forked from cseagle/blc
-
Notifications
You must be signed in to change notification settings - Fork 0
/
funcdata.cc
994 lines (880 loc) · 30.9 KB
/
funcdata.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
/* ###
* IP: GHIDRA
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "funcdata.hh"
//#include <fstream>
/// \param nm is the (base) name of the function
/// \param scope is Symbol scope associated with the function
/// \param addr is the entry address for the function
/// \param sz is the number of bytes (of code) in the function body
Funcdata::Funcdata(const string &nm,Scope *scope,const Address &addr,int4 sz)
: baseaddr(addr),
funcp(),
vbank(scope->getArch(),
scope->getArch()->getUniqueSpace(),
0x10000000), // Unique space which is reused per function starts here
heritage(this),
covermerge(*this)
{ // Initialize high-level properties of
// function by giving address and size
flags = 0;
clean_up_index = 0;
high_level_index = 0;
cast_phase_index = 0;
glb = scope->getArch();
name = nm;
size = sz;
AddrSpace *stackid = glb->getStackSpace();
if (nm.size()==0)
localmap = (ScopeLocal *)0; // Filled in by restoreXml
else {
ScopeLocal *newMap = new ScopeLocal(stackid,this,glb);
glb->symboltab->attachScope(newMap,scope); // This may throw and delete newMap
localmap = newMap;
funcp.setScope(localmap,baseaddr+ -1);
localmap->resetLocalWindow();
}
activeoutput = (ParamActive *)0;
#ifdef OPACTION_DEBUG
jtcallback = (void (*)(Funcdata &orig,Funcdata &fd))0;
opactdbg_count = 0;
opactdbg_breakcount = -1;
opactdbg_on = false;
opactdbg_breakon = false;
opactdbg_active = false;
#endif
}
void Funcdata::clear(void)
{ // Clear everything associated with decompilation (analysis)
flags &= ~(highlevel_on|blocks_generated|processing_started|typerecovery_on|restart_pending);
clean_up_index = 0;
high_level_index = 0;
cast_phase_index = 0;
localmap->clearUnlocked(); // Clear non-permanent stuff
localmap->resetLocalWindow();
clearActiveOutput();
funcp.clearUnlockedOutput(); // Inputs are cleared by localmap
clearBlocks();
obank.clear();
vbank.clear();
clearCallSpecs();
clearJumpTables();
// Do not clear overrides
heritage.clear();
#ifdef OPACTION_DEBUG
opactdbg_count = 0;
#endif
}
/// The comment is added to the global database, indexed via its placement address and
/// the entry address of the function. The emitter will attempt to place the comment
/// before the source expression that maps most closely to the address.
/// \param txt is the string body of the comment
/// \param ad is the placement address
void Funcdata::warning(const string &txt,const Address &ad) const
{
string msg;
if ((flags & jumptablerecovery_on)!=0)
msg = "WARNING (jumptable): ";
else
msg = "WARNING: ";
msg += txt;
glb->commentdb->addCommentNoDuplicate(Comment::warning,baseaddr,ad,msg);
}
/// The warning will be emitted as part of the block comment printed right before the
/// prototype. The comment is stored in the global comment database, indexed via the function's
/// entry address.
/// \param txt is the string body of the comment
void Funcdata::warningHeader(const string &txt) const
{
string msg;
if ((flags & jumptablerecovery_on)!=0)
msg = "WARNING (jumptable): ";
else
msg = "WARNING: ";
msg += txt;
glb->commentdb->addCommentNoDuplicate(Comment::warningheader,baseaddr,baseaddr,msg);
}
/// This routine does basic set-up for analyzing the function. In particular, it
/// generates the raw p-code, builds basic blocks, and generates the call specification
/// objects.
void Funcdata::startProcessing(void)
{
if ((flags & processing_started)!=0)
throw LowlevelError("Function processing already started");
flags |= processing_started;
if (funcp.isInline())
warningHeader("This is an inlined function");
Address baddr(baseaddr.getSpace(),0);
Address eaddr(baseaddr.getSpace(),~((uintb)0));
followFlow(baddr,eaddr,0);
structureReset();
sortCallSpecs(); // Must come after structure reset
heritage.buildInfoList();
localoverride.applyDeadCodeDelay(*this);
}
void Funcdata::stopProcessing(void)
{
flags |= processing_complete;
obank.destroyDead(); // Free up anything in the dead list
#ifdef CPUI_STATISTICS
glb->stats->process(*this);
#endif
}
bool Funcdata::startTypeRecovery(void)
{
if ((flags & typerecovery_on)!=0) return false; // Already started
flags |= typerecovery_on;
return true;
}
Funcdata::~Funcdata(void)
{
// clear();
if (localmap != (ScopeLocal *)0)
glb->symboltab->deleteScope(localmap);
clearCallSpecs();
for(int4 i=0;i<jumpvec.size();++i) // Delete jumptables
delete jumpvec[i];
glb = (Architecture *)0;
}
/// A representation of all PcodeOps in the function body are printed to the
/// stream. Depending on the state of analysis, PcodeOps are grouped into their
/// basic blocks, and within a block, ops are displayed sequentially. Basic labeling
/// of branch destinations is also printed. This is suitable for a console mode or
/// debug view of the state of the function at any given point in its analysis.
/// \param s is the output stream
void Funcdata::printRaw(ostream &s) const
{
if (bblocks.getSize()==0) {
if (obank.empty())
throw RecovError("No operations to print");
PcodeOpTree::const_iterator iter;
s << "Raw operations: \n";
for(iter=obank.beginAll();iter!=obank.endAll();++iter) {
s << (*iter).second->getSeqNum() << ":\t";
(*iter).second->printRaw(s);
s << endl;
}
}
else
bblocks.printRaw(s);
}
/// This routine searches for an marks Varnode objects, like stack-pointer registers,
/// that are used as a base address for a virtual address space. Each Varnode gets a
/// special data-type and is marked so that Varnode::isSpacebase() returns \b true.
void Funcdata::spacebase(void)
{
VarnodeLocSet::const_iterator iter,enditer;
int4 i,j,numspace;
Varnode *vn;
AddrSpace *spc;
for(j=0;j<glb->numSpaces();++j) {
spc = glb->getSpace(j);
if (spc == (AddrSpace *)0) continue;
numspace = spc->numSpacebase();
for(i=0;i<numspace;++i) {
const VarnodeData &point(spc->getSpacebase(i));
// Find input varnode at this size and location
Datatype *ct = glb->types->getTypeSpacebase(spc,getAddress());
Datatype *ptr = glb->types->getTypePointer(point.size,ct,spc->getWordSize());
iter = vbank.beginLoc(point.size,Address(point.space,point.offset));
enditer = vbank.endLoc(point.size,Address(point.space,point.offset));
while(iter != enditer) {
vn = *iter++;
if (vn->isFree()) continue;
if (vn->isSpacebase()) { // This has already been marked spacebase
// We have given it a chance for descendants to
// be eliminated naturally, now force a split if
// it still has multiple descendants
PcodeOp *op = vn->getDef();
if ((op != (PcodeOp *)0)&&(op->code() == CPUI_INT_ADD))
splitUses(vn);
}
else {
vn->setFlags(Varnode::spacebase); // Mark all base registers (not just input)
if (vn->isInput()) // Only set type on the input spacebase register
vn->updateType(ptr,true,true);
}
}
}
}
}
/// Given an address space, like \e stack, that is known to have a base register
/// pointing to it, construct a Varnode representing that register.
/// \param id is the \e stack like address space
/// \return a newly allocated stack-pointer Varnode
Varnode *Funcdata::newSpacebasePtr(AddrSpace *id)
{
Varnode *vn;
// Assume that id has a base register (otherwise an exception is thrown)
const VarnodeData &point(id->getSpacebase(0));
vn = newVarnode(point.size, Address(point.space,point.offset));
return vn;
}
/// Given an address space, like \e stack, that is known to have a base register
/// pointing to it, try to locate the unique Varnode that holds the input value
/// of this register.
/// \param id is the \e stack like address space
/// \return the input stack-pointer Varnode (or NULL if it doesn't exist)
Varnode *Funcdata::findSpacebaseInput(AddrSpace *id) const
{
Varnode *vn;
// Assume that id has a base register (otherwise an exception is thrown)
const VarnodeData &point(id->getSpacebase(0));
vn = vbank.findInput(point.size, Address(point.space,point.offset));
return vn;
}
/// \brief Convert a constant pointer into a \e ram CPUI_PTRSUB
///
/// A constant known to be a pointer into an address space like \b ram is converted
/// into a Varnode defined by CPUI_PTRSUB, which triggers a Symbol lookup at points
/// during analysis. The constant must point to a known Symbol.
///
/// The PTRSUB takes the constant 0 as its first input, which is marked
/// as a \e spacebase to indicate this situation. The second input to PTRSUB becomes
/// the offset to the Symbol within the address space. An additional INT_SUB may be inserted
/// to get from the start of the Symbol to the address indicated by the original
/// constant pointer.
/// \param op is the PcodeOp referencing the constant pointer
/// \param slot is the input slot of the constant pointer
/// \param entry is the Symbol being pointed (in)to
/// \param rampoint is the constant pointer interpreted as an Address
/// \param origval is the constant
/// \param origsize is the size of the constant
void Funcdata::spacebaseConstant(PcodeOp *op,int4 slot,SymbolEntry *entry,const Address &rampoint,uintb origval,int4 origsize)
{
int4 sz = rampoint.getAddrSize();
AddrSpace *spaceid = rampoint.getSpace();
Datatype *sb_type = glb->types->getTypeSpacebase(spaceid,Address());
sb_type = glb->types->getTypePointer(sz,sb_type,spaceid->getWordSize());
Varnode *spacebase_vn,*outvn,*newconst;
uintb extra = rampoint.getOffset() - entry->getAddr().getOffset(); // Offset from beginning of entry
extra = AddrSpace::byteToAddress(extra,rampoint.getSpace()->getWordSize()); // Convert to address units
PcodeOp *addOp = (PcodeOp *)0;
PcodeOp *extraOp = (PcodeOp *)0;
PcodeOp *zextOp = (PcodeOp *)0;
PcodeOp *subOp = (PcodeOp *)0;
bool isCopy = false;
if (op->code() == CPUI_COPY) { // We replace COPY with final op of this calculation
isCopy = true;
if (sz < origsize)
zextOp = op;
else {
op->insertInput(1); // PTRSUB, ADD, SUBPIECE all take 2 parameters
if (origsize < sz)
subOp = op;
else if (extra != 0)
extraOp = op;
else
addOp = op;
}
}
spacebase_vn = newConstant(sz,0);
spacebase_vn->updateType(sb_type,true,true);
spacebase_vn->setFlags(Varnode::spacebase);
if (addOp == (PcodeOp *)0) {
addOp = newOp(2,op->getAddr());
opSetOpcode(addOp,CPUI_PTRSUB);
newUniqueOut(sz,addOp);
opInsertBefore(addOp,op);
}
else {
opSetOpcode(addOp,CPUI_PTRSUB);
}
outvn = addOp->getOut();
// Make sure newconstant and extra preserve origval in address units
uintb newconstoff = origval - extra; // everything is already in address units
newconst = newConstant(sz,newconstoff);
newconst->setPtrCheck(); // No longer need to check this constant as a pointer
if (spaceid->isTruncated())
addOp->setPtrFlow();
opSetInput(addOp,spacebase_vn,0);
opSetInput(addOp,newconst,1);
Symbol *sym = entry->getSymbol();
Datatype *entrytype = sym->getType();
Datatype *ptrentrytype = glb->types->getTypePointer(sz,entrytype,spaceid->getWordSize());
bool typelock = sym->isTypeLocked();
if (typelock && (entrytype->getMetatype() == TYPE_UNKNOWN))
typelock = false;
outvn->updateType(ptrentrytype,typelock,true);
if (extra != 0) {
if (extraOp == (PcodeOp *)0) {
extraOp = newOp(2,op->getAddr());
opSetOpcode(extraOp,CPUI_INT_ADD);
newUniqueOut(sz,extraOp);
opInsertBefore(extraOp,op);
}
else
opSetOpcode(extraOp,CPUI_INT_ADD);
Varnode *extconst = newConstant(sz,extra);
extconst->setPtrCheck();
opSetInput(extraOp,outvn,0);
opSetInput(extraOp,extconst,1);
outvn = extraOp->getOut();
}
if (sz < origsize) { // The new constant is smaller than the original varnode, so we extend it
if (zextOp == (PcodeOp *)0) {
zextOp = newOp(1,op->getAddr());
opSetOpcode(zextOp,CPUI_INT_ZEXT); // Create an extension to get back to original varnode size
newUniqueOut(origsize,zextOp);
opInsertBefore(zextOp,op);
}
else
opSetOpcode(zextOp,CPUI_INT_ZEXT);
opSetInput(zextOp,outvn,0);
outvn = zextOp->getOut();
}
else if (origsize < sz) { // The new constant is bigger than the original varnode, truncate it
if (subOp == (PcodeOp *)0) {
subOp = newOp(2,op->getAddr());
opSetOpcode(subOp,CPUI_SUBPIECE);
newUniqueOut(origsize,subOp);
opInsertBefore(subOp,op);
}
else
opSetOpcode(subOp,CPUI_SUBPIECE);
opSetInput(subOp,outvn,0);
opSetInput(subOp,newConstant(4, 0), 1); // Take least significant piece
outvn = subOp->getOut();
}
if (!isCopy)
opSetInput(op,outvn,slot);
}
void Funcdata::clearCallSpecs(void)
{
int4 i;
for(i=0;i<qlst.size();++i)
delete qlst[i]; // Delete each func_callspec
qlst.clear(); // Delete list of pointers
}
FuncCallSpecs *Funcdata::getCallSpecs(const PcodeOp *op) const
{ // Get FuncCallSpecs from CALL op
int4 i;
const Varnode *vn;
vn = op->getIn(0);
if (vn->getSpace()->getType()==IPTR_FSPEC)
return FuncCallSpecs::getFspecFromConst(vn->getAddr());
for(i=0;i<qlst.size();++i)
if (qlst[i]->getOp() == op) return qlst[i];
return (FuncCallSpecs *)0;
}
/// \brief Update CALL PcodeOp properties based on its corresponding call specification
///
/// As call specifications for a particular call site are updated, this routine pushes
/// back properties to the particular CALL op that are relevant for analysis.
/// \param fc is the call specification
void Funcdata::updateOpFromSpec(FuncCallSpecs *fc)
{
PcodeOp *op = fc->getOp();
if (fc->isConstructor())
op->setAdditionalFlag(PcodeOp::is_constructor);
else
op->clearAdditionalFlag(PcodeOp::is_constructor);
if (fc->isDestructor())
op->setAdditionalFlag(PcodeOp::is_destructor);
else
op->clearAdditionalFlag(PcodeOp::is_destructor);
if (fc->hasThisPointer())
op->setAdditionalFlag(PcodeOp::has_thisptr);
else
op->clearAdditionalFlag(PcodeOp::has_thisptr);
}
/// \brief Compare call specification objects by call site address
///
/// \param a is the first call specification to compare
/// \param b is the second call specification
/// \return \b true if the first call specification should come before the second
bool Funcdata::compareCallspecs(const FuncCallSpecs *a,const FuncCallSpecs *b)
{
int4 ind1,ind2;
ind1 = a->getOp()->getParent()->getIndex();
ind2 = b->getOp()->getParent()->getIndex();
if (ind1 != ind2) return (ind1 < ind2);
return (a->getOp()->getSeqNum().getOrder() < b->getOp()->getSeqNum().getOrder());
}
/// Calls are put in dominance order so that earlier calls get evaluated first.
/// Order affects parameter analysis.
void Funcdata::sortCallSpecs(void)
{
sort(qlst.begin(),qlst.end(),compareCallspecs);
}
/// This is used internally if a CALL is removed (because it is unreachable)
/// \param op is the particular specification to remove
void Funcdata::deleteCallSpecs(PcodeOp *op)
{
vector<FuncCallSpecs *>::iterator iter;
for(iter=qlst.begin();iter!=qlst.end();++iter) {
FuncCallSpecs *fc = *iter;
if (fc->getOp() == op) {
delete fc;
qlst.erase(iter);
return;
}
}
}
/// If \e extrapop is unknown, recover it from what we know about this function
/// and set the value permanently for \b this Funcdata object.
/// If there is no function body it may be impossible to know the value, in which case
/// this returns the reserved value indicating \e extrapop is unknown.
///
/// \return the recovered value
int4 Funcdata::fillinExtrapop(void)
{
if (hasNoCode()) // If no code to make a decision on
return funcp.getExtraPop(); // either we already know it or we don't
if (funcp.getExtraPop() != ProtoModel::extrapop_unknown)
return funcp.getExtraPop(); // If we already know it, just return it
list<PcodeOp *>::const_iterator iter = beginOp(CPUI_RETURN);
if (iter == endOp(CPUI_RETURN)) return 0; // If no return statements, answer is irrelevant
PcodeOp *retop = *iter;
uint1 buffer[4];
glb->loader->loadFill(buffer,4,retop->getAddr());
// We are assuming x86 code here
int4 extrapop = 4; // The default case
if (buffer[0] == 0xc2) {
extrapop = buffer[2]; // Pull out immediate 16-bits
extrapop <<= 8;
extrapop += buffer[1];
extrapop += 4; // extra 4 for the return address
}
funcp.setExtraPop( extrapop ); // Save what we have learned on the prototype
return extrapop;
}
/// A description of each Varnode currently involved in the data-flow of \b this
/// function is printed to the output stream. This is suitable as part of a console mode
/// or debug view of the function at any point during its analysis
/// \param s is the output stream
void Funcdata::printVarnodeTree(ostream &s) const
{
VarnodeDefSet::const_iterator iter,enditer;
Varnode *vn;
iter = vbank.beginDef();
enditer = vbank.endDef();
while(iter != enditer) {
vn = *iter++;
vn->printInfo(s);
}
}
/// Each scope has a set of memory ranges associated with it, encompassing
/// storage locations of variables that are \e assumed to be in the scope.
/// Each range for each local scope is printed.
/// \param s is the output stream
void Funcdata::printLocalRange(ostream &s) const
{
localmap->printBounds(s);
ScopeMap::const_iterator iter,enditer;
iter = localmap->childrenBegin();
enditer = localmap->childrenEnd();
for(;iter!=enditer;++iter) {
Scope *l1 = (*iter).second;
l1->printBounds(s);
}
}
/// This parses a \<jumptablelist> tag and builds a JumpTable object for
/// each \<jumptable> sub-tag.
/// \param el is the root \<jumptablelist> tag
void Funcdata::restoreXmlJumpTable(const Element *el)
{
const List &list( el->getChildren() );
List::const_iterator iter;
for(iter=list.begin();iter!=list.end();++iter) {
JumpTable *jt = new JumpTable(glb);
jt->restoreXml(*iter);
jumpvec.push_back(jt);
}
}
/// A \<jumptablelist> tag is written with \<jumptable> sub-tags describing
/// each jump-table associated with the control-flow of \b this function.
/// \param s is the output stream
void Funcdata::saveXmlJumpTable(ostream &s) const
{
if (jumpvec.empty()) return;
vector<JumpTable *>::const_iterator iter;
s << "<jumptablelist>\n";
for(iter=jumpvec.begin();iter!=jumpvec.end();++iter)
(*iter)->saveXml(s);
s << "</jumptablelist>\n";
}
/// \brief Save XML descriptions for a set of Varnodes to stream
///
/// This is an internal function for the function's save to XML system.
/// Individual XML tags are written in sequence for Varnodes in a given set.
/// The set is bounded by iterators using the 'loc' ordering.
/// \param s is the output stream
/// \param iter is the beginning of the set
/// \param enditer is the end of the set
void Funcdata::saveVarnodeXml(ostream &s,VarnodeLocSet::const_iterator iter,VarnodeLocSet::const_iterator enditer)
{
Varnode *vn;
while(iter!=enditer) {
vn = *iter++;
vn->saveXml(s);
s << '\n';
}
}
/// This produces a single \<highlist> tag, with a \<high> sub-tag for each
/// high-level variable (HighVariable) currently associated with \b this function.
/// \param s is the output stream
void Funcdata::saveXmlHigh(ostream &s) const
{
int4 j;
Varnode *vn;
HighVariable *high;
if (!isHighOn()) return;
s << "<highlist>";
VarnodeLocSet::const_iterator iter;
for(iter=beginLoc();iter!=endLoc();++iter) {
vn = *iter;
if (vn->isAnnotation()) continue;
high = vn->getHigh();
if (high->isMark()) continue;
high->setMark();
vn = high->getNameRepresentative(); // Get representative varnode
s << "<high ";
// a_v(s,"name",high->getName());
a_v_u(s,"repref",vn->getCreateIndex());
if (high->isSpacebase()||high->isImplied()) // This is a special variable
a_v(s,"class",string("other"));
else if (high->isPersist()&&high->isAddrTied()) // Global variable
a_v(s,"class",string("global"));
else if (high->isConstant())
a_v(s,"class",string("constant"));
else if (!high->isPersist())
a_v(s,"class",string("local"));
else
a_v(s,"class",string("other"));
if (high->isTypeLock())
a_v_b(s,"typelock",true);
if (high->getSymbol() != (Symbol *)0)
a_v_u(s,"symref",high->getSymbol()->getId());
s << '>';
high->getType()->saveXml(s);
for(j=0;j<high->numInstances();++j) {
s << "<addr ";
a_v_u(s,"ref",high->getInstance(j)->getCreateIndex());
s << "/>";
}
s << "</high>";
}
for(iter=beginLoc();iter!=endLoc();++iter) {
vn = *iter;
if (!vn->isAnnotation())
vn->getHigh()->clearMark();
}
s << "</highlist>\n";
}
/// A single \<ast> tag is produced with children describing Varnodes, PcodeOps, and
/// basic blocks making up \b this function's current syntax tree.
/// \param s is the output stream
void Funcdata::saveXmlTree(ostream &s) const
{
s << "<ast>\n";
s << "<varnodes>\n";
for(int4 i=0;i<glb->numSpaces();++i) {
AddrSpace *base = glb->getSpace(i);
if (base == (AddrSpace *)0 || base->getType()==IPTR_IOP) continue;
VarnodeLocSet::const_iterator iter = vbank.beginLoc(base);
VarnodeLocSet::const_iterator enditer = vbank.endLoc(base);
saveVarnodeXml(s,iter,enditer);
}
s << "</varnodes>\n";
list<PcodeOp *>::iterator oiter,endoiter;
PcodeOp *op;
BlockBasic *bs;
for(int4 i=0;i<bblocks.getSize();++i) {
bs = (BlockBasic *)bblocks.getBlock(i);
s << "<block";
a_v_i(s,"index",bs->getIndex());
s << ">\n";
bs->saveXmlBody(s);
oiter = bs->beginOp();
endoiter = bs->endOp();
while(oiter != endoiter) {
op = *oiter++;
op->saveXml(s);
s << '\n';
}
s << "</block>\n";
}
for(int4 i=0;i<bblocks.getSize();++i) {
bs = (BlockBasic *)bblocks.getBlock(i);
if (bs->sizeIn() == 0) continue;
s << "<blockedge";
a_v_i(s,"index",bs->getIndex());
s << ">\n";
bs->saveXmlEdges(s);
s << "</blockedge>\n";
}
s << "</ast>\n";
}
/// An XML description of \b this function is written to the stream,
/// including name, address, prototype, symbol, jump-table, and override information.
/// If indicated by the caller, a description of the entire PcodeOp and Varnode
/// tree is also emitted.
/// \param s is the output stream
/// \param savetree is \b true if the p-code tree should be emitted
void Funcdata::saveXml(ostream &s,bool savetree) const
{
s << "<function";
a_v(s,"name",name);
a_v_i(s,"size",size);
if (hasNoCode())
a_v_b(s,"nocode",true);
s << ">\n";
baseaddr.saveXml(s);
s << '\n';
if (!hasNoCode()) {
localmap->saveXmlRecursive(s,false); // Save scope and all subscopes
}
if (savetree) {
saveXmlTree(s);
saveXmlHigh(s);
}
saveXmlJumpTable(s);
funcp.saveXml(s); // Must be saved after database
localoverride.saveXml(s,glb);
s << "</function>\n";
}
/// From an XML \<function> tag, recover the name, address, prototype, symbol,
/// jump-table, and override information for \b this function.
/// \param el is the root \<function> tag
void Funcdata::restoreXml(const Element *el)
{
// clear(); // Shouldn't be needed
name.clear();
size = -1;
AddrSpace *stackid = glb->getStackSpace();
for(int4 i=0;i<el->getNumAttributes();++i) {
if (el->getAttributeName(i) == "name")
name = el->getAttributeValue(i);
else if (el->getAttributeName(i) == "size") {
istringstream s( el->getAttributeValue(i));
s.unsetf(ios::dec | ios::hex | ios::oct);
s >> size;
}
else if (el->getAttributeName(i) == "nocode") {
if (xml_readbool(el->getAttributeValue(i)))
flags |= no_code;
}
}
if (name.size() == 0)
throw LowlevelError("Missing function name");
if (size == -1)
throw LowlevelError("Missing function size");
const List &list( el->getChildren() );
List::const_iterator iter = list.begin();
baseaddr = Address::restoreXml( *iter, glb );
++iter;
for(;iter!=list.end();++iter) {
if ((*iter)->getName() == "localdb") {
if (localmap != (ScopeLocal *)0)
throw LowlevelError("Pre-existing local scope when restoring: "+name);
ScopeLocal *newMap = new ScopeLocal(stackid,this,glb);
glb->symboltab->restoreXmlScope(*iter,newMap); // May delete newMap and throw
localmap = newMap;
}
// else if ((*iter)->getName() == "scope") {
// const Element *scopeel = *iter;
// ScopeInternal *subscope = new ScopeInternal("",glb);
// subscope->restrictScope(this);
// glb->symboltab->restore_nonglobal_xml(scopeel,subscope);
// }
else if ((*iter)->getName() == "override")
localoverride.restoreXml(*iter,glb);
else if ((*iter)->getName() == "prototype") {
if (localmap == (ScopeLocal *)0) {
// If we haven't seen a <localdb> tag yet, assume we have a default local scope
ScopeLocal *newMap = new ScopeLocal(stackid,this,glb);
Scope *scope = glb->symboltab->getGlobalScope();
glb->symboltab->attachScope(newMap,scope); // May delete newMap and throw
localmap = newMap;
}
funcp.setScope(localmap,baseaddr+ -1); // localmap built earlier
funcp.restoreXml(*iter,glb);
}
else if ((*iter)->getName() == "jumptablelist")
restoreXmlJumpTable(*iter);
}
if (localmap == (ScopeLocal *)0) { // Seen neither <localdb> or <prototype>
// This is a function shell, so we provide default locals
ScopeLocal *newMap = new ScopeLocal(stackid,this,glb);
Scope *scope = glb->symboltab->getGlobalScope();
glb->symboltab->attachScope(newMap,scope); // May delete newMap and throw
localmap = newMap;
funcp.setScope(localmap,baseaddr+ -1);
}
localmap->resetLocalWindow();
}
/// \brief Inject p-code from a \e payload into \b this live function
///
/// Raw PcodeOps are generated from the payload within a given basic block at a specific
/// position in \b this function.
/// \param payload is the injection payload
/// \param addr is the address at the point of injection
/// \param bl is the given basic block holding the new ops
/// \param iter indicates the point of insertion
void Funcdata::doLiveInject(InjectPayload *payload,const Address &addr,BlockBasic *bl,list<PcodeOp *>::iterator iter)
{
PcodeEmitFd emitter;
InjectContext &context(glb->pcodeinjectlib->getCachedContext());
emitter.setFuncdata(this);
context.clear();
context.baseaddr = addr; // Shouldn't be using inst_next and inst_start here
context.nextaddr = addr;
list<PcodeOp *>::const_iterator deaditer = obank.endDead();
bool deadempty = (obank.beginDead() == deaditer);
if (!deadempty)
--deaditer;
payload->inject(context,emitter);
// Calculate iterator to first injected op
if (deadempty)
deaditer = obank.beginDead();
else
++deaditer;
while(deaditer != obank.endDead()) {
PcodeOp *op = *deaditer;
++deaditer;
if (op->isCallOrBranch())
throw LowlevelError("Illegal branching injection");
opInsert(op,bl,iter);
}
}
void PcodeEmitFd::dump(const Address &addr,OpCode opc,VarnodeData *outvar,VarnodeData *vars,int4 isize)
{ // Convert template data into a real PcodeOp
PcodeOp *op;
Varnode *vn;
if (outvar != (VarnodeData *)0) {
Address oaddr(outvar->space,outvar->offset);
op = fd->newOp(isize,addr);
fd->newVarnodeOut(outvar->size,oaddr,op);
}
else
op = fd->newOp(isize,addr);
fd->opSetOpcode(op,opc);
int4 i=0;
if (op->isCodeRef()) { // Is the first input parameter a code reference
Address addrcode(vars[0].space,vars[0].offset);
// addrcode.toPhysical() // For backward compatibility with SLED
fd->opSetInput(op,fd->newCodeRef(addrcode),0);
i += 1;
// This is handled by FlowInfo
// if ((opc==CPUI_CALL)&&(addrcode==pos->getNaddr())) {
// This is probably PIC code and the call is really a jump
// fd->op_setopcode(op,CPUI_BRANCH);
// }
}
for(;i<isize;++i) {
vn = fd->newVarnode(vars[i].size,vars[i].space,vars[i].offset);
fd->opSetInput(op,vn,i);
}
}
#ifdef OPACTION_DEBUG
/// The current state of the op is recorded for later comparison after
/// its been modified.
/// \param op is the given PcodeOp being recorded
void Funcdata::debugModCheck(PcodeOp *op)
{
if (op->isModified()) return;
if (!debugCheckRange(op)) return;
op->setAdditionalFlag(PcodeOp::modified);
ostringstream before;
op->printDebug(before);
modify_list.push_back(op);
modify_before.push_back( before.str() );
}
void Funcdata::debugModClear(void)
{
for(int4 i=0;i<modify_list.size();++i)
modify_list[i]->clearAdditionalFlag(PcodeOp::modified);
modify_list.clear();
modify_before.clear();
opactdbg_active = false;
}
/// \param actionname is the name of the Action being debugged
void Funcdata::debugModPrint(const string &actionname)
{
if (!opactdbg_active) return;
opactdbg_active = false;
if (modify_list.empty()) return;
PcodeOp *op;
ostringstream s;
opactdbg_breakon |= (opactdbg_count == opactdbg_breakcount);
s << "DEBUG " << dec << opactdbg_count++ << ": " << actionname << endl;
for(int4 i=0;i<modify_list.size();++i) {
op = modify_list[i];
s << modify_before[i] << endl;
s << " ";
op->printDebug(s);
s << endl;
op->clearAdditionalFlag(PcodeOp::modified);
}
modify_list.clear();
modify_before.clear();
glb->printDebug(s.str());
}
/// \param pclow is the beginning of the memory range to trace
/// \param pchigh is the end of the range
/// \param uqlow is an (optional) sequence number to associate with the beginning of the range
/// \param uqhigh is an (optional) sequence number to associate with the end of the range
void Funcdata::debugSetRange(const Address &pclow,const Address &pchigh,
uintm uqlow,uintm uqhigh)
{
opactdbg_on = true;
opactdbg_pclow.push_back(pclow);
opactdbg_pchigh.push_back(pchigh);
opactdbg_uqlow.push_back(uqlow);
opactdbg_uqhigh.push_back(uqhigh);
}
/// \param op is the given PcodeOp to check
/// \return \b true if the op is being traced
bool Funcdata::debugCheckRange(PcodeOp *op)
{
int4 i,size;
size = opactdbg_pclow.size();
for(i=0;i<size;++i) {
if (!opactdbg_pclow[i].isInvalid()) {
if (op->getAddr() < opactdbg_pclow[i])
continue;
if (opactdbg_pchigh[i] < op->getAddr())
continue;
}
if (opactdbg_uqlow[i] != ~((uintm)0)) {
if (opactdbg_uqlow[i] > op->getTime())
continue;
if (opactdbg_uqhigh[i] < op->getTime())
continue;
}
return true;
}
return false;
}
void Funcdata::debugPrintRange(int4 i) const
{
ostringstream s;
if (!opactdbg_pclow[i].isInvalid()) {
s << "PC = (";
opactdbg_pclow[i].printRaw(s);
s << ',';
opactdbg_pchigh[i].printRaw(s);
s << ") ";
}
else
s << "entire function ";
if (opactdbg_uqlow[i] != ~((uintm)0)) {
s << "unique = (" << hex << opactdbg_uqlow[i] << ',';
s << opactdbg_uqhigh[i] << ')';
}
glb->printDebug(s.str());
}
#endif