-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathproj02.design
113 lines (81 loc) · 4.67 KB
/
proj02.design
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
CSE 320 Fall 2020
Computer Project #2 -- Combinational Circuits (Part I)
Review the project specifications, then fill in the requested information.
a) Give your name and MSU PID:
Name:Andrew Decrem
MSU PID:A57842779
b) Complete the following truth tables to describe the Boolean functions which
form the basis for your combinational circuit. For each function, replace
the hyphens with the appropriate entry (0, 1 or X), where X represents the
"don't care" condition.
w x y z | P() a() b() c() d() e() f() g()
--------+--------------------------------
0 0 0 0 | 0 x x x x x x x
0 0 0 1 | 0 x x x x x x x
0 0 1 0 | 1 1 1 0 1 1 0 1
0 0 1 1 | 0 x x x x x x x
0 1 0 0 | 1 0 1 1 0 0 1 1
0 1 0 1 | 1 1 0 1 1 0 1 1
0 1 1 0 | 0 x x x x x x x
0 1 1 1 | 1 1 1 1 0 0 0 0
1 0 0 0 | 1 1 1 1 1 1 1 1
1 0 0 1 | 1 1 1 1 1 0 1 1
1 0 1 0 | 1 1 1 1 0 1 1 1
1 0 1 1 | 0 x x x x x x x
1 1 0 0 | 0 x x x x x x x
1 1 0 1 | 0 x x x x x x x
1 1 1 0 | 0 x x x x x x x
1 1 1 1 | 0 x x x x x x x
Note: in the truth table, "P()" represents the "Present" indicator, "a()"
represents the LED segment labeled "a", and so on.
c) Complete the following Karnaugh maps for your Boolean functions. For each
input combination, replace the hyphen with the appropriate entry (0, 1 or X).
P() | w'x'| w'x | wx | wx' | a() | w'x'| w'x | wx | wx' |
-----+-----+-----+-----+-----+ -----+-----+-----+-----+-----+
y'z' | 0 | 1 | 0 | 1 | y'z' | x | 0 | x | 1 |
+-----+-----+-----+-----+ +-----+-----+-----+-----+
y'z | 0 | 1 | 0 | 1 | y'z | x | 1 | x | 1 |
+-----+-----+-----+-----+ +-----+-----+-----+-----+
yz | 0 | 1 | 0 | 0 | yz | x | 1 | x | x |
+-----+-----+-----+-----+ +-----+-----+-----+-----+
yz' | 1 | 0 | 0 | 1 | yz' | 1 | x | x | 1 |
+-----+-----+-----+-----+ +-----+-----+-----+-----+
b() | w'x'| w'x | wx | wx' | c() | w'x'| w'x | wx | wx' |
-----+-----+-----+-----+-----+ -----+-----+-----+-----+-----+
y'z' | x | 1 | x | 1 | y'z' | x | 1 | x | 1 |
+-----+-----+-----+-----+ +-----+-----+-----+-----+
y'z | x | 0 | x | 1 | y'z | x | 1 | x | 1 |
+-----+-----+-----+-----+ +-----+-----+-----+-----+
yz | x | 1 | x | x | yz | x | 1 | x | x |
+-----+-----+-----+-----+ +-----+-----+-----+-----+
yz' | 1 | x | x | 1 | yz' | 0 | x | x | 1 |
+-----+-----+-----+-----+ +-----+-----+-----+-----+
d() | w'x'| w'x | wx | wx' | e() | w'x'| w'x | wx | wx' |
-----+-----+-----+-----+-----+ -----+-----+-----+-----+-----+
y'z' | x | 0 | x | 1 | y'z' | x | 0 | x | 1 |
+-----+-----+-----+-----+ +-----+-----+-----+-----+
y'z | x | 1 | x | 1 | y'z | x | 0 | x | 0 |
+-----+-----+-----+-----+ +-----+-----+-----+-----+
yz | x | 0 | x | x | yz | x | 0 | x | x |
+-----+-----+-----+-----+ +-----+-----+-----+-----+
yz' | 1 | x | x | 0 | yz' | 1 | x | x | 1 |
+-----+-----+-----+-----+ +-----+-----+-----+-----+
f() | w'x'| w'x | wx | wx' | g() | w'x'| w'x | wx | wx' |
-----+-----+-----+-----+-----+ -----+-----+-----+-----+-----+
y'z' | x | 1 | x | 1 | y'z' | x | 1 | x | 1 |
+-----+-----+-----+-----+ +-----+-----+-----+-----+
y'z | x | 1 | x | 1 | y'z | x | 1 | x | 1 |
+-----+-----+-----+-----+ +-----+-----+-----+-----+
yz | x | 0 | x | x | yz | x | 0 | x | x |
+-----+-----+-----+-----+ +-----+-----+-----+-----+
yz' | 0 | x | x | 1 | yz' | 1 | x | x | 1 |
+-----+-----+-----+-----+ +-----+-----+-----+-----+
d) For each Boolean function, give the minimized sum of products expression.
P() = w'y'z+w'yz'+xy'z+wx'z'
a() = z'+x
b() = x'+z'+w
c() = z+y
d() = w'z'+y'z'+w'x
e() = x'z'
f() = w'+y
g() = w'+x'