-
Notifications
You must be signed in to change notification settings - Fork 2.7k
/
pytorch_simple_CNN.py
111 lines (87 loc) · 3.72 KB
/
pytorch_simple_CNN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
'''
Example code of a simple CNN network training on MNIST dataset.
The code is intended to show how to create a CNN network as well
as how to initialize loss, optimizer, etc. in a simple way to get
training to work with function that checks accuracy as well.
Video explanation: https://youtu.be/wnK3uWv_WkU
Got any questions leave a comment on youtube :)
Programmed by Aladdin Persson <aladdin.persson at hotmail dot com>
* 2020-04-08 Initial coding
'''
# Imports
import torch
import torch.nn as nn # All neural network modules, nn.Linear, nn.Conv2d, BatchNorm, Loss functions
import torch.optim as optim # For all Optimization algorithms, SGD, Adam, etc.
import torch.nn.functional as F # All functions that don't have any parameters
from torch.utils.data import DataLoader # Gives easier dataset managment and creates mini batches
import torchvision.datasets as datasets # Has standard datasets we can import in a nice way
import torchvision.transforms as transforms # Transformations we can perform on our dataset
# Simple CNN
class CNN(nn.Module):
def __init__(self, in_channels = 1, num_classes = 10):
super(CNN, self).__init__()
self.conv1 = nn.Conv2d(in_channels=1, out_channels=8, kernel_size=(3,3), stride=(1,1), padding=(1,1))
self.pool = nn.MaxPool2d(kernel_size=(2,2), stride = (2,2))
self.conv2 = nn.Conv2d(in_channels=8, out_channels=16, kernel_size=(3,3), stride=(1,1), padding=(1,1))
self.fc1 = nn.Linear(16*7*7, num_classes)
def forward(self, x):
x = F.relu(self.conv1(x))
x = self.pool(x)
x = F.relu(self.conv2(x))
x = self.pool(x)
x = x.reshape(x.shape[0], -1)
x = self.fc1(x)
return x
# Set device
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Hyperparameters
in_channel = 1
num_classes = 10
learning_rate = 0.001
batch_size = 64
num_epochs = 5
# Load Data
train_dataset = datasets.MNIST(root='dataset/', train=True, transform=transforms.ToTensor(), download=True)
train_loader = DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True)
test_dataset = datasets.MNIST(root='dataset/', train=False, transform=transforms.ToTensor(), download=True)
test_loader = DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=True)
# Initialize network
model = CNN().to(device)
# Loss and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
# Train Network
for epoch in range(num_epochs):
for batch_idx, (data, targets) in enumerate(train_loader):
# Get data to cuda if possible
data = data.to(device=device)
targets = targets.to(device=device)
# forward
scores = model(data)
loss = criterion(scores, targets)
# backward
optimizer.zero_grad()
loss.backward()
# gradient descent or adam step
optimizer.step()
# Check accuracy on training & test to see how good our model
def check_accuracy(loader, model):
if loader.dataset.train:
print("Checking accuracy on training data")
else:
print("Checking accuracy on test data")
num_correct = 0
num_samples = 0
model.eval()
with torch.no_grad():
for x, y in loader:
x = x.to(device=device)
y = y.to(device=device)
scores = model(x)
_, predictions = scores.max(1)
num_correct += (predictions == y).sum()
num_samples += predictions.size(0)
print(f'Got {num_correct} / {num_samples} with accuracy {float(num_correct)/float(num_samples)*100:.2f}')
model.train()
check_accuracy(train_loader, model)
check_accuracy(test_loader, model)