean Temperature of Warmest Quarter
BIO11 Mean Temperature of Coldest Quarter
BIO12 Annual Precipitation
BIO13 Precipitation of Wettest Month
BIO14 Precipitation of Driest Month
BIO15 Precipitation Seasonality (Coefficient of Variation)
BIO16 Precipitation of Wettest Quarter
BIO17 Precipitation of Driest Quarter
BIO18 Precipitation of Warmest Quarter
BIO19 Precipitation of Coldest Quarter
</small>
## Download climate data
Download the data:
```{r, eval=F}
clim=raster::getData('worldclim', var='bio', res=10)
```
`res` is resolution (0.5, 2.5, 5, and 10 minutes of a degree)
Instead of downloading the full dataset, we'll use the copy in the `DataScienceData` package:
```{r}
data(worldclim)
#rename for convenience
clim=worldclim
```
### Gain and Offset
```{r}
clim
```
Note the min/max of the raster. What are the units? Always check metadata, the [WorldClim temperature dataset](http://www.worldclim.org/formats) has a `gain` of 0.1, meaning that it must be multipled by 0.1 to convert back to degrees Celsius. We'll set the temperature variables (see table above) to 0.1 and leave the others at 1.
```{r}
gain(clim)=c(rep(0.1,11),rep(1,7))
```
### Plot with `plot()`
```{r}
plot(clim)
```
## Faceting in ggplot
Or use `rasterVis` methods with gplot
```{r}
gplot(clim[[13:19]])+geom_raster(aes(fill=value))+
facet_wrap(~variable)+
scale_fill_gradientn(colours=c("brown","red","yellow","darkgreen","green"),trans="log10")+
coord_equal()
```
Let's dig a little deeper into the data object:
```{r}
## is it held in RAM?
inMemory(clim)
## How big is it?
object.size(clim)
## can we work with it directly in RAM?
canProcessInMemory(clim)
```
## Subsetting and spatial cropping
Use `[[1:3]]` to select raster layers from raster stack.
```{r}
## crop to a latitude/longitude box
r1 <- raster::crop(clim[[1]], extent(10,35,-35,-20))
## Crop using a Spatial polygon
r1 <- raster::crop(clim[[1]], bbox(za))
```
```{r}
r1
plot(r1)
```
## Spatial aggregation
```{r}
## aggregate using a function
aggregate(r1, 3, fun=mean) %>%
plot()
```
<div class="well">
## Your turn
Create a new raster by aggregating to the minimum (`min`) value of `r1` within a 10 pixel window
<button data-toggle="collapse" class="btn btn-primary btn-sm round" data-target="#demo3">Show Solution</button>
<div id="demo3" class="collapse">
```{r, purl=F}
aggregate(r1, 10, fun=min) %>%
plot()
```
</div>
</div>
## Focal ("moving window")
```{r}
## apply a function over a moving window
focal(r1, w=matrix(1,3,3), fun=mean) %>%
plot()
```
```{r}
## apply a function over a moving window
rf_min <- focal(r1, w=matrix(1,11,11), fun=min)
rf_max <- focal(r1, w=matrix(1,11,11), fun=max)
rf_range=rf_max-rf_min
## or do it all at once
range2=function(x,na.rm=F) {
max(x,na.rm)-min(x,na.rm)
}
rf_range2 <- focal(r1, w=matrix(1,11,11), fun=range2)
plot(rf_range)
plot(rf_range2)
```
<div class="well">
## Your turn
Plot the focal standard deviation of `r1` over a 3x3 window.
<button data-toggle="collapse" class="btn btn-primary btn-sm round" data-target="#demo4">Show Solution</button>
<div id="demo4" class="collapse">
```{r, purl=F}
focal(r1,w=matrix(1,3,3),fun=sd)%>%
plot()
```
</div>
</div>
## Raster calculations
the `raster` package has many options for _raster algebra_, including `+`, `-`, `*`, `/`, logical operators such as `>`, `>=`, `<`, `==`, `!` and functions such as `abs`, `round`, `ceiling`, `floor`, `trunc`, `sqrt`, `log`, `log10`, `exp`, `cos`, `sin`, `max`, `min`, `range`, `prod`, `sum`, `any`, `all`.
So, for example, you can
```{r}
cellStats(r1,range)
## add 10
s = r1 + 10
cellStats(s,range)
```
```{r}
## take the square root
s = sqrt(r1)
cellStats(s,range)
# round values
r = round(r1)
cellStats(r,range)
# find cells with values less than 15 degrees C
r = r1 < 15
plot(r)
```
### Apply algebraic functions
```{r}
# multiply s times r and add 5
s = s * r1 + 5
cellStats(s,range)
```
## Extracting Raster Data
* points
* lines
* polygons
* extent (rectangle)
* cell numbers
Extract all intersecting values OR apply a summarizing function with `fun`.
### Point data
`sampleRandom()` generates random points and automatically extracts the raster values for those points. Also check out `?sampleStratified` and `sampleRegular()`.
Generate 100 random points and the associated climate variables at those points.
```{r}
## define a new dataset of points to play with
pts=sampleRandom(clim,100,xy=T,sp=T)
plot(pts);axis(1);axis(2)
```
### Extract data using a `SpatialPoints` object
Often you will have some locations (points) for which you want data from a raster* object. You can use the `extract` function here with the `pts` object (we'll pretend it's a new point dataset for which you want climate variables).
```{r}
pts_data=raster::extract(clim[[1:4]],pts,df=T)
head(pts_data)
```
> Use `package::function` to avoid confusion with similar functions.
### Plot the global dataset with the random points
```{r}
gplot(clim[[1]])+
geom_raster(aes(fill=value))+
geom_point(
data=as.data.frame(pts),
aes(x=x,y=y),col="red")+
coord_equal()
```
### Summarize climate data at point locations
Use `gather()` to reshape the climate data for easy plotting with ggplot.
```{r,warning=F}
d2=pts_data%>%
gather(ID)
colnames(d2)[1]="cell"
head(d2)
```
And plot density plots (like histograms).
```{r}
ggplot(d2,aes(x=value))+
geom_density()+
facet_wrap(~cell,scales="free")
```
### Lines
Extract values along a transect.
```{r}
transect = SpatialLinesDataFrame(
SpatialLines(list(Lines(list(Line(
rbind(c(19, -33.5),c(26, -33.5)))), ID = "ZAF"))),
data.frame(Z = c("transect"), row.names = c("ZAF")))
# OR
transect=SpatialLinesDataFrame(
readWKT("LINESTRING(19 -33.5,26 -33.5)"),
data.frame(Z = c("transect")))
gplot(r1)+geom_tile(aes(fill=value))+
geom_line(aes(x=long,y=lat),data=fortify(transect),col="red")
```
### Plot Transect
```{r}
trans=raster::extract(x=clim[[12:14]],
y=transect,
along=T,
cellnumbers=T)%>%
data.frame()
head(trans)
```
#### Add other metadata and reshape
```{r}
trans[,c("lon","lat")]=coordinates(clim)[trans$cell]
trans$order=as.integer(rownames(trans))
head(trans)
```
```{r}
transl=group_by(trans,lon,lat)%>%
gather(variable, value, -lon, -lat, -cell, -order)
head(transl)
```
```{r}
ggplot(transl,aes(x=lon,y=value,
colour=variable,
group=variable,
order=order))+
geom_line()
```
### _Zonal_ statistics
Calculate mean annual temperature averaged by province (polygons).
```{r}
rsp=raster::extract(x=r1,
y=gSimplify(za,0.01),
fun=mean,
sp=T)
#spplot(rsp,zcol="bio1")
```
```{r}
## add the ID to the dataframe itself for easier indexing in the map
rsp$id=as.numeric(rownames(rsp@data))
## create fortified version for plotting with ggplot()
frsp=fortify(rsp,region="id")
ggplot(rsp@data, aes(map_id = id, fill=bio1)) +
expand_limits(x = frsp$long, y = frsp$lat)+
scale_fill_gradientn(
colours = c("grey","goldenrod","darkgreen","green"))+
coord_map()+
geom_map(map = frsp)
```
> For more details about plotting spatialPolygons, see [here](https://github.com/hadley/ggplot2/wiki/plotting-polygon-shapefiles)
## Example Workflow
1. Download the Maximum Temperature dataset using `getData()`
2. Set the gain to 0.1 (to convert to degrees Celcius)
2. Crop it to the country you downloaded (or ZA?)
2. Calculate the overall range for each variable with `cellStats()`
3. Calculate the focal median with an 11x11 window with `focal()`
4. Create a transect across the region and extract the temperature data.
```{r}
country=getData('GADM', country='TUN', level=1)%>%gSimplify(0.01)
tmax=getData('worldclim', var='tmax', res=10)
gain(tmax)=0.1
names(tmax)
```
Default layer names can be problematic/undesirable.
```{r}
sort(names(tmax))
## Options
month.name
month.abb
sprintf("%02d",1:12)
sprintf("%04d",1:12)
```
See `?sprintf` for details
```{r}
names(tmax)=sprintf("%02d",1:12)
tmax_crop=crop(tmax,country)
tmaxave_crop=mean(tmax_crop) # calculate mean annual maximum temperature
tmaxavefocal_crop=focal(tmaxave_crop,
fun=median,
w=matrix(1,11,11))
```
> Only a few datasets are available usig `getData()` in the raster package, but you can download almost any file on the web with `file.download()`.
Report quantiles for each layer in a raster* object
```{r}
cellStats(tmax_crop,"quantile")
```
## Create a Transect (SpatialLinesDataFrame)
```{r}
transect=SpatialLinesDataFrame(
readWKT("LINESTRING(8 36,10 36)"),
data.frame(Z = c("T1")))
```
## Plot the timeseries of climate data
```{r,fig.width=20,fig.height=20}
gplot(tmax_crop)+
geom_tile(aes(fill=value))+
scale_fill_gradientn(
colours=c("brown","red","yellow","darkgreen","green"),
name="Temp")+
facet_wrap(~variable)+
## now add country overlays
geom_path(data=fortify(country),
mapping=aes(x=long,y=lat,
group=group,
order=order))+
# now add transect line
geom_line(aes(x=long,y=lat),
data=fortify(transect),col="red",size=3)+
coord_map()
```
## Extract and clean up the transect data
```{r}
trans=raster::extract(tmax_crop,
transect,
along=T,
cellnumbers=T)%>%
as.data.frame()
trans[,c("lon","lat")]=coordinates(tmax_crop)[trans$cell]
trans$order=as.integer(rownames(trans))
head(trans)
```
Reformat to 'long' format.
```{r}
transl=group_by(trans,lon,lat)%>%
gather(variable, value, -lon, -lat, -cell, -order)%>%
separate(variable,into = c("X","month"),1)%>%
mutate(month=as.numeric(month),monthname=factor(month.name[month],ordered=T,levels=month.name))
head(transl)
```
## Plot the transect data
```{r}
ggplot(transl,
aes(x=lon,y=value,
colour=month,
group=month,
order=order))+
ylab("Maximum Temp")+
scale_color_gradientn(
colors=c("blue","green","red"),
name="Month")+
geom_line()
```
Or the same data in a levelplot:
```{r}
ggplot(transl,
aes(x=lon,y=monthname,
fill=value))+
ylab("Month")+
scale_fill_distiller(
palette="PuBuGn",
name="Tmax")+
geom_raster()
```
## Raster Processing
Things to consider:
* RAM limitations
* Disk space and temporary files
* Use of external programs (e.g. GDAL)
* Use of external GIS viewer (e.g. QGIS)