-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_unseendata.py
225 lines (172 loc) · 6.52 KB
/
test_unseendata.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
from keras.preprocessing import image
import numpy as np
# from tensorflow import keras
import tensorflow as tf
import keras
import os
import os.path
import glob
import numpy as np
import pandas as pd
import cv2
import json
import seaborn as sns
import random
import matplotlib.pyplot as plt
import json
from keras import backend as K
from tensorflow.keras.layers import Flatten, Input, Dense, BatchNormalization, Conv2D, MaxPool2D, GlobalMaxPool2D, \
GlobalAveragePooling2D, Dropout, Add, ReLU
from tensorflow.keras.optimizers import SGD
from tensorflow.keras.models import Model
from tensorflow.keras.applications.vgg16 import VGG16
from sklearn.model_selection import train_test_split
from tensorflow.keras.models import Model, Sequential
from keras import backend as K
from tensorflow import keras
import tensorflow as tf
print(tf.__version__)
directory = './testingdata1/'
with open(directory + '/groundtruth1.json') as json_file:
gtdata = json.load(json_file)
subdirs = os.listdir(directory)
finalX_img = []
finalX_num = []
finalyLeft = []
finalyRight = []
for i in range(len(subdirs)):
if subdirs[i][-4:] == 'json':
continue
dir2pull = directory + '/' + subdirs[i] + '/'
print(dir2pull)
lefty = gtdata[subdirs[i]]['leftlength']
righty = gtdata[subdirs[i]]['rightlength']
for file in glob.glob(dir2pull + '*.csv'):
data2read = file.replace("\\", '/')
# print(data2read)
# print(data2read)
singledata = pd.read_csv(data2read, header=None)
singledata = np.array(singledata)
if singledata.shape[1] != 60:
continue
dataarray = []
for j in range(singledata.shape[1]):
if isinstance(singledata[0, j], str):
if singledata[0, j][0:2] == 'SI' or singledata[0, j][0:2] == ' S':
datapoint = singledata[0, j].split('(')[1]
elif singledata[0, j][0:2] == 'L ' or singledata[0, j][0:2] == 'R ':
datapoint = singledata[0, j][2:]
else:
datapoint = singledata[0, j].split(')')[0]
datapoint = float(datapoint)
else:
datapoint = singledata[0, j]
dataarray.append(datapoint)
procdata = np.array(dataarray)
# print(procdata.shape)
if procdata.shape[0] != 60:
continue
finalX_num.append(procdata)
finalyLeft.append(lefty + random.uniform(-0.5, 0.5))
finalyRight.append(righty + random.uniform(-0.5, 0.5))
imgpath = data2read.split('.cs')[0]
if os.path.isfile(imgpath):
image = cv2.imread(imgpath)
else:
image = cv2.imread(imgpath + '.jpg')
# print(image.shape)
if image.shape[0] != 1792:
image = cv2.resize(image, (828, 1792))
finalX_img.append(image)
# print(len(finalX))
finalX_img = np.array(finalX_img)
# print(finalX_img.shape)
finalX_num = np.array(finalX_num)
# print(finalX_num.shape)
finalyLeft = np.array(finalyLeft)
finalyRight = np.array(finalyRight)
def root_mean_squared_error(y_true, y_pred):
return K.sqrt(K.mean(K.square(y_pred - y_true)))
from tensorflow.keras.initializers import glorot_uniform
dependencies = {
# 'auc_roc': root_mean_squared_error,
# 'left_length': root_mean_squared_error,
# 'right_length': root_mean_squared_error,
'root_mean_squared_error': root_mean_squared_error
# 'GlorotUniform': glorot_uniform()
}
for file in glob.glob('./*.h5'):
modelfile2test = file
print(modelfile2test)
# load the model we saved
def create_model():
base_model = VGG16(include_top=False, input_tensor=input1)
x = base_model.output
x = GlobalAveragePooling2D()(x)
x = Flatten()(x)
intrins_flat = Flatten()(input2)
merge = Concatenate()([x, intrins_flat])
left = Dense(units=512)(merge)
left = BatchNormalization()(left)
left = ReLU()(left)
left - Dropout(0.5)(left)
left = Dense(units=256)(left)
left = BatchNormalization()(left)
left = ReLU()(left)
left = Dropout(0.5)(left)
left = Dense(units=128)(left)
left = BatchNormalization()(left)
left = ReLU()(left)
left = Dropout(0.5)(left)
left_length = Dense(units=1, activation='linear', name='left_length')(left)
right = Dense(units=512)(merge)
right = BatchNormalization()(right)
right = ReLU()(right)
right = Dropout(0.5)(right)
right = Dense(units=256)(right)
right = BatchNormalization()(right)
right = ReLU()(right)
right = Dropout(0.5)(right)
right = Dense(units=128)(right)
right = BatchNormalization()(right)
right = ReLU()(right)
right = Dropout(0.5)(right)
right_length = Dense(units=1, activation='linear', name='right_length')(right)
model = Model(inputs=[input1, input2], outputs=[left_length, right_length])
for layer in base_model.layers:
layer.trainable = False
return model
def train():
model = create_model()
tensorboard_cb = keras.callbacks.TensorBoard(run_logdir)
checkPoint = keras.callbacks.ModelCheckpoint('weights{epoch:08d}.h5', save_weights_only=True, period=250)
model.compile(loss={'left_length': 'mse', 'right_length': 'mse'}, optimizer='adam',
metrics={'left_length': root_mean_squared_error, 'right_length': root_mean_squared_error})
model.fit([X_img_train, X_num_train], [yL_train, yR_train], batch_size=2, validation_split=0.1, epochs=10000,
verbose=1,
callbacks=[tensorboard_cb, checkPoint])
def load_trained_model(weights_path):
model = create_model()
model.load_weights(weights_path)
model = tf.keras.models.load_model(modelfile2test, custom_objects=dependencies)
def rmse(y_true, y_pred):
return np.sqrt(np.mean((y_pred - y_true) ** 2))
yleft_pred = []
yright_pred = []
for i in range(len(finalX_img)):
test_image = finalX_img[i, :, :, :]
test_image = np.array(test_image, dtype=np.float32)
test_image = np.expand_dims(test_image, axis=0)
ar_data = finalX_num[i, :]
ar_data = np.array(ar_data, dtype=np.float32)
ar_data = np.expand_dims(ar_data, axis=0)
ar_data = np.expand_dims(ar_data, axis=2)
# print(ar_data.shape)
result = model.predict([test_image, ar_data])
# print(np.squeeze(result[0]).shape)
leftpred = np.mean(np.squeeze(result[0]))
rightpred = np.mean(np.squeeze(result[1]))
yleft_pred.append(leftpred)
yright_pred.append(rightpred)
print('Left Foot RMSE: {}'.format(rmse(finalyLeft, np.array(yleft_pred))))
print('Right Foot RMSE: {}'.format(rmse(finalyRight, np.array(yright_pred))))