
marcelo salhab brogliato

E S S AY S I N
C O M P U TAT I O N A L M A N A G E M E N T S C I E N C E

E S S AY S I N
C O M P U TAT I O N A L M A N A G E M E N T S C I E N C E

marcelo salhab brogliato

Escola Brasileira de Administração Pública e de Empresas
Fundação Getulio Vargas

April 2018

Marcelo Salhab Brogliato: Essays in
Computational Management Science, © April 2018

supervisors:
Alexandre Linhares location:

Rio de Janeiro

A B S T R A C T

This thesis presents three specific, self-contained, scientific papers in
the Computational Management Science area. Modern management
and high technology interact in multiple, profound, ways. Professor
Andrew Ng tells students at Stanford’s Graduate School of Business
that “AI is the new electricity”, as his hyperbolic way to emphasize
the potential transformational power of the technology.

The first paper is inspired by the possibility that there will be
some form of purely digital money and studies distributed ledgers,
proposing and analyzing Hathor, an alternative architecture towards
a scalable cryptocurrency.

The second paper may be a crucial item in understanding human
decision making, perhaps, bringing us a formal model of
recognition-primed decision. Lying at the intersection of cognitive
psychology, computer science, neuroscience, and artificial
intelligence, it presents an open-source, cross-platform, and highly
parallel framework of the Sparse Distributed Memory and analyzes
the dynamics of the memory with some applications.

Last but not least, the third paper lies at the intersection of
marketing, diffusion of technological innovation, and modeling,
extending the famous Bass model to account for users who, after
adopting the innovation for a while, decide to reject it later on.

R E S U M O

A presente tese é formada por três trabalhos científicos na área de
Management Science Computacional. A gestão moderna e a alta
tecnologia interagem em múltiplas e profundas formas. O professor
Andre Ng diz aos seus estudantes na Escola de Negócios de Stanford
que “Inteligência Artificial é a nova eletricidade”, como sua forma
hiperbólica de enfatizar o potencial transformador da tecnologia.

O primeiro trabalho é inspirado na possibilidade de que haverá
alguma forma de dinheiro digital e estuda ledger distribuídas,
propondo e analisando o Hathor, uma arquitetura alternativa para
criptomoedas escaláveis.

O segundo trabalho pode ser um item crucial no entendimento de
tomadas de decisão, nos trazendo um modelo formal de
recognition-primed decisions. Situada na intersecção entre psicologia
cognitiva, ciência da computação, neuro-ciência e inteligência
artifical, ele apresenta um framework open-source, multi-plataforma
e altamente paralelo da Sparse Distributed Memory e analisa a
dinâmica da memória e algumas aplicações.

v

O terceiro e último trabalho se situa na intersecção entre marketing,
difusão de inovação tecnologica e modelagem, extendendo o famoso
modelo de Bass para levar em consideração usuário que, após adotar
a tecnologia por um tempo, decidiram rejeitá-la.

vi

Showing gratitude is one of the simplest
yet most powerful things humans can do

for each other.

— Randy Pausch, The Last Lecture

A C K N O W L E D G M E N T S

I must, first and foremost, give thanks for the complete and
unwavering support and love from all my family. My beloved wife
Patrícia, my wonderful parents Reynaldo and Angelina, my lovely
sister Flávia, my sweet grandmas Geny and Rosaria, and all others
who will always be remembered in my heart. Thank you for your
patience and for understanding that I was physically far away but
very close in heart. A special thanks to my dad, Reynaldo, who
always inspired me and who first awakened my passion for
technology and engineering.

Thanks to my wife, Patrícia, for sharing the dreams, the passion,
and the craziness, for all her caring and love. Especially, for
understanding my absence and my unusual working times. Her
loyalty and commitment make me the luckiest man alive. I love you,
Xu.

I’m very grateful for the friendship, guidance, and invaluable help
of my advisor Alexandre Linhares. Without him this work would
never be possible. His passion for cognitive sciences, artificial
intelligence, and economics has influenced everyone around him.
His ideas have profoundly influenced my thoughts and my life since
we have met. His optimism and trust in my abilities were undying. I
must not forget his wife Paula, who became a dear friend and has
always supported me as well, even when I was working in her living
room until sunrise. Thank you for this amazing journey, my friends.

Thanks to my friends Daniel Chada, Layla Mendes, Renato
Kogeyama, André Luiz, Luiz Sacramento, Kaillen Givigi, Jamil
Chivitarese, Lucia Barros, Daniel Modenesi, Bernardo Machado, and
Andréia Sodré, always available for serious talking, laughing, and
sharing their wide and deep knowledge, even at lunchtime and
weekends. I will never forget our all-you-can-eat adventures in Bros
restaurant, the snacks in Catarina, and the drinks in Bigode’s bar.
You have become very close friends who I will carry for life.

Thanks to my long-time business partner and friend Claudio
Abreu, who share a deep delight for engineering and has taught me
so much about life, family, and business. He has always put faith in
me and cheered for my victories. Thank you, my dear friend.

I thank my dear buddy and coauthor Daniel Chada for sharing
the passion for research, always inspiring and amusing me with his

vii

astonishing ideas. Our long discussions have definitely shaped my
researching abilities. Thank you, bro!

Thanks to EBAPE / FGV for their finest faculty, staff, and
infrastructure. A special thanks to Celene Silva Melo for her
empathy and support besides all the help with paperwork, funding,
and many other things. Another special thanks to professor Luiz
Antônio Joia, who trusted me in the first place and guided my first
steps into the world of academy.

Last, but far from least, I thank Kallen Givigi for being the “Psych-
os” lab’s protector and defender. She has always been there solving
all sort of things (even personal matters) and whipping our lab into
shape. Always kind and smiling, she gently asked for more focus and
less mess. Your request is my command, my lady.

Finally, thanks to everyone who helped me in any way, for each
word, for caring, for your support in difficult moments and for all
jokes and talks that made my days worthwhile. Surely this work was
done thanks to all of you. After all, nobody does it alone!

viii

C O N T E N T S

i introduction 1

1 introduction 3

1.1 Distributed financial ledgers 5

1.2 Sparse Distributed Memory 6

1.2.1 Decisions with serious skin in the game 7

1.2.2 Artificial Intelligence 10

1.3 Diffusion of innovation 11

1.4 The fine print... 12

ii hathor : an alternative towards a scalable

cryptocurrency 13

2 introduction 15

3 bitcoin & blockchain 21

4 iota & tangle 25

5 analysis of bitcoin 31

5.1 Hash function 31

5.2 Mining one block 31

5.3 Mining several blocks 33

5.4 Mining for a miner 34

5.5 Orphan blocks 36

5.6 Analysis of network’s hash rate change 36

5.6.1 Hash rate suddenly changing 37

5.6.2 Hash rate smoothly changing 37

5.6.3 Piecewise linear model of hash rate
change 39

5.6.4 Comparison of the models 40

5.7 Attack in the Bitcoin network 41

5.8 Confirmation time and network capacity 45

6 hathor’s architecture 47

6.1 Transaction confirmation 49

6.2 Time between blocks 49

6.3 Weight of the transactions 50

6.4 Issuance rate 50

6.5 Transaction fees 51

6.6 Transaction validation 51

6.7 Orphan blocks 52

6.8 Governance 52

6.9 Expected number of tips 53

7 methodology 55

8 analysis of hathor 57

8.1 Confirmation time 57

ix

x contents

8.2 Visualizing the network 62

8.3 Number of tips 63

8.4 Network validated transactions 63

9 conclusion 67

iii an invitation to sparse distributed memory :
from the theoretical model to the system

dynamics 69

10 introduction 71

10.1 Desiderata for a theory of memory 72

10.2 The wasted effort of duplicated, ad hoc, work 73

11 notation 77

12 sparse distributed memory 79

12.1 Neurons as pointers 85

12.2 Concepts 85

12.3 Read operation 86

12.3.1 Generalized read operation 87

12.4 Critical Distance 88

13 framework architecture 91

13.1 Bitstring 92

13.1.1 The distance between two bitstrings 92

13.2 Address space 93

13.2.1 Scanning for activated hard locations 93

13.2.2 OpenCL kernels 94

13.3 Counters 95

13.4 Read and write operations 104

14 results (i): performance 105

14.1 Kernels comparison 106

14.2 Scanners comparison 107

14.3 Read and write operations 107

14.3.1 Summary of results 107

15 results (ii): framework validation 129

15.1 Distance between random bitstrings 129

15.2 Number of activated hard locations 130

15.3 Intersection of two circles 131

15.4 Storage and retrieval of sequences 132

15.4.1 k-fold memory using only one SDM 133

16 results (iii): loss of neurons 135

17 results (iv): critical distance 141

17.1 A deviation from the equator distance? 145

17.2 Counter bias 151

17.3 Read bias 153

17.4 Critical distance of 209 155

18 results (v): generalized read operation 159

19 results (vi): supervised classification

application 163

contents xi

20 results (vii): image noise filtering

application 173

21 results (viii): the possibility of unsupervised

reinforcement learning 179

21.1 Training 182

21.2 Results 182

22 results (ix): information-theoretical write op-
eration 189

23 conclusion 193

23.1 Another ‘funny thing’... 193

23.2 Magic numbers 194

23.3 Symmetrical, rapidly accessible, hard locations 194

23.4 “i” versus “l” 195

23.5 Deep learning, multiple SDMs — and the incredible
animal behavior of Dr. Linhares 195

23.6 Not a real Conclusion 201

24 appendix 205

iv diffusion and dismissal of innovation :
forecasting the number of facebook’s active

users 209

25 introduction 211

26 the bass model 213

27 the extended model 215

28 models for R(t) 217

28.1 Model 1 217

28.2 Model 2 218

28.3 Model 3 219

28.4 Model 4 220

29 estimation method 223

30 results 225

31 conclusion 229

v conclusion 231

32 conclusion 233

vi appendix 237

a recent results in theory of computing - i 239

a.1 The Halting Problem is Solvable 239

bibliography 241

L I S T O F F I G U R E S

Figure 1 Slides from an old Linhares’ class; a
viewpoint that has influenced the choice of
topics found in this thesis. In the history of
computing business, the most interesting level
of analysis seems to be that of the platform. It
is where things can go on top of, and
communities emerge, and standards fight
against each other, and fortunes are built or
lost. It is, in a sense, a major part of the Big
Drama of our moment in history. Each time a
new computing platform appears, it seems as
the opportunities are ripe for the taking; as if
a multitude of doors have opened
simultaneously. Note that the slides were
made in 2007, and expected an AI-based
‘semantic revolution‘ by 2015 [130]. In
between, both the iPhone (and competitors)
and Bitcoin (and competitors) have created
giant platforms on top of which immense
wealth has been created (Uber, Instagram, etc,
on the case of smartphones; and exchanges,
miners, investors, payment processors, etc., in
the case of blockchains). The key point is that
we should (i) expect new, unforeseen,
technological platforms, (ii) rapidly identify
them, and (iii) throw our energy at them, as
they offer leverage to make an asymmetric
impact. 4

Figure 2 White nodes represent transactions that have
been confirmed at least once. Green circles
represent unconfirmed transactions (tips).
Gray and dashed nodes are the transactions
currently solving the proof-of-work in order
to be propagated. 27

Figure 3 Suddenly the number of transactions per
second increases and the width of the swarm
grows. After a while, the number of
transactions per second decreases and the
width of the swarm shrinks. 28

xii

List of Figures xiii

Figure 4 The red nodes are transactions which had
some conflict with previous transaction and
were invalidated by the network. Notice that
none of them have been confirmed. 28

Figure 5 Probability density function of Y6, i.e.,
probability of finding 6 blocks after time t.
The shaded areas shows the lower 5% and
upper 5% of the pdf. 34

Figure 6 Maximum absolute error between the linear
and the suddently change models. 40

Figure 7 The average time between blocks when the
hash rate changes over time. 41

Figure 8 Both the attacker and the network are mining.
Each step up is a new block found by the
network with probability p. Each step right is
a new block found by the attacker with
probability 1 − p. It ends when the network
finds k blocks — in this example, k = 6. The
red path has probability p6(1− p)3, while the
blue path has probability p6(1 − p)7. Notice
that the blue path is a successfull attack,
because the attacker has found more blocks
than the network. In the red path, the attacker
still have to catch up 3 blocks to have a
successful attack, which happens with
probability ρ3, if p < 0.5. 44

Figure 9 Probability of a successful attack according to
the network’s hash rate of the attacker
(β). 45

Figure 10 Visualization of a Hathor’s graph in two
particular cases: (a) no miners, (b) no
transactions. It shows that when there are no
miners, Hathor is similar to Iota (same
structure, but different parameters), and
when there is no transactions, it is similar to
Bitcoin. 57

Figure 11 Visualization of a Hathor’s graph with
transactions and blocks. Red boxes are blocks,
and white circles are simple transactions. The
arrows show the confirmations. 58

xiv List of Figures

Figure 12 Confirmation time in two scenarios: (a) low
load, (b) mid load. The red curve is the
distribuion of the time to find six blocks in
Bitcoin (which follows an Erlang distribution).
As we can notice, in the low load scenario,
Hathor’s confirmation time behaves just like
Bitcoin’s. When the load is increased, it starts
to diverge from Bitcoin’s distribution. 58

Figure 13 Confirmation time in many scenarios, moving
from a low load (λTX = 0.015625) to a high load
(λTX = 2). 59

Figure 14 Confirmation time with miners’ hash rate ten
times the transactions’. 60

Figure 15 Histogram of time between blocks. The red
curve the Bitcoin’s theoretical distribution of
time between blocks. As we can notice, the fit
is very good. 60

Figure 16 Visualization of a Hathor’s graph with
transactions and blocks. Red boxes are blocks;
green circles are confirmed transactions;
white circles are in-progress transactions;
yellow circles are unconfirmed transactions
(tips); and grey circles are transactions solving
the proof-of-work which have not been
propagated yet. The arrows show the
confirmation chain. Block’s arrows are in
bold. 61

Figure 17 DAG visualization when the loading is
changed over time. 62

Figure 18 Histogram of the number of tips for different
load scenarios. As expected, the number of tips
increases with λTX. 64

Figure 19 Histogram of the time it takes for a
transaction to be network validated. A
transaction is said to be network validated
when all tips are confirming it directly or
indirectly. 66

List of Figures xv

Figure 20 Here we have Qn, for n ∈ {3, 7, 10}. Each
node corresponds to a bitstring in {0, 1}n, and
two nodes are linked iff the bitstrings differ
by a single dimension. A number of
observations can be made here. First, the
number of nodes grows as O(2n); which
makes the space rapidly intractable. Another
interesting observation, better seen in the
figures below, is that most of the space lies ‘at
the center’, at a distance of around n/2 from
any given vantage point. 80

Figure 21 Activated addresses inside access
radius r around the center address. 81

Figure 22 Shared addresses between the
target datum η and the cue ηx. 82

Figure 23 Hard-locations randomly sampled from
binary space. 83

Figure 24 In this example, four iterative readings were
required to converge from ηx to η. 84

Figure 25 Hard-locations pointing, approximately, to the
target bitstring. 85

xvi List of Figures

Figure 26 How far, in Hamming distance, is a read item
from the original stored item? Kanerva
demonstrated that, after a small number of
iterative readings (6 here), a critical distance
behavior emerges. Items read at close distance
converge rapidly; whereas farther items do
not converge. Most striking is the point in
which the system displays the tip-of-tongue
behavior. Described by psychological
moments when some features of the item are
prominent in one’s thoughts, yet the item still
cannot be recalled (but an additional cue
makes convergence ‘immediate’).
Mathematically, this is the precise distance in
which, despite having a relatively high
number of cues (correct bits) about the
desired item, the time to convergence is
infinite. Heatmap colors display the
Hamming distance the associative memory is
able to cleanly converge to—or not. In the
x-axis, the distance from the desired item is
displayed. In the y-axis, we display the read
operation’s behavior as the number of items
registered in the memory grows. These
graphs are computing intensive, yet they can
be easily tested by readers in our provided
Jupyter notebooks. Note the different
scales. 89

Figure 27 Address space’s bitstrings are stored in a
contiguous array. In a 64-bit computer, each
bitstring is stored in a sub-array of 64-bit
integers, with length 8 · dn/64e. 93

Figure 28 Kernel comparisons for MacBook Pro Retina
13-inch Late 2013 with a 2.6GHz Intel core i5
processor, 6GB DDR3 RAM, and Intel Iris
GPU. 109

Figure 29 Scanner comparisons for MacBook Pro Retina
13-inch Late 2013 with a 2.6GHz Intel core i5
processor, 6GB DDR3 RAM, and Intel Iris
GPU. 110

Figure 30 Read operation comparisons for MacBook Pro
Retina 13-inch Late 2013 with a 2.6GHz Intel
core i5 processor, 6GB DDR3 RAM, and Intel
Iris GPU. 111

List of Figures xvii

Figure 31 Write operation comparisons for MacBook Pro
Retina 13-inch Late 2013 with a 2.6GHz Intel
core i5 processor, 6GB DDR3 RAM, and Intel
Iris GPU. 112

Figure 32 Kernel comparisons for iMac Retina 5K
27-inch 2017 with a 3.8GHz Intel core i5
processor, 8GB DDR4 RAM, and a Radeon
Pro 580 8G GPU. 114

Figure 33 Scanner comparisons for iMac Retina 5K 27-
inch 2017 with a 3.8GHz Intel core i5 processor,
8GB DDR4 RAM, and a Radeon Pro 580 8G
GPU. 115

Figure 34 Read operation comparisons for iMac Retina
5K 27-inch 2017 with a 3.8GHz Intel core i5
processor, 8GB DDR4 RAM, and a Radeon Pro
580 8G GPU. 116

Figure 35 Write operation comparisons for iMac Retina
5K 27-inch 2017 with a 3.8GHz Intel core i5
processor, 8GB DDR4 RAM, and a Radeon Pro
580 8G GPU. 117

Figure 36 Kernel comparisons for Amazon EC2

p2.xlarge with Intel Xeon E5-2686v4

processor, 61GB DDR3 RAM, and NVIDIA
K80 GPU. 119

Figure 37 Scanner comparisons for Amazon EC2

p2.xlarge with Intel Xeon E5-2686v4

processor, 61GB DDR3 RAM, and NVIDIA
K80 GPU. 120

Figure 38 Read operation comparisons for Amazon EC2

p2.xlarge with Intel Xeon E5-2686v4

processor, 61GB DDR3 RAM, and NVIDIA
K80 GPU. 121

Figure 39 Write operation comparisons for Amazon EC2

p2.xlarge with Intel Xeon E5-2686v4

processor, 61GB DDR3 RAM, and NVIDIA
K80 GPU. 122

Figure 40 Kernel comparisons for Amazon EC2

p3.2xlarge with Intel Xeon E5-2686v4

processor, 488GB DDR3 RAM, and NVIDIA
Tesla V100 GPU. 124

Figure 41 Scanner comparisons for Amazon EC2

p3.2xlarge with Intel Xeon E5-2686v4

processor, 488GB DDR3 RAM, and NVIDIA
Tesla V100 GPU. 125

xviii List of Figures

Figure 42 Read operation comparisons for Amazon EC2

p3.2xlarge with Intel Xeon E5-2686v4

processor, 488GB DDR3 RAM, and NVIDIA
Tesla V100 GPU. 126

Figure 43 Write operation comparisons for Amazon EC2

p3.2xlarge with Intel Xeon E5-2686v4

processor, 488GB DDR3 RAM, and NVIDIA
Tesla V100 GPU. 127

Figure 44 Histogram of 10,000 distances between two
random bitstrings with 1,000 bits. The curve
in red is the theoretical normal distribution
with µ = 500 and σ =

√
500/2. 129

Figure 45 Histogram of the number of activated hard
locations in 10,000 scans from a random
bitstring. The curve in red is the theoretical
normal distribution with µ = Hp and
σ = p(p− 1)H. 130

Figure 46 Histogram of the distances of activated hard
locations to the center of the circles. The curve
in red is the theoretical distribution of
Equation 3 131

Figure 47 Number of hard locations in the intersection
of circles around two bitstrings x bits
away. 132

Figure 48 This graph shows the SDM’s robustness
against loss of neurons in a SDM with
n = 1, 000 and H = 1, 000, 000. It shows that a
loss of 200,000 neurons, 20% of the total, does
not seem to affect SDM whatsoever. 136

Figure 49 This graph shows the SDM’s robustness
against loss of neurons in a SDM with
n = 1, 000 and H = 1, 000, 000. The more
neurons are lost, the smaller the critical
distance, i.e., the worse the SDM recall. 136

Figure 50 This graph shows the SDM’s robustness
against loss of neurons in a SDM with
n = 1, 000 and H = 1, 000, 000. Even when
50% of neurons are dead, SDM recall is barely
affected, which is an impressive result and
matches with some clinical results of children
submitted to hemispherectomy. 138

Figure 51 This graph shows the SDM’s robustness
against loss of neurons in a SDM with
n = 1, 000 and H = 1, 000, 000. 138

List of Figures xix

Figure 52 This graph shows the SDM’s robustness
against loss of neurons in a SDM with
n = 256 and H = 1, 000, 000. 139

Figure 53 Kanerva’s original Figure 7.3 (p. 70) predicting
a ~500-bit distance after a point. 141

Figure 54 Results generated by the framework diverging
from Kanerva’s original Figure 7.3. Here we
had a 1,000 bit, 1,000,000 hard location SDM
with 10,000 random bitstrings written into it,
which was also Kanerva’s configuration.
142

Figure 55 Results generated by the framework similar to
Kanerva’s original Figure 7.3. Here we have a
1,000 bit, 1,000,000 hard location SDM with
(a) just 100 random bitstrings written into it
and (b) steps of 1,000 random bitstrings
written into it. 143

Figure 56 This graph shows the interaction effects more
clearly. As we change the single read to a
6-iterative read, the effect has vanished, and
all bitstrings above x = 500 have converged to
500-bit distance bitstrings. Here we have
precisely the same configuration of Figure 54,
except for the iterative read. 144

Figure 57 Kanerva’s original Figure 7.3 generated using
the equations from Brogliato et al. [30]. 145

Figure 58 The same setup as in Figure 54, but for
n = 10, 000. It shows that the interference has
almost gone away when n is sufficiently
large. 149

Figure 59 Given an address x and a dimension i, how
many hard locations with bitmatches in i are
activated by reading at x? The histogram was
obtained through numerical simulation. The
red curve is the theoretical normal
distribution found in Theorem 13. 150

Figure 60 The value of the counters after s = 10, 000
writes shows the autocorrelation in the
counters in autoassociative memories (“x at
x”). The histogram was obtained through
simulation. The red curve is the theoretical
normal distribution found in equations (21)
and (22). 152

xx List of Figures

Figure 61 Autocorrelation in the counters in
autoassociative memories (“x written at x”).
The histogram was obtained through
simulation. The red curve is the theoretical
distribution. 153

Figure 62 The histogram was obtained through
simulation. The red curve is the theoretical
normal distribution. 154

Figure 63 The histogram was obtained through
simulation. The red curve is the theoretical
normal distribution. 155

Figure 64 The histogram was obtained through
simulation. The red curve is the theoretical
normal distribution. 156

Figure 65 New distance after a single read operation in
a bitstring ηd, which is d bits away from η.
The new distance was calculated between ηd
and read(ηd). Notice that when d > 520, the
intersection between η and ηd is zero, which
means there is only random bitstrings written
into the activated hard locations. The distance
220 equals 1000 · 0.220 which is the probability
find in Figure 64. 156

Figure 66 Zoom-in around d = 209 of Figure 57. 157

Figure 67 Zoom-in around d = 209 of Figure 54. 157

Figure 68 (a) and (b) show the behavior of a single read.
As stated previously, we can see a
deterioration of convergence, with lower
critical distance as z > 1. Another observation
can be made here, concerning the discrepancy
of Kanerva’s Fig 7.3 and our data. It seems
that Kanerva may not have considered that a
single read would only ‘clean’ a small number
of dimensions after the critical distance. What
we observe clearly is that with a single read,
as the distance grows, the system only ‘cleans’
towards the orthogonal distance 500 after a
number of iterative readings. 160

Figure 69 (a) and (b) show the behavior of Figure 68,
now executed with 6-iterative reads. What we
observe clearly is that with a single read, as
the distance grows, the system only ‘cleans’
towards the orthogonal distance 500 after a
number of iterative readings. 161

Figure 70 Examples of noisy images with uppercase let-
ters, lowercase letters, and numbers. 163

List of Figures xxi

Figure 71 One noisy image for each of the 62 classifica-
tion groups. 164

Figure 72 100 noisy images generated to train label A.
165

Figure 73 Images generated using a 20% noise for the
high noise scenario. 165

Figure 74 Images generated for the no noise scenario.
166

Figure 75 Images of different characters which may be
confusing depending on the noise level. 167

Figure 76 Characters in the low noise scenario in which
the classifier has made at least one mistake. In
all the other cases, it correctly classified the
images. We may notice that the groups of “i”
and “l” have been completely merged by the
classifier, because it cannot distinguish them,
not even with no noise. 168

Figure 75 Characters in the high noise scenario in which
the classifier has made at least one mistake. In
all the other cases, it correctly classified the
images. 171

Figure 76 Progressive noise into letter “A”, from 0% to
45% in steps of 5%. 173

Figure 77 Training images written into the SDM. They
were written in their own addresses —
write(address=bs_image,
datum=bs_image). 174

Figure 78 In order to test the SDM as a noise filter, we
read from noisy images expecting to get a
clean image. It is interesting to highlight that
SDM has never seen a clean version letters
“T” and “I”. 174

Figure 79 Probability of getting the right pixel when
reading from an image with noise p. It
assumes that SDM was trained with 200

images with 15% noise. 175

Figure 80 Training images in which the intersection
between images is too high. They were
written in their own addresses —
write(address=bs_image,
datum=bs_image). 176

xxii List of Figures

Figure 81 When the intersection between images
becomes too high, there appears some
interference in the resulting image. All cases
have 10% noise. We can notice that the empty
space on the right side of the “C” letter
generates some white pixels on the right side
of both “B” and “D” letters. 176

Figure 82 Using labels solves the interference problem
when the intersection between images
becomes too high. All cases have 20% noise.
177

Figure 83 Each action is a cell in the TicTacToe board and
is mapped to slice of the bitstring. 180

Figure 84 Example of a game with 7 movements in
which X wins. 180

Figure 85 Positive reward bitstrings used in our
reinforcement learning algorithm. 181

Figure 86 Results playing against the random player.
Each cycle was made of 100 games for
training, and then 100 games for measuring
statistics. 184

Figure 87 Results playing against the smart player. Each
cycle was made of 100 games for training, and
then 100 games for measuring statistics.
185

Figure 88 Results playing against another SDM player.
Each cycle was made of 100 games for
training, and then 100 games for measuring
statistics. 186

Figure 89 Results playing against a randomly chosen
player between random player, smart player,
and another SDM player. Each cycle was
made of 100 games for training, and then 100

games for measuring statistics. 187

Figure 90 Shannon write operation: Computing the
amount of information of a signal to each
hard location in its access radius. (a) entirety
of the space; (b) region of interest; (c) Fast
integer computation is possible through a
stepwise function. 191

Figure 91 Behavior of the critical distance under the
information-theoretic weighted write
operation when n = 1, 000, H = 1, 000, 000 and
r = 451. 192

Figure 92 Bongard problems 71 - 73, courtesy of noted
Bongardologist, Dr. Harry Foundalis. What
distinguishes the boxes on the left hand side
to those on the right hand side? 197

Figure 93 Fit of Model 2 with Facebook’s active users
dataset. mF(t) is the total users, mR(t) is the
inactive users, and mA(t) is the active users.
The unit of these functions are thousands of
people. The parameters are m = 1, 497.50,
p = 0.000331, q = 0.100088, w = 0.140595, and
ν = 0.187188. The goodness of fit are
R2 = 99.84% and BIC=10,566.52. 226

Figure 94 Fit of Model 3 with Facebook’s active users
dataset. mF(t) is the total users, mR(t) is the
inactive users, and mA(t) is the active users.
The unit of these functions are thousands of
people. The parameters are m = 1, 967.64,
p = 0.000184, q = 0.097867, w = 0.330511, and
ν = 0.006912. The goodness of fit are
R2 = 99.83% and BIC=11,485.68 226

Figure 95 Fit of Model 4 with Facebook’s active users
dataset. mF(t) is the total users, mR(t) is the
inactive users, and mA(t) is the active users.
The unit of these functions are thousands of
people. The parameters are m = 1, 854.85,
p = 0.000183, q = 0.099738, w = 0.334454, and
ν = 0.007007. The goodness of fit are
R2 = 99.84% and BIC=10,724.55 227

L I S T O F TA B L E S

Table 1 Write operation example in a 7-dimensional
memory of data η being written to ξ, one of
the activated addresses. 84

Table 2 Comparison of Kanerva’s read and Chada’s
read. Each ξi is an activated hard location and
the values come from their counters. Gray
cells’ value is obtained randomly with
probability 50%. 88

xxiii

xxiv List of Tables

Table 3 MacBook Pro Retina 13-inch Late 2013 with a
2.6GHz Intel core i5 processor, 6GB DDR3

RAM, and Intel Iris GPU. The SDM settings
were: (i) n = 256, r = 103, and H = 1, 000, 000;
(ii) n = 1, 000, r = 451, and H = 1, 000, 000;
and (iii) n = 10, 000, r = 4850, and
H = 1, 000, 000. There is no benchmark for
n = 10, 000 because memory is not enough on
either RAM or GPU—it would consume 37.25

GB of RAM and 1.2GB of memory in the
GPU. For the histogram of durations, see
Figures 28, 29, 30, and 31. 108

Table 4 iMac Retina 5K 27-inch 2017 with a 3.8GHz
Intel core i5 processor, 8GB DDR4 RAM, and
a Radeon Pro 580 8G GPU. The SDM settings
were: (i) n = 256, r = 103, and H = 1, 000, 000;
(ii) n = 1, 000, r = 451, and H = 1, 000, 000;
and (iii) n = 10, 000, r = 4850, and
H = 1, 000, 000. There is no benchmark for
read and write operations with n = 10, 000
because RAM is not enough to allocate the
counters—it would consume 37.25 GB of
RAM. For the histogram of durations, see
Figures 32, 33, 34, and 35. 113

Table 5 Amazon EC2 p2.xlarge with Intel Xeon
E5-2686v4 processor, 61GB DDR3 RAM, and
NVIDIA K80 GPU. Running an SDM with
n = 256 bits, H = 1, 000, 000, and r = 103. The
SDM settings were: (i) n = 256, r = 103, and
H = 1, 000, 000; (ii) n = 1, 000, r = 451, and
H = 1, 000, 000; and (iii) n = 10, 000, r = 4850,
and H = 1, 000, 000. There is no benchmark for
kernel single_scan5_unroll because it returns
the wrong result in this GPU. The problem is
related to the premises of the optimization
used by this kernel, which are not true for this
GPU. For the histogram of durations, see
Figures 36, 33, 34, and 35. 118

List of Tables xxv

Table 6 Amazon EC2 p3.2xlarge with Intel Xeon
E5-2686v4 processor, 488GB DDR3 RAM, and
NVIDIA Tesla V100 GPU. The SDM settings
were: (i) n = 256, r = 103, and H = 1, 000, 000;
(ii) n = 1, 000, r = 451, and H = 1, 000, 000;
and (iii) n = 10, 000, r = 4850, and
H = 1, 000, 000. There is no benchmark for
kernel single_scan5_unroll because it returns
the wrong result in this GPU. The problem is
related with the premises of the optimization
used by this kernel, which are not true for this
GPU. For the histogram of durations, see
Figures 40, 41, 42, and 43. 123

Table 7 Dual process theories. 196

Table 8 Desiderata of open-source, creative-common
deliverables, longer-term. Some of these items
are mature for wide dissemination, whereas
others are in planning phase. For an online
SDM course, for instance, we might partner
with a Ph.D. program in the Teaching of
Mathematics and Physics, such as IM/UFRJ
[96], who are intent on developing and
measuring the effects of new educational
tools. 201

Part I

I N T R O D U C T I O N

1
I N T R O D U C T I O N

It is still an unending source of surprise for me to see
how a few scribbles on a blackboard or on a sheet of paper

could change the course of human affairs.

— Stanislaw Ulam

If anything good can ever be said about the second world war, it
might be this: the war effort sparked a massive number of scientific
fields.

Though most fields existed prior to the war, after the war they
were funded by the public as strategic pieces of the major nations
arsenal against future conflagrations. One of the fields in question
was that of Management Science (also called Operations Research in
military circles, as researchers filled the ranks of planners of war
operations). Management Science had started as an industrial field,
in movements stemming from Taylor and the origin of the
production line by Henry Ford. That was the first moment in
industry in which operations were systematically subject to some of
the tools of science: measurement, experimentation,
hypothesis-testing, statistics, mathematical optimization, etc.

This humble beginnings date from almost 100 years ago. Today the
field has advanced to a great number of nations, and the amount of
applications has grown explosively. Of particular interest to us is the
advent of the computer, and of engineering efforts that brought expo-
nential growth in computational power to the hands of individuals.
Whilst, during the war, computations were mostly done by hand, the
electronic computer took over afterward; up to an extent that it is not
outlandish to say that this original field can be referred to, today, as
computational management science.

Applied mathematics and computer science serve simultaneously
as a theoretical foundation and the major tool available to the field.
Though this is a doctoral thesis concerning business, in this
document one should expect to find the language and nomenclature
of mathematical modeling and computer science as our primary and
most natural language.

This thesis will explore three different topics related to computing
business platforms (Figure 1). Though the range of the topics is large,
as it usually is in management science, it is my hope to convince
readers of the value of this doctoral thesis brought by three specific,
self-contained, scientific papers — the first of which studies the
possibility of distributed financial ledgers.

3

4 introduction

(a) (b)

(c) (d)

(e) (f)

Figure 1: Slides from an old Linhares’ class; a viewpoint that has influenced
the choice of topics found in this thesis. In the history of comput-
ing business, the most interesting level of analysis seems to be that
of the platform. It is where things can go on top of, and communi-
ties emerge, and standards fight against each other, and fortunes
are built or lost. It is, in a sense, a major part of the Big Drama
of our moment in history. Each time a new computing platform
appears, it seems as the opportunities are ripe for the taking; as
if a multitude of doors have opened simultaneously. Note that the
slides were made in 2007, and expected an AI-based ‘semantic rev-
olution‘ by 2015 [130]. In between, both the iPhone (and competi-
tors) and Bitcoin (and competitors) have created giant platforms
on top of which immense wealth has been created (Uber, Insta-
gram, etc, on the case of smartphones; and exchanges, miners, in-
vestors, payment processors, etc., in the case of blockchains). The
key point is that we should (i) expect new, unforeseen, technologi-
cal platforms, (ii) rapidly identify them, and (iii) throw our energy
at them, as they offer leverage to make an asymmetric impact.

1.1 distributed financial ledgers 5

1.1 distributed financial ledgers

The World Bank estimates that there are two billion people without
access to financial services. As banks are unable to sustain
operations in numerous poverty-stricken areas, services such as
money transfers, access to credit, digital/distant payments, inflation
protection, etc., remain beyond reach for ‘the unbanked’. This seems
to be one of the factors that perpetuate poverty. The Bill and
Melinda Gates Foundation chose as focus of its “Level-One project”:
to provide basic financial services through cell phones. Another
initiative, the United Nations World Food Programme has begun, in
2017, an experiment in Jordan, in which the organization provides
funds for thousands of people towards its goal of food relief. An
interesting aspect of this program has been the format of the funds
distributed: they have been all on the ethereum blockchain
[162, 163, 199].

The possibility of having a completely digital financial system
without the overheads of traditional banking systems has appeared
with the release of Bitcoin and similar blockchain technologies. This
field questions numerous traditional assumptions in computer
science, record-keeping, banking & finance, and economic inclusion.
The seminal work of Nakamoto [145] described the architecture of
Bitcoin, a peer-to-peer electronic cash system, also known as
cryptocurrency. Bitcoin’s currency ledger is public and stored in a
blockchain across thousands of computers. Even so, no one is able to
spend either somebody else’s funds nor to double spend their own
funds. In order to be confirmed, each transaction must be both
digitally signed by the owner of the money and the funds verified in
the blockchain by Bitcoin’s miners. The question of whether Bitcoin
(or related works) can scale to billions of people is, however, far from
settled.

One of the interesting parts of Bitcoin are the incentives. On one
hand, users have incentive to use Bitcoin because the fees are small,
the money transfer is quick and global, and the currency issuance
rate is well known. On the other hand, the miners have incentive to
be part of Bitcoin’s network because, every ten minutes, new coins
are found and transactions’ fees are collected. These incentives keep
the community together and have maintained Bitcoin alive.

The impact of Bitcoin in society — and hence in the companies
and the government — has been growing every day. People are
increasingly using Bitcoin to exchange money and transfer money
overseas. Companies are looking into Bitcoin as an alternative to
reduce banking fees. The poor may be included in the finance
system through Bitcoin. People may hedge their assets against their
governments’ money issuance and inflation — as in the case of
Venezuela.

6 introduction

Bitcoin is the first and most famous cryptocurrency, used
worldwide, with a highly volatile market cap, as of this writing, of $
192 bi. Even so, it faces serious scalability challenges; such as serious
quality of service and network congestion when the number of
transactions per second is high, and an increase in the transaction
fees and uncertain delays in transactions’ confirmations.

Note that these problems have been a deliberate decision from the
current developers of the “bitcoin-core”, which believe that is it risky
to increase the blocksize (in which all transactions are stored). It is not
known whether a blocksize, say, of 1GB, would be feasible to sustain
the decentralization of the network.

Iota is a second cryptocurrency that, instead of using a blockchain,
proposes the use of a “tangle’ architecture’: a different way to
register the currency ledger across thousands of computers.
Although it has not been confirmed in practice yet, its architecture
seems to be significantly more scalable than Bitcoin’s blockchain. As
we will see, the problem here is exactly the opposite of Bitcoin’s. Iota
needs a minimum of transactions per seconds in order to work
properly.

Our analysis suggests an architecture for a distributed currency
which is inspired in both Bitcoin’s blockchain and Iota’s tangle in
order to solve the scalability problems. While Bitcoin’s network
saturates when it hits a certain number of transactions per second,
Iota’s does not work properly with less than a certain number of
transactions per second. Our proposed architecture seems to work in
both scenarios: low and high number of transactions per second.

In this first study we will investigate some issues regarding this
possibility, namely: (i) cryptographic security and game-theoretical
attacks; (ii) scalability; (iii) self-governance of the system; (iv)
appropriate incentive system to all participants.

A second topic that may have an outsized influence on business
and that we will be taking a closer look is a model of artificial
intelligence — and of human decision making.

1.2 sparse distributed memory

A significant part of the thesis is devoted to Sparse Distributed Mem-
ory, or SDM for short. There are two reasons for that: first, it is an im-
portant topic in artificial intelligence and computational cognitive sci-
ence — a crucial piece of technology that may eventually have vast
influence throughout society.

But it is perhaps more than that. Perhaps it is a crucial item in
understanding human decision making. SDM may, perhaps, bring us
a formal model of recognition-primed decision, put forth by Gary Klein
as a theory of decision-making.

1.2 sparse distributed memory 7

1.2.1 Decisions with serious skin in the game

The recent field of naturalistic decision making stands as a new
alternative model of study of decision-making. It bears contrast to
both the classical model of rational choice and to the program of
heuristics and biases.

The classical model of rational choice and optimization which has
been the basis of studies in economics (for instance, in game theory),
management science and operations research (in for example
mathematical programming models), and in artificial intelligence
(the symbols and search paradigm), proposes a set of standard,
quantitative, methods in order to ‘rationally’ select a choice. Under
this theory, the decision-maker:

1. identifies a set of options,

2. identifies ways of evaluating these options,

3. weighs each evaluation dimension,

4. calculates a rating of each option, and, finally,

5. selects the one with the maximum score.

Note that this model implies that, in order to have a number of
choices to choose from, one must first have (i) perceived a problem,
and (ii) perceived a set of alternative choices — where do the choices
come from? What psychological process brings forth their emergence?
The rational model will deal only with the phase of (iii) selecting one
choice from the set.

Despite its widespread use in a number of distinct areas, the
rational choice model has not found to be psychologically plausible,
for a number of reasons [160]. One of the reasons is that the chosen
alternative depends on how decision-makers initially frame a
problem [101]. There has been strong criticism of the rational choice
model from the heuristics and biases research program, in which
problems are carefully devised to show that one’s intuitions
generally depart from the expected optima, and are generally
inconsistent with what would be expected as rational. A large
number of biases that depart from rational choice have been found
(see, for instance, Plous [160]), placing strain on the traditional
rational actor doctrine. Yet the heuristics and biases studies are
concentrated on carefully devised questionnaires applied mostly to
undergraduate students — not on real world settings with serious
skin in the game.

Thus a new field of naturalistic decision-making emerged, in which
the focus is centered around real life settings and decisions being
made under rapidly changing circumstances. A number of studies
have been conducted, from firefighters to nurses to chess players to

8 introduction

military personnel. One of the most interesting theories to emerge
from naturalistic decision-making, the recognition-primed decision
model, was devised by Klein [117] and his colleagues.

1.2.1.1 Recognition-primed decision

Consider the following cases:
EXAMPLE #1. The Cuban World Chess Champion José Raoul

Capablanca once remarked about his personal, subjective,
experience: ‘I know at sight what a position contains. What could
happen? What is going to happen? You figure it out, I know it!’ In
another occasion, talking about the numerous possibilities that
less-skilled players usually consider on each board position, he
bluntly remarked: ‘I see only one move: The best one.’ Perhaps the
reader may think that Capablanca was quite simply being arrogant.
But there is evidence to the contrary, that expert decision-makers
actually are biased towards very high quality choices. We believe
that, in fact, Capablanca was telling us an important fact about
expert human psychology and decision-making, which would later
be documented in recognition-primed decision studies.

EXAMPLE #2. A baby at an infirmary suddenly turns blue. Within
seconds, a nurse has a diagnosis and a potential action. In this case,
the nurse thinks the baby has a pneumopericardium, which means
the sac surrounding the baby’s heart is inflated with air, and the
resulting pressure detracts from the heart’s pumping of blood. There
is a problem with this diagnosis, though. The electrocardiogram is
showing a healthy 80 beats per minute. If nothing is done, the baby
will die within a few minutes. The doctor walks into the room to
find the nurse screaming for silence and listening to the baby’s heart
with an stethoscope. She is now sure of her diagnosis, and she gives
the doctor a syringe: “stick the heart, it’s a pneumopericardium, I
know it”. Given the electrocardiogram, other nurses are skeptical,
until the x-ray operator screams out: “she’s right!” Her intuitive
diagnosis ultimately saves the baby’s life.

Klein [117] conducted a series of studies with decision-makers
under rapidly changing scenarios. During interviews, when
questioned how a specific decision (or course of action) was adopted,
decision-makers such as the nurse would proclaim, to Klein’s
frustration, that they ‘did not make decisions’. One experienced
firefighter proclaimed ‘I don’t make decisions–I don’t remember
when I’ve ever made a decision’ [117], p.10. Decision-makers did not
seem to be comparing alternative courses of actions, as classical
models would predict. ‘It is usually obvious what to do in any given
situation’ (p.11). Repeated statements of the sort by different
decision-makers led Klein to propose a psychologically plausible
model of decision-making which radically departed from the

1.2 sparse distributed memory 9

established view of ‘comparing alternatives and selecting the
optimum’.

Klein [117] proposed a model of recognition-primed decision, in
which experienced decision-makers would find themselves
immersed in complex situations and rapidly take adequate courses
of action. Decision-makers would rapidly perceive cues from any
situation and retrieve from episodic memory similar situations,
which would bring assessments and diagnoses and plausible courses
of action. Because priming mechanisms are automatic and
unconscious [12, 13], these decision-makers reported doing ‘the
obvious’ action in different situations. This ‘obvious’ course of
action, Klein proposes, is brought from long-term episodic memory
by priming mechanisms. Hence, decision-makers would not be
selecting among distinct alternatives, but rather simply performing
the automatically-provided action.

Even if the ‘obvious’ action seemed plausible for a theory, another
problem remained: if decision-makers did not compare alternatives,
then how could they know that a course of action was good? In
subsequent interviews, evidence emerged that decision-makers
would be using the simulation heuristic, proposed by Kahneman
and Tversky [102]. That is, facing a particular situation, experienced
decision-makers would be primed towards a particular course of
action, to the detriment of most alternative courses of action. This
primed alternative would be ‘simulated’, or ‘run through’, one’s
mind, and, if found acceptable during the simulation processing,
would be acted upon without further deliberation. If problems
emerged during mental simulation, another different course of
action would be primed. Thus was born a theory of intuitive
decision-making, in which experienced people would not be
selecting choices from a vast set of alternatives, but instead ‘testing’
their initially primed predispositions with a simulation heuristic.

This model, of course, applied only to expert decision-makers with
years of experience. It involves access to a large episodic memory in
order to rapidly retrieve a suitable course of action. This was initially
found surprising by Klein:

Before we did this study, we believed the novices
impulsively jumped at the first option they could think
of, whereas experts carefully deliberated about the merits
of different courses of action. Now it seemed that it was
the experts who could generate a single course of action,
while novices needed to compare different approaches.
(p.21)

Because priming mechanisms that brought plausible actions to
mind are unconscious, people would report having “done the
obvious thing to do”. Decision-makers would be unable to visualize

10 introduction

the cognitive processes underlying their decisions, and would in
many cases even believe that they had skills of the ‘fantastic’
persuasion: One firefighter demands that his whole crew abandon
operations inside a house, just to see it collapse seconds afterward.
A radar operator would ‘chill’ after spotting a new track, and would
fire counter missiles against it, based on the ‘feeling’ that it was a
hostile missile. It took over a year for this radar operator, after being
carefully and repeatedly interviewed, to understand the incredibly
subtle cues that he was responding to whenever he perceived the
new radar track. Unable to reasonably explain their life-saving,
rapid, decisions, both the firefighter and the radar operator thought
that they had ESP or other fantastic abilities. Careful probing would
show that they were able to unconsciously perceive subtle cues,
which primed them towards adequate responses.

Beyond a formalization of this process of memory recall, Sparse
Distributed Memory will offer us a plausible, both psychologically
and neuroscientifically, path towards artificial intelligence.

1.2.2 Artificial Intelligence

Technology has been one of the underlying engines behind
economic growth. It has been changing the whole society – people,
companies, and governments. Cities and houses had to be rethought
when cars became popular. Trains allowed distant places to
exchange high volume of goods. Airplanes and boats opened
countries to overseas business. And, finally, the internet has had a
profound impact in nearly everyone’s life, as it changed everything –
from the way we communicate, behave, do business, do shopping,
share ideas, and so forth.

One area of technology that has been redefining business is
computer science. Together with the internet, computer science has
been one of the most important tools to scale a business model – and
create many others which were impossible before. More and more
expensive human labor has been replaced by algorithms. Managers
are able to make better decisions because they receive real-time
information. The supply chain has incredibly evolved thanks to
advances in logistics supported by routing algorithms, storage
algorithms, and many others optimization algorithms.

Artificial intelligence has been disrupting many businesses. Uber
is able to handle hundreds of thousands of requests. Amazon
optimizes the location of each product based on demand. Netflix
increases the quality of their services offering movies specific to the
taste of each customer. Spotify learns which kind of music users like
the most and suggests playlists. Banks prevent fraud classifying
which patterns seem to be erratic towards their customers’ previous
behavior.

1.3 diffusion of innovation 11

It is gradually becoming impossible to imagine a world without
artificial intelligence.

Behind artificial intelligence systems, there is pattern recognition:
The capacity to match information from new data with information
which has already been seen and is stored in memory. It may be
used in classification, face recognition, character recognition, and so
forth. Even if AI cannot yet solve numerous hard problems — such
as the Turing Test, Bongard Problems or simply understanding when
‘Lawyers are sharks’ [79–81, 129] —, it is clear that the technology
must be taken seriously.

The second paper lies at the intersection of cognitive psychology,
computer science, neuroscience, and artificial intelligence. Sparse
Distributed Memory, or SDM for short, is a theoretical mathematical
construct that seems to reflect a number of neuroscientific and
psychologically plausible characteristics of a human memory. SDM
has already been used to different pattern recognition problems, like
noise reduction, handwriting recognition, robot automation, and so
forth.

We implement a BW-Complete1 SDM framework that not only
shows small discrepancies from previous theoretical expectations,
but also may be of use to other researchers interested in testing their
own hypotheses and theories of SDM. The computer code has been
used in a previous Ph.D. Thesis; the code has shown some small
discrepancies from theoretical expectations; the code has been run
on a number of different architectures and information-processing
devices (e.g., CPUs, GPUs). The framework enables us to have a
visual exploration previous experiments and new possibilities for
SDM.

1.3 diffusion of innovation

In 2014, a group of Princeton’s researchers predicted that Facebook’s
users would abandon the platform by 2017 [37]. The forecast was
done applying a disease spreading model which has correctly
predicted the abandonment of “MySpace”. Facebook replied after
applying Princeton’s methodology:

“Using the same robust methodology featured in
[Princeton’s] paper, we attempted to find out more about
this ‘Princeton University’ — and you won’t believe what
we found!”. Then, they conclude: “This trend suggests
that Princeton will have only half its current enrollment
by 2018, and by 2021 it will have no students at all,
agreeing with the previous graph of scholarly

1 ‘BuzzWord-Complete: the model is (i) Open-Source, (ii) Cross-Platform; (iii) highly
parallel; (iv) able to execute on CPUs and/or GPUs; (v) it can be run on the ‘cloud’;
etc.

12 introduction

scholarliness. Based on our robust scientific analysis,
future generations will only be able to imagine this
now-rubble institution that once walked this earth”.

Whilst this brouhaha reminds one of the dangers of extrapolation,
our third paper will revisit the prospects of our esteemed colleagues
in Facebook. Lying at the intersection of Marketing, Diffusion of
Technological Innovation, and modeling, the Bass model of diffusion
of innovation will be extended, in order to account for users who,
after adopting the innovation for a while, decide to reject it later on
(possibly bringing down the number of active users—something
impossible in Bass’ original model). Four alternative mathematical
models are presented and discussed with the Facebook’s users
dataset.

1.4 the fine print. . .

Before embarking on the technical topics, small qualifications must
be asked from my readers. First, as stated above, though these
problems have immense and urgent importance to the fields of
study in business, the language in which we will approach them and
discuss them most naturally will be that of mathematics and
computer science. There will not be surveys, interviews,
questionnaires, or such methods typically used in the social sciences:
This is basically a work of modeling.

A second and final qualification: It is my hope that readers of this
thesis will accept the format of self-contained studies, as just as valid
as a monograph on a particular topic. With these qualifications, we
are ready to venture into the world of computational management
science.

Part II

H AT H O R : A N A LT E R N AT I V E T O WA R D S A
S C A L A B L E C RY P T O C U R R E N C Y

2
I N T R O D U C T I O N

Once I understood the logic behind change addresses...
ripemd160(SHA256(pubkey))... the inneficiency...

the wasted space; the wasted energy... something clicked.

This is military-grade cryptography and full-blown paranoia.

Other than that, it’s a get-rich-quick-scheme
that looks exactly like a get-rich-quick-scheme.

— Alexandre Linhares, EBAPE/FGV

We are watching History being made.
Or History being repeated.

— David Collum, Cornell University, 2013

The primary problem for creating digital money is how to prevent
double spending. As the money is digital, and copies can be made
ad nauseam, what can prevent counterfeiting? What would prevent
users from sending copies of the same money to two (or more)
people? That is precisely the problem solved by Bitcoin and its
underlying Blockchain technology. The current solution behind fiat
money is having a single issuer, a central bank — then trusting the
financial institutions and regulators.

The concept of transferring money using cryptography as an
underlying technology was shortly presented in 1983 by Chaum [42]
and was deepened in a theoretical paper in 1985 [43]. However, it
was only in 1988 that Chaum et al. [44] created the term electronic
cash and also proposed a basic and practical scheme which yielded
untraceability yet allowed to trace double spendings.

According to Barber et al. [11], despite the 30-year literature on
e-cash, most of the proposed schemes requires a central authority
which controls the currency issuance and prevents double spending
[35, 36, 42, 153]. Some papers even propose solutions in a similar
trajectory to Bitcoin, such as hash chain [202] and preventing double
spending using peer-to-peer networks [91, 154]. The no central point
of trust and predictable money supply together with a clever solution

15

16 introduction

to the double-spending problem is what separates Bitcoin from the
previous e-cash philosophies.

Bitcoin (BTC) is a digital currency, also known as digital money,
internet money, and cryptocurrency. It is the first currency based on
cryptography techniques which are distributed, decentralized, and
with no central bank.

Bitcoin is a computer network in which nodes act like clerks
performing clearing. A transaction clearing consists of ensuring that
the transaction is settled according to the rules. In order to do that,
every node stores a copy of Bitcoin’s ledger, which records both all
transactions and users’ balance. When new transactions are added to
the ledger, the balances are updated. It is said that Bitcoin is
distributed because its ledger is public and is stored in thousands of
computers. Even though the ledger is public, balances are
anonymous, and no one knows who owns which funds1. If an
attacker tries to change anything, the remaining of the network is
able to detect it and ignore the change.

Bitcoin is considered decentralized because there is no authority (or
government) who decides its future. Every decision must be accepted
by its community, and no one can enforce their will. Every change
proposal must be submitted to the community who will discuss the
matter and come to a verdict. If the majority of Bitcoin’s community
agrees on a decision, they just have to update their clearing process
accordingly, and the changes are applied.

The security of Bitcoin relies on digital signature technology and
network agreement. While digital signature ensures ownership, i.e.,
the funds may only be spent by their owners, and nobody else; the
network agreement both prevents double spending and ensures that
all processed transactions have sufficient funds. In short, every
transaction must spend only unspent funds, must have enough
funds available, and must be signed by its owners, authorizing its
execution. Only when all these requirements are met, the funds are
transferred.

Bitcoin provides interesting incentives to all players (users and
miners). On the one hand, users may have incentives to use Bitcoin
because (i) the fees are small and do not depend on the amount
being transferred — but only in the size (in bytes) of the transaction
—; (ii) the transfers will be confirmed in a well-known period; (iii) it
is not possible to revert an already confirmed transfer, not even with
a judicial order; and (iv) and the currency issuance rate is
well-known and preset in Bitcoin’s rules, which makes Bitcoin’s
supply predictable and trustworthy, different from fiat currencies
which depends on decisions of their central banks — i.e., it would be

1 There are some techniques which may de-anonymize transactions in specific situa-
tions, even when users are using Tor network. For further information, see Biryukov
et al. [18], Jawaheri et al. [98], ShenTu and Yu [175].

introduction 17

virtually impossible to face a hyper inflation in Bitcoin due to
currency issuance. On the other hand, miners have incentive to mine
Bitcoin because new Bitcoins are found every ten minutes, and they
may also collect the fees of unconfirmed transactions. It is important
to highlight that anyone can become a miner, and there is no entry
cost besides the mining equipment. These incentives have kept the
Bitcoin network up and running since 2009 with barely any
interruptions (99.99% uptime). For further information about
incentives, see Catalini and Gans [38], Ma et al. [133].

Since 2009, Bitcoin has been growing and becoming more and
more used all around the world. It started as an experiment based
on a seminal work by Nakamoto [145] and expanded to the most
important and successful cryptocurrency with a highly volatile $192

billion market capitalization, as of this writing [51]. There are
hundreds of companies investing in different uses of the technology,
from exchanges to debit cards, and billions of dollars being invested
in the new markets based on Bitcoin’s technology.

Despite Bitcoin’s huge success, there are still many challenges to
be overcome. We will focus on the following challenges: scaling,
spamming, and centralization. One important challenge that we will
skip is to reduce the size of the ledger (or blockchain), which today
is around 125GB and is growing at a rate of 4.5GB per month [22].

The network must scale to support hundreds of transactions per
second, while its capacity is around only eight transactions per
second. Thus, the more Bitcoin becomes popular, the more saturated
the network is. Network saturation has many side effects and may
affect the players’ incentive to keep the network running. The
transaction fees have to be increased to compete for faster
confirmation. The pool of unconfirmed transactions grows
indefinitely, which may cause some transactions to be discarded due
to low memory space available, as the previously predictable
confirmation time of transactions becomes unpredictable.

The scaling problem is not precisely an issue of Bitcoin, but an
issue of the Blockchain technology. Hence, all other Blockchain-based
cryptocurrencies have the same limitations, such as Litecoin, Bitcoin
Cash, and Ethereum. One may argue that increasing the maximum
block size is a feasible solution to scaling, but I would say that it
is just a temporary solution which buys some time until the next
network saturation.

Bitcoin seems to have the most decentralized network among the
cryptocurrencies, even so, there are few miners and mining pools
which together control over 50% of the network’s computing
(hash)power (for details, see Gencer et al. [83]). Hence, they have an
oversized influence when it comes to changes in the Bitcoin
protocol’s behavior. They may also cooperate in an attack, voiding
transactions which seemed confirmed. The more decentralized, the

18 introduction

more trustworthy Bitcoin is. This centralization problem is seen as
an important challenge.

Generating new transactions in Bitcoin has a tiny computational
cost because one only has to generate the transaction itself, digitally
sign it, and propagate it in the Bitcoin network. On the one hand, it
means that any device is capable of generating new transactions, but,
on the other hand, it makes Bitcoin susceptible to spam attacks. One
may generate hundreds of thousands of new valid transactions,
overloading the unconfirmed transactions pool and saturating the
network. This spam problem has happened several times and affects
Bitcoin’s trustworthy. Parker [157] reports a possible spam attack
lasting at least contiguous 18 months.

The number of ideas and publications focusing on improving
Bitcoin’s design and overcoming those challenges is increasing every
day. Many of these proposals are organized into BIPs (Bitcoin
Improvement Proposals) which are discussed and implemented by
the community; while others come in the form of whitepapers and
alternative software forks (which would include the need of a
protocol upgrade). Other proposals are published in blogs and
forums, describing new cryptocurrencies. Bitcoin’s community
hardly ever publishes their ideas in academic journals, preferring
instead, of BIPs, white papers, and web discussions.

After the launch of Bitcoin, more than 1,000 other cryptocurrencies
have been created [50]. In general, they are Bitcoin-like, which
means they use similar technologies, including the blockchain. Some
cryptocurrencies differs a lot from Bitcoin, like the ones which use
the Directed Acyclic Graph (DAG) model [65, 124, 125, 161, 185, 194].
We are especially interested in one of them: Iota.

Iota uses a DAG model, called tangle, which has a different design
than Bitcoin’s blockchain. It has neither mining nor confirmation
blocks and transaction fees. Each transaction has its own
proof-of-work2 and is used to confirm other transactions, forming a
directed acyclic graph of transactions. Thus, a transaction is said to
be confirmed when there is enough proof-of-work from the
transactions confirming it directly or indirectly. There is no other
way to confirm transactions but generating new transactions.

In Iota, as transactions confirm transactions, the network benefits
from a high volume of new transactions. Therefore, theoretically, it
scales to any large number of transactions per second. The scaling
problem of tangle is exactly the opposite of Bitcoin’s: it must have at
least a given number of transaction per seconds; otherwise, the
transactions are not confirmed, and the cryptocurrency does not
work. While Iota’s network has not reached this minimum number

2 The mechanism that assures the immutability is the proof-of-work, which makes it
computationally infeasible to tamper with transactions. It will be explained later in
details.

introduction 19

of transactions per second, it uses a central coordinator which works
as a trustworthy node [189].

Every transaction confirmed by the central coordinator is assumed
to be valid and cannot be reverted. The remaining of the network
can verify a confirmation through the central coordinator’s digital
signature. The coordinator will not be necessary anymore when the
number of transactions per second reaches a minimum value, but
Iota’s developers cannot say precisely what is this minimum value.
This just elucidates that the tangle does not seem to work properly
under a low volume of transactions (and fluctuations in the number
of transactions per second may severely affect Iota’s trustworthiness).

The present work intends to propose and analyze a new architec-
ture, named Hathor, which lies between Bitcoin and Iota and may be
a viable solution to both scaling, centralization, and spam problems.
We also present a mathematical analysis of Bitcoin’s architecture.

3
B I T C O I N & B L O C K C H A I N

In Nakamoto’s (2009) seminal paper, there is no distinction between
bitcoin and blockchain. They are just one thing which solves an
important theoretical problem: how to create a distributed and
decentralized digital form of hard money on the internet, in which
all users can agree as to whom is entitled to which funds.

But, in practice, it is interesting to separate these concepts. Bitcoin
uses the blockchain technology to create a distributed ledger, while
the blockchain is a technology which allows information to be stored
in an immutable and distributed way.

The blockchain technology works through the creation of new
blocks. Each new block confirms that all previous blocks are valid
and have not been tampered with. The mechanism that assures the
immutability is the proof-of-work, which makes it computationally
infeasible to tamper with previous transaction records without
having to recalculate all the previous proof-of-works faster than all
of the remaining machines of the network. The network agrees that
work should be done in the block at the longest chain in the
blockchain.

The proof-of-work is a mathematical problem with the following
characteristics: (i) it is hard to find a solution; (ii) this hardness level
may be adjusted; and (iii) it is fast to check whether the proposed
solution is correct.

Bitcoin’s blockchain uses the mathematical problem of finding a
random number which, after being applied to the hash function
SHA-256 twice, results in a number smaller than a given threshold
A. As SHA-256 is a pseudo-random function, its output is uniformly
distributed between 0 and 2256 − 1 [84]. Thus, if the given number is
A = 2255, one has probability 50% of finding a solution (just the
most significant bit of the hash needs to be zero). But if the given
number is A = 2240, one has probability 0.0015% of finding a
solution (as the 16 most significant bits of the hash must equal zero).
Hence, finding a solution is a hard problem which difficulty
depends on the given number A. The lesser the given threshold A,
the higher the difficulty. On the other hand, checking whether a
solution is correct is fast since one just has to apply the SHA-256

twice and compare.
When miners are finding a solution to a new block, they are mining

or working in the new block. A block is found when a solution to
the proof-of-work is found. When a new block is found, it indirectly
confirms all the previous blocks in the chain and their transactions.

21

22 bitcoin & blockchain

It may happen that two miners find two different blocks in a small
interval of time. In this case, miners will propagate their blocks and
part of the network will choose one of them as the next block,
whereas the other part of the network will choose the other one. This
phenomenon is called a fork. Thus, when the next block is found,
one of those blocks will be confirmed, and the other will be ignored
and referred to as an orphan block. As blocks confirm transactions,
all the transactions in the orphan block which have not been
confirmed by another block will return to the unconfirmed
transaction pool. Hence, it is not safe to accept a transaction when it
is confirmed by only one block. It is the idea behind the rule of
thumb of waiting for at least six confirmations before accepting a
transaction.

By design, Bitcoin’s blockchain proof-of-work difficulty is
dynamically adjusted every 2016 blocks to keep an average pace of
10 minutes between block creation. Thus, the goal is to adjust the
difficulty every 14 days. If it takes less than 14 days to find 2016

blocks, that means the network’s hash power has increased; thus the
difficulty is increased. If it takes more than 14 days to find 2016

blocks, it means the network’s hash power has decreased; thus the
difficulty is decreased.

Newly propagated blocks are validated by the Bitcoin’s network.
If the solution of the proof-of-work is incorrect or if any transaction
included in the block has any issue, then the block is discarded. In
order to work properly, the whole network must agree in what is
allowed and what is not. Should one think that something should be
allowed and accept it in their blocks, the remaining of the network
will discard their newly propagated blocks. That is why Bitcoin’s
network is distributed and decentralized. Everything depends on the
agreement of the network, or, precisely, the agreement of the owners
of at least 50% of the hash power. Even if the remaining 49%
disagrees, the 50% or more who agree will generate, on average,
more blocks than the remaining of the network and their rules will
prevail on the longest chain. If a disagreement between miners’ rules
happens, that is referred as either a hard-fork or a soft-fork (in
general, a hard-fork relaxes the constraints, while the latter hardens
them).

A practical example of a network disagreement is the increase of
the block size. No group with more than 50% of the network’s hash
power agreed into increasing the maximum block size to increase the
number of transactions confirmed by a block and thus increasing the
network’s capacity. Hence, the capacity remains the same, and the
community has been discussing the issue in search of a consensus.
For further details of the discussion, see Wiki [198].

Bitcoin uses the blockchain technology to create a distributed
ledger. It allows every new block to generate new bitcoins and also

bitcoin & blockchain 23

to collect the fees from the confirmed transactions within the block.
Bitcoin’s transactions have two main parts: (i) inputs, and (ii)
outputs. Each transaction sends bitcoins from one or more input
addresses to one or more output addresses. In order to prove that
one is the owner of the input bitcoins, one must digitally sign the
transaction proving such ownership.

The digital signature scheme used by Bitcoin is based on a pair of
private and public keys. The private key is used to sign the
transaction, while the public key is used to check whether the
signature is valid. Thus, the owner of some Bitcoin funds is, in fact,
the owner of a pair of private and public keys. The private key must
never be publicly published, as whoever has access to the private
key is able to spend its funds. In other words, in order to protect
their funds, the owners must protect the private key. If one loses
their private key, unfortunately, access to their funds will be lost
forever. The public key may be used to a proof-of-ownership, i.e.,
one may publish the public key with some message digitally signed
by the private key, proving that he/she is the owner of the funds.

Bitcoins (BTCs) owned by someone are, in fact, unspent outputs in
one or more transactions. For instance, one may have 6 BTCs spread
between three transactions’ unspent output: the first with 1 BTC, the
second with 2 BTCs, and the third with 3 BTCs.

In a transaction, the inputs are pointers to other transactions’
outputs (which they are spending). A transaction output may only
be spent once and thus may not be partially spent. For instance,
when one has 3 BTCs in one transaction output and would like to
send 1 BTC to a friend, they have to create a transaction with one
input spending the 3 BTCs and two outputs, one for the friend with
1 BTC and one’s change with 2 BTCs.

Each transaction’s output has a script that is executed by the miners
to check whether one has or has not permission to spend that output.
In other words, whether one has the ownership of that output. In
order to execute these scripts, the miners also need some data. This
data is given by the transaction which is spending the output.

The output’s scripts usually checks whether the public key is valid
and whether the digital signature was signed by the private key asso-
ciated to that public key. Although there are only 3 commonly used
scripts, one may create a custom script using the Bitcoin’s script lan-
guage 1.

The input contains the data which prove that the sender is the
owner of the referred outputs, i.e., the input which must be accepted
by the output scripts being spent. Usually, each input has the public
key of the sender and a digital signature.

1 Your courageous author once tried to make a transaction with custom script to try to
double spend a deposit to an exchange, only to learn through this intrepid adventure
that Bitcoin allows only 3 script patterns and the others are treated as invalid.

24 bitcoin & blockchain

Those users accustomed to block explorers may have been misled
by the transaction information that these websites provide. For
example, suppose a miner receives a transaction with “one input
from address A1”. This “one input” actually consists of a pointer to
a previous unspent output (i.e., there is no “input” address, as is
displayed, but only a pointer). This pointer reference allows lookup
to be executed in O(1) time.

After lookup, the miner knows how many BTC tokens are
available at that unspent output. But, in order to certify ownership
of that output, the miner receives instructions in the form of a script
with the rules that lead to the desired unspent output address (and
this one is displayed as the input address by those websites).
Because this process requires a digital signature, only the holder of
the corresponding private key is able to sign such transaction.

Next, we will describe the dynamics of Iota and its underlying
technology Tangle. Its major difference from Bitcoin is that it has
neither miners nor blocks.

4
I O TA & TA N G L E

Iota’s underlying technology is Tangle, which has DAG-based
architecture with a whole different approach to confirmations. It
proposes that there is no need for a block to confirm transactions, as
transactions can confirm themselves. Here, each transaction has its
own proof-of-work, named weight, and they must confirm two other
previous transactions. In this sense, instead of a chain of blocks, the
transactions and their confirmations form a directed and acyclic
graph (DAG), as in Fig. 2.

Like Blockchain, Tangle is another technology to store immutable
data and may be the underlying technology to different applications,
such as cryptocurrencies, digital contracts (Ethereum-like), digital no-
taries, and so forth.

Transactions may be either confirmed or unconfirmed. The
confirmed transactions have been already confirmed by at least one
more transaction. It does not mean they are already irreversible and
protected against a double spend attack — it just means at least one
transaction has done some work to confirm it. The unconfirmed
transactions are called tips and they are eager to be confirmed.
Usually a new transaction selects two tips to confirm, but this rule
may not be followed.

Different from Bitcoin, transactions does not have scripts to check
whether one may spend the tokens. Instead, it uses a fixed
Winternitz hash-based digital signature [67], i.e., whoever correctly
signs the transaction may tranfer the tokens. It also supports
multi-signature scheme (see [171]). Not allowing scripts is a
disadvantage when compared to Bitcoin because future applications
are limited and changing it would require a major modification in
transaction format.

At the beginning, the digital signature algorithm relied on the
Curl hash function, which is a ternary hash function designed by
Iota’s developers. This hash function was replaced by the Kerl hash
function after [89] has found a critical vulnerability which enabled
practical signature forgery attacks. The Kerl hash function is a
variation of SHA-3 also designed by Iota’s developers [69]. Like the
Curl hash function, Kerl has not been deeply studied by
cryptography researchers and may have critical vulnerabilities.

Iota’s tokens are pre-mined, which means they have been issued
in the genesis transaction and no more tokens will ever be issued.
This means that there are no miners in Iota’s network and only the
users keep the network alive through their new transactions. This

25

26 iota & tangle

may lead to some incentive issues, because, on the one hand, users
would need to keep transferring tokens to keep the network alive,
while, on the other hand, users would need to believe that Iota is a
good choice to keep using it. As users perception of quality is
significantly affected by “price and congestion”, the empty-restaurant
syndrome may keep new users away, making it even harder to reach
the minimum required to work properly [58]. Even if the minimum
has been reached, if the number of transactions per second plummet,
the time to confirm the most recent transactions will increase
significantly. This possibly poses a serious risk to the network
stability and users’ trustworthy.

As there are no miners, there are also no fees, which is a major
incentive to newcomers. Tokens may be freely transfered without
any loses, even for tiny amounts, enabling micropayments. For
example, online workers paid per hour may receive their payments
every hour, reducing the default risk. This allows untrusted parties
to work together reducing the risk for both. The contractor always
wants to pay in the end, while the workers always wants to get paid
in the beginning.

The Internet-Of-Things (IoT) technologies, which is a network of
smart devices that are connected to the internet and exchange data,
also benefits from not having fees. Imagine your refrigerator doing
your groceries and automatically paying using your Iota tokens, or
your electric car automatically paying for recharge. In both situations,
transactions with no fees are interesting because these devices can
freely make many microtransactions without any loss. For further
information, see [73].

Theoretically, Iota’s network benefits from high volume of
transactions. The more transactions are coming, the faster previous
transactions are confirmed. This is a major feature of Tangle which
contrasts with Bitcoin’s difficulty to scale. On the other hand, low
volume of transactions is a primary problem for Iota, since it would
take too long to confirm previous transactions. As it is a known
problem, Iota has created a central coordinator which works as a
trustworthy node, clearing transactions. In other words, every
transaction directly or indirectly confirmed by the central
coordinator is assumed to be cleared. Iota’s developers claims that
the coordinator will be turned off when the network outgrows a
minimum (unknown) size.

An important factor of Iota is how the new transactions choose
which transactions they will confirm. There are several possible
approaches, such as randomly selecting two of the unconfirmed
transactions (tips). In Fig 2, the reader may have noticed that
transaction 8 will confirm transaction 4, which has already been
confirmed by transaction 7. It may be on purpose, or maybe
transaction 4 was unconfirmed when it was chosen, but it got

iota & tangle 27

confirmed during the calculation of the proof-of-work or the
network propagation of the transaction. The selection algorithm
seems to be important to protect the network against double spend
attacks. For further information, see [161].

1

genesis
2

3

5

8

4

7

6

9

10

Figure 2: White nodes represent transactions that have been confirmed at
least once. Green circles represent unconfirmed transactions (tips).
Gray and dashed nodes are the transactions currently solving the
proof-of-work in order to be propagated.

Transactions have an accumulated weight which may be
interpreted as how hard it is to rollback a transaction. It is analogous
to the number of confirmations of a block in Bitcoin. The higher the
accumulated weight, the safer the transaction. Let A be a transaction,
its accumulated weight is the sum of all weights of the transactions
which confirm A, including A itself, i.e., wA +

∑
A PwP. For

example, in Figure 2, the accumulated weight of transaction 3 is the
sum of the weights of the transactions 3, 5, 6, 7, and 8.

The score of a transaction is a measure of how much
proof-of-work has been done before the transaction has been created.
As the heighest score of the network increases over time, comparing
a transaction’s score with the highest score of the network indicates
the “age” of the transaction. The score of a transaction A is the sum
of all weights of the transactions which are being confirmed by A,
including A itself, i.e., wA +

∑
P AwP. For example, in Fig. 2, the

score of transaction 3 is the sum of the weights of the transactions 1,
2, and 3.

Another measure of the “age” of a transaction is its height. The
height of a transaction A is the length of the longest path from
transaction A to the genesis transaction. For example, in Fig. 2, the
height of transaction 5 is four (5→ 3→ 2→ 1→ genesis). The lower
the height, the older the transaction.

The depth of a transaction A is a measure of the youth of the
transaction. It is the length of the longest path in the inverted graph
from transaction A to any unconfirmed transaction (tip). For
example, in Fig. 2, the depth of transaction 2 is three

28 iota & tangle

(2→ 3→ 5→ 8). It is the opposite of the height. The lower the depth,
the younger the transaction. When a new transaction is confirming
two transactions with high depth, it is referred to as lazy transaction.

The higher the volume of new transactions, the more unconfirmed
transactions will appear. In Fig. 3, the reader can notice that the
number of new transactions was increased for a while, and then
decreased back to the original value. The Iota has behaved well
when exposed to a high load scenario, since it reduced the number
of tips to only three after the high demand has ceased. It is like a
moving swarm which gets wider when the number of new
transactions increases and gets thinner when the number of new
transactions decreases.

0genesis

6 9

4

13

10

14
1

16

15

1912 23

18 26

20

30

24

32

28

34

31

42

38

45
43

47

46
52

50

5654
57

55

59

53

63
60

64

61

65

62

68

80

71

114

105

153

119

208

196

234226

271

231

279

248

294

255

308

259

314299

320

293

324

318

328

322

331

327

336

330

339

335

340

337

343341

347342
349

344

351

346

352

348

354350

356 357
353

359

358

364

363

366

362

370

329 371

365

374

373

377

375

376

378

369

312

372
367

368

361

360

355

345

338333

332

334

270

218

287

274

300

275

304292

311

295

301

313

296

315

309

323

289

326321

319

325

306

237

197

267

252

288

247

264

286

273

303

268

290

238

182

242

302276

282

265

225

244

310

291

317

298

227

193

256

240

263

160
139

176

168

186

181

169

209

147

205

261

281243

245

285

269

307

266

316280

305

230

297

284

277

254

236

86

75

107

78

118

104

123

95

131

109

150

113

174

127

195
178

210
179

216

283

204

228

213

203

188

198

221

235

211

224

241

200

171
233

192

220

258

260

172

223

212

214

222
183

249

217

229

257

232

159

194

165

170

219

173

161

190

253

278

251

250

162

141

175

163

199

164

180

191

189

272

246

262

207

177

133

115

152

138

187 202

185

100

167

135

166

215
239

126

142129

155

128

151

130

201

108

94

120

92

146

158

206

157

149

134

101

117

148

144124

156

140

184

103

90

106

143

116

121

111
89

87

125

112

136

9182
110

98

122
145

154

77

93

132

137
66 84

73

88
83

74

81

67

97

99

102

69

70

96

85

72

79

76

39

58

49

44

48

51

40

41

33
22

37

35
36

29

25

17

21

27

11
85

72

3

Figure 3: Suddenly the number of transactions per second increases and the
width of the swarm grows. After a while, the number of transac-
tions per second decreases and the width of the swarm shrinks.

Conflicting transactions may happen when two or more
transactions try to spend the same tokens — or, in the Bitcoin’s
transaction format, try to spend the same output. In this case, the
network must choose which of the transactions will be accepted and
the other one will be invalidated, even when both have already been
confirmed. In fact, when one transaction is invalidated, the whole
sub-DAG which confirms it is also invalidated. In this case, it may
happen to reverse some transactions.

Intuitively, when there is a conflict, the network should accept the
transaction which has greater accumulated weight, invalidating the
others (see Fig. 4). But it may be not enough to prevent some attacks
like the nuclear submarine attack.

2

genesis

7

4

8

1

9

3

11

6

10

5

13

12

16

18
14

21

17 2320

25

3230

31 34

37

35

4238

44

41

47
36

39

33
45 46

40

50

43

26

15

28

24

29

22
27

19

48

49

Figure 4: The red nodes are transactions which had some conflict with pre-
vious transaction and were invalidated by the network. Notice that
none of them have been confirmed.

iota & tangle 29

The nuclear submarine attack, also known as the parasite chain
attack, is when the attacker generates a separate DAG (or a side
DAG), with many transactions and a lot of proof-of-work. This side
DAG is off the network, i.e., its transactions have not been
propagated. Then, at a convenient moment, the attacker suddenly
propagates these transactions. The whole network needs to decide
how to handle these transactions.

If the transactions have no conflict with any transaction of the main
DAG, i.e., there is no transaction spending the same tokens, then it
is easy to handle the transactions. But, as it is an attack, there will be
some conflicts, and it is not easy to choose which transaction should
be invalidated. As the attacker has been generating a separate DAG,
the conflicting transaction may have an accumulated weight similar
or greater than the transaction which is already in the main DAG.
Hence, using only the accumulated weight may not be enough to
prevent this attack.

For example, the attackers generate (and do not propagate) a
transaction that transfers all their funds to another address. Then,
they start to generate many new transactions which confirm
themselves and even confirm some of the transactions in the main
DAG, but none of these transactions are also propagated to the
network. Afterward, the attacker buys something in the real world,
pays with cryptocurrency, and wait until the payment gets the
accumulated weight demanded by the merchant. Finally, the
attacker suddenly propagates all the transactions to the network in a
small window of time. If the criteria is to validate the transaction
with higher accumulated weight, the network will accept the
attackers’ original transaction instead of the one used to pay the
merchant. Hence, the merchant transaction is invalidated, and the
double spend attack has succeeded.

By default, Iota uses the Markov Chain Monte Carlo (MCMC) al-
gorithm to select the two tips. For further information about attacks
and strategies to prevent them, including the MCMC algorithm, see
[161].

Next, I will do a mathematical analysis of Bitcoin in order to
better understand its minings properties, how a fork would affect
the network and its security against attackers. It is not necessary to
do a mathematical analysis of Iota, because it has already been done
in Popov and Labs [161].

5
A N A LY S I S O F B I T C O I N

The primary objective of this chapter is to increase the understanding
of Bitcoin through mathematical tools.

5.1 hash function

Hash functions has been widely studied in computer science. In short,
a hash function h : {0, 1}∞ → {0, 1}n has the following properties:

1. x = y⇒ h(x) = h(y)

2. h(x) ∼ U(0, 2n − 1), where U is the uniform distribution, i.e.,
∀a ∈ [0, 2n − 1], P(h(x) = a) = 1

2n

In other words, when two inputs are the same, they have the same
output. But, when the inputs are different, their outputs are
uniformly distributed. Clearly, the hash functions are surjective but
not injective. They are not injective because the image of h has only
2n elements and the domain has infinite elements. When x 6= y and
h(x) = h(y), we say that x and y are a collision. A hash function is
considered to be safe when it is unknown how to quickly find a
collision of a given hash, i.e., one has to check all possible values
until the correct one is found (known as the brute-force attack).

Bitcoin uses two hash functions: HASH-160 and HASH-256. The
first has n = 160 and consists of the composition of SHA-256 and
RIPEMD-160. The latter has n = 256 and applies SHA-256 twice. The
first is used in transactions’ scripts and the latter in the mining
algorithm. For both hash functions, it is infeasible to run a
brute-force attack because it would demand, on average, either 2160

or 2256 trials, and those would take a tremendous amount of time
even for the fastest known processors.

For further information about hash functions, see Dobbertin et al.
[66], Gilbert and Handschuh [84].

5.2 mining one block

Let B be the set of Bitcoin blocks and h : B→ {0, 1}256 be the Bitcoin
HASH-256 function. The mining process consists of finding x ∈ B

such as h(x) < A, where A is a given threshold. The smaller the A,
the harder to find a new block. In fact, P(h(x) < A) = A

2256
.

Hence, in order to find a new block, one must try different inputs
(x1, x2, . . . , xk) until they find a solution, i.e., all attempts will fail

31

32 analysis of bitcoin

(h(xi) > A for i < k) but the last (h(xk) < A). The probability of
finding a solution exactly in the kth attempt follows a geometric
distribution. Let X be the number of attempts until a success, then
P(X = k) = (1 − p)k−1p, where p = A

2256
. Also, we have

P(X 6 k) = 1 − (1 − p)k. The average number of attempts is
E(X) = 1/p and the variance is V(X) = 1−p

p2
.

In the Bitcoin protocol, the given number A is adjusted so that
the network would find a new a block every 10 minutes, on average.
Suppose that the Bitcoin network is able to calculate H hashes per
second — H is the total hash rate of the network. The time required
to find a solution would be T = X/H, and E(T) = E(X)/H would
be the average number of seconds to find a new block. So, the rule
of finding a new block every 10 minutes (η = 600 seconds) — on
average — leads to the following equation: E(T) = η = 600. So, E(T) =
E(X)/H = 1

pH = η = 600 ⇒ p = 1
ηH . Finally, E(X) = ηH, E(T) = η,

V(X) = (ηH)2 − ηH, and V(T) = η2 − η/H.
The cumulative distribution function (CDF) of T is P(T 6 t) =

P(X/H 6 t) = P(X 6 tH) = 1− (1− p)tH = 1−
(
1− 1

ηH

)tH
. But, as

the Bitcoin network hash rate is really large, we may approximate the
CDF of T by limH→∞ P(T 6 t) = 1− e−

t
η , which is equal to the CDF

of the exponential distribution with parameter λ = 1
η .

Theorem 1. When H → +∞, the time between blocks follows an
exponential distribution with parameter λ = 1

η , i.e.,

limH→+∞ P(T 6 t) = 1− e−
t
η .

Proof.

P(T 6 t) = 1− (1− p)tH

= 1−

(
1−

1

ηH

)tH
Replacing u = ηH,

lim
H→+∞ P(T 6 t) = lim

u→+∞ 1−
(
1−

1

u

) tu
η

= lim
u→+∞ 1−

[(
1−

1

u

)u] tη
= 1− (1/e)

t
η

= 1− e−
t
η

Now, we would like to understand from which value of H it is
reasonable to assume that T follows an exponential distribution.

Theorem 2. x > M⇒ |(1+ 1/x)x − e| < e/M.

5.3 mining several blocks 33

Proof. Let’s use the classical inequality x
1+x < log(1+ x) < x for x >

−1. So, 1/x
1+1/x < log(1 + x) < 1/x. Simplifying, 1/x

1+1/x = 1/(1 + x).
Thus, 1/(1+ x) < log(1+ 1/x) < 1/x⇒ x/(1+ x) < x log(1+ 1/x) < 1.

As log(1+ 1
M) > 0 and 1 < 1+ log(1+ 1

M).
x > M ⇒ 1/x < 1/M ⇒ 1 + 1/x < 1 + 1/M ⇒ 1/(1 + 1/x) >

1/(1+ 1/M)⇒ x/(1+ x) > M/(1+M).
Again, log(1 + x) < x ⇒ log(1 − 1/M) < −1/M ⇒ 1 + log(1 −

1/M) < (M− 1)/M < M/(1+M), since (x− 1)/x < x/(x+ 1).
Hence, 1+ log(1− 1/M) < M/(1+M) < x/(1+ x) < x log(1+ 1/x),

and x log(1+ 1/x) < 1 < 1+ log(1+ 1
M).

Finally,

1+ log(1− 1/M) < x log(1+ 1/x) < 1+ log(1+
1

M
)

e1+log(1−1/M) < ex log(1+1/x) < e1+log(1+ 1
M)

e · elog(1−1/M) < elog((1+1/x)x) < e · elog(1+ 1
M)

e(1− 1/M) < (1+ 1/x)x < e(1+
1

M
)

e− e/M < (1+ 1/x)x < e+ e/M

−e/M < (1+ 1/x)x − e < e/M

Therefore, |(1+ 1/x)x − e| < e/M.

We may consider H big enough to say that T follows an exponential
distribution when e/H < ε, where ε is the maximum approximation
error. When ε = 10−6 ⇒ H > e · 106. So, when H > 2.6Mh/s, our
approximation is good enough.

The symmetrical confidence interval with level α would be [t0, t1],
where P(t0 < T < t1) = 1−α, P(T < t0) = α/2, and P(T > t1) = α/2.
These conditions give the following equations: 1− e−t0/η = α/2, and
e−t1/η = α/2. Solving these equations, we have t0 = −η ln (1−α/2),
and t1 = −η ln (α/2).

For instance, if α = 10%, then t0 = 30.77 and t1 = 1797.44 (or
[0.51, 30.76] in minutes). Thus, 90% of the time the intervals between
blocks are between 30 seconds and 30 minutes, with average of 10

minutes.
The fact that the time between blocks follows an exponential

distribution with λ = 1/η = pH may be used to estimate the total
network’s hash rate (or a miner’s hash rate). For further information,
see [155].

5.3 mining several blocks

Let T1, T2, T3, . . . , Tn be the time to find the first block (T1), then the
time to find the second block (T2), and so on. Let’s analyze the dis-

34 analysis of bitcoin

tribution of Yn =
∑n
i=1 Ti which is the total time to find the next n

blocks. As Yn is the sum of random variables which follow an expo-
nential distribution with same λ = 1

η , then Yn ∼ Erlang(n, 1η). Thus,

the CDF of Y would be P(Yn < t) = 1−
∑n−1
k=0

1
k!e

−λt(λt)k.
Many exchanges require at least six confirmations in order to

accept a deposit in Bitcoin. So, for n = 6,
P(Y6 < 1 hour) = P(Y6 < 3600) = 0.5543, i.e., only 55% of the
deposits will be accepted in one hour. The symmetrical confidence
interval with α = 10% is [27, 105] in minutes. Thus, 90% of the times,
it will take between 27 minutes and 1 hour and 45 minutes to have
your deposit accepted — assuming that your transaction will be
confirmed in the very next block. The pdf of Y6 is shown in Figure 5,
in which the 10% symmetrical confidence interval is shown in the
white area. The average total time of six confirmations is
E(Y6) = 6 · 600 = 3600 = 60 minutes.

Figure 5: Probability density function of Y6, i.e., probability of finding 6

blocks after time t. The shaded areas shows the lower 5% and
upper 5% of the pdf.

5.4 mining for a miner

Let’s analyze the probability of finding a new block for a miner who
has α percent of the network’s total hash rate. Let Tα = X

αH be the
time required for the miner to find a new block. As Tα =

(
1
α

)
T , when

H → +∞, Tα also follows an exponential with parameter λα = α
η .

Hence, we confirm the intuition that the miner with α percent of the
network’s total hash power will find α percent of the blocks.

Theorem 3. When the miner with α percent of the network’s total hash rate
is part of the mining network, P(next block is from Tα) = α.

5.4 mining for a miner 35

Proof.

P(next block is from Tα) = P (Tα = min{Tα, T1−α})

=
λα

λα + λ1−α

=
α/η

α/η+ (1−α)/η

=
α

α+ 1−α

= α.

Theorem 4. When one miner with α percent of the network’s total hash
rate multiplies their hash rate by m, the probability of this miner find the
next block is multiplied by m

mα+1−α .

Proof. When miners increase their hash rate, they also increase the
network’s total hash rate. Let H be the network’s hash rate before
the increase. Thus, the network’s total hash rate after the increase is
H+ (m− 1)αH = (1−α+mα)H. So,

P(next block is from Tmα) = P (Tmα = min{Tmα, T1−α})

=
λmα

λmα + λ1−α

=
mα/η

mα/η+ (1−α)/η

=
mα

mα+ 1−α

= α

(
m

mα+ 1−α

)
.

Corollary. If one miner has a really tiny percent of the network’s total hash
rate, then multiplying their hash rate by m approximately multiplies their
probability of finding the next block by m.

Proof.

lim
α→0

P(next block is from Tmα) = lim
α→0

m

mα+ 1−α
= m.

That way, it is not exactly correct to say that when one doubles
their hash rate, their probability will double as well. It is only true for
small miners.

36 analysis of bitcoin

5.5 orphan blocks

An orphan block would be created if a new block is found during the
propagation time of a new block. Let α be the percentage of the total
hash rate of the node which is outdated, and ∆t the propagation time
in seconds. Thus, P(new orphan) = P(T < ∆t) = 1− e−

α∆t
η .

Bitcoin peer-to-peer network is a gossip network, where miners
are semi-randomly connected to each other, and each miner sends
all information it receives to all its peers. According to Decker and
Wattenhofer [59], the average time for a new block propagate over
the network is 12.6 seconds, while the 95% percentile is 40 seconds,
which indicates a long-tail distribution. BitcoinStats [19] has
measured the propagation time between 2013 and 2017. During 2017,
the worst daily 90% percentile was 21 seconds. Notice that both
results may not be contradictory because the Bitcoin network is
continuously evolving.

For instance, if a node has 10% of the total hash rate and it takes 30

seconds to receive the update, then P(new orphan) = 1− e−
0.1·30
600 =

0.004987, which is almost 0.5%. I would say that a node with 10% of
the total hash rate would be well connected and it would take less
time to receive the update, so, the probability would be even smaller
than 0.5%.

Another important factor is that, as Bitcoin is open-source, miners
are free to change the gossip algorithm, which leads to the network
incentives. See Babaioff et al. [7] for an analysis of the incentives to
miners forward new blocks and transactions in the network.

For further information about gossip algorithms, see Shah et al.
[173].

5.6 analysis of network’s hash rate change

The difficulty, given by the number A, is adjusted every 2016 blocks.
As, P(13 days < Y2016 < 15 days) = P(13 · 24 · 3600 < Y2016 < 14 · 24 ·
3600) = 0.9986, it is expected that the total time to find 2016 blocks
will be between 13 and 15 days, assuming that the network’s hash
rate remains constant. If it takes less than the expected time, it means
that the network’s total hash rate has increased. While if it takes more
than the expected time, it means that the network’s total hash rate has
decreased. So, let’s analyze what happens when the network’s hash
rate changes significantly.

Let H · u(t) be the network’s total hash rate over time. So, the
number of hashes calculated in t seconds is H

∫t
0 u(t)dt. Hence,

P(T 6 t) = P(X 6 H
∫t
0 u(t)dt). When H → +∞,

P(T 6 t) = 1− e−
1
η

∫t
0u(t)dt, and the pdf of T is u(t)η · e

− 1
η

∫t
0u(t)dt.

5.6 analysis of network’s hash rate change 37

5.6.1 Hash rate suddenly changing

Let’s say that the network’s total hash rate has suddenly multiplied
by α. So, u(t) = α,

∫t
0 u(t)dt = αt, and T also follows an exponential

distribution, but with λ = α
η . Thus, Yαn =

∑n
i=1 T

α
i ∼ Erlang(n, αη).

Thus, E[Yαn] =
E[Yn]
α , i.e., the average total time required to find n

blocks will be divided by α, while V[Yαn] =
V[Yn]
α2

and the variance
will be divided by α2. Hence, on one hand, when the network’s hash
rate increases (α > 1), the 2016 blocks will be found earlier. On the
other hand, when the network’s hash rate decreases (α < 1), the 2016

blocks will be found later.
For example, if the network’s total hash rate suddenly doubles

(α = 2), then P(6.5 days < Y2016 < 7.5 days) = 0.9986, and the time
required to find 2016 blocks halved. On the other side, if the
network’s total hash rate suddenly halves (α = 0.5), then
P(27 days < Y2016 < 29 days) = 0.9469, and the time required to find
2016 blocks doubled. It is an important conclusion, since it shows
that even if half of the network stops mining, it will only double the
time to the next difficulty adjustment, i.e., the time between blocks
will be 20 minutes for, at most, the next 29 days, at which point the
adjustment will occur and everything will be back to the normal 10

minutes between blocks.

5.6.2 Hash rate smoothly changing

Let u(t) = 1+abx
1+bx . It is an useful function because u(0) = 1 and

limt→∞ u(t) = a. The bigger the b, the faster u(t) → a. For example,
if a = 2, it means H would be smoothly doubling. If a = 0.5, it means
H would be smoothly halving.

It is easy to integrate u(t) because 1+abx1+bx = 1−a
1+bx +a, which yields∫t

0 u(x)dx = at+
1−a
b log(1+ bt). So,

FT (t) = 1− (1+ bt)
λ(a−1)
b e−λat.

fT (t) = λ

(
1+ abt

1+ bt

)
(1+ bt)

λ(a−1)
b e−λat.

Assuming that n =
λ(a−1)
b is integer, we have:

FT (t) = 1− (1+ bt)ne−λat

38 analysis of bitcoin

Let L be the Laplace Transform. Thus,

L{FT (t)} = L{1− (1+ bt)ne−λat}

= L{1}−L{(1+ bt)ne−λat} (L is a linear operator)

=
1

s
−L{(1+ bt)ne−λat}

=
1

s
−

n∑
k=0

(
n

k

)
bkL{tke−λat}

=
1

s
−

n∑
k=0

(
n

k

)
bk

k!
(s+ λa)k+1

Hence, as L{fT (t)} = sL{FT (t)},

L{fT (t)} = 1−

n∑
k=0

(
n

k

)
sbkk!

(s+ λa)k+1

Then,

d

ds
L{fT (t)} = −

n∑
k=0

(
n

k

)
bkk!

d

ds

s

(s+ λa)k+1

= −

n∑
k=0

(
n

k

)
bkk!

[
1

(s+ aλ)k+1
−

s(k+ 1)

(s+ aλ)k+1

]
d

ds
L{fT (t)}|s=0 = −

n∑
k=0

(
n

k

)
bkk!

1

(λa)k+1

= −
1

aλ

n∑
k=0

(
n

k

)
k!
(
b

λa

)k
= −

1

aλ

n∑
k=0

n!
(n− k)!

(
b

λa

)k
= −

1

aλ

[
n!

n∑
k=0

1

(n− k)!

(
b

λa

)k]

= −
1

aλ

[
n!

n∑
k=0

1

k!

(
b

λa

)n−k]
(k→ n− k)

= −
1

aλ

[
n!
(
b

λa

)n n∑
k=0

1

k!

(
b

λa

)−k
]

= −
1

aλ

[
n!
(
b

λa

)n n∑
k=0

1

k!

(
λa

b

)k]

Finally, as E[T] = −L{fT (t)}|s=0,

E[T] =
1

λa

[
n!
(
b

λa

)n n∑
k=0

1

k!

(
λa

b

)k]
, where n =

λ(a− 1)

b

5.6 analysis of network’s hash rate change 39

Let’s check this equation for already known scenarios. When a = 1,
then n = 0 and E[T] = 1/λ. When b → +∞, it reduces to the case
in which the hash rate is multiplied by a, which we have already
studied. In fact, b→ +∞ yields n→ 0, u(t)→ a, and E[T] = 1

λa .

Theorem 5.

a > 1 and x > M⇒
∣∣∣∣1+ abx1+ bx

− a

∣∣∣∣ < a− 1

1+ bM

Proof. x > M ⇒ 1
1+bx <

1
1+bM . As 1− a < 0, 1−a

1+bx >
1−a
1+bM . Thus,

1−a
1+bM < 1−a

1+bx + a− a = 1+abx
1+bx − a < 0 < a−1

1+bM . Hence, − a−1
1+bM <

1+abx
1+bx − a < a−1

1+bM .

For instance, if we would like to know the impact of smoothly
double the hash rate in the next week, then the parameters would be
λ = 1/600, a = 2, M = 1 week = 3600 · 24 · 7 = 604, 800, b can be
calculated using ε = a−1

1+bM < 0.01, which yields b > 0.000163690
and n < 10.1818. So, for n = 10, then b = 0.000166666 and
ε = 0.009823 < 0.01, as expected. Finally, E[T] = 557.65. In other
words, during the next week, the average time between blocks will
be 9 minutes and 17 seconds, instead of the normal 10 minutes. If
the hash rate had suddenly doubled, the average time between
blocks would be 5 minutes.

5.6.3 Piecewise linear model of hash rate change

Let’s analyze what would happen if the network’s hash rate is
growing linearly with angular coefficient a2, i.e., u(a,b, t) = a2t+ b.

Thus, P(T 6 t) = 1− e−
bt+a2t2/2

η .
It is well known that E(T) =

∫∞
0 1 − P(T 6 t)dt. Thus, replacing

y = a2t+b
a
√
2η

, and using the fact that
∫∞
0 e

−x2dx =
√
π
2 erf(x), we have:

E(T)|t2t1 =
∫t2
t1

exp
(
−
bt+ a2t2/2

η

)
dt

=

√
2η

a
exp

(
b2

2a2η

) ∫y2
y1

exp(−y2)dy

=

√
2η

a
exp

(
b2

2a2η

) √
π

2
[erf(y1) − erf(y2)]

=

√
2πη

2a
exp

(
b2

2a2η

)
[erf(y2) − erf(y1)] (1)

Where y1 = a2t1+b
a
√
2η

and y2 = a2t2+b
a
√
2η

.

Thus, E(T) = E(T)|∞0 . When t1 = 0 ⇒ y1 = b2

2
√
2η

and t2 → ∞ ⇒
y2 →∞⇒ erf(y2) = 1, then:

E(T) =
√
2πη

2a
exp

(
b2

2a2η

)[
1− erf

(
1

a
√
2η

)]

40 analysis of bitcoin

5.6.4 Comparison of the models

In order to compare the hash rate change models, namely (i)
suddenly changing, (ii) smoothly changing, and (iii) linearly
changing, I have applied each of them to the same scenarios. In the
first scenario, the hashrate will double in the next week, whereas, in
the second scenario, it will halve in the next week.

In both the smoothly change model and the linear change model, I
could have calculated each model’s average time between blocks dur-
ing one week. But, it would not give us much information, because
the estimated average time between models would be increasing (or
decreasing) more and more as the days goes by. And we are really in-
terested in the average time between blocks throughout the days, and
not the average of one week.

Thus, I have analyzed a piecewise hash rate change, i.e., I have
calculated the average time between blocks for each hour throughout
the week. First, I split the whole week into 24 · 7 intervals,
(t0, t1, t2, . . . , t168), where ti = 3600i. Then, I calculated the average
for each interval (tk, tk+1). Let H0k and H1k be the initial and final
hash rate of the (tk, tk+1) interval. So, I also ensured the continuity
of the hash rate between consecutive intervals, i.e., H1k = H0k+1.

I compared both the smoothly change model and the linear change
model with the suddenly changing model. The difference between
them is negligible. Let ε be the maximum absolute error between the
models, than ε < 0.8 and ε/H < 0.2%, for all intervals. The maximum
absolute error between the linear and the suddenly changing models
can be seen in Figure 6.

Figure 6: Maximum absolute error between the linear and the suddently
change models.

5.7 attack in the bitcoin network 41

Therefore, we may conclude that it is reasonable to approximate
the average time between blocks using only the suddenly changing
model in each interval of one hour.

The average time between blocks throughout the days can be seen
in Figure 7. It was calculated using the suddenly changing model
with the hash rate changing linearly during the week.

0 1 2 3 4 5 6 7 8 9

t (days)

250

300

350

400

450

500

550

600

650

E
(T

)

(a) Doubling the hash rate

0 1 2 3 4 5 6 7 8 9

t (days)

600

700

800

900

1000

1100

1200

E
(T

)

(b) Halving the hash rate

Figure 7: The average time between blocks when the hash rate changes over
time.

5.7 attack in the bitcoin network

There are many possible ways to attack the Bitcoin network [9, 25, 88,
114, 148]. In this section, we are interested in a particular attack: the
double spending attack.

42 analysis of bitcoin

In the double spending attack, the attacker’s send some funds to
the victim, let’s say a merchant. They wait for k confirmations of the
transaction, and the victim delivers the good or the service to the
attacker. Then, the attacker mine enough blocks with a conflicting
transaction, double spending the funds which was sent to the victim.
If the attacker is successful, the original transaction will be erased
and the victim will be left with no funds at all. In order to be
successful, the attacker must propagate more blocks than the
network in the same period, propagating a chain longer than the
main chain. Hence, we would like to understand what the odds are
that the attacker will be successful. This attack was originally
discussed by Nakamoto [145].

In order to maximize their odds, the attacker must start to mine
the new blocks as soon as they send the funds to the victim. In this
moment, it starts to mine in the head of the blockchain, just like the
rest of the network. So, in the beginning, the attacker and the network
are in exactly the same point.

Let βH be the hash rate of the attackers, and γH be the network’s
hash rate without the attackers. Thus, when H → +∞, we already
know that Tattackers and Tnetwork follow exponential distributions with
parameters λattacker =

β
η and λnetwork = γ

η , respectively.
As [145] has done, we will also model the attack using the

Gambler’s Ruin. In this game, a gambler wins $1 at each round,
with probability p, and loses $1, with probability 1− p. The rounds
are independent. The gambler starts with $k plays continuously
until he either accumulates a target amount of $m, or loses all his
money. Let ρ = 1−p

p , then the probability of losing his fortune is:

P(losing his fortune) =

ρk−ρm

1−ρm , if ρ 6= 1,
m−k
m , if ρ = 1.

When m→ +∞,

P(losing his fortune) =

ρk, if ρ < 1,

1, if ρ > 1.

The gambler winning $1 is the same as the network finding a new
block, the gambler losing $1 is the same as the attacker finding a new
block. The initial $k is the same as the number of blocks the attacker
is behind the network. Thus, the gambler loses his fortune is the same
as the attacker successfully finds k or more blocks than the network,
i.e., losing his fortune means that the attack was successful.

In our case, p = λnetwork
λnetwork+λattacker

= γ
β+γ , thus ρ = β

γ . Hence, ρ < 1⇔
β < γ.

Suppose that the attacker is mining with the network. Suddently,
he stops mining with the network and starts attacking, i.e., starts to

5.7 attack in the bitcoin network 43

mine in another chain. In this scenario, since the attacker’s hash rate
is not mining with the network anymore, γ = 1 − β. Thus,
β < γ ⇒ β < 0.5 ⇔ ρ < 1. Here comes the conclusion that, if the
attacker has 50% or more of the network’s hash rate, then his attack
will be certainly successful. We got exactly the same equations and
conclusions as [145].

But this scenario seems not to be the optimal attack, because the
attacker has waited k confirmations before starting the attack. A
better approach would be to start attacking just after propagating
the transaction. In this case, our previous model is not good, because
even if the attacker have found more blocks than the network, he
cannot propagate those blocks before the network has found k

confirmations. So, we have to model the probabilities before the
network has found the k block. Then, if the attacker has more blocks
than the network, he has successfully attacked. Otherwise, we return
to the previous model, in which the attacker must still find more
blocks.

Theorem 6. Assuming that the attacker starts the attack just after
publishing the transaction, the probability of the attacker has already found
exactly s blocks while it waits the network to find k blocks is
P(S = s) =

(
k+s−1
s

)
(1− p)spk.

Proof. The attacker must find exactly s blocks while the network must
find exactly k blocks. It is as they would be walking the grid from the
point (0, 0) to (s,k), where it is only allowed to go up or right, like
in Figure 8. When the attacker finds a block, it would be a movement
to the right. When the network finds a block, it would be an upward
movement. No matter the order which the blocks are found, all the
paths occur with probability (1− p)spk.

The walking ends when (·,k) is reached, i.e., when the network
finds k blocks, regardless of how many blocks the attacker has
found – i.e., it is not allowed to walk above the line (·,k). Thus, the
number of paths between (0, 0) and (s,k) moving only upward or to
the right, without going into the line (·,k) is exactly the number of
paths between (0, 0) and (s,k− 1), which is equal to the number of
permutations of the sequence (u,u, . . . ,u, r, r, . . . , r) in which there
are s movements to the right (r) and k− 1 upward movements (u).
This number of permutations is (k−1+s)!

s!(k−1)! =
(
(k−1)+(s)

s

)
because

there are s repetitions of the element r and k− 1 repetitions of the
element u.

Finally, the probability is
(
k+s−1
s

)
(1− p)spk.

Assuming that the attacker starts mining just after publishing the
victim’s transaction, the probability of the attacker will have found
more than k blocks while it waits the network to find k blocks is
P(S > k) =

∑∞
s=k

(
k+s−1
s

)
(1− p)spk.

44 analysis of bitcoin

(3, 6) (7,6)

Figure 8: Both the attacker and the network are mining. Each step up is
a new block found by the network with probability p. Each step
right is a new block found by the attacker with probability 1− p.
It ends when the network finds k blocks — in this example, k = 6.
The red path has probability p6(1− p)3, while the blue path has
probability p6(1− p)7. Notice that the blue path is a successfull at-
tack, because the attacker has found more blocks than the network.
In the red path, the attacker still have to catch up 3 blocks to have
a successful attack, which happens with probability ρ3, if p < 0.5.

Theorem 7.

P(S > k) = 1−
k−1∑
s=0

(
k+ s− 1

s

)
(1− p)spk.

Proof. Let’s use the following identity:

1

(1− z)a+1
=

∞∑
i=0

(
i+ a

i

)
zi, for |z| < 1

Thus, replacing z = 1− p, i = s, and a = k− 1, we have:

1

pk
=

∞∑
s=0

(
s+ k− 1

s

)
(1− p)s

1 =

∞∑
s=0

(
s+ k− 1

s

)
(1− p)spk.

Now, just split
∑∞
s=0 =

∑k−1
s=0 +

∑∞
s=k and it is done.

Using this last theorem, we moved from an infinity sum to a finity
sum.

5.8 confirmation time and network capacity 45

Theorem 8. Let p = γ
β+γ .

P(successful attack) =

1−
∑k−1
s=0

(
k+s−1
s

) (
(1− p)spk − (1− p)kps

)
, p > 0.5

1, p < 0.5.

Proof.

P(successful attack) = P(S > k) +
k−1∑
i=0

P(s = i)ρk−i

For k = 6, p = 0.9, P(successful attack) = 0.0005914121600000266.
For k = 6, p = 0.7, P(successful attack) = 0.15644958192000014.

Figure 9: Probability of a successful attack according to the network’s hash
rate of the attacker (β).

5.8 confirmation time and network capacity

Let’s say that when a new transaction is propagated it is enqueued
in the unconfirmed transaction queue. Then, when a new block is
found, some of these transactions in the queue are confirmed. We are
interested in some measures of the queue, like the expected time to
confirm a transaction and the queue’s length.

Let’s assume that all transactions have exactly the same size S and
pay exactly the same fee. If the Bitcoin block’s maximum size is M,
there would be room for s = bM/Sc transactions in each block.

46 analysis of bitcoin

Using the results from Bailey [10], we have found that πn = zs−1
zn+1s

is the probability of having n unconfirmed transactions in the pool
subjected to s > m, where m = λTX

λblocks
and zs is the single root of the

polynomial zs(1+m(1− z))− 1 with |zs| > 1. In this case, the average
size of the unconfirmed transaction pool is E(π) = 1

zs−1
.

When s > m, the probabilities πn form a simple geometric series
with common ratio smaller than one, which means the probabilities
are exponentially decreasing. Since πn → 0 when n → ∞, we may
interpret it as a stable system, i.e., the unconfirmed transactions pool
size is finite.

When s 6 m, the system is unstable, which means the unconfirmed
transactions pool size keeps growing towards infinity. In this case, the
system is not capable of processing the demand for a long period of
time.

Using the fact that m = λTX
λblocks

and λblocks = 1/η, the stability condi-
tion s > m is reached when λTX < s/η.

In the Bitcoin network, the average number of transactions per
block is s = 2, 250, so, the system is stable when
λTX < 2, 250/600 = 3.75 tx/s. Therefore, 3.75 is the maximum
number of new transactions per second that the Bitcoin network
may handle. When λTX > 3.75 tx/s, the unconfirmed transaction
pool starts to grow indefinitely.

When the system is stable, the average waiting time of a transaction
to be confirmed is E(w) = 1

λTX(zs−1)
.

m � s yields zs → 1 + 1/m. Thus, the average number of
unconfirmed transactions E(π) → m and the average waiting time
E(w) → 1

λblocks
= η = 600 seconds. In the Bitcoin network, m � s is

reached when λTX � 3.75 tx/s. In other words, when the number of
new transactions per second is way smaller than 3.75 tx/s, the
average waiting time of a transaction to be confirmed is 600 seconds,
which means, on average, all transactions will be confirmed in the
next block.

But, λTX → s/η yields zs → 1. Hence, E(π) → +∞, which means
the system is going towards instability.

Therefore, we conclude that the Bitcoin network capacity is
λblocks = s/η = s/600 transactions per second, where s is the average
number of transactions per block.

For instance, in order to be a stable system and process 15

transactions per second, each block would have to confirm, on
average, 9,000 transactions. Bitcoin’s network is really far from this
point.

6
H AT H O R ’ S A R C H I T E C T U R E

This work introduces the Hathor’s architecture, which lies between
Bitcoin’s and Iota’s and may be a solution to scaling, centralization,
and spam issues.

Like Iota, new transactions confirm previous ones, forming a
Directed Acyclic Graph (DAG). For this, each transaction has its own
proof-of-work which is solved by the issuer before propagating the
transactions in the network. Like Bitcoin, miners find new “blocks”
every 10 minutes in which they collect the fees and newly generated
tokens. Each transaction has an “accumulated weight” which
express the required effort to break the transaction, similar to
Bitcoin’s number of confirmations.

In Hathor, there are two difficulty levels: (i) one for new
transactions which are just moving tokens around, and (ii) another
one for “blocks” which are generating new tokens and collecting
fees. The first may be adjusted to prevent spammers, which would
spend too many resources to generate a great number of new
transactions, whereas the latter is adjusted every 2,016 blocks to
keep the pace of blocks on every 2 minutes.

Both miners and users will be working on proof-of-work,
decentralizing even more the network’s hash rate. Even though the
users’ difficulty is less than the miners’, the hash rate will increase
with every new user. The more transactions arrive, the higher the
total hash rate. This may have good consequences in governance,
which we will further discuss.

There is a trade-off about the difficulty of new transactions. The
higher it is, the harder it is to generate new transactions, preventing
spammers but also making it harder for IoT devices generate new
transactions. This difficulty may even be increased when a spam
attack is in course and reduced when it is gone. If the difficulty is
too high, IoT devices may sign their transactions and send them to
another devices which have a greater hash rate and will solve their
proof-of-work faster.

It also seems interesting to have this difficulty depending on new
transaction’s size (in bytes) and amount being moved. The idea here
is to require more work when high amounts are at stake. It would
not affect IoT devices, which are expected to usually move smaller
amounts. Regarding the transaction’s size, requiring more work for
larger transactions may make sense because they may prevent abuses,
such as a denial-of-service attack using enormous transactions which
would consume a lot of node’s bandwidth and disk space.

47

48 hathor’s architecture

Another important security matter is that each transaction has to
confirm all its inputs, i.e., there must be a confirmation path
between all the transactions of the inputs and the transaction which
are spending them. It is always possible since there is at least one
confirmation path between any transaction and a tip. This ensures
that, when a conflict is resolved, only the sub-DAG with root at the
invalidated transaction will be affected. The remaining parts of the
DAG remains the same.

The transactions are classified into three groups: (i) confirmed
transactions, (ii) in-progress transactions, and (iii) unconfirmed
transactions (tips). The confirmed transactions are the ones which
have already been settled, i.e., their accumulated weights have
reached a minimum level. The unconfirmed transactions (tips) are
the brand new transactions which have not been confirmed even
once yet, i.e., their accumulated weights are zero. The in-progress
transactions are in the middle. They have already been confirmed a
few times, but not enough to reach the minimum level required to
be a confirmed transaction. For simplicity, the pending transactions
encompass both in-progress and unconfirmed transactions.

Another transaction classification concerns its validation by the
network. A transaction is said to be network validated if there are
confirming paths from all tips to the transactions, i.e., the whole
network has validated that the transaction is valid. It is important to
notice that a transaction may be network validated but still pending,
or even be confirmed but not network validated.

A block is just a regular transaction with no inputs which confirms
a previous block and at least two in-progress transactions or tips.
There may be any number of outputs provided that they comply
with the number of newly generated tokens. Each block collects all
fees from all transactions confirmed by it which have not been
confirmed by another block before. The blocks are ordered
according to their timestamp. If two blocks have the same
timestamp, the block hash is used as a tiebreaker.

In the low load scenario, there is a small number of new
transactions coming into the network, which means they give a
minor contribution to confirmations. In this case, the confirmation is
held mostly by blocks. On the other hand, in the high load scenarios,
there is a large number of new transactions giving a major
contribution to confirmations. In this case, the blocks strengthen the
confirmations, but many of them will have already been confirmed
before the next blocks are found. The higher the number of new
transactions, the faster the transactions are confirmed. The blocks
assure a “maximum confirmation time”.

The incentive scheme which keeps the network running is the
same as Bitcoin’s. Miners go towards fees and newly generate coins,
whereas users just want to exchange their tokens. When there is no

6.1 transaction confirmation 49

new transaction to be confirmed, the miners keep the network up
and running while they find new blocks.

6.1 transaction confirmation

Hathor uses similar concepts of weight and accumulated weight as
Iota’s. The weight depends only in the transaction itself, whereas the
accumulated weight depends on its confirmations.

The weight of a transaction is calculated as w = log2(k) where k is
the average number of hashes required to solve its proof-of-work.

The accumulated weight is the average number of hashes required
to solve the proof-of-work of the transaction itself plus all the
transactions which confirm it. Let A be a transaction, its
accumulated weight wA is calculated as log2(2

wA +
∑
A P 2

wP).
In Bitcoin, it is well-known that one should wait at least “six

confirmations” before accepting a transaction. This Bitcoin’s criteria
is based on some results presented in Satoshi’s seminal work [145]
and derived here in more detail in Chapter 5. Adopting six
confirmations is the same as demanding from attackers a minimal
effort of six times the network’s hash rate to successfully double
spend those tokens. Let H be the total hash rate of the network. Then,
as E(Y6) = 60 minutes, it will be necessary to calculate, on average,
E(Y6) ·H = 60 · 60 ·H hashes to solve the proof-of-work of 6 blocks.

Therefore, in order to have the same level of security as Bitcoin,
a transaction is said to be confirmed when its accumulated weight
is greater than or equal to log2(E(Y6) ·H) = log2(6 · 128 ·H) = 7+

log2(6) + log2(H), where H is calculated as the total hash rate of the
miners plus the total hash rate of new transactions.

6.2 time between blocks

The hash function used for the proof-of-work (PoW) is the same as
Bitcoin: SHA-256 applied twice. Thus, most of the math analysis we
have already done before is just the same.

Let X be the number of trials to solve the PoW and T be the time
between blocks. We already know that X follows a geometric distri-
bution with p = A

2256
, where A is inversely proportional to the diffi-

culty, i.e., the smaller the A, the higher the difficulty. We also know
that T follows an exponential distribution with λ = 1

η , where η is the
average time between blocks. As proved before, ηpH = 1, thus let’s
define w = log2(E(X)) = log2(1/p) = log2(ηH) = log2(η) + log2(H).

For the blocks, η = 128, thus, E(T) = η = 128 seconds, and V(T) =

η2 = 16, 384, where T is the random variable of the time between two
consecutive blocks. The symmetrical confidence interval of T with
α = 10% is [6.56, 383.45], i.e., 90% of the cases the distance between
blocks will be between 6 seconds and just under 7 minutes.

50 hathor’s architecture

Let H be the hash rate of the miners, then, the weight of the blocks
is calculated by

wblocks = log2(128) + log2(H) = 7+ log2(H)

This weight will be updated every 675 blocks (which should
happen every 24 hours) to take into consideration the change of H.
First, H will be estimated using the fact that
E(Y2016) = 2016

λ = 2016η = 2016
pH = 2016·2w

H . Thus,
H = 2016·2w

∆t ⇒ log2(H) = w+ log2(2016) − log2(∆t), where ∆t is the
time between the latest weight update and now. Finally,

wnew = 7+wold + log2(2016) − log2(∆t)

Notice that, if the hash rate has not changed, then ∆t = 128 · 2016
and wnew = wold.

6.3 weight of the transactions

There is a trade-off which must be considered in the weight of the
transactions: the higher the weight, the better to prevent spam, but
the worse to microtransactions. So, trying to fulfill both necessities,
the weight will be a function of the transaction’s size (in bytes) and
total amount:

wtx = log2(size) + log2(amount) + 0.5

Although the transaction size depends on the implementation, a
typical transaction with 2 inputs and 2 outputs would have
approximately 188 bytes. So, for instance, transfering 50,000 tokens
would require a weight of 23, which means an average of 223 trials
to solve the proof-of-work.

6.4 issuance rate

Hathor issues tokens every block, thus it is similar to Bitcoin. Even
so, an important decision is whether it will issue a limited number
of tokens or not. Bitcoin chose to issue a limited number of tokens.
On the other hand, Ethereum and others chose to issue an ilimited
number of tokens.

Both ways, the number of issued tokens is predictable. This
feature itself brings confidence to the community, who will not face
monetary intervention (unless they agree to) — this comes in
contrast with fiat money in which the central authority may change
the monetary policy to adjust to political demands.

Bitcoin issuance rate started in 50 tokens per block and decreases
over time. Every 210,000 blocks—4 years, on average—it halves the
number of tokens issued per block. As Bitcoin smallest fraction is

6.5 transaction fees 51

10−8, after the 33th reduction it will stop issuing new tokens since
233 > 50 · 10−8. In total, the number of issued tokens will never
exceed 21 million. For further information, see [20].

6.5 transaction fees

In Bitcoin, the value of the fee is calculated as the difference between
the transaction’s outputs and the inputs. For instance, a transaction
with inputs summing 8,000 and outputs summing 7,000 is paying
1,000 of fees.

In Hathor, each transaction may pay a fee to the next block which
confirms it. But, even if the fee is zero, the miners are forced to
confirm at least two pending transactions. These two pending
transactions also confirm other transactions which may have no fees.
In summary, transactions with no fees cannot be left behind and will
always be confirmed by both blocks and other transactions.

One may arguee that it allows the whole network to never pay fees
and they are right. In the beginning, miners’ incentive is driven by
new tokens instead of fees. In the long term, it may be necessary to
require a minimum fee to keep the miners working, depending on
the chosen issuance policy.

6.6 transaction validation

A transaction will be considered valid when it complies with the
following rules: (i) it spends only unspent outputs; (ii) the sum of
the inputs is greater than or equal to the sum of the outputs; (iii) the
number of inputs is at most 256; (iv) the number of outputs is at
most 256; (v) it confirms at least two pending transactions; (vi) it
solves the proof-of-work with the correct weight.

The transaction has a timestamp field which is used to record
when the transaction was generated. This timestamp field must be in
UTC time to prevent timezone issues. It must also be within at most
5 minutes from the current time, otherwise the transaction will be
discarded.

The digital signature is used to ensure that only the owners may
spend their tokens. It will be calculated signing the transaction’s
input and output only. This allows the transaction to be signed in
one device and to be sent to another device that will choose which
transaction will be confirmed and will solve the proof-of-work.

Services of solving proof-of-work may also be offered by
companies. They give their customers a wallet address and they send
the payment inside of the transaction itself. This allows IoT devices
to save energy, delegating the task of solving the proof-of-work.

In case of transaction conflict, in which two transactions try to
spend the same tokens, the one with higher accumulated weight is

52 hathor’s architecture

chosen and the other is invalidated. Although it is not a possible
policy in Iota because of the submarine attack, Hathor does not have
the same problem. In Hathor, like in Bitcoin, the submarine attack is
only possible if the attacker has a hash rate higher than the whole
network, including the miners. In other words, when analysing the
double spending attack, Hathor is as safe as Bitcoin.

6.7 orphan blocks

Different from Bitcoin, there is no orphan blocks in Hathor. Unless
a block confirms either directly or indirectly an invalid transaction,
every block is valid. There is no need to left a block behind since its
proof-of-work is increasing transactions’ accumulated weight.

If two blocks are trying to collect fees from the same transactions,
the one with higher timestamp will be discarded.

6.8 governance

In general, cryptocurrencies are decentralized, which means there is
no central authority who decides its future, i.e., no one can enforce
their will. Every decision must be accepted by its community, which
means the community must agree. But what happens if they do not
agree? When a consensus is not reached, the rules remain the same
and the cryptocurrency may stall. The lack of a central authority
may generate long debates, split the community, slow down
strategic decision-making, and, ultimately, come to a “civil war”—it
is precisely what happened between Bitcoin Core (BTC) and Bitcoin
Cash (BCH) in 2017 [46, 176].

Governance is an important part of a cryptocurrency because it
must evolve, which means its community must agree into changing
the rules. Governance is an agreement of how the community will
proceed to change the rules.

Despite the large literature available about governance, what
separates Blockchain-based cryptocurrencies from them is the
decentralization (against the hierarchical model). The number of
papers about governance in decentralized cryptocurrencies has been
growing, but it still lacks a solution. Hacker [86] resorts to the theory
of complex systems and proposes a governance framework for
decentralized cryptocurrencies, which is, in summary, a centralized
coordination entity. Hsieh et al. [95] has analyzed the effects of
governance in returns using panel data on several cryptocurrencies.
They present a deeper discussion about the parts of a governance
mechanism and concludes that

“... on the one hand, investors value cryptocurrencies’
core value proposition, rooted in decentralization; but on

6.9 expected number of tips 53

the other hand, are suspicious of decentralized
governance at higher levels in the organization because
they could slow down strategic decision-making (e.g.,
regarding the introduction of new innovations) or create
information asymmetries between investors and
technologists.”

I believe that the solution to a good governance will come from
financial incentives to all players to find a common ground. In
Bitcoin, users have less bargaining power than miners because they
do not contribute with work, whereas, in Hathor, both miners and
users are working together. So, when it comes to changing the rules,
the bargaining power is more distributed than in Bitcoin. The
distribution depends on the ratio of the miners’ hashpower and the
users’ hashpower. The higher the ratio, the closer to Bitcoin’s
governance. The lower the ratio, the higher the bargaining power of
the users.

6.9 expected number of tips

It is intuitive that the number of tips depends on the number of
transactions per second. The higher the number of transactions per
second, the higher the number of tips. We can model the number of
tips at time t as a stochastic process, which means it changes over
time following some probability distribution. Stochastic processes
have two important states: transient and steady. A process is in
transient state when its properties are changing over time, whereas
it is in steady state when its properties has already converged.

Let’s assume that the number of transactions per second is
constant and does not change over time. Thus, at the beginning,
there will be no tips, and the number will increase until it converges
to its stable quantity. The process is in transient state until it reaches
stability. Then, it is in the steady state. Notice that the number of tips
also change in steady state, but its average does not. It just floats
around the average.

If the number of transactions per second increases, the process
returns to the transient state and moves towards the new steady
state. In practice, the number of transactions per second is always
changing, so is the steady state.

Popov and Labs [161] has modeled the stochatic process of the total
number of tips. It proves that the average number of tips, in the steady
state, is:

λTX · 2wTX

log(2)H

A simple idea to get to this equation is through flow analysis: In
steady state, we may say that the number of new tips must equal the

54 hathor’s architecture

number of tips being confirmed in a given time window. Thus, in
order to estimate the number of tips in the steady state, let’s consider
the process in which the rate of inward tips is λTX, whereas the rate
of outward tips is ρ.

Let K be the number of tips at a given time. Thus, after ∆t seconds,
∆tips = λTX∆t− ρK∆t. In the steady state, ∆tips = 0, hence K = λTX

ρ .
The rate of outward tips is proportional to the rate in which

devices solve the proof-of-work of transactions. Let H be the devices’
hash rate, then, ρ = α · H · 2−wTX , where α is the coefficient of
proportionality.

Finally,

K =
λTX

α

2wTX

H

If new transactions would always confirm two tips, then α would
equal 2. But, it may confirm one or even zero tips because
concurrent new transactions may confirm their tips first. Thus,
0 < α 6 2. According to the equation found in Popov and Labs [161],
α = log(2) = 0.693147.

7
M E T H O D O L O G Y

The methodology we have used is computer simulation. Through the
simulation of many scenarios of Hathor, we will understand how the
network behaves in complex scenarios, including when the load sud-
denly increases, and when the network is under attack.

The simulator has been developed using an event-based design
which is capable of running hours of simulation in just a few
minutes. It creates agents who decide to make a transaction, then
they select which transactions will be confirmed, next they spend
some time working in the proof-of-work, and, finally, they propagate
the transaction to the network. The other agents receive the
transaction and may accept or deny it. The agents may use different
parameters among themselves.

When a new transaction emerges, it chooses two tips to confirm
before solving the proof-of-work. When it finishes solving the proof-
of-work, the transaction is propagated and becomes a tip. So, two
new transactions may choose the same tips to confirm. If there are
t tips, a new transaction will randomly choose 2 out of these t tips,
even if they have already been chosen by other new transactions —
in fact, they do not know which have been chosen because these new
transactions have not been propagated yet.

When a new transaction is added to the Hathor’s network, it uses
a depth-first search [52] to update the aggregated weight of the
directly and indirectly confirmed transactions. The depth-first search
is interrupted when it reaches a transaction which the accumulated
weight is larger than a given threshold. This interruption
significantly increases the overall performance of the simulation. If
the accumulated weight of the whole DAG is an important metric,
the whole DAG may be updated in specific times to get a
measurement (instead of every new transaction).

Simulator’s random variables simulator are all sampled from their
distributions. The time between two transactions is sampled from an
exponential distribution with λTX. The number of attempts to find a
solution of the proof-of-work is sampled from a geometric
distribution with p = 2w, where w can be either wTX or wblock. The
amount of time spent to solve the proof-of-work is calculated
dividing the number of attempts by the hash rate of the device
(which could be either a miner or an user). The time between blocks
is just the amount of time spent to solve the proof-of-work with
wblock.

55

56 methodology

Transactions (and blocks) do not have inputs, outputs, and scripts.
They have only pointers to other transactions, which form the DAG.
They also store their weight, accumulated weight, timestamp, and
some statistics used for reports.

New miners or users may be added or removed any time during
a simulation. This allows the simulation of many different scenarios,
such as increasing the number of miners, a sudden increase in the
number of transactions per second, a sudden decrease in the number
of miners, and so forth.

It is also possible to create metrics, which sample a statistic every
∆t seconds. There are two metrics available: (i) TipsMetric, which
stores the number of tips at a given simulation time, and (ii)
UtterlyAcceptanceMetric, which finds the new utterly accepted
transactions and store how long it took.

To find the network validated transactions, I run a breadth-first
search (bfs) for each tip. Transactions visited in all searches are being
confirmed by all tips and, by definition, are network validated
transactions.

8
A N A LY S I S O F H AT H O R

Hathor’s architecture lies between Iota and Bitcoin’s architectures. It
is similar to Bitcoin’s architecture when the number of transactions
per second is low, while it is similar to Iota’s architecture when the
number of transactions per second is high. There is no “switching”
between Bitcoin and Iota. It just behaves like one or another according
to the network. In order to check this statement, I have performed
some simulations.

First, two simulations in the extreme cases: (i) no miners, (ii) no
transactions. The first should have precisely the same behavior as
Bitcoin’s blocks with one block after the other forming a long chain.
The latter should have a similar behavior as Iota’s, forming a Direct
Acyclic Graph (DAG) with new transactions confirming previous
ones. We can see in Figure 10 that both cases seem to be correct.

Next, I have run a more realistic simulation, with both miners and
transactions. As we can see in Figure 11, Hathor’s structure is a mix
of Iota and Bitcoin’s structure. The transactions are forming a DAG
while, in parallel, the blocks are forming a chain inside the DAG.

tx1

genesis0

tx2

tx3

tx4 tx5

tx6

tx7
tx8

tx9

tx10

tx11

tx12

tx13

tx14

tx15

tx16 tx17
tx18

tx19

tx20
tx21

tx22

tx23

tx24
tx25 tx26

tx27
tx28

tx29

tx30

tx31

tx32 tx33
tx34

(a) No miners

blk1

genesis0

blk2

blk3

blk4

blk5

blk6

blk7

blk8
blk9

(b) No transactions

Figure 10: Visualization of a Hathor’s graph in two particular cases: (a) no
miners, (b) no transactions. It shows that when there are no min-
ers, Hathor is similar to Iota (same structure, but different param-
eters), and when there is no transactions, it is similar to Bitcoin.

8.1 confirmation time

Another evidence that Hathor lies between Iota and Bitcoin is found
when comparing the time to confirm a transaction. In this context, a
transaction is said to be confirmed when it has reached an accumu-
lated weight similar to six times the hash rate of the whole network
(miners and new transactions). This criteria is equivalent to the well-
known “6 confirmations” of Bitcoin, which is adopted by almost the
whole ecosystem.

57

58 analysis of hathor

blk2

tx1

genesis0

blk4

tx3

blk9

tx8

blk15

tx7

tx14

blk23

tx22

blk24tx13

blk32

tx20

tx31

blk33

tx25

blk35

tx26

tx34

blk37

tx36

blk38

tx21

blk41

tx18

tx40

blk49

tx39

tx48

tx5

tx6 tx10

tx11

tx12

tx16 tx17

tx19

tx27

tx28

tx29

tx30

tx42

tx43

tx44

tx45 tx46
tx47

tx50

Figure 11: Visualization of a Hathor’s graph with transactions and blocks.
Red boxes are blocks, and white circles are simple transactions.
The arrows show the confirmations.

Thus, I have run a simulation in which miners are majority and
there are few transactions. In Figure 12, we may see a good fit
between the confirmation time of a transaction and the theoretical
distribution of the time to find six blocks in Bitcoin (which is Y6 and
follows an Erlang distribution). The blocks create “maximum
confirmation time”, since they are found with a precise pace, i.e.,
when there is not enough new transactions coming, the confirmation
is done by the blocks. But, when the load is increased, Hathor’s
confirmation time is reduced and diverges from Bitcoin’s time
distribution. The reasoning is that confirmations coming from other
transactions start to play an important role and accelerates the speed
of confirmations, i.e., there is no need to wait for the next blocks,
because the transactions are confirming themselves. This is what
allows Hathor to scale and support higher volumes, indeed.

(a) Low load (b) Mid load

Figure 12: Confirmation time in two scenarios: (a) low load, (b) mid load.
The red curve is the distribuion of the time to find six blocks in
Bitcoin (which follows an Erlang distribution). As we can notice,
in the low load scenario, Hathor’s confirmation time behaves just
like Bitcoin’s. When the load is increased, it starts to diverge from
Bitcoin’s distribution.

We may see Hathor’s confirmation time moving from Bitcoin’s to
Iota’s in Figure 13. Notice that the confirmation timer is getting
smaller as the number of transactions per second increases. Figure

8.1 confirmation time 59

13c is a zoom-in in the right side, and we can see again the good fit
between Hathor Bitcoin’s confirmation time under low load.

(a) The whole picture

(b) Zoom in the left part of the above chart(c) Zoom in the right part of the above
chart

Figure 13: Confirmation time in many scenarios, moving from a low load
(λTX = 0.015625) to a high load (λTX = 2).

But, what would happen if, instead of changing the number of
transactions per second, we change the relative hash power between
miners and transactions? In previous simulations, the miners had a
hash rate in the same magnitude as the transactions. In Figure 14, we
can see the same simulation as in Figure 12b, but with the miners’
hash rate ten times the transactions’. Besides the difference in the
shape of the distribution, we can see that it is moving back towards
Bitcoin’s confirmation time distribution. It also makes sense because
increasing the miners’ hash rate increases the required minimum
accumulated weighted for confirmed transactions. Therefore, more
transactions are necessary to give more accumulated weight. As the

60 analysis of hathor

number of transactions per second was not changed, most of the
work of confirmations were done by blocks (and not by transactions).
To confirm this idea, I kept the miners’ hash rate ten times the
transactions’ and increased 16 times the number of transactions per
second. As we can see in Figure 14b, when the number of
transactions per second is increased, its role in the accumulated
weight also increases and it goes farther from Bitcoin’s distribution.

(a) Same load as in Figure 12b (b) High load, 16 times of (a)

Figure 14: Confirmation time with miners’ hash rate ten times the transac-
tions’.

Finally, even with both blocks and transactions, Hathor’s blocks are
similar to Bitcoin’s blocks, and they share the same math. To confirm
that, see Figure 15, where the red curve is Bitcoin’s distribution of
time between blocks and the blue histogram is Hathor’s time between
blocks. I also made several tests adding and removing miners to check
the difficulty adjustment and it worked properly.

(a) 1 miner (b) 2 miners after difficulty adjustment

Figure 15: Histogram of time between blocks. The red curve the Bitcoin’s
theoretical distribution of time between blocks. As we can notice,
the fit is very good.

8.1 confirmation time 61

blk4

genesis0

blk6

tx3

blk8

tx1

blk16

tx13

tx15

blk29

tx28

blk33

tx17

tx32

blk36

tx24

tx35

blk37

tx19

blk42

tx30

blk44

tx25

blk48

tx38

blk56

tx41tx55

blk57

tx47

blk58

tx53

tx54

blk60

tx43

tx59

blk63

tx61

tx62

blk66

tx64

tx65

blk67

blk69

tx52

tx68

blk71

blk72

blk75

tx70

tx2

tx5

tx7

tx9

tx10

tx11

tx12

tx14

tx18

tx20

tx21

tx22

tx23

tx26

tx27

tx31

tx34

tx39

tx40

tx45

tx46 tx49

tx50

tx51

tx73

tx74

tx76 tx78

tx79

tx80

tx82

tx81

tx86

tx77

tx85 tx83

tx84

Figure 16: Visualization of a Hathor’s graph with transactions and blocks.
Red boxes are blocks; green circles are confirmed transactions;
white circles are in-progress transactions; yellow circles are un-
confirmed transactions (tips); and grey circles are transactions
solving the proof-of-work which have not been propagated yet.
The arrows show the confirmation chain. Block’s arrows are in
bold.

62 analysis of hathor

8.2 visualizing the network

Visualizing the network is not simple because the number of
transactions and blocks is high, thus, arranging them and their
edges is a non-trivial task. Therefore, most of the visualization are
just part of the DAG which shows a window of time.

To a better visualization of a Hathor’s network, I run a simulation
classifying the transactions in either confirmed, in-progress, or
unconfirmed (tips). I also showed the transactions solving the
proof-of-work which had not been propagated yet. See Figure 16

and notice the chain of blocks inside the DAG. Confirmed
transactions are in green circles, while in-progress transactions are in
white circles and tips are in yellow circles. The blocks are in red
boxes form a chain inside the DAG. Finally, the new transactions
which are solving the proof-of-work and had not been propagated
are in grey dashed circles.

As new transactions have to chose two previous transactions to
confirm, and just after they start to work in the proof-of-work, two
new transactions eventually may chose the same tip because they do
not know each other yet. So, if new transactions are coming in a low
pace, the width of the swarm is small because the number of new
transactions simultaneously solving the proof-of-work is also small.
But, when new transactions are coming in a high volume, the width
of the swarm increases because new transactions are choosing the
same tip over and over.

In summary, the width of the swarm depends on the number of
transactions per second. The greater the number of new transactions
per second, the larger the width of the swarm.

To visualize the change in the width of the swarm, I run a
simulation with a constant number of transactions per second,
which was increased only in a specific window of time. The result
can be seen in Figure 17, where the number of transactions per
second suddenly increases, and the width increases until it reaches a
stable value. Then, the number of transactions per second decreases,
and the width returns to the previous value.

blk1

genesis0

blk4
blk5 blk6

blk11

tx8

blk17

tx12

tx13

blk21tx15
blk24

tx16

tx19

blk26

tx20

blk30

tx23 blk40

tx34

tx39

blk41

tx35

tx37

blk69

tx56

tx59

blk72

tx58

tx61

blk76
tx60

tx71

blk81

tx78

tx79

blk83

tx64

tx73

blk91

tx85

blk94

tx82

tx90

blk103

tx92

tx96

blk106

tx99

tx101

blk115

tx109

tx110

blk128

tx120

tx124 blk138

tx134

tx137

blk142

tx130

blk146

tx133

tx140

blk151

tx119

tx149
blk156

tx150

tx154

blk163

tx148

tx159

blk172

tx155

tx170

blk173

tx162

blk174

tx168

tx171

blk182

tx160

tx176

blk193

tx158
tx190

blk197

tx189

tx191

blk204

tx194

tx195

blk219

tx200

tx217 blk220

tx196

tx214

blk226

tx213

blk227

blk246

tx230

tx232

blk250tx231

tx237

blk258

tx242

blk266

tx241

tx248 blk269

tx249

blk276tx236

tx244

blk280

tx260

tx277
blk282

tx271
blk295tx274

tx287

blk299

tx285

tx296
blk302

tx293

blk304

tx289

blk309

tx301

tx303

blk311

tx298

tx305

blk318

tx314

blk322

tx316

tx321
blk326

tx310

tx323

blk328

tx317

tx320

blk331

tx327

tx330

blk363

tx329

tx351

blk409
tx340

tx350

blk442

tx356

tx374

blk451

tx367

tx396 blk473

tx425

tx462

blk513

tx457

tx461

blk524

tx446

tx467

blk602

tx533

tx587

blk622

tx555

tx567

blk648

tx616

tx617

blk668

tx472

tx600

blk715

tx674

tx699

blk759

tx675

tx719

blk774

tx649

tx687

blk918

tx818

tx830

blk933

tx908

tx915

blk961

tx880

tx887

blk991

tx889

tx950

blk1064

tx1005

tx1032

blk1110

tx1062

tx1067

blk1149

tx1091

tx1123

blk1155

tx1050

tx1083

blk1185

tx1131

tx1164

blk1274

tx1177

tx1228

blk1292

tx1227

tx1282

blk1365

tx1294

tx1326

blk1374

tx1279

blk1399

tx1330

tx1387

blk1402

tx1328

tx1371

blk1418
tx1359

tx1369

blk1427

tx1379

tx1412 blk1435

tx1405

tx1426

blk1445

tx1424

blk1451
tx1417

blk1463

tx1449

tx1457

blk1477

tx1396

tx1455

blk1488

tx1461

tx1478

blk1490

tx1442

tx1465
blk1498

blk1505

tx1462

tx1473

blk1509tx1497

blk1510

tx1503

tx1506

blk1512tx1492

tx1495

blk1523

tx1517

blk1527
tx1502

tx1524

blk1531

blk1540

tx1520

tx1526

blk1541

tx1529

tx1534
blk1546

tx1536

blk1548

tx1543

blk1560

tx1552

tx1554

blk1567

tx1538 tx1542

blk1568

tx1547

blk1586

tx1571

tx1581

blk1587

tx1565

tx1574

blk1592

tx1575

blk1609

tx1597

tx1607

blk1615

tx1596

tx1612

blk1621

tx1610

tx1616

blk1624tx1623
blk1636

tx1619

tx1631

blk1640

tx1634

blk1641

tx1620

tx1632

blk1651

tx1638

tx1647

blk1653

tx1633

blk1655

tx1649

tx1650

blk1682

tx1667

tx1668

blk1686

tx1672

tx1675

blk1696

tx1687

tx1691

blk1709

tx1698

tx1705 blk1716

tx1706

blk1723

tx1714

tx1715

blk1742

tx1733

tx1734

blk1746

tx1713

tx1738

blk1754

tx1739

tx1743

blk1762

tx1744

tx1745

blk1784

tx1773

tx1757

tx2

tx3

tx7

tx9

tx10

tx14

tx18

tx22

tx25

tx27

tx28

tx29

tx31

tx32

tx33

tx36

tx38

tx42

tx43

tx44

tx45

tx46

tx47

tx48

tx49

tx50

tx51

tx52

tx53

tx54

tx55

tx57

tx62

tx63

tx65

tx66

tx67

tx68

tx70

tx74

tx75

tx77

tx80

tx84tx86

tx87

tx88

tx89

tx93

tx95

tx97

tx98

tx100

tx102

tx104

tx105

tx107

tx108

tx111

tx112

tx113

tx114

tx116

tx117

tx118

tx121

tx122

tx123

tx125

tx126

tx127

tx129

tx131

tx132

tx135

tx136

tx139

tx141
tx143

tx144

tx145

tx147

tx152

tx153 tx157

tx161

tx164

tx165

tx166

tx167

tx169

tx175
tx177

tx178
tx179

tx180

tx181

tx183

tx184

tx185

tx186

tx187

tx188

tx192 tx198

tx199

tx201

tx202

tx203

tx205

tx206

tx207

tx208

tx209

tx210

tx211

tx212

tx215

tx216

tx218 tx221

tx222

tx223

tx224

tx225

tx228

tx229

tx233

tx234

tx235
tx238

tx239

tx240

tx243

tx245

tx247

tx251

tx252

tx253

tx254

tx255

tx256

tx257

tx259

tx261

tx262

tx263

tx264

tx265

tx267

tx268

tx270

tx272

tx273

tx275

tx278

tx279

tx281

tx283

tx284

tx286

tx288

tx290 tx291

tx292

tx294

tx297

tx300

tx306

tx307

tx308

tx312

tx313

tx315

tx319

tx324

tx325

tx332

tx333

tx334

tx335
tx336

tx337

tx338

tx339

tx341

tx342

tx343

tx344

tx345

tx346

tx347

tx348

tx349

tx352

tx353

tx354

tx355

tx357

tx358

tx359

tx360

tx361

tx362

tx364

tx365

tx366

tx368

tx369

tx370

tx371

tx372

tx373

tx375

tx376

tx377

tx378

tx379

tx380

tx381

tx382

tx383

tx384

tx385

tx386

tx387

tx388

tx389

tx390

tx391

tx392

tx393

tx394

tx395

tx397

tx398

tx399

tx400

tx401

tx402

tx403

tx404

tx405

tx406

tx407

tx408

tx410

tx411

tx412

tx413

tx414

tx415

tx416

tx417

tx418

tx419

tx420

tx421

tx422

tx423

tx424

tx426

tx427

tx428

tx429

tx430

tx431

tx432

tx433

tx434

tx435

tx436

tx437

tx438

tx439

tx440

tx441

tx443

tx444

tx445

tx447

tx448

tx449

tx450

tx452

tx453

tx454

tx455

tx456

tx458

tx459

tx460

tx463

tx464

tx465

tx466

tx468

tx469

tx470

tx471

tx474

tx475

tx476

tx477

tx478

tx479

tx480

tx481

tx482

tx483

tx484

tx485

tx486

tx487

tx488

tx489

tx490

tx491

tx492

tx493

tx494

tx495

tx496

tx497

tx498

tx499

tx500

tx501

tx502

tx503

tx504

tx505

tx506

tx507

tx508

tx509

tx510

tx511

tx512

tx514

tx515

tx516

tx517

tx518

tx519

tx520

tx521

tx522

tx523

tx525

tx526

tx527

tx528

tx529

tx530

tx531

tx532

tx534

tx535

tx536

tx537

tx538

tx539

tx540

tx541

tx542

tx543

tx544

tx545

tx546

tx547

tx548

tx549

tx550

tx551

tx552

tx553

tx554

tx556

tx557

tx558

tx559

tx560

tx561

tx562

tx563

tx564

tx565

tx566

tx568

tx569

tx570

tx571

tx572

tx573

tx574

tx575

tx576

tx577

tx578

tx579

tx580

tx581

tx582

tx583

tx584

tx585

tx586

tx588

tx589

tx590

tx591

tx592

tx593

tx594

tx595

tx596

tx597

tx598

tx599

tx601

tx603

tx604

tx605

tx606

tx607

tx608

tx609

tx610

tx611

tx612

tx613

tx614

tx615

tx618

tx619

tx620

tx621

tx623

tx624

tx625

tx626

tx627

tx628

tx629
tx630

tx631

tx632

tx633

tx634

tx635

tx636

tx637

tx638

tx639

tx640

tx641

tx642

tx643

tx644

tx645

tx646

tx647

tx650

tx651

tx652

tx653

tx654

tx655

tx656

tx657

tx658

tx659

tx660

tx661

tx662

tx663

tx664

tx665

tx666

tx667

tx669

tx670

tx671

tx672

tx673

tx676

tx677

tx678

tx679

tx680

tx681

tx682

tx683

tx684

tx685

tx686

tx688

tx689

tx690

tx691

tx692

tx693

tx694

tx695

tx696

tx697

tx698

tx700

tx701

tx702

tx703

tx704

tx705

tx706

tx707

tx708

tx709

tx710

tx711

tx712

tx713

tx714

tx716

tx717

tx718

tx720

tx721

tx722

tx723

tx724

tx725

tx726

tx727

tx728

tx729

tx730

tx731

tx732

tx733

tx734

tx735

tx736

tx737

tx738

tx739

tx740

tx741

tx742

tx743

tx744

tx745

tx746

tx747

tx748

tx749

tx750

tx751

tx752

tx753

tx754

tx755

tx756

tx757

tx758

tx760

tx761

tx762

tx763

tx764

tx765

tx766

tx767

tx768

tx769

tx770

tx771

tx772

tx773

tx775

tx776

tx777

tx778

tx779

tx780

tx781

tx782

tx783

tx784

tx785

tx786

tx787

tx788

tx789

tx790

tx791

tx792

tx793

tx794

tx795

tx796

tx797

tx798

tx799

tx800

tx801

tx802

tx803

tx804

tx805

tx806

tx807

tx808

tx809

tx810

tx811

tx812

tx813

tx814

tx815

tx816

tx817

tx819

tx820

tx821

tx822

tx823

tx824

tx825

tx826

tx827

tx828

tx829

tx831

tx832

tx833

tx834

tx835

tx836

tx837

tx838

tx839

tx840

tx841

tx842

tx843

tx844

tx845

tx846

tx847

tx848

tx849

tx850

tx851

tx852

tx853

tx854

tx855

tx856

tx857

tx858

tx859

tx860

tx861

tx862

tx863

tx864

tx865

tx866

tx867

tx868

tx869

tx870

tx871

tx872

tx873

tx874

tx875

tx876

tx877

tx878

tx879

tx881

tx882

tx883

tx884

tx885

tx886

tx888

tx890

tx891

tx892

tx893

tx894

tx895

tx896

tx897

tx898

tx899

tx900

tx901

tx902

tx903

tx904

tx905

tx906

tx907

tx909

tx910

tx911

tx912

tx913

tx914

tx916

tx917

tx919

tx920

tx921

tx922

tx923

tx924

tx925

tx926

tx927

tx928

tx929

tx930

tx931

tx932

tx934

tx935

tx936

tx937

tx938

tx939

tx940

tx941

tx942

tx943

tx944

tx945

tx946

tx947

tx948

tx949

tx951

tx952

tx953

tx954

tx955

tx956

tx957

tx958

tx959

tx960

tx962

tx963

tx964

tx965

tx966

tx967

tx968

tx969

tx970

tx971

tx972

tx973

tx974

tx975

tx976

tx977

tx978

tx979

tx980

tx981

tx982

tx983

tx984

tx985

tx986

tx987

tx988

tx989

tx990

tx992

tx993

tx994

tx995

tx996

tx997

tx998

tx999

tx1000

tx1001

tx1002

tx1003

tx1004

tx1006

tx1007

tx1008

tx1009

tx1010

tx1011
tx1012

tx1013

tx1014

tx1015

tx1016

tx1017

tx1018

tx1019

tx1020

tx1021

tx1022

tx1023

tx1024

tx1025

tx1026

tx1027

tx1028

tx1029

tx1030

tx1031

tx1033

tx1034

tx1035

tx1036

tx1037

tx1038

tx1039

tx1040

tx1041

tx1042

tx1043

tx1044

tx1045

tx1046

tx1047

tx1048

tx1049

tx1051

tx1052

tx1053

tx1054

tx1055

tx1056

tx1057

tx1058

tx1059

tx1060

tx1061

tx1063

tx1065

tx1066

tx1068

tx1069

tx1070

tx1071

tx1072

tx1073

tx1074

tx1075

tx1076

tx1077

tx1078

tx1079

tx1080

tx1081

tx1082

tx1084

tx1085

tx1086

tx1087

tx1088

tx1089

tx1090

tx1092

tx1093

tx1094

tx1095

tx1096

tx1097

tx1098

tx1099
tx1100

tx1101

tx1102

tx1103

tx1104

tx1105

tx1106

tx1107

tx1108

tx1109

tx1111

tx1112

tx1113

tx1114

tx1115

tx1116

tx1117

tx1118

tx1119

tx1120

tx1121

tx1122

tx1124

tx1125

tx1126

tx1127

tx1128

tx1129

tx1130

tx1132

tx1133

tx1134

tx1135

tx1136

tx1137

tx1138

tx1139

tx1140

tx1141

tx1142

tx1143

tx1144

tx1145

tx1146

tx1147

tx1148

tx1150

tx1151

tx1152

tx1153

tx1154

tx1156

tx1157

tx1158

tx1159

tx1160

tx1161

tx1162

tx1163

tx1165

tx1166

tx1167

tx1168

tx1169

tx1170

tx1171

tx1172

tx1173

tx1174

tx1175

tx1176

tx1178

tx1179

tx1180

tx1181

tx1182

tx1183

tx1184

tx1186

tx1187

tx1188

tx1189

tx1190

tx1191

tx1192

tx1193

tx1194

tx1195

tx1196

tx1197

tx1198

tx1199

tx1200

tx1201

tx1202

tx1203

tx1204

tx1205

tx1206

tx1207

tx1208

tx1209

tx1210

tx1211

tx1212

tx1213

tx1214

tx1215

tx1216

tx1217

tx1218

tx1219

tx1220

tx1221

tx1222

tx1223

tx1224

tx1225

tx1226

tx1229

tx1230

tx1231

tx1232

tx1233

tx1234

tx1235

tx1236

tx1237

tx1238

tx1239

tx1240

tx1241

tx1242

tx1243

tx1244

tx1245

tx1246

tx1247

tx1248

tx1249

tx1250

tx1251

tx1252

tx1253

tx1254

tx1255

tx1256

tx1257

tx1258

tx1259

tx1260

tx1261

tx1262

tx1263

tx1264

tx1265

tx1266

tx1267

tx1268

tx1269

tx1270

tx1271

tx1272

tx1273

tx1275

tx1276

tx1277

tx1278

tx1280

tx1281
tx1283

tx1284

tx1285

tx1286

tx1287

tx1288

tx1289

tx1290

tx1291

tx1293

tx1295

tx1296

tx1297

tx1298

tx1299

tx1300

tx1301

tx1302

tx1303

tx1304

tx1305

tx1306

tx1307

tx1308

tx1309

tx1310

tx1311

tx1312

tx1313

tx1314

tx1315

tx1316

tx1317

tx1318

tx1319

tx1320

tx1321

tx1322

tx1323

tx1324

tx1325

tx1327

tx1329

tx1331

tx1332

tx1333

tx1334

tx1335

tx1336

tx1337

tx1338

tx1339

tx1340

tx1341

tx1342

tx1343

tx1344

tx1345

tx1346

tx1347

tx1348

tx1349

tx1350

tx1351

tx1352

tx1353

tx1354

tx1355

tx1356

tx1357

tx1358

tx1360

tx1361

tx1362

tx1363

tx1364

tx1366

tx1367

tx1368

tx1370

tx1372

tx1373

tx1375

tx1376

tx1377

tx1378

tx1380

tx1381

tx1382

tx1383

tx1384

tx1385

tx1386

tx1388

tx1389

tx1390

tx1391

tx1392

tx1393

tx1394

tx1395

tx1397

tx1398

tx1400

tx1401

tx1403

tx1404

tx1406

tx1407

tx1408

tx1409

tx1410

tx1411

tx1413tx1414

tx1415

tx1416

tx1419

tx1420

tx1421

tx1422

tx1423

tx1425

tx1428

tx1429

tx1430

tx1431

tx1432

tx1433

tx1434

tx1436
tx1437

tx1438

tx1439

tx1440

tx1441

tx1443

tx1444

tx1446

tx1447

tx1448

tx1450

tx1452

tx1453

tx1454

tx1456

tx1458

tx1459

tx1460

tx1464

tx1466

tx1467

tx1468

tx1469

tx1470

tx1471

tx1472

tx1474

tx1475

tx1476

tx1479

tx1480

tx1481

tx1482

tx1483

tx1484

tx1485

tx1486

tx1487

tx1489

tx1491

tx1493

tx1494

tx1496 tx1499

tx1500

tx1501

tx1504

tx1507tx1508

tx1511

tx1513

tx1514

tx1515

tx1516

tx1518

tx1519

tx1521

tx1522

tx1525

tx1528

tx1530

tx1532

tx1533

tx1535

tx1537

tx1539

tx1544

tx1545

tx1549

tx1550

tx1551

tx1553

tx1555

tx1556

tx1557

tx1558

tx1559

tx1561

tx1562

tx1563

tx1564

tx1566

tx1569

tx1570

tx1572

tx1573

tx1576

tx1577

tx1578

tx1579

tx1580

tx1582

tx1583

tx1584

tx1585

tx1588

tx1589

tx1590

tx1591

tx1593

tx1594

tx1595

tx1598

tx1599

tx1600

tx1601

tx1602

tx1603

tx1604

tx1605

tx1606

tx1608

tx1611

tx1613

tx1614

tx1617

tx1618

tx1622

tx1625

tx1626

tx1627

tx1628
tx1629

tx1630

tx1635

tx1637

tx1639

tx1642

tx1643

tx1644

tx1645

tx1646

tx1648

tx1652

tx1654

tx1656

tx1657

tx1658

tx1659

tx1660

tx1661

tx1662

tx1663

tx1664

tx1665

tx1666

tx1669

tx1670

tx1671

tx1673

tx1674

tx1676

tx1677

tx1678

tx1679

tx1680

tx1681

tx1683

tx1684

tx1685

tx1688

tx1689

tx1690

tx1692

tx1693

tx1694

tx1695

tx1697

tx1699

tx1700

tx1701

tx1702

tx1703

tx1704

tx1707

tx1708

tx1710

tx1711

tx1712
tx1717

tx1718 tx1719

tx1720

tx1721

tx1722

tx1724

tx1725tx1726

tx1727

tx1728

tx1729

tx1730

tx1731

tx1732 tx1735 tx1736

tx1737

tx1740

tx1741

tx1747

tx1748

tx1750

tx1751

tx1752

tx1753 tx1755

tx1756

tx1758

tx1759

tx1760

tx1761

tx1763

tx1764

tx1765

tx1766

tx1767

tx1769

tx1749

tx1768

tx1772

tx1774

tx1777

tx1780

tx1781

tx1785 tx1787

tx1770

tx1771

tx1775

tx1776

tx1778

tx1779tx1782

tx1783

tx1786

tx1788

tx1789

Figure 17: DAG visualization when the loading is changed over time.

8.3 number of tips 63

8.3 number of tips

The number of tips at a given time also depends on the number of
new transactions per second. The relationship between them was em-
pirically measured in several simulations with different λTX.

Analyzing Figure 18, it is easy to notice that both the average and
the standard deviation of the number of tips increase when λTX

increases. According to Popov and Labs [161], the average has the
following equation:

λTX

log(2)
2wTX

H

In our simulation, H = 100, 000 and wTX = 17, so, the average
number of tips should be equal to 1.89 ·λTX. This model works best for
low values of λTX and diverges a little for higher values. For instance,
if λTX = 32 tx/s, this equation predicts 60.48 tips on average yet we
can check in the empirical result that the average is around 55 tips.

When λTX → 0, the number of tips goes towards one. The explana-
tion is that there will be only one new transaction solving the proof-
of-work per turn. So, new transactions will always confirm two tips,
reducing the number of tips by one—each transaction confirms two
tips and create one new one, hence the balance is -1. As it is impossi-
ble to have less to have less than one tip, it converges to one.

When there is only one tip, new transactions must chose this only
tip and another in-progress transaction. It should only happen in very
low load scenarios, like during the launch of the network itself.

8.4 network validated transactions

When all tips are confirming a transaction directly or indirectly, it is
said that the transaction is network validated. It means that the whole
network has checked the transactions and agrees that it is valid.

When a transaction is network validated, all new transactions and
blocks will confirm that transaction. Thus, its aggregated weight will
increase as fast as possible.

Let λTX be the number of new transactions per second. If λTX is
constant, it means that, on average, there will be λTX∆t new
transactions after ∆t seconds (because the number of new
transactions after ∆t seconds follows a Poisson distribution). All
these transactions will confirm the network validated transactions.
Hence, the number of transactions confirming a network validated
transactions grows linearly. This result was also predicted by Popov
and Labs [161, p.14].

Suppose a transaction has just become network validated. Let acc0
be its accumulated weight when it became network validated, η be

64 analysis of hathor

(a) All load scenarios

(b) Zoom in the left side of (a)

Figure 18: Histogram of the number of tips for different load scenarios. As
expected, the number of tips increases with λTX.

the average time between blocks, wTX be the average transaction
weight, and wBLK be the average block weight. Then,

8.4 network validated transactions 65

acc(∆t) = log2

(
2acc0 + λTX∆t · 2wTX +

⌊
∆t

η

⌋
2wBLK

)
= acc0 + log2

(
1+ λTX∆t · 2wTX−acc0 +

⌊
∆t

η

⌋
2wBLK−acc0

)
' acc0 + log2

(
1+ λTX∆t · 2wTX−acc0 +

∆t

η
2wBLK−acc0

)
= acc0 + log2

(
1+ λTX∆t · 2wTX−acc0 +∆t · η−12wBLK−acc0

)
= acc0 + log2

[
1+∆t · 2−acc0 · (λTX2

wTX + η−12wBLK)
]

Therefore, after being network validated, the accumulated weight
of a transaction grows logarithmically.

In Figure 19, we can see how long it takes for a transaction to be
network validated in different scenarios. The time is quite the same
for λTX below than one, but it changes for higher values.

It is interesting to notice that there is a trade-off when λTX

increases. On the one hand, new transactions grow the DAG and
accelerate the network validation, whereas, on the other hand, both
the number of tips and the width of the swarm increases, dispercing
this acceleration. The results show that, in fact, the time to be
network validated increases with λTX.

Anyway, for up to 32 tx/s (and η = 128), it is reasonable to state
that most transactions will be network validated after 35 seconds.

66 analysis of hathor

(a) All load scenarios

(b) Only low load scenarios

Figure 19: Histogram of the time it takes for a transaction to be network
validated. A transaction is said to be network validated when all
tips are confirming it directly or indirectly.

9
C O N C L U S I O N

Bitcoin’s underlying technology, blockchain, has been called by many
as a major invention, even comparable to the invention of the internet.
But it is unlikely that Bitcoin and blockchain have achieved the final
or most optimal design for a secure and scalable electronic transaction
system. In this work, I proposed and analysed a new architecture
named Hathor, which seems a scalable alternative to Bitcoin.

Today, Bitcoin network can barely handle 8 transactions per second
without increasing the unconfirmed transaction list to hundreds of
thousands — several transactions take days to be confirmed. In order
to increase Bitcoin’s capacity, its community has first proposed and
implemented segregated witness, which improved scalability yet was
not enough. Finally, they proposed the lightning network, which is
in development and should be available in the next months. I believe
these proposals relieve the network—a temporary solution—, but do
not solve the scalability problem.

Hathor’s architecture allows a great number of transactions per
second, since new transactions confirm previous ones (and there is
no such thing as “maximum block size”). The more transactions are
coming, the faster previous transactions will be confirmed. It is the
opposite of Bitcoin because the network benefits from high volume
scenarios. As I have shown, Hathor seems to solve the scalability
problem present in Blockchain-based cryptocurrencies.

As the transactions also have a proof-of-work, it becomes harder
to perform a spam attack. The attacker would spend a considerable
amount of computational resources to solve the proof-of-work of
every transaction, and the amount of work depends on the
transaction’s weight parameter. Future work may explore automatic
adjustments in transaction’s weight to improve spam prevention. For
instance, the network can detect a higher number of new
transactions coming and increase the transaction’s weight for a
while. Or else, the transaction’s weight may be a function of the time
between an output being spent and its spending transaction, so,
transferring the same tokens over and over in a small window of
time would require more work. Anyway, the transaction’s weight
seems to tackle the spam issue. The new challenge is to set a proper
transaction’s weight which would prevent spam without impairing
IoT devices.

The last, but not least, challenge is the hashpower centralization.
Although Bitcoin seems to have the most decentralized network
among cryptocurrencies, there are few miners and mining pools

67

68 conclusion

which together control over 50% of the network’s computing
(hash)power [83]. Hence, they have an oversized influence when it
comes to changes in the Bitcoin protocol’s behavior. Hathor’s
architecture splits the hashpower among miners and users. Even if
miners have more individual hashpower than users, because they
would have rigs with appropriate cooling and energy supply, I
believe their aggregate hashpower will not surpass users’ aggregate
hashpower when millions of devices are generating transactions.
Future IoT devices may even come with an application-specific
integrated circuit (asic) designed to solve Hathor’s proof-of-work
without spending too much battery. Future work may check
common IoT processors’ hashpower, which would allows us to
estimate how many devices would be necessary to surpass miners’
hashpower.

Even though I have proposed to update block’s weight every 24

hours (or 675 blocks), this was an arbitrary number. Future work
may explore whether it would be feasible to continuously update
block’s weight, or what would be the optimal number of blocks
between each update. I believe that the challenge of a continuous
update approach would be preventing outdated nodes to discard
valid blocks when two or more blocks were being propagated
through Hathor’s network. Maybe a solution would be allowing a
range of block’s weight instead of a single value, but future work
would have to check whether this can be exploited by attackers.

I also presented a mathematical analysis of Blockchain, going
though mining, hashpower change, orphan blocks, and
double-spending attacks. Most of the presented results may directly
be applied to Hathor’s blocks, since their foundations are the same.
As Popov and Labs [161] has already analyzed Tangle, I have just
applied their results with a few extensions.

Future work may also further analyze other possibilities of attack
in Hathor’s network, such as malicious device not using random tip
selection. Another major challenge affecting all cryptocurrencies is
disk space use. How would one wipe out part of the blocks and
transactions without putting security in risk? At first, all blocks and
transactions are required to check whether anyone (including
computer viruses) has tampered with transactions which had
already been validated and stored in disk.

Part III

A N I N V I TAT I O N T O S PA R S E D I S T R I B U T E D
M E M O RY: F R O M T H E T H E O R E T I C A L M O D E L

T O T H E S Y S T E M D Y N A M I C S

Oie

10
I N T R O D U C T I O N

How is memory gradually built up during one’s conscious, or
even unconscious, life and thought? My guess is that everything

we experience is classified and registered on very many parallel
channels in different locations

— Stanislaw Ulam

Pentti Kanerva’s memory model was a revelation for me:
it was the very first piece of research I had ever come across

that made me feel I could glimpse the distant goal of understanding
how the brain works as a whole. It gave me a concrete sense for

how familiar mental phenomena could be thought of as distributed
patterns of micro-events, thanks to beautiful mathematics.

— Douglas Hofstadter

Suddenly, you feel the danger. You tighten your grip on the child’s
hand and step up your walking. In these large cities, walking on a
dark alley was never recommended, but somehow that’s what you
have done — and now everything you can think of is to get back
to safety. You are afraid of something, but you cannot explain — in
rigorous detail, at least — what exactly is causing your fear. One just
feels it.

We may interpret this situation as clues of the present — a dark
alley; a giant metropolitan area; people going on about their lives
mostly indifferent from each other; constrained routes ahead and
behind; a general lack of activity; that very feeling that something
isn’t right... without knowing precisely what isn’t right, or even
what ‘right’ means — recalling past experiences from memory and
thus generating the feeling. Our memory is able to make a parallel
between previous experiences and the clues. Although one has never
been in the exactly same situation, one’s brain involuntarily, through
analogy with previous experiences, recognizes the possibility of
danger. The whole process happens so fast it feels like it only took a
single indivisible unit of psychological time. A single cycle, to use
the computing word.

As much as we can rationalize our ability to understand the why
of a feeling like this, it seems unlikely that we will be able to nail all
reasons down into rules. Let us compare this to what a child might

71

72 introduction

do. While an adult may respond by discreetly stepping up the walk-
ing speed, a child might open her eyes and be surprised and ask, in-
discretely, questions about the walking speed... Because children do
not have the accumulated experience of adults in dealing with large
metropolian areas, their behavior differs markedly from ours.

Sparse Distributed Memory (SDM) [104] (see also
[64, 74, 106–111, 116, 169, 192]) is a mathematical model of long-term
memory that has a number of neuroscientific and psychologically
plausible dynamics. This model is used in all sort of applications
due to its incredible ability to closely reflect the human capacity to
remember past experiences from the subtlest of clues. Applications
range from call admission control [119, 120], to behavior-based
robotics [99, 137, 164], to noise filtering [139], etc.

This flexibility into mapping one situation in another is an essential
human feature which is hard to replicate in computers.

10.1 desiderata for a theory of memory

Sparse Distributed Memory reads like a desiderata of a theory for
human long-term memory. To understand the breadth of topics that
SDM encompasses, consider the following questions:

1. Why are most concepts orthogonal, unrelated to each other?

2. Why is there Miller’s magic number, i.e., we can’t hold too
many things in mind at once?

3. Why do we at times instantly recall an experience; other times
we can’t recall anything at all; and still other times we get into
this strange tip-of-the-tongue situation... it is clearly ‘there’...
but where? (and ‘what’ is ‘there’?1.)

4. How does this recall process work? What is remembering?

5. Why do neurons die and we still remember most everything?

6. What do neurons actually do? What is their primary function?

These are some of the questions touched by SDM. It is a theory of
long-term memory that constructs the process of recall from a very
microscopic level of neuron-firings. While there are numerous groups
working on related research, it seems that most are simply bypassing
each other; starting from scratch instead of building on top of what
already exists.

1 Psychologists have documented interesting properties about this state: it happens,
for instance, around every 1-week cycle; and it happens mostly over proper names,
subjects have access to the first letter and to the number of syllables better than
chance, etc. Also interesting is their clever way of triggerring the state: through defi-
nitions of rarely-used words. For some psychological studies about the tip-of-tongue,
see Brown [31], Brown and McNeill [32], Meyer and Bock [140].

10.2 the wasted effort of duplicated, ad hoc , work 73

10.2 the wasted effort of duplicated, ad hoc , work

As expected for such an important theory, SDM has been applied in
many different fields, like pattern recognition [150, 165], noise
reduction [138], handwriting recognition [71], robot automation
[137, 164], and so forth. Linhares et al. [132] has argued that SDM
respects the limits of short-term memory [54, 141]. Kanerva’s book
has over 1,000 citations in Google Scholar. Despite this, there is not a
reference implementation which would allow one to replicate the
results published in a paper, to check the source code for details,
and to improve it. Thus, even though intriguing results have been
achieved using SDM, it requires counter-productive, duplicate effort
from researchers to build on top of previous work.

Our motivation is our own effort to run our models. As there is no
reference implementation, we had to develop our own and run
several simulations to ensure that our implementation was correct
and bug-free. Thus, we had to deviate from our primary goal —
which was to test our hypothesis and explore the ‘ideas space’ —
and to focus on the implementation itself. Furthermore, new
members of our research group had to go through different source
code developed by former members, in different languages.
Consider the implementations of SDM present — as of this writing
— on its wikipedia entry[1]2:

1. The original 1989 hardware implementation developed in
NASA by Flynn et al. [74];

2. a 1995 LISP implementation for the Connection Machine by
Turk and Gorz [191];

3. a 1992 APL implementation by Surkan [187];

4. a 2004 FPGA implementation by Silva et al. [177];

5. a 2005 C++ implementation by Berchtold [17] from Lancaster
University, in the ‘CommonSense ToolKit’ (CSTK) [55] for
realtime sensor data includes SDM as one of its classification
algorithms;

6. a 2015 ‘C Binary Vector Symbols (CBVS)’: includes SDM imple-
mentation as a part of vector symbolic architecture developed
by Emruli et al. [70] from EISLAB at Luleå University of Tech-
nology 3;

2 There has recently been a surge of hardware implementations to minimize energy
expenditure and parallelize processes [112, 113, 127, 143, 170]. While these imple-
mentations are extremely interesting, they do not afford the flexibility to experiment
that software does.

3 The code is available at http://pendicular.net/cbvs.php

74 introduction

7. a 2013 Java implementation ‘Learning Intelligent Distribution
Agent’ (LIDA) developed by [77, 183, 184] Stan Franklin’s group
from the University of Memphis includes implementation. 4;

Let us analyze these. The Connection Machine is obsolete. The
NASA implementation is hardware-based and obsolete. APL, while
reasonably influential, is not a mainstream language in science.

The FPGA implementation by Silva et al. [177] has yielded a fast
scan of hard locations at low energy costs, provided one has access
to the proper hardware. Their article claims a four-fold speedup over
assembly language; but it does not deal with parallel processing
details. For example, it is unclear whether there was more than a
single thread running on the software implementation. Note that the
framework presented here is also able to reconfigure
field-programmable gate arrays, through the OpenCL heterogeneous
computing platform ability to interface with Hardware Description
Language and hence, reconfigure FPGAs [56, 196] for our tasks.

Then there is LIDA — a whole cognitive architecture based on
Hofstadter’s Fluid Concepts, Kanerva’s SDM, and other ideas
[6, 77, 183, 184]. It is developed in Java; which makes it difficult to
connect to the lowest levels of hardware; to connect to GPUs or
FPGAs, and to other languages — at least in comparison to the
combination Python and OpenCL proposed here5. It has a
non-standard license, strange to the open-source community, the
LIDA Framework Software NonExclusive, Non-Commercial Use License.
We have not found any parallelism in their code [39], which may
make simulations slow or unfeasible. Moreover, potential
contributors must sign an “Agreement Regarding Contributory
Code for the LIDA Framework Software”... ‘before Memphis can accept
it’ 6.

The closest implementations to ours, in philosophy at least, is the
one in ‘the common sense toolkit’. It is executed in C++, with a nor-
mal open-source license, and hosted on an open-source code reposi-
tory. It is, however, strikingly dissimilar to ours on the following as-
pects:

4 http://ccrg.cs.memphis.edu/framework.html; see also
http://ccrg.cs.memphis.edu/projects.html where they link to a github reposi-
tory.

5 Python is sometimes called a ‘glue language’. That is, in my opinion, not the best
metaphor. A glue connects two things leaving an inflexible structure. Python is per-
haps best described as the interstate highway system of Programming; if something
is out there, there is a way to reach it with Python. In the comparison with Java, for
instance, take the popcnt(xor(bi,bj)) operation, executed billions of times in SDM.
How easy is it to program that for a particular GPU or FPGA with Java?

6 What they are attempting to do with this bureaucracy remains unclear, the history of
computing has not been kind to those who favored centralization [72]. We certainly
refrain from contributing given the legal uncertainties of non-standard licenses and
dubious processes — even as we would like to link these libraries

10.2 the wasted effort of duplicated, ad hoc , work 75

1. SDM is but a part of the system; the description of the system
reads that cstk is ‘A toolkit for processing and visualising sen-
sor data in real time with support for use with embedded plat-
forms.’

2. The whole SDM code is composed of 143 lines of C++ in the
cstk/cstk− devonly/sdm folder.

3. There is no work on making the system parallel.

4. There is strong coupling between location address and location
data, which makes experimentation hard.

5. There are no tests or examples to be found instantly.

6. Finally, the last commit to this repository seems to have been
made in 2005?

7. There are no publishable or published scientific applications or
experiments available to be reproduced at installation time.

8. there is no tutorial, installation instructions, performance
benchmarks, framework validation or SDM Documentation.

Note that all these criticisms apply to the implementations in both
the ‘common sense toolkit’ and the ‘C Binary Vector Symbols’ [17, 55,
70]. While these implementations have around 150 lines of C++; at
last count, the documentation of our implementation had over 100 pages
[131]: they have aimed at running code, and we aim at improving a
community and industry standard.

There is obviously a demand for use of SDM; but each group has
been tied to their own ad-hoc needs, and there has not been the
emergence of a community centered on a tool. It is our belief that a
tool such as standard open-source framework could bring orders of
magnitude more researchers and attention if they were able to use
the model, at zero cost, with an easy to use high-level language such
as Python, in an intuitive platform such as Juypyter notebooks.
Neuroscientists interested in long-term memory storage should not
have to worry about high-bandwidth vector parallel computation.
This new tool would provide a ready to use system in which
experiments could be executed almost as soon as designed — and
provide the needed replication of studies [174].

The main contribution of this work is a reference implementation
which yields (i) orders of magnitude gains in performance, (ii) has
several backends7 and operations, (iii) is fully validated against the
mathematical model, (iv) is cross-platform8, and (v) is easily
extensible to test new research ideas — and to let others replicate the
studies.

7 CPUs, GPUs, FPGAs
8 Unix, Linux, MacOs, Windows, Amazon Web Services, etc.

76 introduction

Another issue is extensibility: Extensions of SDM have been used in
many applications. For example, Snaider and Franklin [182]
extended SDM to store sequences of vectors and trees efficiently. Rao
and Fuentes [164] used a modified SDM in an autonomous robot.
Meng et al. [138] modified SDM to clean patterns from noisy inputs.
Fan and Wang [71] extended SDM with genetic algorithms. Chada
[40] extended SDM creating the Rotational Sparse Distributed
Memory (RSDM), which models network motifs, dynamic flexibility,
and hierarchical organization — reflecting results from the
neuroscience literature.

Our reference implementation may, hopefully, accelerate research
into the model’s dynamics and make it easier for readers to replicate
any previous results and easily understand the source-code of the
model. Moreover, it is compatible with Jupyter notebook and
researchers may share their notebooks possibly accelerating the
advances in their fields [174].

Other contributions have also been introduced, which include (i) a
noise filtering approach, (ii) a supervised classification algorithm,
(iii) and a reinforcement learning algorithm, all of them using only
the original SDM proposed by Kanerva, i.e., with no additional
mechanisms, algorithms, data structures, etc. Although some of
these applications have already been explored in previous work
[71, 138, 165], all of them have adapted SDM to fit their problems,
and none of them have used just the ideas introduced by Kanerva.
We have presented different approaches with no adaptations
whatsoever.

Finally, I have striven to provide a visual tour of the theory and
application of SDM: whenever possible, detailed figures should tell
the story — or at least do the heavy lifting. In this study, we will see
an anomaly in one of Kanerva’s predictions, which I believe is
related to SDM capacity. We will see tests of a generalized reading
operation proposed by Physics Professor Paulo Murilo (personal
communication). We will see what happens when neurons — and all
their information — is simply and suddenly lost. We will see
whether information-theory can improve some of Kanerva’s ideas.
From (basic) noise filtering to learning to play tic-tac-toe, we will
review the entirety of Dr. Pentti Kanerva’s proposal.

This time, however, it will be running on a computer: anomalies
between expected theory and numerical results will appear; implicit,
hidden, assumptions will emerge; and reproducible experiments will
be conducted.

11
N O TAT I O N

n Number of dimensions, i.e., n = 1, 000.

N Size of the binary space, |{0, 1}n| = 2n.

N ′ Number of hard locations samples from {0, 1}n. Its typical value is
1,000,000, as suggested by Kanerva [104].

H Same as N ′.

r Access radius, i.e., when n = 1, 000 and N ′ = 1, 000, 000, its typi-
cal value is 451. This value is calculated to activate, on average, one-
thousandth of N ′.

η A bitstring, usually a datum.

ηx A clue x bits away from η, i.e., dist(η,ηx) = x.

ξ A bitstring, usually an address.

dist(x,y) Hamming distance between x and y.

d(x,y) Same as dist(x,y).

77

12
S PA R S E D I S T R I B U T E D M E M O RY

Sparse Distributed Memory (SDM) is a mathematical model
developed and suggested as a theory of human memory by Finish
Scientist Pentti Kanerva [104]. It introduces many interesting
mathematical properties of n-dimensional binary space that, in a
memory model, seem to be remarkably psychologically plausible.
Most notable among these are the tip-of-the-tongue phenomenon,
conformity to Miller’s magic number [132], and robustness against
loss of neurons.

The data — and address space on which it is stored — are
represented by large sequences of bits, called bitstrings. The
Hamming distance provides comparisons between bitstrings and is
used as a metric for the system. The Hamming distance is defined
for two bitstrings of equal length as the number of positions in
which bits differ. For example, 00110b and 01100b are bitstrings of
length 5 and their Hamming distance is 2.

The space studied by Kanerva is also called the hypercube graph, or
Qn, as in Figure 20. For a fixed n ∈ Z, the graph G = (V ,E), in
which v ∈ V iff there is a bijective function b : V → {0, 1}n and
(vi, vj) ∈ E iff H(b(vi),b(vj)) = 1, where H is the Hamming distance.
That is, n-sized bitstrings correspond to nodes, and edges exist
between nodes iff they flip a single bit. Though Kanerva has derived
many combinatorial properties of the space, additional results have
been found by the graph-theoretical community. A good survey is
provided by Harary et al. [87] — and some interesting results may
be found in [75, 121, 168, 195].

One has to be careful when thinking intuitively about distance in
SDM because the Hamming distance does not have the same proper-
ties of, say, our 3-dimensional space.

Though both follow the triangle inequality (d(A,C) 6 d(A,B) +
d(B,C)), which in 3-d Euclidean distance may be loosely interpreted
as “if A is close to B, and B is close to C, then A is also close to C” —
d(A,B) 6 r and d(B,C) 6 r⇒ d(A,C) 6 2r —, but in SDM, although
the inequality is also valid, two bitstrings would be close when, for
instance, r = 430, so 2r = 860 would cover all other bitstrings. Hence,
it makes no sense to say that A is also close to C.

There are numerous, beautiful, counter-intuitive notions involved
in this space. This difference in intuition may trick even experienced
researchers when analyzing some situations.

Unlike traditional memory used by computers, SDM performs read
and write operations in a multitude of addresses, also called neurons.

79

80 sparse distributed memory

(a) Q3 (b) Q7

(c) Q10

Figure 20: Here we have Qn, for n ∈ {3, 7, 10}. Each node corresponds to
a bitstring in {0, 1}n, and two nodes are linked iff the bitstrings
differ by a single dimension. A number of observations can be
made here. First, the number of nodes grows as O(2n); which
makes the space rapidly intractable. Another interesting observa-
tion, better seen in the figures below, is that most of the space
lies ‘at the center’, at a distance of around n/2 from any given
vantage point.

sparse distributed memory 81

That is, the data is not written, or it is not read in a single address
spot, but in many addresses. These are called activated addresses, or
activated neurons.

The activation of addresses takes place according to their distances
from the datum. Suppose one is writing datum η at address ξ, then
all addresses inside a circle with center ξ and radius r are activated.
So, η will be stored in all these activated addresses, which are around
address ξ, such as in Figure 21. An address ξ ′ is inside the circle if its
Hamming distance to the center ξ is less than or equal to the radius
r, i.e. distance(ξ, ξ ′) 6 r.

⌘

Figure 21: Activated addresses inside access
radius r around the center address.

Every write or read in SDM memory activates a number of
addresses with close distance. The data is written in these activated
addresses or read from them. These issues will be addressed in due
detail further on, but a major difference from a traditional computer
memory is that the data are always stored and retrieved in a
multitude of addresses. This way SDM memory has robustness
against loss of addresses (e.g., death of a neuron).

In traditional memory, each datum is stored in an address and
every lookup of a specific datum requires a search through the
memory. In spite of computer scientists having developed beautiful
algorithms to perform fast searches, almost all of them do a precise
search. That is, if you have an imprecise clue of what you need,
these algorithms will simply fail.

In SDM, the data space is the same as the address space, which
amounts to a vectorial, binary space, that is, a {0, 1}n space. This way,
the addresses where the data will be written are the same as the data
themselves. For example, the datum η = 00101b ∈ {0, 1}5 will be
written to the address ξ = η = 00101b. If one chooses a radius of
1, the SDM will activate all addresses one bit away or less from the
center address. So, the datum 00101b will be written to the addresses
00101b, 10101b, 01101b, 00001b, 00111b, and 00100b.

In this case, when one needs to retrieve the data, one could have
an imprecise cue at most one bit away from η, since all addresses one

82 sparse distributed memory

bit away have η stored in themselves. Extending this train of thought
for larger dimensions and radius, exponential numbers of addresses
are activated and one can see why SDM is a distributed memory.

When reading a cue ηx that is x bits away from η, the cue shares
many addresses with η. The number of shared addresses decreases as
the cue’s distance to η increases, in other words, as x increases. This
is shown in Figure 22. The target datum η was written in all shared
addresses, thus they will bias the read output in the direction of η. If
the cue is sufficiently near the target datum η, the read output will
be closer to η than ηx was. Repeating the read operation increasingly
gets results closer to η, until it is precisely the same. So, it may be
necessary to perform more than one read operation to converge to
the target data η.

⌘ ⌘x

Figure 22: Shared addresses between the
target datum η and the cue ηx.

The addresses of the {0, 1}n space grow exponentially with the
number of dimensions n, i.e., N = 2n. For n = 100 we have
N ≈ 1030, which is incredibly large when related to computer
memory. Furthermore, Kanerva [104] suggests n between 100 and
10,000. Recently he has postulated 10,000 as a desirable minimum N

(personal communication). To solve the feasibility problem of
implementing this memory, Kanerva made a random sample of
{0, 1}n, in his work, having N ′ elements. All these addresses in the
sample are called hard locations. Other elements of {0, 1}n, not in N ′,
are called virtual neurons. This is represented in Figure 23. All
properties of reading and write operations presented before remain
valid but limited to hard locations. Kanerva suggests taking a
sample of about one million hard locations.

Using this sample of binary space, our data space does not exist
completely. That is, the binary space has 2n addresses, but the
memory is far away from having these addresses available. In fact,
only a fraction of this vectorial space is actually instantiated.
Following Kanerva’s suggestion of one million hard locations, for
n = 100, only 100 · 106/2100 = 7 · 10−23 percent of the whole space
exists, and for n = 1, 000 only 100 · 106/21000 = 7 · 10−294 percent.

sparse distributed memory 83

Kanerva also suggests the selection of a radius that will activate,
on average, one-thousandth of the sample, which is 1,000 hard
locations for a sample of one million addresses. In order to achieve
his suggestion, a 1,000-dimension memory uses an access radius
r = 451, and a 256-dimensional memory, r = 103. We think that a
256-dimensional memory may be important because it presents
conformity to Miller’s magic number [132].

N = {0, 1}n

N 0

⇠1

⇠2⇠3

virtual neurons

hard-locations

Figure 23: Hard-locations randomly sampled from binary space.

Since a cue ηx near the target bitstring η shares many hard
locations with η, SDM can retrieve data from imprecise cues. Despite
this feature, it is very important to know how imprecise this cue
could be while still giving accurate results. What is the maximum
distance from our cue to the original data that still retrieves the right
answer? An interesting approach is to perform a read operation with
a cue ηx, that is x bits away from the target η. Then measure the
distance from the read output and η. If this distance is smaller than x
we are converging. Convergence is simple to handle, just read again
and again, until it converges to the target η. If this distance is greater
than x we are diverging. Finally, if this distance equals x we are in a
tip-of-the-tongue process. A tip-of-the-tongue psychologically
happens when you know that you know, but you can’t say what
exactly it is. In SDM mathematical model, a tip-of-the-tongue
process takes infinite time to converge. Kanerva [104] called this x
distance, where the read’s output averages x, the critical distance.
Intuitively, it is the distance from which smaller distances converge
and greater distances diverge. In Figure 24, the circle has radius
equal to the critical distance and every ηx inside the circle should
converge. The figure also shows convergence in four readings.

The {0, 1}n space has N = 2n locations from which we instantiate
N ′ samples. Each location in our sample is called a hard location.
On these hard locations, we do operations of read and write. One of
the insights of SDM is exactly the way we read and write: using data
as addresses in a distributed fashion. Each datum η is written in
every activated hard location inside the access radius centered on
the address, that equals datum, ξ = η. Kanerva suggested using an

84 sparse distributed memory

⌘

⌘x⌘x,1

⌘x,2

⌘x,3

critical distance

Figure 24: In this example, four iterative readings were
required to converge from ηx to η.

η 0 1 1 0 1 0 0

ξbefore 6 -3 12 -1 0 2 4

⇓ -1 ⇓ +1 ⇓ +1 ⇓ -1 ⇓ +1 ⇓ -1 ⇓ -1

ξafter 5 -2 13 -2 1 1 3

Table 1: Write operation example in a 7-dimensional memory of data η being
written to ξ, one of the activated addresses.

access radius r having about one-thousandth of N ′. As an imprecise
cue ηx shares hard locations with the target bitstring η, it is possible
to retrieve η correctly. (Actually, probably more than one read is
necessary to retrieve exactly η.). Moreover, if some neurons are lost,
only a fraction of the datum is lost and it is possible that the
memory can still retrieve the right datum.

A random bitstring is generated with equal probability of 0’s and
1’s for each bit. One can readily see that the average distance between
two random bitstrings follows the binomial distribution with mean
n/2 and standard deviation

√
n/4. For a large n, most of the space

lies close to the mean and has fewer shared hard locations. As two
bitstrings with distance far from n/2 are very improbable, Kanerva
[104] defined that two bitstrings are orthogonal when their distance
is n/2.

The write operation needs to store, for each dimension bit which
happened more (0’s or 1’s). This way, each hard location has n
counters, one for each dimension. The counter is incremented for
each bit 1 and decremented for each bit 0. Thus, if the counter is
positive, there have been more 1’s than 0’s, if the counter is negative,
there have been more 0’s than 1’s, and if the counter is zero, there
have been an equal number of 1’s and 0’s. Table 1 shows an example
of a write operation being performed in a 7-dimensional memory.

The read is performed polling each activated hard location and
statistically choosing the most written bit for each dimension. It
consists of adding all n counters from the activated hard locations

12.1 neurons as pointers 85

and, for each bit, choosing bit 1 if the counter is positive, choosing
bit 0 if the counter is negative, and randomly choose bit 0 or 1 if the
counter is zero.

12.1 neurons as pointers

One interesting view is that neurons in SDM work like pointers. As
we write bitstrings in memory, the hard locations’ counters are
updated and some bits are flipped. Thus, the activated hard
locations do not necessarily point individually to the bitstring that
activated it, but together they point correctly. In other words, the
read operation depends on many hard locations to be successful.
This effect is represented in Figure 25: where all hard locations
inside the circle are activated and they, individually, do not point to
η. But, like vectors, adding them up points to η. If another datum ν

is written into the memory near η, the shared hard locations will
have information from both of them and would not point to either.
All hard locations outside of the circle are also pointing somewhere
(possibly other data points). This is not shown, however, in order to
keep the picture clean and easily understandable.

⌘

Figure 25: Hard-locations pointing, approximately, to the target bitstring.

12.2 concepts

Although Kanerva does not mention concepts directly in his book
[104], the author’s interpretation is that each bitstring may be
mapped to a concept. Thus, unrelated concepts are orthogonal and
concepts could be linked through a bitstring near both of them. For
example, “beauty” and “woman” have distance n/2, but a bitstring
that means “beautiful woman” could have distance n/4 to both of
them. As a bitstring with distance n/4 is very improbable, it is
linking those concepts together. Linhares et al. [132] approached this
concept via “chunking through averaging”.

86 sparse distributed memory

Due to the distribution of hard locations between two random
bitstrings, the vast majority of concepts is orthogonal to all others.
Consider a non-scientific survey during a cognitive science seminar,
where students asked to mention ideas unrelated to the course
brought up terms like birthdays, boots, dinosaurs, fever, executive
order, x-rays, and so on. Not only are the items unrelated to
cognitive science, the topic of the seminar, but they are also
unrelated to each other.

For any two memory items, one can readily find a stream of
thought relating two such items (“Darwin gave dinosaurs the boot”;
“she ran a fever on her birthday”; “isn’t it time for the Supreme
Court to x-ray that executive order?”, ... and so forth). Robert French
presents an intriguing example in which one suddenly creates a
representation linking the otherwise unrelated concepts of “coffee
cups” and “old elephants” [78].

This mapping from concepts to bitstrings brings us two central
questions: (i) Suppose we have a bitstring that is linking two major
concepts. How do we know which concepts are linked together? (ii)
From a concept bitstring, how can we list all concepts that are
somehow linked to it? This second question is called the problem of
spreading activation.

12.3 read operation

In his work, Kanerva proposed and analyzed a read algorithm called
here Kanerva’s read. His read takes all activated hard locations
counters and sum them. The resulting bitstring has bit 1 where the
result is positive, bit 0 where the result is negative, and a random bit
where the result is zero. In a word, each bit is chosen according to all
written bitstrings in all hard locations, being equal to the bit more
appeared. Table 2a shows an example of Kanerva’s read result
bitstring.

Daniel Chada, one member of our research group, proposed
another way to read in SDM, in this work called Chada’s read.
Instead of summing all hard location counters, each hard location
evaluates its resulting bitstring individually. Then, all resulting
bitstrings are summed again, and the same rule as Kanerva applies.
Table 2b shows an example of Chada’s read result bitstring. The
counter’s values are normalized to 1, for positive ones, or -1, for
negative ones, and the original values are the same as in Table 2a.

The main difference between Kanerva’s read and Chada’s is that,
in the former, a hard location that has more bitstrings written has
a greater weight in the decision of each bit. In the latter, all hard
locations have the same weight, because they can contribute to the
sum with only one bitstring.

12.3 read operation 87

It is important to say that Chada’s read came from Anwar and
Franklin [6] which gave a misguided description of the read
operation. The original description is the following:

With our datum distributively stored, the next question is
how to retrieve it. With this in mind, let us ask first how
one reads from a single hard location, x. Compute ζ, the
bit vector read at x, by assigning its ith bit the value 1 or
0 according to the ith counter at x is positive or negative.
Thus, each bit of ζ results from a majority rule decision of
all the data that have been written at x. [...] Knowing how
to read from a hard location allows us to read from any
of the 21000 arbitrary locations. Suppose ζ is any location.
The bit vector, ξ, to be read at ζ, [...] Put another way, pool
the bit vectors read from hard locations accessible from ζ,
and let each of their ith bits vote on the ith bit of ξ.
— Anwar and Franklin [6, p.342]

This fact just highlights how important it is to have a reference im-
plementation that one may read the code to clarify one’s understand-
ing about the details of each operation.

12.3.1 Generalized read operation

A member of my Master’s committee, Prof. Paulo Murilo1, has
proposed a generalized reading operation (personal
communication), which covers both Kanerva’s and Chada’s read —
and opens a new venue of potential discoveries. He proposed
summing all hard location counters raised to the power of z while
holding the original sign of the counter (positive or negative). Thus,
Kanerva’s read would be the same as z = 1, while Chada’s would be
the same as z = 0. Hence, we will here explore how SDM would
behave with other values of z, such as 0.5, 2, and 3. Mathematically,
let A be the set of the counters of the activated hard location, and ci
be the counter of the ith bit. Then,

si =
∑
c∈A

ci
|ci|

|ci|
z

Finally, the ith bit of the resulting bitstring is 1 if si > 0, or 0 if si <
0, or random if si = 0. Notice that when z = 1, then si =

∑
c∈A ci,

which is the Kanerva’s read; and when z = 0, then si = ci
|ci|

= sign(ci),
which is the Chada’s read.

1 Universidade Federal Fluminense’s Physics Professor Paulo Murilo

88 sparse distributed memory

ξ1 -2 12 4 0 -3

ξ2 -5 -4 2 8 -2

ξ3 -1 0 -1 -2 -1

ξ4 3 2 -1 3 1∑
-5 10 4 3 -5

⇓ ⇓ ⇓ ⇓ ⇓
0 1 1 1 0

(a) Kanerva’s read example

ξ1 -1 1 1 1 -3

ξ2 -1 -1 1 1 -1

ξ3 -1 1 -1 -1 -1

ξ4 1 1 -1 -1 1∑
-2 1 0 0 -2

⇓ ⇓ ⇓ ⇓ ⇓
0 1 1 1 0

(b) Chada’s read example

Table 2: Comparison of Kanerva’s read and Chada’s read. Each ξi is an acti-
vated hard location and the values come from their counters. Gray
cells’ value is obtained randomly with probability 50%.

12.4 critical distance

Kanerva describes the critical distance as the threshold of
convergence of a sequence of read words. It is “the distance beyond
which divergence is more likely than convergence”[104].
Furthermore, Kanerva explains that “a very good estimate of the
critical distance can be obtained by finding the distance at which the
arithmetic mean of the new distance to the target equals the old
distance to the target”[104]. In other words, the critical distance can
be equated as the edge to our memory, the limit of human
recollection.

In his book, Kanerva analyzed a specific situation with n = 1000

(N = 21000), 1 million hard locations (N ′ = 1, 000, 000), an
access-radius of 451 (within 1,000 hard locations in each circle), and
10 thousand writes of random bitstrings in the memory. As
computer resources were very poor those days, Kanerva couldn’t
make a more generic analysis.

Starting from the premise of SDM as a faithful model of human
short-term memory, a better understanding of the critical distance
may shed light on our understanding of the thresholds that bind our
own memory.

Figure 26 compares the critical distance behavior under different
scenarios. This replicates our previous results [28, 30] and is a first
part of the process of framework validation, to which we throw our
attention next.

12.4 critical distance 89

(a) Kanerva’s original model

(b) Chada’s read

Figure 26: How far, in Hamming distance, is a read item from the original
stored item? Kanerva demonstrated that, after a small number of
iterative readings (6 here), a critical distance behavior emerges.
Items read at close distance converge rapidly; whereas farther
items do not converge. Most striking is the point in which the
system displays the tip-of-tongue behavior. Described by psycho-
logical moments when some features of the item are prominent in
one’s thoughts, yet the item still cannot be recalled (but an addi-
tional cue makes convergence ‘immediate’). Mathematically, this
is the precise distance in which, despite having a relatively high
number of cues (correct bits) about the desired item, the time to
convergence is infinite. Heatmap colors display the Hamming dis-
tance the associative memory is able to cleanly converge to—or
not. In the x-axis, the distance from the desired item is displayed.
In the y-axis, we display the read operation’s behavior as the
number of items registered in the memory grows. These graphs
are computing intensive, yet they can be easily tested by readers
in our provided Jupyter notebooks. Note the different scales.

13
F R A M E W O R K A R C H I T E C T U R E

The framework implements the basic operations in a Sparse
Distributed Memory which may be used to create more complex
operations. It is developed in C language and the OpenCL parallel
framework — which may be loaded in many platforms and
programming languages — with a wrapper in Python. The Python
module makes it easy to create and execute simulations in a Sparse
Distributed Memory and works properly in Jupyter Notebook [118].
It works in both Python 2 and Python 3.

The SDM memory has been split into two parts: the hard location
addresses and the hard location counters. Thus, the addresses
(bitstrings) of the hard locations are stored in one array, while their
counters in another. This makes possible to create multiple SDMs
using the same address space, which would save computational
effort to scan a bitstring in all the SDMs — since they share the same
address space, the activated hard locations will be the same in all of
them. As the slowest part of reading and writing operations is
scanning the address space, the performance benefits are significant.

Each part may be stored either in the RAM memory or in a file. The
RAM memory is interesting for quick experiments, automated tests,
and others scenarios in which the SDM may be lost, while the file is
interesting for a long-term SDM, like creating an SDM file with 10,000

random writes, which will be copied over and over to run multiple
experiments. The file may also be sent to another researcher or may
be published within the paper to let others run their own checks and
verify the results. In summary, the framework fits many different uses
and necessities.

Let a SDM memory with n dimensions and H hard locations. Then,
in a 64-bit computer, the array of hard location addresses will use
H · 8 · dn/64e bytes of memory, and there will be H · n hard location
counters. For example, in a SDM memory with 1,000 dimensions and
1,000,000 hard locations, using 32-bit integers for the counters, the
array of addresses will use 122MB of memory and the counters will
use 3.8 GB of memory.

Basic operations were grouped into four sets: (i) for bitstrings, (ii)
for addresses, (iii) for counters, and (iv) for memories (SDMs).
Operations include creating new bitstrings, flipping bits, generating
a bitstring with a specific distance from a given bitstring, scanning
the address space using different algorithms, writing a bitstring to a
counter, writing in an SDM, reading from an SDM, and iteratively
reading from an SDM until convergence.

91

92 framework architecture

13.1 bitstring

Bitstrings are the main structure of SDM. The addresses are
represented in bitstrings, as well as the data. A bitstring is stored as
an array of integers. Each integer may be 16-bit, 32-bit, or 64-bit long,
depending on the configuration. By default, each integer is 64-bit
long.

For instance, a 1,000-bit bitstring will have d1000/64e = 16 integers.
These integers will have a total of 16 · 64 = 1, 024 bits. The remaining
24 bits are always zero, so they do not affect the result of any
operation. The memory usage efficiency is 1 − 24/1024 = 97.65%.
Bitstrings store neither how many bits they have nor the array length.
These pieces of information are only stored in the address space.

13.1.1 The distance between two bitstrings

The distance between two bitstrings is calculated by the Hamming
distance, which is the number of different bits between them. It is
calculated counting the number of ones in the exclusive or (xor)
between the bitstrings, i.e., d(x,y) = number of ones in x⊕ y.

There are several algorithms to calculate the number of ones [197],
but the performance depends on the processor. So, we have
implemented three different algorithms and one may be selected
through compiling flags. The default algorithm is to use a built-in
__popcnt() instruction from the compiler.

There is also the naive algorithm, which really counts the number
of ones checking bit by bit. It is available only for testing purposes
and should never be used.

The other algorithm available is the lookup. It pre-calculates a
table with the number of ones of all possible 16-bit integers. This
table is accessed a few times to calculate the number of ones of a
64-bit integer, i.e., to calculate the distance between two bitstrings, it
sums the distance of each 16-bit part of the bitstrings, i.e.,
d(x[0 : 63],y[0 : 63]) = d(x[0 : 15],y[0 : 15]) + d(x[16 : 31],y[16 :

31]) + d(x[32 : 47],y[32 : 47]) + d(x[48 : 63],y[48 : 63]) where
x[i : i+ 15] and y[i, i+ 15] are the 16-bit integers formed by the bits
between i and i+ 15 of x and y, respectively. Each 16-bit distance is
calculated through a single table access. As each distance is
calculated in O(1), this algorithm runs in O(dbits/16e). This table
uses 65MB of RAM. One may change the table from 16-bit integers
to 32-bit integers, which would halve the number of accesses at the
expense of 4GB of RAM (instead of 65MB).

13.2 address space 93

addr1 addr2 addr3 · · · addrH

addrk,1 addrk,2 addrk,3 · · · addrk,8·dn/64e

n bits

Figure 27: Address space’s bitstrings are stored in a contiguous array. In a
64-bit computer, each bitstring is stored in a sub-array of 64-bit
integers, with length 8 · dn/64e.

13.2 address space

An address space is a fixed collection of bitstrings, and each bitstring
represents a hard location address. They store the number of
bitstrings, as well as the number of bits, number of integers per
bitstring, and the number of remaining bits.

Bitstrings are stored in a contiguous array of 64-bit integers, as
shown in Figure 27. Hence, basic pointer arithmetic provides us with
performance improvements in their access, as processors realize
fetches of contiguous chunks of memory [156].

The scan for activated hard locations is performed in an address
space. It returns the indexes of the bitstrings which were inside the
circle (and their distances). Then, each operation uses these pieces of
information in a different way.

13.2.1 Scanning for activated hard locations

Scanning for the activated hard locations is a problem similar to well-
known problems in computational geometry called “range reporting
in higher dimensions”. In this case, none of the known algorithms
is able to solve our problem faster than O(H). The algorithm which
seems to best fit in our problem consumes O(H) space and runs in
O(logn(H)) [45], which is significantly slower than O(H) when, for
instance, H = 1, 000, 000 and n = 1, 000. For a review of the range
reporting algorithms, see Chan et al. [41].

In 2014, Norouzi et al. [151] published a solution to fast search in
hamming space which seems applicable to our problem. It provides
a fast search when r/n < 0.11 or r/n < 0.06, where r is the radius
and n is the number of bits. But, in our case, for a 1,000 bits SDM,
r/n = 0.451, which changes the runtime to O(H0.993). This is very
close to O(H), but with a larger constant. Unfortunately, O(H) is still
faster.

It is intriguing that none of those algorithms is able to solve our
scanning problem. The roughly idea behind those computational

94 framework architecture

geometry algorithms is to split the search space in half each step,
which would take O(log(H)) to go through the whole space. But this
approach does not work because of the high number of dimensions
(i.e., 1,000) and because the hard locations’ addresses are randomly
sampled from the {0, 1}n space. Although each addresses’ bit itself
splits the hard locations in half, it does not split the search space in
half since both halves still must be covered by the algorithm. For
instance, let’s say we have n = 1, 000 dimensions with H = 1, 000, 000
hard locations, and we are scanning within a circle with radius
r = 451, then after checking the first bit we have two cases: (i) for the
half with the same first bit, we must keep scanning with radius 451;
and (ii) for the half with a different first bit, we must keep scanning
with radius 450. Hence, the search space has not been split in half
because both halves have been covered (and one of them should
have been skipped).

Finally, as our best approach is to scan through all hard locations,
we may distribute the scan into many tasks which will be executed
independently. The tasks may be executed in different processes,
threads, or even computers. They may also run in the CPU or in the
GPU. In this case, we may take into account both the time required
to distribute the tasks and the time to receive their results.

The framework implements three main scanner algorithms: linear
scanner, thread scanner, and OpenCL scanner. The linear scanner
runs in a single core, is the slowest one, and was developed only for
testing purposes; the thread scanner runs at the CPU in multiple
threads sharing memory (and our recommendation is to use the
number of threads equals to twice the number of CPU cores); and
the OpenCL scanner runs in multiple GPU cores and support
multiple devices. The speed of a scan depends on the CPU and GPU
devices, thus the best approach to choose which scanner is best for
one’s setup is to run a benchmark.

The OpenCL must be initialized, which basically copies the
address space’s bitstrings to the GPU’s memory. Then, many scans
may be executed with no necessity to upload the bitstrings again.
The OpenCL scanner supports running on multiple devices.

13.2.2 OpenCL kernels

There are eight OpenCL kernels which differently explore the GPU
architecture to improve performance. It is necessary because there
are several GPU microarchitectures and a single kernel will never
be optimal for all of them. In simplified form, OpenCL splits the
tasks into workgroups which, in turn, split their part of the task into
workers. The works are like threads in a computer. OpenCL specifies
four levels of memory hierarchy for the GPUs: global memory, read-
only memory, local memory, and private memory. The global memory

13.3 counters 95

and read-only memory are accessible by all workgroups, while each
workgroup has its own local memory, shared by its workers. Finally,
each worker has its own private memory. The number of workers per
workgroup is defined by user and must be multiple of the number of
tasks.

All eight kernels do the same thing: calculate the exclusive OR
(XOR) between two 64-bit integers and count the number of bits one
in the result. They just do it with different approaches. For instance,
single_scan0 calculates one distance between bitstrings per worker
(Listing 1); while single_scan2 uses a whole workgroup to calculate
each distance, distributing each element of the 64-bit integer array
per worker (Listing 3).

The OpenCL kernels single_scan3 (Listing 4), single_scan4

(Listing 5), single_scan5 (Listing 6), single_scan5_unroll (Listing 7),
single_scan6 (Listing 8) explore the GPU architecture to improve the
sum of the partial distances. Each workgroup calculates the distance
of several bitstrings. During the distance calculation, each worker
calculates the exclusive OR (XOR) between two 64-bit integers and
use the built-in popcount function to count the number of ones.
Then, they update an array of partial distances with their results.
This array is stored in the local memory and is shared between all
workers of the same workgroup. This whole step happens
simultaneously in the GPU. Then, a reduction algorithm is used to
sum the partial distances array in order to calculate the total
distance. This reduction algorithm is also distributed among the
workers and runs in O(log2(bs_step)). Finally, the first worker of
each workgroup checks whether the distance is less than or equal to
the radius to include the bitstring index into the resulting array.

Some of the optimizations may not work in some GPUs because
not all their premises are valid. Before choosing a kernel, one should
check whether it works property for one’s specific GPU device.

13.3 counters

A counter is an array of integers which stores the data of all hard
locations. Each hard location has one integer of data per bit. For
instance, each hard location of a 1,000 bits SDM has 1,000 integers,
totalizing 1,000,000 integers. Those integers are stored in a counter.
So, the counter’s array has n ·H integers.

When two counters are added in a third counter, there may occur
an overflow. It is not supposed to be a problem because, by default,
each counter is a signed 32-bit integer that can store any number
between -2,147,483,648 and 2,147,483,647, which means they will not
overflow with fewer writes than 231 − 1 divided by the average
number of activated hard locations. For instance, when n = 1, 000,
H = 1, 000, 000, and r = 451, the average number of activated hard

96 framework architecture

1 __kernel

2 void single_scan0(

3 __constant const uchar *bitcount_table,

4 __global const ulong *bitstrings,

5 const uint bs_len,

6 const uint sample,

7 __constant const ulong *bs,

8 const uint radius,

9 __global uint *counter,

10 __global uint *selected,

11 __local uint *partial_dist)

12 {

13 uint id = get_global_id(0);

14

15 if (id < sample) {

16 ulong a;

17 uint dist;

18

19 const __global ulong *row = bitstrings + id*bs_len;

20

21 dist = 0;

22 for(uint j=0; j<bs_len; j++) {

23 a = row[j] ^ bs[j];

24 dist += popcount(a);

25 }

26 if (dist <= radius) {

27 selected[atomic_inc(counter)] = id;

28 }

29 }

30 }

Listing 1: OpenCL kernel single_scan0. It calculates one distance per
worker and lets the GPU decide how to distribute this task be-
tween workgroups and workers. It is the most straightforward
kernel and does not explore any details of the GPU architecture.

13.3 counters 97

1 __kernel

2 void single_scan1(

3 __constant const uchar *bitcount_table,

4 __global const ulong *bitstrings,

5 const uint bs_len,

6 const uint sample,

7 __constant const ulong *bs,

8 const uint radius,

9 __global uint *counter,

10 __global uint *selected,

11 __local uint *partial_dist)

12 {

13 uint id;

14 ulong a;

15 uint dist;

16 const __global ulong *row;

17

18 for (id=get_global_id(0); id < sample; id += get_global_size(0)) {

19

20 row = bitstrings + id*bs_len;

21

22 dist = 0;

23 for(uint j=0; j<bs_len; j++) {

24 a = row[j] ^ bs[j];

25 dist += popcount(a);

26 }

27 if (dist <= radius) {

28 selected[atomic_inc(counter)] = id;

29 }

30

31 }

32 }

Listing 2: OpenCL kernel single_scan1. It is just like single_scan0, but it
distributes several distances per workgroup, which, in turn, dis-
tributes the distances among their workers.

98 framework architecture

1 __kernel

2 void single_scan2(

3 __constant const uchar *bitcount_table,

4 __global const ulong *bitstrings,

5 const uint bs_len,

6 const uint sample,

7 __constant const ulong *bs,

8 const uint radius,

9 __global uint *counter,

10 __global uint *selected,

11 __local uint *partial_dist)

12 {

13 uint dist;

14 ulong a;

15 uint j;

16

17 for (uint id = get_group_id(0); id < sample; id += get_num_groups(0)) {

18

19 const __global ulong *row = bitstrings + id*bs_len;

20

21 dist = 0;

22 j = get_local_id(0);

23 if (j < bs_len) {

24 a = row[j] ^ bs[j];

25 dist += popcount(a);

26 }

27 partial_dist[get_local_id(0)] = dist;

28

29 barrier(CLK_LOCAL_MEM_FENCE);

30

31 if (get_local_id(0) == 0) {

32 dist = 0;

33 for(uint t = 0; t < bs_len; t++) {

34 dist += partial_dist[t];

35 }

36 if (dist <= radius) {

37 selected[atomic_inc(counter)] = id;

38 }

39 }

40

41 barrier(CLK_LOCAL_MEM_FENCE);

42 }

43 }

Listing 3: OpenCL kernel single_scan2. It calculates one distance per work-
group, distributing each 64-bit integer operation per worker, and
then summing the results obtained by the workers. The sum algo-
rithm is done by only the first worker of each workgroup.

13.3 counters 99

1 __kernel

2 void single_scan3(

3 __constant const uchar *bitcount_table,

4 __global const ulong *bitstrings,

5 const uint bs_len,

6 const uint sample,

7 __constant const ulong *bs,

8 const uint radius,

9 __global uint *counter,

10 __global uint *selected,

11 __local uint *partial_dist)

12 {

13 uint dist;

14 ulong a;

15 uint j;

16

17 for (uint id = get_group_id(0); id < sample; id += get_num_groups(0)) {

18

19 const __global ulong *row = bitstrings + id*bs_len;

20

21 dist = 0;

22 j = get_local_id(0);

23 if (j < bs_len) {

24 a = row[j] ^ bs[j];

25 dist = popcount(a);

26 }

27 partial_dist[get_local_id(0)] = dist;

28

29 // Parallel reduction to sum all partial_dist array.

30 for(uint stride = get_local_size(0)/2; stride > 0; stride /= 2) {

31 barrier(CLK_LOCAL_MEM_FENCE);

32 if (get_local_id(0) < stride) {

33 partial_dist[get_local_id(0)] +=

34 partial_dist[get_local_id(0) + stride];

35 }

36 }

37

38 if (get_local_id(0) == 0) {

39 if (partial_dist[0] <= radius) {

40 selected[atomic_inc(counter)] = id;

41 }

42 }

43

44 barrier(CLK_LOCAL_MEM_FENCE);

45 }

46 }

Listing 4: OpenCL kernel single_scan3. It calculates one distance per work-
group, distributing each 64-bit integer operation per worker,
and then summing the results obtained by the workers. The
sum algorithm is a parallel reduction, in which the work-
ers split the array into two parts and sum the second part
in the first part every loop. So, the sum is calculated in
O(log2(number of workers per workgroup)). This kernel only
works when the number of workers per workgroup is a power-
of-2.

100 framework architecture

1 __kernel

2 void single_scan4(

3 __constant const uchar *bitcount_table,

4 __global const ulong *bitstrings,

5 const uint bs_len,

6 const uint sample,

7 __constant const ulong *bs,

8 const uint radius,

9 __global uint *counter,

10 __global uint *selected,

11 __local uint *partial_dist)

12 {

13 uint dist;

14 ulong a;

15 uint j;

16

17 for (uint id = get_group_id(0); id < sample; id += get_num_groups(0)) {

18

19 const __global ulong *row = bitstrings + id*bs_len;

20

21 dist = 0;

22 j = get_local_id(0);

23 if (j < bs_len) {

24 a = row[j] ^ bs[j];

25 dist = popcount(a);

26 }

27 partial_dist[get_local_id(0)] = dist;

28

29 uint old_stride = get_local_size(0);

30 __local uint extra;

31 extra = 0;

32 for(uint stride = get_local_size(0)/2; stride > 0; stride /= 2) {

33 barrier(CLK_LOCAL_MEM_FENCE);

34 if ((old_stride&1) == 1 && get_local_id(0) == old_stride-1) {

35 extra += partial_dist[get_local_id(0)];

36 }

37 if (get_local_id(0) < stride) {

38 partial_dist[get_local_id(0)] +=

39 partial_dist[get_local_id(0) + stride];

40 }

41 old_stride = stride;

42 }

43

44 if (get_local_id(0) == 0) {

45 if (partial_dist[0] + extra <= radius) {

46 selected[atomic_inc(counter)] = id;

47 }

48 }

49

50 barrier(CLK_LOCAL_MEM_FENCE);

51 }

52 }

Listing 5: OpenCL kernel single_scan4. This kernel is just like
single_scan3, but it works with any number of workers
per workgroup. The tradeoff is that it includes an aditional step
in the parallel reduction algorithm.

13.3 counters 101

1 __kernel

2 void single_scan5(

3 __constant const uchar *bitcount_table,

4 __global const ulong *bitstrings,

5 const uint bs_len,

6 const uint sample,

7 __constant const ulong *bs,

8 const uint radius,

9 __global uint *counter,

10 __global uint *selected,

11 __local uint *partial_dist)

12 {

13 uint dist;

14 ulong a;

15 uint j;

16

17 for (uint id = get_group_id(0); id < sample; id += get_num_groups(0)) {

18 const __global ulong *row = bitstrings + id*bs_len;

19

20 dist = 0;

21 j = get_local_id(0);

22 if (j < bs_len) {

23 a = row[j] ^ bs[j];

24 dist = popcount(a);

25 }

26 partial_dist[get_local_id(0)] = dist;

27

28 uint stride;

29 for(stride = get_local_size(0)/2; stride > 32; stride /= 2) {

30 barrier(CLK_LOCAL_MEM_FENCE);

31 if (get_local_id(0) < stride) {

32 partial_dist[get_local_id(0)] +=

33 partial_dist[get_local_id(0) + stride];

34 }

35 }

36 barrier(CLK_LOCAL_MEM_FENCE);

37 for(/**/; stride > 0; stride /= 2) {

38 if (get_local_id(0) < stride) {

39 partial_dist[get_local_id(0)] +=

40 partial_dist[get_local_id(0) + stride];

41 }

42 }

43

44 if (get_local_id(0) == 0) {

45 if (partial_dist[0] <= radius) {

46 selected[atomic_inc(counter)] = id;

47 }

48 }

49 barrier(CLK_LOCAL_MEM_FENCE);

50 }

51 }

Listing 6: OpenCL kernel single_scan5. This kernel is just like
single_scan3, but it explores one more detail of many GPU
microarchitecture: the size of the warp. As the workers in the
same warp are always synchronized, there is no need to sync
them using a barrier. This specific kernel only works when the
number of workers per workgroup is a power-of-2.

102 framework architecture

1 __kernel

2 void single_scan5_unroll(

3 __constant const uchar *bitcount_table,

4 __global const ulong *bitstrings,

5 const uint bs_len,

6 const uint sample,

7 __constant const ulong *bs,

8 const uint radius,

9 __global uint *counter,

10 __global uint *selected,

11 __local uint *partial_dist)

12 {

13 uint dist;

14 ulong a;

15 uint j;

16

17 for (uint id = get_group_id(0); id < sample; id += get_num_groups(0)) {

18 const __global ulong *row = bitstrings + id*bs_len;

19

20 dist = 0;

21 j = get_local_id(0);

22 if (j < bs_len) {

23 a = row[j] ^ bs[j];

24 dist = popcount(a);

25 }

26 partial_dist[get_local_id(0)] = dist;

27

28 for(uint stride = get_local_size(0)/2; stride > 32; stride /= 2) {

29 barrier(CLK_LOCAL_MEM_FENCE);

30 if (get_local_id(0) < stride) {

31 partial_dist[get_local_id(0)] += partial_dist[get_local_id(0) + stride];

32 }

33 }

34

35 // We do not need to sync because they all run in the same warp.

36 if (get_local_id(0) < 32 && get_local_size(0) >= 64) {

37 partial_dist[get_local_id(0)] += partial_dist[get_local_id(0) + 32];

38 }

39 if (get_local_id(0) < 16 && get_local_size(0) >= 32) {

40 partial_dist[get_local_id(0)] += partial_dist[get_local_id(0) + 16];

41 }

42 if (get_local_id(0) < 8 && get_local_size(0) >= 16) {

43 partial_dist[get_local_id(0)] += partial_dist[get_local_id(0) + 8];

44 }

45 if (get_local_id(0) < 4 && get_local_size(0) >= 8) {

46 partial_dist[get_local_id(0)] += partial_dist[get_local_id(0) + 4];

47 }

48 if (get_local_id(0) < 2 && get_local_size(0) >= 4) {

49 partial_dist[get_local_id(0)] += partial_dist[get_local_id(0) + 2];

50 }

51

52 if (get_local_id(0) == 0) {

53 partial_dist[0] += partial_dist[1];

54 if (partial_dist[0] <= radius) {

55 selected[atomic_inc(counter)] = id;

56 }

57 }

58 barrier(CLK_LOCAL_MEM_FENCE);

59 }

60 }

Listing 7: OpenCL kernel single_scan5_unroll. This kernel is exactly like
single_scan5, but it unrolls the last for since it has at most 5 loops.

13.3 counters 103

1 __kernel

2 void single_scan6(

3 __constant const uchar *bitcount_table,

4 __global const ulong *bitstrings,

5 const uint bs_len,

6 const uint sample,

7 __constant const ulong *bs,

8 const uint radius,

9 __global uint *counter,

10 __global uint *selected,

11 __local uint *partial_dist)

12 {

13 uint dist;

14 ulong a;

15 uint j;

16

17 for (uint id = get_group_id(0); id < sample; id += get_num_groups(0)) {

18 const __global ulong *row = bitstrings + id*bs_len;

19

20 dist = 0;

21 j = get_local_id(0);

22 if (j < bs_len) {

23 a = row[j] ^ bs[j];

24 dist = popcount(a);

25 }

26 partial_dist[get_local_id(0)] = dist;

27

28 uint old_stride = get_local_size(0);

29 uint stride;

30 __local uint extra;

31 extra = 0;

32 for(stride = get_local_size(0)/2; stride > 32; stride /= 2) {

33 barrier(CLK_LOCAL_MEM_FENCE);

34 if ((old_stride&1) == 1 && get_local_id(0) == old_stride-1) {

35 extra += partial_dist[get_local_id(0)];

36 }

37 if (get_local_id(0) < stride) {

38 partial_dist[get_local_id(0)] +=

39 partial_dist[get_local_id(0) + stride];

40 }

41 old_stride = stride;

42 }

43 barrier(CLK_LOCAL_MEM_FENCE);

44 for(/**/; stride > 0; stride /= 2) {

45 if ((old_stride&1) == 1 && get_local_id(0) == old_stride-1) {

46 extra += partial_dist[get_local_id(0)];

47 }

48 if (get_local_id(0) < stride) {

49 partial_dist[get_local_id(0)] +=

50 partial_dist[get_local_id(0) + stride];

51 }

52 old_stride = stride;

53 }

54

55 if (get_local_id(0) == 0) {

56 if (partial_dist[0] + extra <= radius) {

57 selected[atomic_inc(counter)] = id;

58 }

59 }

60 barrier(CLK_LOCAL_MEM_FENCE);

61 }

62 }

Listing 8: OpenCL kernel single_scan6. This kernel is just like single_scan5, but
it works with any number of workers per work. The tradeoff is an
additional step in the parallel reduction algorithm.

104 framework architecture

locations is 1,000 and it would require at least one million writes
before any overflow is possible. Note also that it would be more
likely to saturate the memory before any overflow.

Anyway, counters may have overflow protection depending on
compiling options. By default, there is no overflow check for
performance reasons (and because it does not seem necessary).

13.4 read and write operations

The reading and writing operations are executed in two steps: first,
the address space is swept looking for the activated addresses; then,
the operation is performed in the counters. Reading operation
assemblies the bitstring according to the counters of the activated
addresses, while the writing operation changes the counters.

The iterated reading keeps reading until it gets exactly the same
bitstring (or the number of maximum interactions has been reached),
i.e., it performs ηi+1 = read(ηi) and stops when ηk+1 = ηk. If the
initial bitstring is inside the critical distance of η, it will converge to
η, but, if it is not, it will diverge and reach the maximum number of
iterations.

The framework has both Kanerva’s read and Murilo’s generalized
read. The generalization brings a parameter z, which is the exponent.
In this case, the results are floating points instead of integers, which
considerably reduces performance. When z = 1, it is precisely as the
Kanerva’s read. When z = 0, it is the Chada’s read. We also explored
how SDM would behave for different values of z.

There is another particular read operation: the weighted reading.
In the weighted reading, the value of the counters is multiplied by
a weight which depends only on the distance between the reading
address and the hard location address. The weight is retrieved from
a lookup table of integers indexed by the distance. The remaining of
the read operation is just the same.

There is also a weighted writing operation. In this case, the weight
is applied when the counters are updated, i.e., if the weight is 2, the
counters are increased twice when bits are 1, and decreased twice
when bits are 0. Just as in the weighted reading, the weights depend
only on the distance between the writing address and the hard
location address. The weights are retrieved from a lookup table of
integers indexed by the distance.

14
R E S U LT S (I) : P E R F O R M A N C E

Performance matters. A framework that does not offer cutting-edge
performance is not valuable. If an experiment takes a few seconds,
there is no point arguing whether we should try it. If it takes a few
hours, maybe we should think first. If it takes a few days — or more
—, it is important to devise a good plan. As SDM consumes large
processor and memory resources, some experiments may take a long
time.

Each scan on a 1,000-bits SDM with 1,000,000 hard locations
executes 109 bit compares through 109/64 = 15, 625, 000 XORs and
calls to the built-in popcount. So, 10,000 writes execute 1013 bit
compares, while a 6-iterative reading executes 6 · 1012 bit compares.
The heatmap of Figure 26a executed 3.05 · 1015 bit compares. For
comparison, the number of seconds since Jesus’s birth is
63,639,648,000 = 6.36 · 1010. The number of people who have ever
lived on earth is estimated to be 1, 08 · 1011. There are approximately
1.8 · 109 websites on the internet. A modern laptop can increment a
counter 5 · 108 times per second. Hence, a naive implementation of
SDM may take several hours — or days — to simply write 10,000

random bitstrings.
Amazon EC2 p3.2xlarge has generated the heatmap of Figure 26a

in 15 minutes and 3 seconds. It has compared 3.37 · 1012 bits per
second through 52.6 · 109 = 52.6 billion XORs and popcounts per
second. It is a 60-fold improvement over the first versions of the
code which took 16 hours to generate the same heatmap (and its
memory use was already optimized and the computations were
distributed in threads).

We have created a benchmark to be able to compare the
performance of different devices. So, the same performance test was
executable in our devices, with results reported in tables and figures.
The benchmark has 3 parts: (i) the first part consists of comparing
the available OpenCL kernels to find which works best for that
device; than (ii) the second part consists of comparing the linear
scanner, the thread scanner, and the OpenCL scanners with the best
kernel found in part one; finally, (iii) the third part consists of
comparing read and write operations using the thread scanner and
the OpenCL scanner with the best kernel. Each part was run for
three SDM setups: (i) n = 1, 000, r = 451, and H = 1, 000, 000; (ii)
n = 256, r = 103, and H = 1, 000, 000; and (iii) n = 10, 000, r = 4850,
and H = 1, 000, 000. The whole source code is available in the

105

106 results (i): performance

“Performance test” notebook [29]. We would like to invite the reader
to run this benchmark and, if possible, share the results.

Our first device was a personal MacBook Pro Retina 13-inch Late
2013 with a 2.6GHz Intel core i5 processor, 6GB DDR3 RAM, and In-
tel Iris GPU. It was not possible to run the 10,000-bits on this device
because there was no memory available — it needs 37.25 GB of mem-
ory. For its results, see Table 3

Our second device was an iMac Retina 5K 27-inch 2017 with a
3.8GHz Intel core i5 processor, 8GB DDR4 RAM, and a Radeon Pro
580 8G CPU. For its results, see Table 4.

Beyond that, we were also running in state-of-the-art devices: (i)
an Amazon EC2 p2.xlarge with Intel Xeon E5-2686v4 processor, 61GB
DDR3 RAM, and NVIDIA K80 GPU (see Table 5), and (ii) an Amazon
EC2 p3.2xlarge with Intel Xeon E5-2686v4 processor, 488GB DDR3

RAM, and NVIDIA Tesla V100 GPU (see Table 6).

14.1 kernels comparison

OpenCL is a framework for writing software that executes in heteroge-
neous devices [144], like CPUs, GPUs, FPGA and other co-processors
for hardware acceleration. Because they are heterogeneous, they may
differ a lot in architecture and performance, which means there is no
one-size-fits-all kernel. A kernel is generally a small function on the
code that runs in thousands of parallel threads, executing the same
steps on different parts of a large vector or matrix. The slower kernel
for one device may be the fastest for another device, as we will see
happening in our case.

A total of 8 kernels have been developed for benchmarking in our
framework: single_scan0, single_scan1, single_scan2, single_scan3,
single_scan4, single_scan5, single_scan5_unroll, and single_scan6.
Each scan uses a different algorithm to do exactly the same thing:
calculate which hard locations are inside the circle of the given
bitstring. They differ in how they split the work between
work-groups and how they explore the GPU architecture to obtain
performance gains.

The difference in which kernel is the best also depends on the SDM
setup. The best kernel for the 1,000-bits SDM in the iMac 2017 was
single_scan5_unroll with average scan time of 3.61ms; but, for the 256-
bits SDM in the same device, it was single_scan0 with average scan
time of 3.03ms; while, for the 10,000-bits SDM in the same device, it
was single_scan6 with 10.96ms (see Table 4).

We recommend users to run a specific kernel comparison test for
their own GPU and SDM settings. This is available in the Jupyter
notebooks.

14.2 scanners comparison 107

14.2 scanners comparison

In this section, we are comparing the OpenCL scanner (with the best
kernel) with the linear scanner and the threads scanner. Again,
which one is faster depends on the SDM settings. In the iMac 2017,
the fastest scanner for a 1,000-bits SDM was the OpenCL scanner
with single_scan5_unroll, but, for a 256-bit SDM, it was the threads
scanner.

What happened here is that the OpenCL kernel chosen was a
generic one which performs the scan for any SDM. It is always
possible to optimize the OpenCL kernel to a specific setting, and it
would be faster than the threads. By default, the framework chooses
a generic kernel which we believe would be reasonable for the most
common setups.

We can notice that Amazon EC2 p3.2xlarge and p2.xlarge’s linear
and thread scanners, both running on CPU, were much slower than
the CPU of both the personal MacBook Pro and the iMac 2017. As
Amazon EC2 are virtual machines with GPU devices, their CPU is
shared with other virtual machines which significantly reduces CPU
power. Hence, for both virtual machines we have tested, using the
GPU seriously boosts performance, but using the CPU should be
avoided (see Table 4)

14.3 read and write operations

Even though scanning is an important part of the operations, we are
really interested in the performance of the entirety of operations
themselves. Comparing the times of the thread and OpenCL
scanners with the times of their respective operations (either read or
write), we can notice that their difference remains almost constant,
which means the operation time itself is negligible when compared
to the scan time. In other words, in order to gain even more
performance, we have to pursue ways to improve the scan.

14.3.1 Summary of results

The results, beyond showing the obvious fact that consumer grade
hardware is not comparable to the Amazon instances, indicate a non-
trivial issue: The chosen kernel for scanning the memory is of crucial
importance to performance, and this kernel speed is a function of
both the hardware used and the particular parameters used in the
SDM settings.

It is reasonable to consider that the performance results obtained
are of particular merit, and one particular fact stands out: The
scanning of 1,000,000 hard locations has become, in the desired

108 results (i): performance

256 bits 1,000 bits 10,000 bits

Kernel Duration (ms) Duration (ms) Duration (ms)

single_scan0 8.36 23.60

single_scan1 10.43 13.22

single_scan2 23.48 47.28

single_scan3 25.51 33.06

single_scan4 42.39 40.32

single_scan5 24.42 31.51

single_scan5_unroll 22.77 27.55

single_scan6 42.18 39.48

Scanner Duration (ms) Duration (ms) Duration (ms)

Linear scan 9.07 17.98

Thread scan 5.14 10.17

OpenCL scan 8.05 12.35

Operation Duration (ms) Duration (ms) Duration (ms)

Thread write 6.72 14.13

Thread single read 5.88 11.12

OpenCL write 6.39 18.55

OpenCL single read 5.26 13.06

Table 3: MacBook Pro Retina 13-inch Late 2013 with a 2.6GHz Intel core i5
processor, 6GB DDR3 RAM, and Intel Iris GPU. The SDM settings
were: (i) n = 256, r = 103, and H = 1, 000, 000; (ii) n = 1, 000,
r = 451, and H = 1, 000, 000; and (iii) n = 10, 000, r = 4850, and H =

1, 000, 000. There is no benchmark for n = 10, 000 because memory
is not enough on either RAM or GPU—it would consume 37.25 GB
of RAM and 1.2GB of memory in the GPU. For the histogram of
durations, see Figures 28, 29, 30, and 31.

professional-grade machines, faster than the updating of the 1,000

active locations.

14.3 read and write operations 109

(a) n = 256, r = 103, and H = 1, 000, 000

(b) n = 1, 000, r = 451, and H = 1, 000, 000

Figure 28: Kernel comparisons for MacBook Pro Retina 13-inch Late 2013

with a 2.6GHz Intel core i5 processor, 6GB DDR3 RAM, and Intel
Iris GPU.

110 results (i): performance

(a) n = 1, 000, r = 451, and H = 1, 000, 000

(b) n = 1, 000, r = 451, and H = 1, 000, 000

Figure 29: Scanner comparisons for MacBook Pro Retina 13-inch Late 2013

with a 2.6GHz Intel core i5 processor, 6GB DDR3 RAM, and Intel
Iris GPU.

14.3 read and write operations 111

(a) n = 1, 000, r = 451, and H = 1, 000, 000

(b) n = 1, 000, r = 451, and H = 1, 000, 000

Figure 30: Read operation comparisons for MacBook Pro Retina 13-inch Late
2013 with a 2.6GHz Intel core i5 processor, 6GB DDR3 RAM, and
Intel Iris GPU.

112 results (i): performance

(a) n = 1, 000, r = 451, and H = 1, 000, 000

(b) n = 1, 000, r = 451, and H = 1, 000, 000

Figure 31: Write operation comparisons for MacBook Pro Retina 13-inch
Late 2013 with a 2.6GHz Intel core i5 processor, 6GB DDR3 RAM,
and Intel Iris GPU.

14.3 read and write operations 113

256 bits 1,000 bits 10,000 bits

Kernel Duration (ms) Duration (ms) Duration (ms)

single_scan0 3.03 5.00 61.06

single_scan1 2.87 3.95 44.96

single_scan2 3.82 4.57 44.98

single_scan3 3.72 3.68 12.67

single_scan4 4.48 4.04 11.45

single_scan5 3.76 3.72 12.58

single_scan5_unroll 3.79 3.61 11.37

single_scan6 4.36 4.02 10.96

Scanner Duration (ms) Duration (ms) Duration (ms)

Linear scan 5.04 12.25 116.38

Thread scan 2.92 6.95 53.56

OpenCL scan 2.81 4.20 12.95

Operation Duration (ms) Duration (ms) Duration (ms)

Thread write 3.28 13.34

Thread single read 2.55 10.39

OpenCL write 2.64 7.90

OpenCL single read 2.14 5.25

Table 4: iMac Retina 5K 27-inch 2017 with a 3.8GHz Intel core i5 processor,
8GB DDR4 RAM, and a Radeon Pro 580 8G GPU. The SDM set-
tings were: (i) n = 256, r = 103, and H = 1, 000, 000; (ii) n = 1, 000,
r = 451, and H = 1, 000, 000; and (iii) n = 10, 000, r = 4850, and
H = 1, 000, 000. There is no benchmark for read and write opera-
tions with n = 10, 000 because RAM is not enough to allocate the
counters—it would consume 37.25 GB of RAM. For the histogram
of durations, see Figures 32, 33, 34, and 35.

114 results (i): performance

(a) n = 256, r = 103, and H = 1, 000, 000

(b) n = 1, 000, r = 451, and H = 1, 000, 000

(c) n = 10, 000, r = 4805, and H = 1, 000, 000

Figure 32: Kernel comparisons for iMac Retina 5K 27-inch 2017 with a
3.8GHz Intel core i5 processor, 8GB DDR4 RAM, and a Radeon
Pro 580 8G GPU.

14.3 read and write operations 115

(a) n = 1, 000, r = 451, and H = 1, 000, 000

(b) n = 1, 000, r = 451, and H = 1, 000, 000

(c) n = 10, 000, r = 4805, and H = 1, 000, 000

Figure 33: Scanner comparisons for iMac Retina 5K 27-inch 2017 with a
3.8GHz Intel core i5 processor, 8GB DDR4 RAM, and a Radeon
Pro 580 8G GPU.

116 results (i): performance

(a) n = 1, 000, r = 451, and H = 1, 000, 000

(b) n = 1, 000, r = 451, and H = 1, 000, 000

Figure 34: Read operation comparisons for iMac Retina 5K 27-inch 2017

with a 3.8GHz Intel core i5 processor, 8GB DDR4 RAM, and a
Radeon Pro 580 8G GPU.

14.3 read and write operations 117

(a) n = 1, 000, r = 451, and H = 1, 000, 000

(b) n = 1, 000, r = 451, and H = 1, 000, 000

Figure 35: Write operation comparisons for iMac Retina 5K 27-inch 2017

with a 3.8GHz Intel core i5 processor, 8GB DDR4 RAM, and a
Radeon Pro 580 8G GPU.

118 results (i): performance

256 bits 1,000 bits 10,000 bits

Kernels Duration (ms) Duration (ms) Duration (ms)

single_scan0 0.76 3.79 35.45

single_scan1 0.80 3.94 57.80

single_scan2 5.59 8.54 63.71

single_scan3 6.31 9.73 39.92

single_scan4 10.29 11.38 45.49

single_scan5 6.69 9.95 43.51

single_scan5_unroll

single_scan6 10.29 11.33 41.42

Scanners Duration (ms) Duration (ms) Duration (ms)

Linear scan 19.09 64.73 600.75

Thread scan 9.95 32.81 296.56

OpenCL scan 6.88 10.67 46.73

Operations Duration (ms) Duration (ms) Duration (ms)

Thread write 11.80 42.64 383.50

Thread single read 10.49 35.37 307.97

OpenCL write 8.84 19.31 122.17

OpenCL single read 7.50 11.72 55.47

Table 5: Amazon EC2 p2.xlarge with Intel Xeon E5-2686v4 processor, 61GB
DDR3 RAM, and NVIDIA K80 GPU. Running an SDM with n =

256 bits, H = 1, 000, 000, and r = 103. The SDM settings were: (i)
n = 256, r = 103, and H = 1, 000, 000; (ii) n = 1, 000, r = 451, and
H = 1, 000, 000; and (iii) n = 10, 000, r = 4850, and H = 1, 000, 000.
There is no benchmark for kernel single_scan5_unroll because it
returns the wrong result in this GPU. The problem is related to the
premises of the optimization used by this kernel, which are not true
for this GPU. For the histogram of durations, see Figures 36, 33, 34,
and 35.

14.3 read and write operations 119

(a) n = 256, r = 103, and H = 1, 000, 000

(b) n = 1, 000, r = 451, and H = 1, 000, 000

(c) n = 10, 000, r = 4805, and H = 1, 000, 000

Figure 36: Kernel comparisons for Amazon EC2 p2.xlarge with Intel Xeon
E5-2686v4 processor, 61GB DDR3 RAM, and NVIDIA K80 GPU.

120 results (i): performance

(a) n = 1, 000, r = 451, and H = 1, 000, 000

(b) n = 1, 000, r = 451, and H = 1, 000, 000

(c) n = 10, 000, r = 4805, and H = 1, 000, 000

Figure 37: Scanner comparisons for Amazon EC2 p2.xlarge with Intel Xeon
E5-2686v4 processor, 61GB DDR3 RAM, and NVIDIA K80 GPU.

14.3 read and write operations 121

(a) n = 1, 000, r = 451, and H = 1, 000, 000

(b) n = 1, 000, r = 451, and H = 1, 000, 000

(c) n = 10, 000, r = 4805, and H = 1, 000, 000

Figure 38: Read operation comparisons for Amazon EC2 p2.xlarge with In-
tel Xeon E5-2686v4 processor, 61GB DDR3 RAM, and NVIDIA
K80 GPU.

122 results (i): performance

(a) n = 1, 000, r = 451, and H = 1, 000, 000

(b) n = 1, 000, r = 451, and H = 1, 000, 000

(c) n = 10, 000, r = 4805, and H = 1, 000, 000

Figure 39: Write operation comparisons for Amazon EC2 p2.xlarge with In-
tel Xeon E5-2686v4 processor, 61GB DDR3 RAM, and NVIDIA
K80 GPU.

14.3 read and write operations 123

256 bits 1,000 bits 10,000 bits

Kernel Duration (ms) Duration (ms) Duration (ms)

single_scan0 0.36 0.69 20.60

single_scan1 0.36 0.54 4.94

single_scan2 0.73 0.85 5.01

single_scan3 0.63 1.02 6.07

single_scan4 1.05 1.10 5.99

single_scan5 0.62 0.95 5.36

single_scan5_unroll

single_scan6 1.01 1.04 5.96

Scanner Duration (ms) Duration (ms) Duration (ms)

Linear scan 17.60 58.34 540.97

Thread scan 5.19 16.39 198.74

OpenCL scan 0.63 0.85 5.74

Operation Duration (ms) Duration (ms) Duration (ms)

Thread write 7.59 28.47 222.08

Thread single read 6.17 17.44 145.01

OpenCL write 2.33 8.77 80.48

OpenCL single read 1.01 1.82 13.99

Table 6: Amazon EC2 p3.2xlarge with Intel Xeon E5-2686v4 processor,
488GB DDR3 RAM, and NVIDIA Tesla V100 GPU. The SDM set-
tings were: (i) n = 256, r = 103, and H = 1, 000, 000; (ii) n = 1, 000,
r = 451, and H = 1, 000, 000; and (iii) n = 10, 000, r = 4850, and H =

1, 000, 000. There is no benchmark for kernel single_scan5_unroll
because it returns the wrong result in this GPU. The problem is
related with the premises of the optimization used by this kernel,
which are not true for this GPU. For the histogram of durations, see
Figures 40, 41, 42, and 43.

124 results (i): performance

(a) n = 256, r = 103, and H = 1, 000, 000

(b) n = 1, 000, r = 451, and H = 1, 000, 000

(c) n = 10, 000, r = 4805, and H = 1, 000, 000

Figure 40: Kernel comparisons for Amazon EC2 p3.2xlarge with Intel Xeon
E5-2686v4 processor, 488GB DDR3 RAM, and NVIDIA Tesla V100

GPU.

14.3 read and write operations 125

(a) n = 1, 000, r = 451, and H = 1, 000, 000

(b) n = 1, 000, r = 451, and H = 1, 000, 000

(c) n = 10, 000, r = 4805, and H = 1, 000, 000

Figure 41: Scanner comparisons for Amazon EC2 p3.2xlarge with Intel Xeon
E5-2686v4 processor, 488GB DDR3 RAM, and NVIDIA Tesla V100

GPU.

126 results (i): performance

(a) n = 1, 000, r = 451, and H = 1, 000, 000

(b) n = 1, 000, r = 451, and H = 1, 000, 000

(c) n = 10, 000, r = 4805, and H = 1, 000, 000

Figure 42: Read operation comparisons for Amazon EC2 p3.2xlarge with
Intel Xeon E5-2686v4 processor, 488GB DDR3 RAM, and NVIDIA
Tesla V100 GPU.

14.3 read and write operations 127

(a) n = 1, 000, r = 451, and H = 1, 000, 000

(b) n = 1, 000, r = 451, and H = 1, 000, 000

(c) n = 10, 000, r = 4805, and H = 1, 000, 000

Figure 43: Write operation comparisons for Amazon EC2 p3.2xlarge with
Intel Xeon E5-2686v4 processor, 488GB DDR3 RAM, and NVIDIA
Tesla V100 GPU.

15
R E S U LT S (I I) : F R A M E W O R K VA L I D AT I O N

The framework has been validated comparing its results with the
expected results from Kanerva [104]. Thus, we run simulations
which were then compared to the theoretical analysis conducted
some decades ago.

15.1 distance between random bitstrings

As shown by Kanerva [104], the distance between two bitstrings fol-
lows a binomial distribution with mean µ = n/2 and standard devi-
ation σ =

√
n/2. For large values of n, it may be approximated by a

normal distribution with the same mean and standard deviation.
In order to validate our random bitstring generation algorithm, we

have calculated 10,000 distances between two random bitstrings with
n = 1, 000 bits. In total, 20,000 random bitstrings have been generated
during the simulation. The code is available in the “Distance between
bitstrings” notebook [29].

In figure 44, we can notice that the theoretical model and the sim-
ulation results matches. Hence, it seems the random bitstring genera-
tion algorithm works appropriately.

This also validates the algorithm used to calculate the distance
between two bitstrings. In this simulation, we have used the built-in
__popcnt() function.

(a) Full histogram (b) Zoom in the interval [400, 600]

Figure 44: Histogram of 10,000 distances between two random bitstrings
with 1,000 bits. The curve in red is the theoretical normal dis-
tribution with µ = 500 and σ =

√
500/2.

129

130 results (ii): framework validation

15.2 number of activated hard locations

In his seminal work, Kanerva proposed to use a sample of 1,000,000

hard locations in a 1,000 bits SDM. He also proposed to activate only
1,000 of them, on average. He calculated that an access radius of r =
451 would activate, on average, 0.00107185004892 of the whole space,
or, in this case, 1,071.85 hard locations.

We extended his results, calculating the distribution of the number
of activated hard locations. As each hard location has probability p =

0.00107185004892 of being activated, the probability of activating ex-
actly a out of H hard locations follows a binomial distribution with
mean µ = pH and standard deviation σ =

√
Hp(p− 1). In this case,

µ = 1071.85 and σ = 32.72.
In order to validate our scan algorithm, we have run 10,000 scans

from a random bitstring and counted the number of activated hard
locations. The code is available in the “Number of activated hard
locations” notebook [29].

In figure 45, we can notice that the theoretical model and the sim-
ulation matches. Hence, it seems that both the address space genera-
tion algorithm and the scan algorithm work properly. Notice that the
curve is almost the same for n = 1, 000 and n = 256. This difference
happens because the access radius is adjusted to get p as close as pos-
sible to 0.001, which mean they are very close, but not the same.

(a) n = 1, 000, H = 1, 000, 000,
r = 451, and p = 0.00107185

(b) n = 256, H = 1, 000, 000,
r = 103, and p = 0.00106684

Figure 45: Histogram of the number of activated hard locations in 10,000

scans from a random bitstring. The curve in red is the theoretical
normal distribution with µ = Hp and σ = p(p− 1)H.

Besides the number of activated hard locations, we have also
extended Kanerva’s results to calculate the distribution of distances
between the center of the circle and the activated hard locations. Let
A be the set of activated hard locations, ξ be the center of the circle,
and r be the access radius, then:

15.3 intersection of two circles 131

P(d(a, ξ) = x|a ∈ A) = P(d(a, ξ) = x)
P(a ∈ A) (2)

=

(
n
x

)∑r
k=0

(
n
k

) (3)

In order to check Equation 3, we have calculated the distances of
the activated hard locations to the center of 1,000 random circles. The
code is available in the “Distances of activated hard locations” note-
book [29].

In figure 46, we can notice that the theoretical model and the simu-
lation matches.

Figure 46: Histogram of the distances of activated hard locations to the cen-
ter of the circles. The curve in red is the theoretical distribution
of Equation 3

15.3 intersection of two circles

Kanerva has calculated the intersection of two circles according to
the distance between their centers. The intersection is important to
understand how SDM works because it directly affects the critical
distance. When ηd is inside the critical distance, then it will
converge to η. In fact, it converges because they share a sufficient
amount of hard locations, i.e., the intersection of the circle around
ηd and η is enough to converge. For further information about the
relation between the critical distance and the intersection, see
Brogliato et al. [30].

132 results (ii): framework validation

We have calculated the intersection between a random bitstring
(bs1) and another bitstring (bs2) exactly d bits away. The former (bs1)
is just a random bitstring. The latter (bs2) was generated randomly
flipping d bits of bs1. The code is available in the “Kanerva’s Figure
1.2” notebook [29].

In Figure 47, we can notice that we have obtained the same results
as Kanerva. It seems that the random flipping bits algorithm and the
scan algorithm work properly.

(a) Kanerva [104, Figure 1.2, p.25] (b) Generated by SDM framework with n =

1, 000

Figure 47: Number of hard locations in the intersection of circles around
two bitstrings x bits away.

15.4 storage and retrieval of sequences

Kanerva [104, Ch.8] presented an approach to store and retrieve se-
quences using k different SDMs, namely sdm1, sdm2, dots, sdmk.

Let a0,a1,a2, . . . ,an be a sequence to be stored in a k-fold mem-
ory. So, all pointers of the form ai → ai+k will be written to sdmk
memory, i.e., in sdm1, the following pointers will be written: a0 →
a1, a1 → a2, . . . , an−1 → an; while in sdm2, the following pointers
will be written: a0 → a2, a2 → a3, . . . , an−2 → an; and so forth.

We have tested the same example presented in Kanerva [104], p.85.
We wrote two sequences to a 3-fold memory: < A,B,C,D > and
< E,B,C, F >. Then, after reading the sequences < A,B,C > and
< E,B,C >, we have obtained D and F, respectively.

Each reading operation was performed summing the counters of
all activated hard locations from all three memories. For instance, to
read the sequence < A,B,C >, we have activated the hard locations
around C in sdm1, we have also activated the hard locations around
D in sdm2, and, finally, we have also activated the hard locations
around A in sdm3. After summing the counters of all those hard
locations, we evaluate the resulting bitstring just as in the original
read operation.

15.4 storage and retrieval of sequences 133

The code is available in the “Sequences (Kanerva Ch 8)” notebook
[29].

The logic behind how it works is that, when reading the sequence
< A,B,C >, we have A pointing to D, while both B and C point to D
and F. Thus, D appeared more often than F and ended up being the
result.

Hence, as we have replicated the theoretical results from Kanerva,
we have one more evidence that our framework works appropriately.

15.4.1 k-fold memory using only one SDM

We have extended Kanerva’s ideas to be able to store and retrieve
sequences in k-fold memories using only one SDM (instead of k
SDMs).

Our idea was to create k random bitstrings, one for each fold. We
have performed writing and reading exactly as Kanerva’s original
idea, but, instead of writing to sdmk, we have written ai+k into the
address ai ⊕ tagk, and, instead of reading from sdmk, we have read
from address ai ⊕ tagk, where ⊕ is the exclusive or (XOR) operator.

It worked as if we had split SDM into k regions with low
intersection between two of them. So, as the interference is minimal,
they work like independent SDMs. The major disadvantage of this
approach is that memory capacity may be reached faster.

Splitting the memory into regions may be an interesting strategy
to other sorts of problems, mostly the ones which would need many
SDMs and, consequently, would use a lot of RAM.

16
R E S U LT S (I I I) : L O S S O F N E U R O N S

In SDM, the data is written distributed among millions of hard
locations, which theoretically gives SDM robustness against loss of
neurons. In other words, SDM should keep converging correctly
even when some neurons are dead. The question is: how robust it
really is? How many neurons may die before it starts to forget
things? These questions have never been addressed before.

Looking for answers to these questions, we run simulations in
which we kept killing some neurons and checking whether SDM
remained converging to a given bitstring or not. In these simulations,
10,000 random bitstrings were written to a 1,000-bit SDM with
1,000,000 hard locations, and we choose one of them as our target.
As the bitstrings were all written exactly once, we may generalize
the results. The code is available in the “Resetting hard locations”
notebook [29].

As neurons are hard locations in SDM, when we say that a neuron
has been killed, we mean that its counters have been zeroed and a
new random bitstring address has been assigned. During our
simulations, no other bitstring has been written after the 10,000.
Consequently, as their counters will remain zero, it is exactly like
ignoring the dead hard locations in the subsequent reading
operations.

In Figure 48, we can notice that SDM is robust up to 200,000 neu-
ron deaths which are 20% of all hard locations. Its robustness is as-
tonishing. In fact, SDM begins to be significantly affected by the loss
of neurons after 600,000 neuron deaths (Figure 49) and obviously for-
gets everything when all neurons are dead.

It is interesting that 500,000 neuron deaths have a minor effect on
SDM’s recall capability (see Figure 50). It is analogous to do a hemi-
spherectomy in a person and, after the procedure, the person being
able to recall and learn almost just like before. In fact, there are clini-
cal reports of children submitted to hemispherectomy who live an al-
most normal life with minor function problems.

An important observation is that around 800,000 neuron deaths
(80% of all neurons) the critical distance becomes small, i.e., SDM
recall capacity is hugely diminished. After 900,000 neuron deaths, the
critical distance is zero, and everything has been lost.

Although there is some decrease in SDM recall after 600,000 neuron
deaths, it is curious that there is a sudden change between 900,000

(90%) and 1,000,000 (100%). In Figure 51 we can see the details of this

135

136 results (iii): loss of neurons

Figure 48: This graph shows the SDM’s robustness against loss of neurons
in a SDM with n = 1, 000 and H = 1, 000, 000. It shows that a loss
of 200,000 neurons, 20% of the total, does not seem to affect SDM
whatsoever.

Figure 49: This graph shows the SDM’s robustness against loss of neurons
in a SDM with n = 1, 000 and H = 1, 000, 000. The more neurons
are lost, the smaller the critical distance, i.e., the worse the SDM
recall.

results (iii): loss of neurons 137

non-linear change. Notice that after 950,000 even the exact clue η0
does not converge to η.

We run the same simulation for a 256-bit SDM with 1,000,000 hard
locations. The results were even more surprising, as the 256-bit SDM
seems to be more robust to loss of neurons than the 1,000-bit SDM
(see Figure 52). Notice that the loss of 50% of neurons barely affected
the 256-bit SDM... and it even remained functional when facing an
enormous loss of 90% of neurons! What these results seem to imply
is not only that the memory is extremely robust, but that a very small
expected number of neurons activated in each access radius would
preserve the most valueable information. This may have implications
as to the number of standard deviations to define the access radius,
as we will discuss in Section ??. Is there a thing such as excessive
robustness, and, if so, when does robustness become waste?1

1 Consider, for instance, error-correcting codes in Information Theory or the analogous
computer ECC memory in Electrical Engineering: tradeoffs between robustness and
waste must be considered at each design decision; Why should it be different in the
modeling of human memory?

138 results (iii): loss of neurons

Figure 50: This graph shows the SDM’s robustness against loss of neurons
in a SDM with n = 1, 000 and H = 1, 000, 000. Even when 50% of
neurons are dead, SDM recall is barely affected, which is an im-
pressive result and matches with some clinical results of children
submitted to hemispherectomy.

Figure 51: This graph shows the SDM’s robustness against loss of neurons
in a SDM with n = 1, 000 and H = 1, 000, 000.

results (iii): loss of neurons 139

(a) Up to 500,000 neuron deaths

(b) From 600,000 to 1,000,000 neuron deaths

Figure 52: This graph shows the SDM’s robustness against loss of neurons
in a SDM with n = 256 and H = 1, 000, 000.

17
R E S U LT S (I V) : C R I T I C A L D I S TA N C E

One particular analysis of Kanerva’s interest is given by the limits of
recovery. That is, given an item read at a distance x from a previously
stored η, does this reading at a ηx recover the original? Suppose an
SDM is trying to read an item written at η, but the cues received
so far lead to a point of distance x from η. As one reads at ηx, a new
bitstring β is obtained, leading to Kanerva’s question: what is the new
distance from η to β? Is it smaller or larger than x? That, of course,
depends on the ratio between x and the number of dimensions of the
memory.

Kanerva [104, p.70] originally predicted a ~500-bit distance after a
point (Figure 53). The original prediction considered that the read
distance would decline when inside the critical distance and increase
afterward, converging to a ~500-bit distance. At this point, each read
would lead to a different, orthogonal, ~500-bit distance bitstring. He
analyzed specifically an SDM with 1,000 bits and 10,000 random
bitstrings written into it.

Figure 53: Kanerva’s original Figure 7.3 (p. 70) predicting a ~500-bit distance
after a point.

141

142 results (iv): critical distance

As we ran the simulations, this one, in particular, struck our
attention: The new distances obtained after a read operation were
not perfectly predicted by the theoretical model. We have strictly
followed Kanerva’s configuration and, even so, we have found out
some deviations from Kanerva’s original theoretical analysis and the
results obtained by simulation.

In details, we have created a SDM with n = 1, 000, H = 1, 000, 000,
and r = 451. Then, we have generated 10,000 random bitstrings and
written them into the memory. Then, we have generated a reference
bitstring (bs_ref) and written it into the memory. Then, we have
executed the following steps with x from 0 to 1,000: (i) copy bs_ref
into a new bitstring; (ii) randomly flipped x bits of the copy; (iii)
read from the memory in the copy address; and (iv) stored the
distance between the returned bitstring and bs_ref. Finally, we have
plotted Figure 54.

(a) 1 sample for each distance x (b) 6 samples for each distance x

Figure 54: Results generated by the framework diverging from Kanerva’s
original Figure 7.3. Here we had a 1,000 bit, 1,000,000 hard lo-
cation SDM with 10,000 random bitstrings written into it, which
was also Kanerva’s configuration.

Figure 54a has a lot of noise because we have read only once for
each distance x and Kanerva has predicted the average distance. So,
we have changed the steps to run k reads and store the average new
distance. We run with k = 6, and the results can be seen in Figure
54b, which has much lower noise and still holds the divergence.

Our results show that the theoretical prediction is not accurate.
There are interaction effects from one or more of the attractors
created by the 10,000 writes, and these attractors seem to raise the
distance beyond ~500 bits (Figure 54).

Obviously, these small deviations from Kanerva’s original
theoretical predictions deserve a qualification. Kanerva was working
in the 1980s and the 1990s, and had no access to the immense
computational power that we do today. It is no surprise that some
small interaction effects should exist as machines allow us to explore
the ideas of his monumental work.

results (iv): critical distance 143

However, when we reduced the number of random bitstrings
written in the SDM from 10,000 to only 100, the results reflected very
well the Kanerva’s theoretical expectation (Figure 55a). This result
strengthens our hypothesis that the disparities in the computational
outcomes are due to the interaction effect of high numbers of
different attractors. In Figure 55b we can notice that the more
random bitstrings are written, the stronger the attractors.

(a) 100 writes (b) Steps of 1,000 writes

Figure 55: Results generated by the framework similar to Kanerva’s original
Figure 7.3. Here we have a 1,000 bit, 1,000,000 hard location SDM
with (a) just 100 random bitstrings written into it and (b) steps of
1,000 random bitstrings written into it.

To obtain the results from Figures 54 and 55, we had to write
10,000 random bitstrings to an SDM, and then randomly choose one
of those bitstrings to be our origin. Finally, we randomly flipped
some bits from the origin bitstring and executed a reading operation
in the SDM. Thereby, in order to show the interaction effects more
clearly, we changed the single read for a 15-iterative read. As we can
see in Figure 56, after a distance of 500 bits, all bitstrings converged
to 500-bit distance bitstrings, just as described by Kanerva.

Hence, our understanding is that the attractors are just preventing
the bitstrings to converge directly to 500-bit distance bitstrings,
requiring more reading steps to do so. They are in other orthogonal
bitstrings’ critical distance, but sufficiently far not to converge in a
single read.

Going further in the analysis, we calculated the probability of
missing a bit when reading from SDM. After all, that is how Kanerva
has originally found the curve. To do this, we used the following
equations from our previous work [30]. Let d be the distance to the
target, h be the number of hard locations activated during reading
and write operations, s be the number of total stored bitstrings, H be
the number of total hard locations, w be the number of times the
target was written into SDM, θ be the total random bitstrings in all h
hard locations activated by read operation, and φ(d) be the average
number of shared hard locations activated two bitstrings d bits away.

144 results (iv): critical distance

Figure 56: This graph shows the interaction effects more clearly. As we
change the single read to a 6-iterative read, the effect has van-
ished, and all bitstrings above x = 500 have converged to 500-bit
distance bitstrings. Here we have precisely the same configura-
tion of Figure 54, except for the iterative read.

θ =
sh2

H
−w ·φ(d) (4)

P(miss|bit = 0) = 1− P

(
θ∑
i=1

Xi <
sh2

2H

)
(5)

P(miss|bit = 1) = P

(
θ∑
i=1

Xi <
sh2

2H
−w ·φ(d)

)
(6)

P(miss) =
1

2
· [P(miss|bit = 0) + P(miss|bit = 1)] (7)

For details and the proof of this equation, see Brogliato et al. [30].
Although Kanerva has found a formula for φ(d) through an
unsolved integral, and de Pádua Braga and Aleksander [57] have
proposed another way to calculate φ(d), we have used our
framework to estimate the values of d. In order to do that, we used a
Monte Carlo approach, generating many pairs of random bitstrings
d bits away from them and calculating the average number of shared
hard locations between them. The code is available in the “Calculate
critical distance” notebook [29].

Kanerva’s settings according to the parameters of the equation
were: s = 10, 000, H = 1, 000, 000, and w = 1. We have calculated
φ(d) as explained, and h = H · 2−n∑r

i=0

(
n
i

)
, where n = 1, 000 and

17.1 a deviation from the equator distance? 145

r = 451. Finally, h = 1, 071.85 and changing d from 0 to 1000, we got
Figure 57.

Figure 57: Kanerva’s original Figure 7.3 generated using the equations from
Brogliato et al. [30].

As one can easily notice, we have got exactly the same curve as
Kanerva. Both his and our model expect that, after reading, say, from
550 bits of distance from a written bitstring, we should obtain the
expected n/2 equator distance. This question has intrigued us, and
here we look for a more analytic explanation than merely interference
from the other written attractors. Let us turn back to mathematics to
study this anomaly.

17.1 a deviation from the equator distance?

Kanerva writes1:

You have done an incredibly thorough analysis of SDM. I
like the puzzle in your message and believe that your
simulations are correct and to be learned from. So what
to make of the difference compared to my Figure 7.3 (and
your Figure 57)? I think the difference comes from my
not having accounted fully for the effect of the other
9,999 vectors that are stored in the memory. You say in it

1 Email thread ‘SDM: A puzzling issue and an invitation’, started March 16th 2018, in
which we discussed the aforementioned discrepancy. To think that some centuries
ago, all scientific publishing was the exchange of such letters.

146 results (iv): critical distance

“Our results show that the theoretical prediction is not
accurate. There are interaction effects from one or more
of the attractors created by the 10,000 writes, and these
attractors seem to raise the distance beyond 500 bits
(Figure 54).”

I think that is correct. It also brings to mind a comment
Louis Jaeckel made when we worked at NASA Ames. He
pointed out that autoassociative storage (each vector is
stored with itself as the address) introduces
autocorrelation that my formula for Figure 7.2 did not
take into account. When we read from memory, each
stored vector exerts a pull toward itself, which also
means that each bit of a retrieved vector is slightly biased
toward the same bit of the read address, regardless of the
read address. We never worked out the math.

This is an important observation. A hard location is activated
because it shares many dimensions with the items read from or
written onto it. Imagine the ‘counter’s eye view’: each individual
counter ‘likes’ to write on its own corresponding bit-address value
more than it likes the opposite; as each hard-location has a say in its
own area — and nowhere else.

Let x and y be random bitstrings and n be the number of
dimensions in the memory; let xi and yi be the i-th bit of x and y,
respectively; and d(x,y) be the Hamming distance. Whilst the
probability of a shared bit-value between same dimension-bits in two
random addresses is 1/2, an address only activates hard-locations
close to it. Let us call these shared bitvalues a bitmatch in dimension i.

So, what is the probability of bitmatches given that we know the
access radius r between the address and a hard-location?

Theorem 9. Each dimension has a small pull bias, which can be mea-

sured by P(xi = yi|d(x,y) 6 r) =
∑r
k=0

(
n−1
k

)∑r
k=0

(
n
k

) .

Proof. The left-hand expression P(xi = yi|d(x,y) 6 r) computes the
probability of a bitmatch in i, given that we know that x and y are in
the access radius defined by r, i.e., d(x,y) 6 r.

Applying the law of total probability to the left-hand expression
we obtain

r∑
k=0

P(xi = yi|d(x,y) = k 6 r)P(d(x,y) = k|d(x,y) 6 r) (8)

We also know that

17.1 a deviation from the equator distance? 147

P(xi = yi|d(x,y) = k) =
n− k

n
(9)

P(d(x,y) = k|d(x,y) 6 r) =

(
n
k

)∑r
j=0

(
n
j

) (10)

Hence,

P(xi = yi|d(x,y) 6 r) =
∑r
k=0

n−k
n

(
n
k

)∑r
j=0

(
n
j

) (11)

Finally, the combinatorial identity

n− k

n

(
n

k

)
=

(n− k)

n

n!
(n− k)!k!

=
(n− 1)!

k!(n− 1− k)!
=

(
n− 1

k

)
(12)

closes the theorem.

Theorem 9 is valid for both “x written at x” (autoassociative
memory) and “random written at x” (heteroassociative memory).
When n = 1, 000 and r = 451,
P(xi = yi|d(x,y) 6 r) = p = 0.552905498137. Each bit of a hard
location does indeed have a small pull bias. What is meant by this is
that each particular dimension has a small preference toward
positive values if its address bit is set to 1, and negative values if set
to 0.

Lemma 10. Let r be the access radius given that f percent of the hard
locations are activated. Then, limn→∞ r/n = 1/2.

Proof. As the bits of the hard locations’ addresses are randomly
chosen, the distance between two hard locations follow a Binomial
distribution with n samples and probability 0.5 (B(n, 0.5)). For n
sufficiently large, the Binomial distribution can be approximated by
a Normal distribution, i.e., B(n, 0.5)→ N(µ = n/2,σ2 = n/4).

Let Φ(x) be the cdf of the standard normal distribution. Let z =
r−n/2√
n/2

. Thus, P(d(x,y) 6 r) = Φ(z). As f = P(d(x,y) 6 r), then,
f = Φ(z).

Calculating the inverse, z = Φ−1(f). Then,

z = Φ−1(f) (13)
r−n/2√
n/2

= Φ−1(f) (14)

r =
n

2
+Φ−1(f)

√
n

2
(15)

r

n
=
1

2
+Φ−1(f)

1

2
√
n

(16)

148 results (iv): critical distance

Therefore, n→∞⇒ r/n→ 1/2.

Lemma 11. Let Φ(x) be the cdf of the standard normal distribution. Then,
n → ∞ ⇒ P(xi = yi|d(x,y) 6 r) = 1

2
Φ(z1)
Φ(z2)

, where z1 = 2r−n+1√
n−1

and

z2 =
2r−n√
n

.

Proof. From the approximation of the Binomial distribution B(a, 0.5)
by the Normal distribution N(µ = a/2,σ2 = a/4), we conclude that,
for a sufficiently large, the cdf of the Binomial is approximately equal
to the cdf of the Normal distribution. Thus,

1

2a

b∑
k=0

(
a

k

)
= Φ

(
b− a/2√
a/2

)
= Φ

(
2b− a√

a

)
Thus,

b∑
k=0

(
a

k

)
= 2aΦ

(
2b− a√

a

)
The result comes directly from applyting the equation above in

P(xi = yi|d(x,y) 6 r).

Theorem 12. The autocorrelation vanishes when n → ∞, i.e.,
limn→∞ P(xi = yi|d(x,y) 6 r) = 1/2.

Proof. From Lemma 10, we know that r = n/2 for n sufficiently large.
Thus, replacing r = n/2 in Lemma 11, P(xi = yi|d(x,y) 6 r) = Φ(z1)

2Φ(z2)
,

where z1 = 1√
n−1

and z2 = 0.

As n→∞, z1 → 0, and P(xi = yi|d(x,y) 6 r) = Φ(0)
2Φ(0) = 1/2.

Another way to proof is to divide into two cases:
Suppose that n is an even integer, then,

r∑
k=0

(
n

k

)
=

n/2∑
k=0

(
n

k

)
=
1

2

n∑
k=0

(
n

k

)
=
2n

2
= 2n−1

And, also,

r∑
k=0

(
n− 1

k

)
=

n/2∑
k=0

(
n− 1

k

)

=
1

2

[
n−1∑
k=0

(
n− 1

k

)
−

(
n− 1

n/2

)]

=
1

2

[
2n−1 −

(
n− 1

n/2

)]
= 2n−2 −

1

2

(
n− 1

n/2

)

17.1 a deviation from the equator distance? 149

Finally,

P(xi = yi|d(x,y) 6 r) =
∑r
k=0

(
n−1
k

)∑r
k=0

(
n
k

) (17)

=
2n−2 − 1

2

(
n−1
n/2

)
2n−1

(18)

=
2n−2

2n−1
−
1

2n

(
n− 1

n/2

)
(19)

=
1

2
−
1

2n

(
n− 1

n/2

)
(20)

Stirling’s approximation yields that, for n sufficiently large,(
n
n/2

)
∼ 2n√

πn/2
. Thus, 1

2n

(
n
n/2

)
∼

√
2√
πn

, which yields

limn→∞ 1
2n

(
n
n/2

)
= 0. Finally, as

(
n−1
n/2

)
6
(
n
n/2

)
, by the squeeze

theorem, limn→∞ 1
2n

(
n−1
n/2

)
= 0, which closes the proof for n even.

When n is an odd integer, the steps of the proof are similar. There-
fore, the proof is complete.

In Figure 58, with n = 10, 000 and r = 4, 845, we can notice that the
autocorrelation has reduced significantly as predicted by Theorem
12. In fact, in this case, using Lemma 11, P(xi = yi|d(x,y) 6 r) =

0.5168761116022098.

Figure 58: The same setup as in Figure 54, but for n = 10, 000. It shows
that the interference has almost gone away when n is sufficiently
large.

So far we have looked only at a single pair of bitstrings, the proba-
bility of a single bitmatch between bitstrings within the access radius

150 results (iv): critical distance

distance. Now let us consider the number of activated hard locations
exhibiting this bitmatch.

Let h be the number of activated hard locations. As the probability
of activating a specific hard location is constant, h ∼ Binomial(H,p1).
Thus, E[h] = µh = Hp1 and V[h] = σ2h = Hp1(1− p1), where p1 =

2−n
∑r
k=0

(
n
k

)
.

Let Z be the number of activated hard locations with the same bit
as the reading address. Then, Z =

∑h
i=1 Xi, where Xi ∼ Bernoulli(p),

where p = P(xi = yi|d(x,y) 6 r).

Theorem 13. Given a reading address x and a dimension i, the number of
activated hard-locations with bitmatches at i follows a normal distribution
with E[Z] = µZ = pµh and V[Z] = σ2Z = p(1− p)µh + p2σ2h.

Proof. As P(973 < h < 1170) = 0.997, by the central limit theorem, Z
may be approximated by a normal distribution.

By the central limit theorem, Z is normally distributed.
Applying the law of total averages and the law of total variance,

E[Z] = E[E[Z|h]] = E[ph] = pE[h] = ph, and V[Z] = E[V[Z|h]] +

V[E[Z|h]] = E[hp(1− p)] + V[ph] = p(1− p)E[h] + p2V[h] = hp(1−

p) + p2Hp1(1− p1).
Applying the law of total variance, V[Z] = E[V[Z|h]] + V[E[Z|h]] =

E[hp(1 − p)] + V[ph] = p(1 − p)E[h] + p2V[h] = p(1 − p)µh + p2σ2h.

See Figure 59 for a comparison between the theoretical model and
a simulation.

Figure 59: Given an address x and a dimension i, how many hard locations
with bitmatches in i are activated by reading at x? The histogram
was obtained through numerical simulation. The red curve is the
theoretical normal distribution found in Theorem 13.

17.2 counter bias 151

17.2 counter bias

The previous theorems show that there is bias in the counters. Let us
analyze the ith counter of a hard location.

Let s be the number of bitstrings written into memory (in our case,
s = 10, 000) and addri be the ith bit of the hard location’s address.

Let θ be the average number of bitstrings written in each hard
location. As there are s bitstrings written into the memory, and the
probability of activating a specific hard location is constant,
θ ∼ Binomial(s,p1). Thus, E[θ] = µθ = sp1 and
V[θ] = σ2θ = sp1(1− p1).

Let Yi be the number of bitmatches in the i of a hard location’s
address after s written bitstrings. Then, Yi =

∑θ
k=1 Xk.

Theorem 14. Given the number of written bitstrings s, E[Yi] = µY = pµθ
and V[Yi] = σ

2
Y = p(1− p)µθ + p

2σ2θ.

Proof. Applying the law of total expectation,
E[Y] = E[E[Y|θ]] = E[pθ] = pE[θ] = pµθ.

Applying the law of total variance, V[Y] = E[V[Y|θ]] + V[E[Y|θ]] =
E[θp(1−p)]+V[pθ] = p(1−p)E[θ]+p2V[θ] = p(1−p)µθ+p

2σ2θ.

During a write operation, the counters are incremented for every
bit 1 and decremented for every bit 0. So, after swrites, there will be θ
bitstrings written in each hard location with Yi bitmatches and θ− Yi
non-bitmatches. Thus, [cnti|addri = 1] = (Yi)− (θ−Yi) = 2Yi−θ and
[cnti|addri = 0] = θ− 2Yi.

Theorem 15. E[cnti|addri = 1] = µcnt = (2p− 1)µθ and V[cnti|addri =
1] = σ2cnt = 4p(1− p)µθ + (2p− 1)2σ2θ.

Proof. E[cnti|addri = 1] = E[2Yi − θ] = E[2Yi] − E[θ] = 2E[Yi] − µθ =

2pµθ − µθ = (2p− 1)µθ.
Applying the law of total variance, V[cnti|addri = 1] = V[2Yi −

θ] = E[V[2Yi − θ|θ]] + V[E[2Yi − θ|θ]].
Let us solve each part independently. Thus,
V[2Yi − θ|θ] = V[2Yi|θ] = 4V[Yi|θ] = 4V[

∑θ
k=1 Xk] = 4θp(1− p).

E[V[2Yi − θ|θ]] = E[4θp(1− p)] = 4p(1− p)E[θ] = 4p(1− p)µθ.
Finally,
E[2Yi − θ|θ] = 2E[Yi|θ] − E[θ|θ] = 2pθ− θ = (2p− 1)θ.
V[E[2Yi − θ|θ]] = V[(2p− 1)θ] = (2p− 1)2V[θ] = (2p− 1)2σ2θ.

Theorem 16. E[cnti|addri = 0] = −µcnt and V[cnti|addri = 1] = σ2cnt.

Proof. Notice that [cnti|addri = 0] = −[cnti|addri = 1]. Thus,
E[cnti|addri = 0] = −E[cnti|addri = 1] and
V[cnti|addri = 0] = V[cnti|addri = 1].

152 results (iv): critical distance

In summary,

[cnti|addri = 1] ∼ N(µcnt,σ2cnt) (21)

[cnti|addri = 0] ∼ N(−µcnt,σ2cnt) (22)

In our case, p = 0.5529, s = 10, 000, and H = 1, 000, 000, so
[cnti|addri = 1] ∼ N(µ = 1.1341,σ2 = 10.7184). For “random at x”,
p = 0.5, so µ = 0 and σ2 = 10.7185. See Figure 60.

(a) addri = 1 (b) addri = 0

Figure 60: The value of the counters after s = 10, 000 writes shows the auto-
correlation in the counters in autoassociative memories (“x at x”).
The histogram was obtained through simulation. The red curve
is the theoretical normal distribution found in equations (21) and
(22).

Finally,

P(cnti > 0|addri = 1) = P(cnti < 0|addri = 0) = 1−N.cdf(0)
(23)

For “random written at x”, p = 0.5 implies µcnt = 0, which implies
P(cnti > 0|addri = 1) = P(cnti < 0|addri = 0) = 0.5, independently
of the parameters because they will only affect the variance and the
normal distribution is symmetrical around the average.

However, for “x written at x”, p = 0.5529 and the probabilities
depend on s. For s = 10, 000, they are equal to 0.6354. For s = 20, 000,
they are equal to 0.6867. For s = 30, 000, they are equal to 0.7232. The
more random bitstrings are written into the memory, the more the
hard locations point to themselves.

Let D be the number of counters aligned with addri. The standard
deviation was calculated using the fact that
[D|θ] ∼ Binomial(1000,q = P(cnti > 0|addri = 1, θ)).

Applying the law of total variance,
V[D] = E[V[D|θ]] + V[E[D|θ]] = E[1000q(1 − q)] + V[1000q] =

1000E[q− q2] + 10002V[q] = 1000E[q](1− E[q]) + 1000(1000− 1)V[q],

17.3 read bias 153

where E[q] =
∑
θ P(cnti > 0|addri = 1, θ)P(θ) and

E[q2] =
∑
θ[P(cnti > 0|addri = 1, θ)]2P(θ).

Doing the math, E[q] = 0.402922 and E[q2] = 0.634433. Thus,
V[q] = E[q2] − (E[q])2 = 0.0004166. Hence, V[D] = 648.2041. See
Figure 61 and notice that I still have to figure out why the mean is
correct, but the standard deviation is not.

(a) “random at x” (b) “x at x”

Figure 61: Autocorrelation in the counters in autoassociative memories (“x
written at x”). The histogram was obtained through simulation.
The red curve is the theoretical distribution.

17.3 read bias

Now that we know the distribution of cnti|addri, we may go to the
read operation. During the read operation, on average, h hard loca-
tions are activated and their counters are summed up. So, for the ith
bit,

acci =
h∑
k=1

cntk (24)

Let η be the reading address and ηi the ith bit of it. Then, let’s
split the h activated hard locations into two groups: (i) the ones with
the same bit as ηi with Z hard locations, and (ii) the ones with the
opposite bit as ηi with h−Z hard locations.

[acci|ηi] =
Z∑
k=1

[cntk|addrk = ηi] +

h−Z∑
k=1

[cntk|addrk 6= ηi] (25)

Each sum is a sum of normally distributed random variables, so

154 results (iv): critical distance

Z∑
k=1

[cntk|addrk = η1] ∼ N(µ = µcntµZ,σ2 = σ2cntµZ + µ2cntσ
2
Z)

(26)
h−Z∑
k=1

[cntk|addrk 6= η1] ∼ N(µ = −µcnt(1− p)µh,σ2 = σ2cnt(1− p)µh + µ2cntσ
2
h−Z)

(27)

In our case,
∑Z
k=1 [cntk|addrk = 1] ∼ N(µ = 672.12,σ2 = 7113.87),

and
∑Z
k=1 [cntk|addrk = 1] ∼ N(µ = −543.49,σ2 = 5752.54). See Fig-

ure 62 — we can notice that the average is correct but the variance is
too small.

(a) Equation 26 (addrk = 1) (b) Equation 27 (addrk = 0)

Figure 62: The histogram was obtained through simulation. The red curve
is the theoretical normal distribution.

Hence,

[acci|ηi = 1] ∼ N(µ = (2p− 1)2µθµh,σ2 = σ2cntµh + 2µ2cntσ
2
h)

(28)

[acci|ηi = 0] ∼ N(µ = −(2p− 1)2µθµh,σ2 = σ2cntµh + 2µ2cntσ
2
h)

(29)

In our case, [acci|ηi = 1] ∼ N(µ = 128.62,σ2 = 12865.69), and
[acci|ηi = 0] ∼ N(µ = −128.62,σ2 = 12865.69). See Figure 63 — we
can notice that the variance issue from Figure 62 has propagated to
these images.

Finally,

17.4 critical distance of 209 155

(a) Equation 28 (ηk = 1) (b) Equation 29 (ηk = 0)

Figure 63: The histogram was obtained through simulation. The red curve
is the theoretical normal distribution.

P(wrong) = P(acci < 0|ηi = 1) · P(ηi = 1) + P(acci > 0|ηi = 0) · P(ηi = 0)
(30)

=
Nηi=1.cdf(0)

2
+
1−Nηi=0.cdf(0)

2
(31)

=
Nηi=1.cdf(0)

2
+

Nηi=1.cdf(0)
2

(32)

= Nηi=1.cdf(0) (33)

Using the empirical variance of σ2 = 27838.3029124, we calculate
P(wrong) = 0.22037771219874325.

In order to check this probability, I have run a simulation reading
from 1,000 random bitstrings (which have never been written into
memory) and calculate the distance from the result of a single read.
As the P(wrong) = 0.22037, I expected to get an average distance
of 220.37 with a standard deviation of 13.10. See Figure 64 for the
comparison between the simulated and the theoretical outcomes.

Figure 65 shows the new distance between ηd and read(ηd), where
ηd is d bits away from η. As for d > 520 there is no intersection
between η and ηd, our models applies and explains the horizontal
line around distance 220.

17.4 critical distance of 209

The critical distance is defined as d where P(miss) = d/n, or, in
Figure 57, the point where the curve meets with the identity function
(the black diagonal line). Thus, we plot a zoom-in of Figure 57 around
d = 209 in Figure 66 using the same equations [30]. It was surprising
that the meeting does not happen at d = 209, but around d = 221.

To confirm that the critical distance is not around 209, but around
221, we also plot a zoom-in of Figure 54 around d = 209 in Figure 67.
In order to reduce the noise, we increased the samples to k = 180.

156 results (iv): critical distance

Figure 64: The histogram was obtained through simulation. The red curve
is the theoretical normal distribution.

Figure 65: New distance after a single read operation in a bitstring ηd,
which is d bits away from η. The new distance was calculated
between ηd and read(ηd). Notice that when d > 520, the intersec-
tion between η and ηd is zero, which means there is only random
bitstrings written into the activated hard locations. The distance
220 equals 1000 · 0.220 which is the probability find in Figure 64.

17.4 critical distance of 209 157

Figure 66: Zoom-in around d = 209 of Figure 57.

Figure 67: Zoom-in around d = 209 of Figure 54.

18
R E S U LT S (V) : G E N E R A L I Z E D R E A D O P E R AT I O N

Dr. Murilo observed that the models of Kanerva’s read (z = 1) and
Chada’s read (z = 0) were simple variations of a generalized read
with an exponent z, which suggests experimenting with different
values. Mathematically, let A be the set of the counters of the
activated hard location, and ci be the counter of the ith bit. Then,

si =
∑
c∈A

ci
|ci|

|ci|
z

The sum of |ci|
z turns the intermediate values from integers to

floating point numbers. Thus, we have developed a specific read
operation which stored the intermediate values in double variables.

The results, however, have not yielded performance improvements.
Though for z 6 1 results are comparable to z = 1, for z > 1, the system
shows an evident deterioration, with a smaller critical distance and
faster divergence at large-distance reads. This is shown in Figures 68

and 69.
We understand that the critical distance is an important parameter

of SDM. The bigger the critical distance, the better, because SDM is
able to converge even with farther clues. For z > 1, the bigger the z,
the smaller the critical distance. For z = 6, the critical distance almost
reaches zero.

It is interesting that Kanerva has proposed z = 1 without realizing
the generalized reading. Even so, he proposed the z with the highest
critical distance.

159

160 results (v): generalized read operation

(a) SDM behavior when z ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 1}

(b) SDM behavior when z ∈ {1.5, 3, 4.5, 6}

Figure 68: (a) and (b) show the behavior of a single read. As stated pre-
viously, we can see a deterioration of convergence, with lower
critical distance as z > 1. Another observation can be made here,
concerning the discrepancy of Kanerva’s Fig 7.3 and our data. It
seems that Kanerva may not have considered that a single read
would only ‘clean’ a small number of dimensions after the critical
distance. What we observe clearly is that with a single read, as the
distance grows, the system only ‘cleans’ towards the orthogonal
distance 500 after a number of iterative readings.

results (v): generalized read operation 161

(a) z ∈ {0, 1}

(b) z ∈ {0, 0.5, 1, 1.5, 3, 4.5, 6}

Figure 69: (a) and (b) show the behavior of Figure 68, now executed with
6-iterative reads. What we observe clearly is that with a single
read, as the distance grows, the system only ‘cleans’ towards the
orthogonal distance 500 after a number of iterative readings.

19
R E S U LT S (V I) : S U P E RV I S E D C L A S S I F I C AT I O N
A P P L I C AT I O N

Supervised classification problem consists of categorizing data into
groups after seeing some samples from each group. First, it is
presented pieces of data with their categories. The algorithm learns
from these data, which is known as the learning phase. Then, new
pieces of data are presented and the algorithm must classify them
into the already known groups. It is named “supervised” because
the algorithm will not create the groups itself. It will learn the
groups during the learning phase, in which the groups have already
been defined and the pieces of data have already been classified into
them.

Although this problem has already been studied (REF), our
intention here is to show that a pure SDM may also be used to
classify data. Fan and Wang [71] has used SDM to solve a
classification problem, recognizing handwriting letters from images,
but he used a mix of genetic algorithm with SDM, which is very
different from the original SDM described by [104]. Even though his
algorithm has classified properly, we were intrigued whether a pure
SDM would also classify successfully.

Hence, we have developed a supervised classification algorithm
based on a pure SDM as our main memory. Our goal was to classify
noisy images into their respective letters (case sensitive) and numbers.
For some examples, see Figure 70.

Figure 70: Examples of noisy images with uppercase letters, lowercase let-
ters, and numbers.

The images had 31 pixels of width and 32 pixels of height, totaling
992 pixels per image1. Each image was mapped into a 1,000-bit
bitstring in which the bits were set according to the color of each
pixel of the image. So, white pixels were equal to bit 0, and black

1 A crucial note is in order. While others have proposed similar models [94], in no way
is it claimed here that these bitstrings should form a plausible representation of let-
ters in the human mind (See, for instance, Hofstadter [93] for a marvelous discussion
of the subtleties and fluidity involved in that process). These letters should merely be
seen as invariant patterns that are processed by the memory, which is able to capture
their underlying invariant structure even when presented only under heavy noise.
Recall that any rezising, any rotation, or any mere shifting of these letters will take
them out of the critical distance for SDM reading.

163

164 results (vi): supervised classification application

pixels to bit 1. The eight remaining bits were all set to zero. This was
a bijective mapping (or one-to-one mapping), i.e., there was only one
bitstring for each image, and there was only one image for each
bitstring.

A total of 62 classification groups have been trained in the SDM. For
each of them, it was generated a random bitstring. Thus, the groups’
bitstrings were orthogonal between any two of them. There is one
image for each of the 62 groups in Figure 71. Notice that the memory
has never seen a single image without noise.

Figure 71: One noisy image for each of the 62 classification groups.

The association of images to groups was stored as sequences in
SDM, as detailed by Kanerva [104] in Chapter 8. During the learning
phase, the image bitstrings were stored pointing to their group’s
bitstrings, i.e., write(addr=bs_image, datum=bs_label). Thus, in
order to classify an unknown image, we only had to read from its
address and check which group has been found.

During the learning phase, we have generated 100 noisy images
for each character. The images had 5% of noise, i.e., 5% of their
pixels have been randomly flipped. For example, see the generated
images for letter A in Figure 72. Then, we have written the
classification group bitstring into the bitstring associated to each
noisy image, i.e., write(bs_image, bs_label). For a complete image
training set, see Appendix XYZ.

results (vi): supervised classification application 165

Figure 72: 100 noisy images generated to train label A.

Finally, we have assessed the performance of our classifier. We had
done it in three different scenarios: high noise (20%), low noise (5%)
and no noise. See Figures 73 and 74 for images with 20% noise and
no noise. The low noise scenario had the same noise as the training
set. For each scenario, we had classified 620 unknown images with
ten images per group.

Figure 73: Images generated using a 20% noise for the high noise scenario.

The performance was calculated as the percentage of hits for each
group. We did not expect the same performance for all groups
because some groups become very similar to other depending on the
noise level, and this similarity may even confuse a person (see
Figure 75).

In the no noise scenario, the classifier has hit all characters, except
letter “l” which was wrongly associated with the group of “i”. We be-
lieve that it happened because the classifier had never seen an image

166 results (vi): supervised classification application

Figure 74: Images generated for the no noise scenario.

with no noise and the difference between the images of “l” and “i” is
smaller than the critical distance. So, both groups have been merged
and it converged to only one of them. In our simulation, it happened
to be the group of “i”.

In the low noise scenario, it has made few mistakes. It correctly
classified all images but some from characters “b”, “e”, “f”, “l”, “t”,
and “9”. It completely classified “l” images to the “i” group. In the
other cases, it made just a few mistakes. See Figure 76 to check the
images and their classification.

The high noise scenario is the most interesting, because, even in a
high noise level, the classifier has hit most of the characters. It has hit
all images for 44 out of 62 groups and made at least one miss for the
other 18 groups. The misses may be seen in details in Figure ??.

The critical distance plays an important role in the classification
error. As we have 62 groups and each has been trained with 100

images, there were 6,200 writes to the memory. When an image is
being classified, it will have to converge to a group, and the
convergence depends on the distance between this image and the
images from the training set, i.e., in the noise level.

In our simplified scenario, there is neither translation nor rotation.
Future work may explore how sensible this classification algorithm
is to these operations. We expect that, with proper training, the
algorithm will remain classifying the images with a good hit rate.

These results show that the SDM may be used as a supervised
classification algorithm. Although we do not believe that the
mapping between images and bitstrings are even close to the way
human cognition deals with images, we believe the results are
exciting and useful to many possible real-world problems.

results (vi): supervised classification application 167

(a) “i”, “l”, and “r” with 20% noise.

(b) “i”, “l”, and “r” with 5% noise.

(c) “c”, “d”, and “o” with 20% noise.

(d) “c”, “d”, and “o” with 5% noise.

(e) “G”, “O”, and “Q” with 20% noise.

(f) “G”, “O”, and “Q” with 5% noise.

Figure 75: Images of different characters which may be confusing depend-
ing on the noise level.

168 results (vi): supervised classification application

(a) Images from character “b which were classified as [b, b, b, h, b, o, b, h, b, b],
respectively. It has made 3 misses.

(b) Images from character “e which were classified as [e, e, e, e, e, e, e, e, o, e],
respectively. It has made 1 miss.

(c) Images from character “f which were classified as [i, f, f, I, I, I, f, f, f, f], respectively.
It has made 4 misses.

(d) Images from character “l” which were classified as [i, i, i, i, i, i, i, i, i, i], respec-
tively. It has missed them all as if both groups have been merged.

(e) Images from character “t” which were classified as [t, t, t, t, t, t, t, i, t, t], respec-
tively. It has made 1 miss.

(f) Images from character “9” which were classified as [9, 9, 0, 9, 9, 9, 0, 0, 9, 9],
respectively. It has made 3 misses.

Figure 76: Characters in the low noise scenario in which the classifier has
made at least one mistake. In all the other cases, it correctly clas-
sified the images. We may notice that the groups of “i” and “l”
have been completely merged by the classifier, because it cannot
distinguish them, not even with no noise.

results (vi): supervised classification application 169

(a) Images from character “B” which were classified as [S, B, B, B, B, B, B, B, B, B]. It
has made 1 mistake.

(b) Images from character “O” which were classified as [G, G, O, O, O, O, O, O, O,
O]. It has made 2 mistakes.

(c) Images from character “T” which were classified as [T, T, T, T, T, I, T, T, T, T]. It
has made 1 mistake.

(d) Images from character “Y” which were classified as [Y, I, Y, Y, Y, Y, Y, Y, Y, Y]. It
has made 1 mistake.

(e) Images from character “b” which were classified as [o, o, o, b, o, h, h, b, b, o]. It
has made 7 mistakes.

(f) Images from character “c” which were classified as [c, c, c, c, c, o, c, c, c, o]. It has
made 2 mistakes.

(g) Images from character “e” which were classified as [e, o, e, o, o, o, e, o, o, e]. It
has made 6 mistakes.

(h) Images from character “f” which were classified as [I, I, I, I, i, I, I, I, I, I]. It has
missed them all.

170 results (vi): supervised classification application

(i) Images from character “i” which were classified as [i, i, i, I, i, i, i, i, I, i]. It has
made 2 mistakes.

(j) Images from character “j” which were classified as [j, j, j, I, I, j, j, j, j, I]. It has made
3 mistakes.

(k) Images from character “l” which were classified as [I, i, I, I, I, I, i, I, I, i]. It has
missed them all.

(l) Images from character “n” which were classified as [u, n, n, n, n, n, u, u, u, h]. It
has made 5 mistakes.

(m) Images from character “q” which were classified as [q, q, q, q, q, q, q, q, q, g]. It
has made 1 mistake.

(n) Images from character “t” which were classified as [I, r, I, i, I, i, i, i, I, i]. It has
missed them all.

(o) Images from character “1” which were classified as [1, I, 1, I, 1, 1, I, I, 1, I]. It has
made 5 mistakes.

(p) Images from character “7” which were classified as [7, 7, 7, I, 7, I, I, 7, 7, 7]. It has
made 3 mistakes.

results (vi): supervised classification application 171

(q) Images from character “8” which were classified as [8, 6, 6, 6, 8, d, 8, 8, d, 6]. It
has made 6 mistakes.

(r) Images from character “9” which were classified as [9, 0, 6, 0, 9, 0, 0, 9, 0, 0]. It
has made 7 mistakes.

Figure 75: Characters in the high noise scenario in which the classifier has
made at least one mistake. In all the other cases, it correctly clas-
sified the images.

20
R E S U LT S (V I I) : I M A G E N O I S E F I LT E R I N G
A P P L I C AT I O N

Image noise filtering consists in removing the noise from an input,
in our case an image. Our images are black & white images, and the
noise is generated randomly flipping some of their pixels from black
to while and vice versa. In Figure 76, we may see an image with
different levels of noise, from 0% to 45% in steps of 5%. It makes no
sense to apply 50% of noise as it would absolutely randomize the
image.

Figure 76: Progressive noise into letter “A”, from 0% to 45% in steps of 5%.

The images have 30 x 30 pixels, totaling 900 pixels per image. Each
image is mapped into a bitstring of 1,000 bit in which the bits are set
according to the color of each pixel of the image. White pixels are
assigned to bit 0, and black pixels to bit 1. The 100 remaining bits
are all set to zero. This is a bijective mapping (or one-to-one) from
images and bitstrings, i.e., there is one, and only one, bitstring for
each image, and vice versa.

In the learning phase, 200 noisy images were generated and
written into SDM. Half of the letter “I” and half of the letter “T” (see
Figure 77). They were written into their own addresses, i.e.,
write(address=bs_image, datum=bs_image), following, for instance,
Hong and Chen [94], Marshall and Meeden [135].

Then, in order to test the filtering, we just have read from noisy
images, and the results were remarkable. We were able to clean
images up to 42% of noise (see Figure 78). While SDM has never
seen a clean version of the letters, it just learned from the learning
phase which pixels have appeared more frequently and choose them.

A simplified mathematical analysis would be: During the learning
phase, 200 images with 15% of noise were written to SDM, so, the
average distance between them and the clean image was 150 bits.
Thus they shared, on average, 175 hard locations with the clean
image. In these 175 hard locations, the counter’s value for a black
pixel mapped to bit 1 was (1− 0.15) · 200− 0.15 · 200 = 140. Finally,
let’s analyze the reading. When reading from a noisy image with
42% of noise, the average distance between the noisy image and its
clean image is 420, which means they share, on average, 6 hard
locations. As the average number of activated hard locations is 1,072,

173

174 results (vii): image noise filtering application

(a) Letter “I” with 15% of noise.

(b) Letter “T” with 15% of noise.

Figure 77: Training images written into the SDM. They were written in their
own addresses — write(address=bs_image, datum=bs_image).

(a) Steps of reading from letter “T” with 42% of noise

(b) Steps of reading from letter “I” with 42% of noise

Figure 78: In order to test the SDM as a noise filter, we read from noisy
images expecting to get a clean image. It is interesting to highlight
that SDM has never seen a clean version letters “T” and “I”.

the sum of their counters will be, on average,
Y = 6 · 140 −

∑1072−6
i=1 Xi, where Xi is a Bernoulli trial with

results (vii): image noise filtering application 175

probability 0.5. Hence, P(black pixel) = P(Y > 0) =

P(6 · 140 −∑1072−6
i=1 Xi > 0) = P(

∑1066
i=1 Xi < 840) = 99.99%. But,

when reading from a noisy image with 45% of noise, the average
number of hard locations shared with the clean image is only 3.
Thus the sum of the activated hard locations’ counters will be, on
average, 3 · 140 −

∑1072−3
i=1 Xi, and

P(black pixel) = P(
∑1069
i=1 Xi < 420) = 1.28 · 10−12. The probability

abruptly drops from 100% to 0% when the noise goes from 42% to
45% (see Figure 79). The analysis for while pixels is exactly the same,
but with opposite signs. The code to calculate this probability is
available in “Noise filter - Math analysis” notebook [29].

This is a simplified analysis because it does not take into
consideration the hard locations shared by the different letters. It
works fine for our example because letters “I” and “T” are almost
orthogonal and share, on average, only one hard location.

Figure 79: Probability of getting the right pixel when reading from an image
with noise p. It assumes that SDM was trained with 200 images
with 15% noise.

If the intersection between images becomes too high, the noise filter
stops working properly. We have confirmed it writing the letters “B”,
“C”, “D” and the numeral “8”. They share a high number of hard
locations, and our noise filter could not filter their noise correctly.
The training sets can be seen in Figure 80 and the results in Figure
81.

A possible solution to this interference problem is to use labels.
Each label has a random bitstring, which will be chunked with the
images before writing into SDM. Hence, before reading, we also have
to chunk the image with the label — which means we need to know
the label of each image. The chunk was done using the exclusive

176 results (vii): image noise filtering application

(a) Letter “B” with 15% of noise. (b) Letter “C” with 15% of noise.

(c) Letter “D” with 15% of noise. (d) Letter “8” with 15% of noise.

Figure 80: Training images in which the intersection between images
is too high. They were written in their own addresses —
write(address=bs_image, datum=bs_image).

Figure 81: When the intersection between images becomes too high, there
appears some interference in the resulting image. All cases have
10% noise. We can notice that the empty space on the right side
of the “C” letter generates some white pixels on the right side of
both “B” and “D” letters.

results (vii): image noise filtering application 177

Figure 82: Using labels solves the interference problem when the intersec-
tion between images becomes too high. All cases have 20% noise.

OR (XOR) operator, i.e., bs_chunck = bs_image⊕bs_label. In other
words, we run write(address=bs_chunk, datum=bs_label) during the
training, and read(address=bs_chunk) during the testing. We used the
same training set as before, and the results can be seen in Figure 82.

The chunk through exclusive OR (XOR) works because of Theorem
17, which says that chunking the images with labels will generate, on
average, orthogonal bitstrings. Thus, these orthogonal bitstrings will
not interfere with each other because they share, on average, only one
hard location.

The disadvantage of using labels is that it requires classification
of the images. In our example, we just used the correct label with
each image, but we could have used our classification algorithm as a
pre-processing step, and only then run the noise filter.

Theorem 17. If v1 and v2 are random bitstrings, then
∀a,b, E [d(a⊕ v1,b⊕ v2)] = n/2.

Proof. Let A = {i|ai = bi} be the indexes in which the bits of a are
equal to the bits of b, and B = {i|ai 6= bi} be indexes in which the bits
of a are different from the bits of b. Thus,

178 results (vii): image noise filtering application

d(a⊕ v1,b⊕ v2) =
n∑
i=1

d(ai ⊕ vi1,bi ⊕ vi2)

=

n∑
i=1

(ai ⊕ vi1)⊕ (bi ⊕ vi2)

=

n∑
i=1

(ai ⊕ bi)⊕ (vi1 ⊕ vi2)

=
∑
i∈A

(ai ⊕ bi)⊕ (vi1 ⊕ vi2) +
∑
i∈B

(ai ⊕ bi)⊕ (vi1 ⊕ vi2)

For i ∈A, ai ⊕ bi = 0, and follows:

(ai ⊕ bi)⊕ (vi1 ⊕ vi2) = 0⊕ (vi1 ⊕ vi2)
= vi1 ⊕ vi2
= d(vi1, vi2)

Hence, E
[∑

i∈A d(a
i ⊕ vi1,bi ⊕ vi2)

]
= E

[∑
i∈A d(v

i
1, vi2)

]
= |A|/2,

because v1 and v2 are random bitstrings and their average distance is
half the number of bits.

For i ∈ B, ai ⊕ bi = 1, and follows:

(ai ⊕ bi)⊕ (vi1 ⊕ vi2) = 1⊕ (vi1 ⊕ vi2)
= d(1, vi1 ⊕ vi2)

Hence,
E
[∑

i∈B d(a
i ⊕ vi1,bi ⊕ vi2)

]
= E

[∑
i∈B d(1, v

i
1 ⊕ vi2)

]
= |B|/2.

Finally, E [d(a⊕ v1,b⊕ v2)] = |A|/2+ |B|/2 = n/2, since |A|+ |B| =

n

21
R E S U LT S (V I I I) : T H E P O S S I B I L I T Y O F
U N S U P E RV I S E D R E I N F O R C E M E N T L E A R N I N G

Reinforcement learning has increasing prominence in the media
after AlphaZero has won all games from both the best chess
grandmasters in the world and the best chess engines. What is
incredible about these victories is that AlphaZero has almost no
knowledge about chess game and has learned all its movement
playing against itself for 4 hours. Basically, it knows only the valid
movements and had to learn everything from scratch, which it did
using a reinforcement learning algorithm1 [178, 179].

Reinforcement learning is a machine learning algorithm which
learns from the rewards of its actions. So, it receives the game state
as input, it decides which action will be taken, and then it learns
from the rewards of all the actions it has chosen. In theory, it learns
after each reward feedback it receives, improving its decision over
time and presenting intelligent behavior. A positive reward would
indicate that the chosen action should be encouraged, while a
negative reward would indicate the opposite. In some algorithms,
there may be a neutral reward which would indicate that the chosen
action was neither positive nor negative. How each type of reward
should be handled depends on each algorithm. For further
information, see Sutton and Barto [188].

We have done some experiments with an SDM as a memory for
a TicTacToe player. Basically, it receives the current board state and
returns which action should be played. At the end of the game, it
receives both the sequences of boards and the winner and is supposed
to learn from them.

In our approach, there were 9 possible actions: one for each cell of
the TicTacToe game. Action 1 means playing in the first cell of the
first row; action 2 means playing in the second cell of the first row;
and so one. Figure 83 shows the TicTacToe board numbering and the
link between each cell and its respective action.

Our algorithm to decide what should be played is simple: it reads
the current board from SDM and then it chooses the valid action with
the highest score. To calculate the scores, the bitstring is split into 9

parts, one per action (Figure 83). The number of bits 1 in each part
indicates the score of its respective action.

After a game has finished, it is time to learn from its decisions. Our
algorithm has three rewards: positive, negative, and neutral. It always

1 See also the recent work on modern machine learning and reinforcement learning
[3, 200]

179

180 results (viii): the possibility of unsupervised reinforcement learning

1 2 3

4 5 6

7 8 9

Action 1 Action 2 Action 3 · · · Action 9

b0 b1 b2 b3 b4 b5 · · · bk

k bits per action

Figure 83: Each action is a cell in the TicTacToe board and is mapped to slice
of the bitstring.

b0

→ x

b1

→ o x

b2

→
x

o x

b3

→
x

o x

o
b4

→

x x

o x

o
b5

→
x x o

o x

o
b6

→
x x o

o x

x o
b7

Figure 84: Example of a game with 7 movements in which X wins.

learns from both players, no matter who wins or if it was a draw. The
winner’s sequence of actions feeds our positive reward learning. The
loser’s sequence of actions feeds our negative reward learning. If it is
a draw, both sequences feed our neutral reward learning.

Each board state has a unique random bitstring. For instance, each
board in Figure 84 has its own unique random bitstring. Thus, if a
specific board state is reached again, SDM will return the scores for
each action.

Let b0,b1,b2, . . . ,bn be the board sequence of the game (see Figure
84). In order to learn, our algorithm will map each action which goes
from bk to bk+1 to a reward bitstring and then will write a pointer
from bk to this reward bitstring, i.e., write(bs_board, bs_reward).

The reward bitstring may be a positive, negative, or neutral
bitstring. The positive reward bitstring is randomly generated and
then only the bits related to the action will be set to 1 (see Figure ??).
The negative reward bitstring is also randomly generated and then
only the bits related to the action will be set to 0. Finally, the neutral
reward bitstring is only a random bitstring.

results (viii): the possibility of unsupervised reinforcement learning 181

Action 1 · · · Action k · · · Action 9

0 1 0 1 · · · 1 1 1 1 · · · 1 0 0 1

random bits all ones random bits

Figure 85: Positive reward bitstrings used in our reinforcement learning al-
gorithm.

The idea behind these reward bitstrings is to increase the score
of positive rewards (all bits set to 1), and to decrease the score of
negative rewards (all bits set to 0). The neutral reward will have, on
average, half of its bits 1 and the other half 0. Thus, it is in the middle
of a positive reward and a negative reward.

Let the b be the sequence of boards and a be the sequence of
actions, then b0

a0−→ b1
a1−→ b2

a2−→ · · · an−1−−−→ bn. Suppose there is a
winner, thus the winner’s actions will be the sequence
an−1,an−3,an−5, . . . , while the loser’s actions will be the sequence
an−2,an−4,an−6,

The positive reward learning will be writing the following
pointers in SDM: bn−1 → an−1, bn−3 → an−3, and so on. The
reward bitstring of an−1 will have all bits set to one in an−1’s slice.
All other bits will be random.

The negative reward learning will be writing the following point-
ers in SDM: bn−2 → an−2, bn−3 → an−3, and so on. The reward bit-
string of an−2 will have all bits set to zero in an−2’s slice. All other
bits will be random.

If it is a draw, all actions will be mapped to the neutral reward
bitstring, which is simply a random bitstring.

There are also weights associated with positive, negative, and
neutral rewards. They are used to indicate what goal is more
important. For instance, if SDM should try to win in the first place,
no matter if it may lead to losing, the weight of the positive reward
should be higher than the others. But, if it is more important not to
lose, then the weight of the negative reward should be higher.

In the very beginning, SDM is empty, and its counters are zeroed.
So, any reading will result in a random bitstring, because it will flip a
coin for all counters. Thus, the chosen action will be random, as their
scores will follow a binomial distribution. It is precisely the desired
behavior — we play randomly until we learn. In fact, it will happen
every time an unknown board is seen.

Internally, every board is mapped into a random bitstring and
passed to SDM. As every two boards are, on average, orthogonal,
SDM knows nothing about the boards themselves, neither whether

182 results (viii): the possibility of unsupervised reinforcement learning

they are consecutive or not. It knows only the score of the actions
according to the games it has seen and learned from. Hopefully, the
actions will lead to a victory or a draw.

In more details, the next movement decision consists in one read
from SDM, resulting in a bitstring. Then the scores of the actions are
calculated counting the number of 1 in each part of the bitstring. The
chosen action is the one which is valid and has the highest score.

21.1 training

Our algorithm learned playing games against opponents. We had
four types of opponents: (i) another SDM player, (ii) a random player
whose actions are always random; (iii) a smart player whose actions
wins when it can, block the opponent when it can, or are random;
and (iv) a human player.

The weights of the rewards were chosen to prevent losing. Thus the
weight of the negative reward was 5, while the weight of the positive
reward was 2 and the neutral was 1. This choice are in accordance
to Prospect Theory, which is a behavioral economic theory and states
that losses hurt more than gains feel good [103].

Every learn cycle had two parts: (i) 100 games learning and (ii) 100

games testing. So, it has never learned during the testing phase and
has not affected the measure of the statistics.

21.2 results

When playing against the random player, SDM has already started
improving after the first 100 training games. Its winning rate
converges quickly to around 80%, while the drawing rate starts to
grow after 2,000 games and keeps rising until the end. The losing
rate keeps decreasing until it reaches cycles of 100 games without
any loss. See Figure 86.

When playing against the smart player, SDM has started learning
how not to lose during the first training cycles. The drawing rate
grows quickly in the first 500 games and slowly since then. The
winning rate grew to around 20% and remained there until 6,000

games, while the drawing rate kept increasing. Then, after learning
how not to lose, SDM started learning how to win, since, after 7,000

games, the winning rate started to increase. See Figure 87.
When playing against another SDM player, both player quickly

learns how not to lose. During the first 100 testing games, without
any learning game, they have behaved like two random players.
After the 100 training games, they have learned how not to lose, and
the drawing rate grows quickly, reaching 100%. See Figure 88.

When playing against mixed players, SDM has also adapted. In
Figure 89, it has played 6,000 games against the random player, the

21.2 results 183

smart player, and another SDM player. In each cycle, one of them
was randomly chosen. The number of losses over time is decreasing,
whereas the number of wins and draws change a lot. It is easy to
notice when the other SDM player was chosen since all games in that
cycle have drawn.

184 results (viii): the possibility of unsupervised reinforcement learning

(a) Losses over time

(b) Results over time

Figure 86: Results playing against the random player. Each cycle was made
of 100 games for training, and then 100 games for measuring
statistics.

21.2 results 185

(a) Losses over time

(b) Results over time

Figure 87: Results playing against the smart player. Each cycle was made
of 100 games for training, and then 100 games for measuring
statistics.

186 results (viii): the possibility of unsupervised reinforcement learning

(a) Losses over time

(b) Results over time

Figure 88: Results playing against another SDM player. Each cycle was made
of 100 games for training, and then 100 games for measuring
statistics.

21.2 results 187

(a) Losses over time

(b) Results over time

Figure 89: Results playing against a randomly chosen player between ran-
dom player, smart player, and another SDM player. Each cycle
was made of 100 games for training, and then 100 games for mea-
suring statistics.

22
R E S U LT S (I X) : I N F O R M AT I O N - T H E O R E T I C A L
W R I T E O P E R AT I O N

My advisor, Alexandre Linhares, has proposed another write
operation: an information-theoretical weighted write. In it, the sum
of the counter’s value is weighted based on the distance between
each hard location’s address and the reading address. The logic
behind it is to vary the importance of each hard location inside the
circle. It is only natural that one encodes an item in closer hard
locations with a stronger signal, and a natural candidate for this
signal function is the amount of information contained in the
distance between the item and each hard location. Closer hard
locations have lower probabilities and therefore should encode more
information.

Note that this is not the first time in which a weighted function
has been applied to writing in SDM — Hely et al. [90] suggest a
rather complex spreading model based on floating point signals in
the interval [0.05, 1.0] — they were, however, only able to test their
model with 1,000 hard locations.

Consider the following. Information Theory [53] let us compute the
precise amount of information in an event when given its probability
p, through the measure of self-information:

I(p) = −log2(p)

Now, given any two n-sized bitstrings, the probability of their
Hamming distance being exactly d is given by P(X = d) = 2−n

(
n
d

)
,

and the probability of it being at most d is:

P(X 6 d) = 2−n
d∑
i=0

(
n

i

)
But we must consider that not all hard locations are activated in

each write operation, which changes our probability function. Thus,
let r be the access radius then:

189

190 results (ix): information-theoretical write operation

P(X = d|X 6 r) =
P((X = d)∩ (X 6 r))

P(X 6 r)

=
P(X = d)

P(X 6 r)
, as d 6 r

=
2−n

(
n
d

)
2−n

∑r
i=0

(
n
i

)
=

(
n
d

)∑r
i=0

(
n
i

) , d 6 r

And the probability of it being at most d is:

P(X 6 d|X 6 r) =

∑d
i=0

(
n
i

)∑r
i=0

(
n
i

) , d 6 r

As expected, P(X 6 d|X 6 r) = 1 when d = r.
Hence the weighted write would, on each hard location, sum (or

subtract) using the following weights, as seen in Figure 90:

w(d) = − log2 (P(X = d|X 6 r)) = − log2

(
n

d

)
+ log2

r∑
i=0

(
n

i

)
, d 6 r

The initial results of this Shannon write operation can be seen in
Figure 91 and seem promising. It seems that, when n = 1, 000,
H = 1, 000, 000, r = 451, and 10,000 written random bitstrings, the
critical distance increased from around 221 to around 250. This
increase may be interpreted as an improvement in SDM, because it
would converge to the correct bitstring even for farther bitstrings.
Note that 29 additional bits imply an attractor area 229 times larger
than the original. This Shannon write may affect memory capacity
[48, 49, 180] — possibly increasing it. Another point to keep in mind
is that, since the modulus of the vectors are not uniform in this
approach, the shape of the attractor may have asymmetries. Whereas
these are just some initial tests, the idea seems meritorious so far. As
for future research, we will execute all tests in the thesis and
compare this Shannon write with the original Kanerva model.

results (ix): information-theoretical write operation 191

(a) w(d),d ∈ {1, 2, ...,n}.

(b) w(d) for the desired range.

(c) Stepwise bw(d)c for fast integer computation.

Figure 90: Shannon write operation: Computing the amount of information
of a signal to each hard location in its access radius. (a) entirety
of the space; (b) region of interest; (c) Fast integer computation is
possible through a stepwise function.

192 results (ix): information-theoretical write operation

(a) Write process weighted by the amount of information
contained in the distance between the written bitstring
and each hard location

(b) Zoom in Figure 91a

(c) Behavior of weighted write operation according to the
distance from the center and the number of items previ-
ously stored in the memory

Figure 91: Behavior of the critical distance under the information-theoretic
weighted write operation when n = 1, 000, H = 1, 000, 000 and
r = 451.

23
C O N C L U S I O N

The most exciting phrase to hear in science, the one that
heralds new discoveries, is not ‘Eureka!’ (I found it!) but
“That’s funny...”
— Isaac Asimov

Sparse Distributed Memory is a viable model of human memory,
yet it does require researchers to (re-)implement a number of parallel
algorithms in different architectures.

We provide a new, open-source, cross-platform, highly parallel
framework in which researchers may be able to create hypotheses
and test them computationally with minimal effort. The framework
is well-documented for public release at this time
(http://sdm-framework.readthedocs.io), it has already served as the
backbone of Chada’s Ph.D. thesis [40]. The single-line command
“pip install sdm” will install the framework on posix-like systems,
and single-line commands will let users test the framework, generate
some of the figures from Kanerva’s theoretical predictions in their
own machines, and — if interested enough —, test their own
theories and improve the framework, and the benchmarks used to
evaluate the framework, in open-source fashion. It is our belief that
such work is a necessary component towards accelerating research
in this promising field.

Here are interesting questions that have been considered during
this work, but have had to be left for future research.

23.1 another ‘funny thing’ . . .

Over the course of this work we looked into a ‘funny thing’ that had
appeared in my master’s thesis: the graphs of convergence did not
reflect the original expectations put forth by Kanerva, and neither my
own previous calculations. These numerical results pointed us back
to the math and to some interesting random variables not studied
before.

Another funny thing that has appeared in my master’s thesis was
that the critical distance collapsed when the network was exclusively
writing ‘random-at-x’. This is something I would like to look into but
have not had the time to conduct a proper study yet.

193

194 conclusion

23.2 magic numbers

Kanerva suggests, in his book, the use of 1,000 dimensions and
1,000,000 hard locations. More recently, he suggested the use of
10,000 dimensions, and on personal discussions suggested that this
should be a minimum; as he has been concerned in latent semantic
analysis and seems to be the proper scale in that application.

Each parameter set choice like this will lead to particular numbers
— many of them emergent —, such as the access radius size, critical
distance, memory capacity, and so forth. For example, the number of
dimensions n leads to the number of standard deviations available
on the space: 2

√
n. One then must choose a proper multiple m ×

σ: Kanerva (and most in the literature) have been using m = 3, as
µ − 3σ selects approximately 1/1000 of the space. These constants
will determine the size of the access radius. Then one must choose
the number of hard locations, which will determine how many hard-
locations are activated on average; and so on and so forth...

One intriguing question here is: is there a ‘better’ number of
dimensions and hard locations? If so, can such numbers be better
studied algebraically or numerically? How should these parameters
be compared? What are the tradeoffs that should be considered?
What are the ‘best’ benchmarks possible?

23.3 symmetrical , rapidly accessible , hard locations

A hypercube with n dimensions can be divided by two hypercubes
with n− 1 dimensions. Is there an algorithm that separates the area
of each hard location in such a form that there exists a function
mapping each bitstring in {0, 1}n to the set of hard locations it
‘belongs to’? Though this would break Kanerva’s assumption of a
randomly yet uniformly distributed set of hard locations — for a
perfectly symmetrical set of hard locations —, there could be large
performance gains if such a mapping function from a bitstring to its
corresponding set of nearest hard locations exists. Note that others
have attempted heuristic approaches to this1.

Consider the hypercube with n dimensions. We want to select a
subset of its vertices with cardinality 220 that is symmetrically
distributed over the space. Afterward, ∀b ∈ {0, 1}n, we want an
algorithm A that yields the particular list of hard locations for b and
all hard locations respect the desired properties of the memory.

A reduction from measuring the distance to 220 hard locations to
a computation of 210 hard locations might yield astonishing

1 Kanerva [105] has recently mentioned that ‘The computationally most efficient imple-
mentation of it, by Karlsson [115], is equivalent to the RAM-based WISARD of Alek-
sander et al. [4].’ Note, however, that Karlsson’s model may introduce non-uniform
asymmetries in the space, and seems to require a staggering O(2n) hard-locations.

23.4 “i” versus “l” 195

performance gains, depending, of course, on our optimistic
assumptions concerning existence and complexity of such algorithm.
At large scales of computing, the very ability to perform some
experiments is a function of sheer performance. The horizon of
experiments — and possibly of knowledge — expands as a function
of computational demands. A little more on this will follow below.

23.4 “i” versus “l”

The classification algorithm had some problems classifying the
patterns “i” and “l”, due to the low distance between them. In this
case, SDM could not discriminate the differences — it has only
considered the big picture. Although this behavior is close to how
humans see things, we also have the ability to zoom and focus on
the details, clearly discerning letter “i” from letter “l”.

I have run the classification algorithm under the MNIST database of
handwritten digits [63]. First, SDM has been trained with the 60,000

training images, and then it classified the 10,000 testing images. In
these initial tests, the memory has given the correct classification for
79.22% of the images, which is inferior to the specialized algorithms.
For instance, in 1998, LeCun et al. [122] have developed algorithms
which achieve from 88% through a linear classifier, to 99.7% through
a convolutional net. For a review of algorithms’ performance in the
MNIST database, see [63].

Looking into the reason behind images incorrectly classified, I have
found that the issue is very related to the “i” versus “l” issue. Some
handwritten digits are very close to others, and a “2” or a “7” may
look like a “1”, for instance. So, how can we solve this issue without
using anything specific to images? Machine learning algorithms use
specific techniques to improve performance. I would like to unveil
a solution psychologically closer to how we behave — even if that
eventually leads to lower performance.

An unexplored idea is to use multiple SDMs which communicate.
A first SDM would write the whole picture, just like we have done.
Another SDM would write specific regions of the image, just like our
eye focusing on specific regions. When reading, they may compose
the counters and give a more precise classification.

23.5 deep learning , multiple sdms — and the incredible

animal behavior of dr . linhares

There is the intention of studying what, if any, capabilities do
multiple SDMs have... yet it is probably advisable to leave the
following comments as originally made by my advisor, Dr. Linhares.
To quote:

196 conclusion

System 1 System 2

Unconscious Reason-
ing

Conscious Reasoning

Implicit Explicit

Automatic Controlled

Low Effort High Effort

Large Capacity Small Capacity

Rapid Slow

Default Process Inhibitory

Associative Rule-Based

Contextualized Abstract

Domain Specific Domain General

Evolutionarily Old Evolutionarily Recent

Nonverbal Linked to language

Includes recognition,
perception, orientation

Includes rule following, comparisons,
weighing of options

Modular Cognition Fluid Intelligence

Independent of work-
ing memory

Limited by working memory capacity

Non-Logical Logical

Parallel Serial

Table 7: Dual process theories.

Those deep neural networks... alphaGo... alphazero...
very impressive, and to me very right and proper in a
sense and also very wrong and misguided in another. I
have not seriously studied the topic. Eric Nichols
explained it to me in a napkin, and I watched some
youtube videos and browsed the books. So what follows,
like all great science, is completely based on gossip and
hearsay, prejudice and anecdote. Or at least that’s how I
believe all great hunches over what is promising and what
is a dead-end come from; that aesthetic sense that forms
over time and seems to guide us towards what feels
beautiful and correct and away from what seems foolish
and wasteful...

So here is my hunch: SDM is System 1 and System 1 is SDM
(e.g., as in Table 23.5). I haven’t seen anyone say this out
loud, but Kanerva has pretty much nailed system 1 — I
feel he is at least 90% right.

23.5 deep learning , multiple sdms — and the incredible animal behavior of dr . linhares 197

(a) Bongard problem 71

(b) Bongard problem 72

(c) Bongard problem 73

Figure 92: Bongard problems 71 - 73, courtesy of noted Bongardologist, Dr.
Harry Foundalis. What distinguishes the boxes on the left hand
side to those on the right hand side?

You know those animals that create those burrows
underground, creatures like the prairie dogs? There,
underground, they build all sorts of passageways from
here to where they want to go; and in the process they
discover all that can’t be passageway. What can’t be

198 conclusion

(a) Bongard problem 74

(b) Bongard problem 75

(c) Bongard problem 76

passageway — what can’t be corridor — will never be
used as passageway, by definition. And most of the world
can’t be passageway. Think about the animal behavior:
endless dead-end nooks and cranies yet the beast won’t
give up! To me it’s all very similar to what these systems
seem to be doing... it seems they are crafting and
molding a model of their problem; discovering what
can’t be passageway and finding some other route, very
tortuous if need be... You have these monstrous networks

23.5 deep learning , multiple sdms — and the incredible animal behavior of dr . linhares 199

(a) Bongard problem 77

(b) Bongard problem 78

(c) Bongard problem 79

creating layers upon layers in which they differentiate
and distribute the errors throughout all the nooks and
cranies of, say, a domain like the game of Go. Then, after
some biblical number-crunching, it seems that there may
be a very subtle way... however tortuous, however tight,
however improbable, however unconfortable.

And these machines are exhibiting intelligence. The
victories in the game of Go seem to have shown that

200 conclusion

alphaGo did have vague, non-explicit, non-formal, but
very strong intuitions about what the nooks and cranies
of the Go universe looks like. So here is what I like and I
find beautiful: These gigantic clusters of inter-related
micro impressions that the system has acquired and can
relate to. I imagine multiple SDMs exchanging
information; gossiping to each other about all the
dead-ends out there and trying to find some tiny
tortuous pathway, and it feels to me that that’s a good
and proper way to move forward in research.

But it feels like a mistake to say that that is thinking. It’s
not. It is to me a great model of someone getting so
attuned into an area that they are able to simply flow
through tasks; in the positive psychology sense of the
word flow. It’s very powerful and very intelligent: but it
is a form of intelligence without thinking. Intelligence
that can’t make leaps from one arena to another;
Intelligence that can’t work on Bongard problems. So
what I would fear as a dead-end in research would be to
have another AI winter... decades of massive, massive
number-crunching and machine learning of this type... in
disregard to big questions such as the interaction of
short-term memory with SDM and, again, tasks like
Bongard problems (Figure 92). Bongard problems
demand high-gossip between system 1 and system 2;
they demand a high dose of imagination and mental
imagery manipulation; they demand discrimination and
demand clusterization, among many other things that
have been spelled out before by Bongard [24], Hofstadter
[92], Linhares [128] and the landmark, deep, study being
Foundalis [76].

Cognitive Science has to study the plausible interaction
between system 1 and system 2. We can’t continue to
study, say, a silly, implausible, model of system 1 and a
great model of system 2 (or vice-versa). We need both
system 1 and system 2 to be plausible, in the
psychological sense and in the neuroscientific sense.
AlphaGo, for instance, has this wonderful model of the
game, reflecting many of the properties of system 1... but
then falls back into silliness as soon as it turns to the
other side of the problem: it uses montecarlo methods in
very efficient fashion to probe some 70,000 thousands of
positions per second and go on to to the next probing of
this wonderful system 1...

23.6 not a real conclusion 201

It works; it is impressive; it is intelligent; but it is not
thinking; and it hasn’t thought us much about our
cognition.

Hofstadter has nailed the interactions and the content...
analogies, fluid concepts, things seen through a different
perspective, abstract roles, variations on a theme, etc.
Kanerva has nailed system 1, long-term-memory, and its
theoretical neuroscience; micro neuro-firings bringing a
memory back to life. Isn’t it time to work on System 2

models that are counterparts to SDM — in fact, isn’t it
obvious that that’s our glaring omission? Attaching
something as beautiful as SDM to, say, some centralized
hyper-efficient montecarlo algorithm is nothing short of
heresy against all the gods of science for which the
villain shall be put to death without clemency or mercy.
Seems like the only reasonable path going forward...

23.6 not a real conclusion

Project Observation

Source-code C, OpenCL, Python (NVIDIA CUDA, FP-
GAs desirable in the future)

Step-by-step notebook
studies

replication and dissemination of studies

Documentation of
framework

100+ pages currently

Open-Source Creative
Commons Book

Under consideration (to be created from
this thesis)

Collection of SDM
links, results, resources

modeled after ‘Awesome Machine
Learning’[142] and ‘Awesome Artifi-
cial Intelligence’[126] lists, community
managed

Slides from the Jupyter
Notebooks

online course, currently in planning
phase

Videos following the
Course Slides

online course, currently in planning
phase

Table 8: Desiderata of open-source, creative-common deliverables, longer-
term. Some of these items are mature for wide dissemination,
whereas others are in planning phase. For an online SDM course,
for instance, we might partner with a Ph.D. program in the Teach-
ing of Mathematics and Physics, such as IM/UFRJ [96], who are
intent on developing and measuring the effects of new educational
tools.

202 conclusion

Let us revisit, in these concluding thoughts, the emphasis
employed over speed of computation. At first sight, that might seem
like a typical objective of efficiency in computer science. But we are
not only interested in the computer science effects here — the
ambition is different. More important than this ‘computer-sciency’
goal, i.e., a beautiful, clean, efficient algorithm with the primary
effect of enhanced speed, however, is the secondary effect on the
sociology of science: communities form around open-source code,
specialists in a particular arena magnify the capabilities of the code,
debates and meetings are regularly held, and deep divisive
disagreements lead to community splits in multiple potential
directions of exploration. In a very real sense, given a shared code to
work and experiment on, we can see farther.

Beyond speed, I have also strived for ease of use and replicable
studies. All the simulations and graphics generated in this thesis are
promptly available to be re-executed and explored by those
interested. Most importantly, they also serve as a tutorial for learning
about the framework’s design, and perhaps as a teaching tool for
SDM itself. I have generated a Docker image, which makes it even
easier to explore the framework by delegating heavy computational
work to cloud services. After running the container, a Jupyter
Notebook is available with sdm-framework and other tools already
installed. We invite the reader to take a look and explore a little bit.

The overarching intention here is to not only provide a starting
point, but to provide a documented Framework in which SDM
research can be conducted. Consider having the ability to compare
the results of a new (‘forked’) model to the previous ‘best’ (under a
particular benchmark set). For example, some of the benchmarks
that we plan to develop in future research are: how fast is
convergence through iterative reading? How large is the attractor of
the critical distance? How well does the system filter noise? How
well does the system work under the supervised learning task? And
other authors may be able to improve this benchmark set themselves,
as is usual in open source development. It is perhaps this facility of
ease to build on top of previous work that seems most exciting at
this stage.

Consider the misunderstanding concerning the SDM read
operation: Dr. Stan Franklin describes Kanerva’s read operation in a
way that each hard location, at each dimension, provides only a
single bit of information to the read operation (instead of Kanerva’s
full counter). We have referred to this modified read operation as
Chada read2. Having an open, testable, codebase reduces the
possibilities of such misunderstandings in the long run. Indeed, a

2 Legend has it that my friend & colleague, Dr. Daniel de Magalhães Chada, along
with Linhares, did not consult and re-check with Kanerva’s book and only discov-
ered the discrepancy in code and ideas a couple of years afterward.

23.6 not a real conclusion 203

high-quality codebase seems to have become a scientific
community’s form of unequivocally standing behind a consensus.
For example, the journal Nature analyzed the top-100 cited papers in
history, to find:

... some surprises, not least that it takes a staggering 12,119

citations to rank in the top 100 — and that many of the
world’s most famous papers do not make the cut. A few
that do, such as the first observation of carbon nanotubes
(number 36) are indeed classic discoveries. But the vast
majority describe experimental methods or software that
have become essential in their fields. [...] The list reveals just
how powerfully research has been affected by computation and
the analysis of large data sets.
— Van Noorden et al. [193], emphasis mine.

It is no coincidence that scientific journals such as BMC
Neuroscience, or the Journal of Machine Learning Research have specific
sections on open-source software. The journal Neurocomputing states,
bluntly: “software is scientific method by machine”.

Of course, for the skeptical reader who may consider software a
less worthy pursuit, there is also new work here. The mathematics of
the model has been shown to be correct numerically (with a single,
small, anomaly); we have shown how to execute unsupervised
learning with nothing besides operations original to the SDM; we
have studied the generalized Murilo read; we have seen noise
filtering; the death of neurons; how information-theory may be of
use; and finally, we have reproduced numerous of the original
propositions put forth by Kanerva. The emphasis might have been
on the breadth of topics, in detriment of depth here or there. The work
on, say, reinforcement learning, is most definitely not the last word
we will see on the subject, but a challenge left for readers to
contemplate. But this is due to our research group’s enthusiasm for
the topic; we do indeed believe that SDM is — if not correct —
extremely close to a full scientific understanding of human
long-term memory. If so, it is such a monumental achievement that
we want readers to be able to see all of what we see and imagine the
vastness of possibilities.

Ralph Waldo Emerson once said: do not go where the path may lead.
Go, instead, where there is no path, and leave a trail. Professor Pentti
Kanerva has left the trail. It is my job to illuminate it and to pave it
and to clear it; to try to deliver an easier pathway for the next
generation. Some essays completely shut the door close at the end;
this one intends to leave it wide open. As the reader might have
noticed, this final section does not read as an analysis of the work
done; it reads, instead, as a desideratum, a prologue, a yearning for
others to join me in imagining the shape of things to come.

24
A P P E N D I X

205

L I S T O F J U P Y T E R N O T E B O O K S

1. Calculate critical distance.ipynb

2. Calculate radius for any SDM.ipynb

3. Classification Test 1.ipynb

4. Classification Test 2.ipynb

5. Classification Test 3-Copy1.ipynb

6. Classification Test 3.ipynb

7. Critical Distance - New.ipynb

8. Critical Distance.ipynb

9. Distance between bitstrings.ipynb

10. Distances of activated hard-locations.ipynb

11. Generates a new SDM.ipynb

12. Intersection of activated hard-locations.ipynb

13. Kanerva-Table-7 - Experiment.ipynb

14. Kanerva-Table-7.3 - Generic Read.ipynb

15. Kanerva-Table-7.3 - Multiple dimensions.ipynb

16. Kanerva-Table-7.3 - Weighted table write.ipynb

17. Kanerva-Table-7.3.ipynb

18. Kanerva’s Figure 1.2.ipynb

19. Noise filter 2.ipynb

20. Noise filter A-Z 0-1 Generator.ipynb

21. Noise filter with labels.ipynb

22. Noise filter.ipynb

23. Number of activated hard-locations.ipynb

24. Performance test.ipynb

25. Reseting hard-locations.ipynb

26. Sequences (Kanerva Ch 8).ipynb

207

208 appendix

27. Sequences in one SDM (Kanerva Ch 8).ipynb

28. TicTacToe.ipynb

29. Weighted operations using information.ipynb

Part IV

D I F F U S I O N A N D D I S M I S S A L O F
I N N O VAT I O N : F O R E C A S T I N G T H E N U M B E R

O F FA C E B O O K ’ S A C T I V E U S E R S

25
I N T R O D U C T I O N

Why do entrepreneurs appear, not continuously, that is singly in every
appropriately chosen interval, but in clusters? Exclusively because the

appearance of one or a few entrepreneurs facilitates the appearance of others,
and these the appearance of more, in ever-increasing numbers.

— Joseph Schumpeter

The way innovations diffuse through markets is an important and
useful topic in marketing, which was made popular through Rogers’
work [167] and has influenced many marketing researchers. Within
innovation diffusion, Bass [14] proposed a model which forecasts how
many people will have adopted new products or technologies by a
given point in time. INFORMS members have voted this model as one
of the Top 10 Most Influential Papers published in the 50-year history
of Management Science in connection with the 50th anniversary of
the journal [15].

The Bass [14] model was designed to forecast only innovation
adoption, which is the first time one consumes the innovation. In the
model, either the consumer has or has not consumed the innovation
by a given point in time. Thus, recurrent customers are considered
only once, because they have already consumed the innovation
before. The model has only three parameters, which are estimated
through the number of adoptors of the innovation. Though very
simple, it is considered very robust.

Although it is clear that the marketing investment, the product
prices, the economy itself, and many other variables affect the
diffusion process, the Bass [14] model does not contemplate these
variables and yet it is still able to describe the empirical adoption
curve of a large number of new products and technological
innovations. In order to explain the robustness of the model, Bass
et al. [16] developed a general model including these variables, and
they showed that this general model reduces to the Bass model as a
special case. They also showed that the shape of the diffusion of
innovation process is always the same, an S-curve. Norton and Bass
[152] analyzed the diffusion of innovation for product substitution,
explaining some unexpected changes in innovation adoption which
were still unclear.

The motivation behind the present work is that there may be people
who reject a particular innovation. Such people do not recommend

211

212 introduction

the innovation, on the contrary, they may publicly complain about it
and bad-mouth it. This negative word-of-mouth effect of rejection has
always existed [23, 34, 166, 181] but it is becoming more and more
important as information can spread more easily and faster among
people through the usage of new technologies [8, 85, 97]. Nowadays,
before making a decision, people may search the internet for reviews
and feedbacks about the innovation, and what they find affects their
decision [47, 60, 61, 68, 123, 159]. A number of firms have already
perceived this change caused in large part by the social media and
have adapted to this new condition, like Starbucks [82], for example.

There is an extensive literature on innovation diffusion. Numerous
extensions to the Bass [14] model have been proposed (for reviews,
see Meade and Islam [136] and Peres et al. [158]), among which
Mahajan and colleagues were the first to propose a model that
includes the negative word-of-mouth [134]. The latter and other
extensions that include negative word-of-mouth are much more
complex than the Bass [14] model, and their parameters must be
estimated using the number of people who have already adopted
the innovation at a given time. A problem is that most recent
innovations, like Facebook, Twitter, and Netflix do not disclose their
total number of users. Actually, they deem this number confidential.
They only disclose the number of active users, not including the
number of users who have rejected them.

In this work, I propose an extension to the Bass model which (i)
includes the negative effect of the rejections, (ii) is as simple as the
Bass [14] model, and (iii) its parameters can be estimated using the
number of people who have adopted and have not posteriorly
rejected the innovation, i.e., the number of active adopters. An
important difference between the number of active adopters and the
total adopters is that first may decrease over time, while the latter
cannot. First, I discuss the Bass [14] model and its parameters; then I
describe the model extension and analyze four models of rejection;
next, I detail the estimation method; after that, I estimate the models
by using Facebook’s active users dataset; and finally, I discuss the
results and conclude.

The main contribution of this work is that the proposed extension
is the first to include the effect of the rejections that can be estimated
using the number of active adopters instead of the number of total
adopters. The model can be applied to forecast the number of active
adopters of these companies in the next quarters, which becomes an
important tool for analysts, investors, and the companies themselves.
As the number of active adopters is related to the market cap of these
companies, these forecasts may be useful to estimate the future value
of the firms. At the time of this writing, Facebook’s market cap is
$222.69B, Twitter’s is $23.18B, and Netflix’s is $20.49B1.

1 Data obtained from Yahoo! Finance website on December 1
st, 2016.

26
T H E B A S S M O D E L

The Bass [14] model is a simplification of the diffusion of innovation
process proposed by Rogers [167]. The Rogers’ classification of
adopters has five classes: (i) innovators; (ii) early adopters; (iii) early
majority; (iv) late majority; and (v) laggards. Bass simplified them to
only two classes: innovators and imitators. The innovators are the
ones who start using an innovation regardless of who else and how
many other people are already using it. The imitators are the ones
who concern themselves about who is using the innovation and, as
long as many other people are using it, they are more inclined to
adopt it. Thus, at the beginning of the diffusion of innovation, the
majority of adopters are innovators. As more and more people adopt
the innovation, the majority of new adopters shift to imitators.

Mathematically, the model presents itself with the following set of
equations:

S(t) = mf(t) (34)

Y(t) = mF(t) (35)
f(t)

1− F(t)
= p+ qF(t), F(0) = 0 (36)

Both S(t) and Y(t) are related to the absolute amount of adopters;
while S(t) is the number of new adopters at time t, Y(t) is the
number of people who had already adopted the innovation by time
t, thus S(t) = d

dtY(t). The model also has three positive parameters:
(i) the potential market size m; (ii) the innovators parameter p; and
(iii) the imitators parameter q. There are also f(t) and F(t) which are
related to the percentage of the potential market: f(t) is the
percentage of the potential market which is adopting the innovation
at time t, while F(t) is the percentage of the potential market which
had already adopted it at time t, thus f(t) = d

dtF(t).
Therefore, S(t) and f(t) are related to the adoption rate at time t,

while Y(t) and F(t) are related to the accumulated adopters at time t.
In the beginning of the diffusion of innovation, there are no adopters
at all, thus Y(0) = F(0) = 0. As the number of adopters can only
increase over time, both Y(t) and F(t) are monotonically increasing
functions, and both S(t) and f(t) are always greater or equal to zero.

The non-linear ordinary differential equation 36 is the main
equation in the Bass model. Its left side is known as the hazard
function and it expresses the probability of someone adopting the
innovation, provided that he/she has not chosen to adopt it yet, i.e.,

213

214 the bass model

the rate of adoption. Its right side means that this probability is at
least p and increases linearly with the percentage of people who
have already adopted the innovation, i.e., F(t).

Solving the differential equation, Bass found a closed formula for
the diffusion, which is F(t) = 1−e−(p+q)t

1+q
pe

−(p+q)t . This closed formula always

has the famous shape of the S-curve, regardless of the values of p > 0
and q > 0. From the closed formula of F(t), it is trivial to obtain the
equations of S(t), Y(t), and f(t).

The potential market size m is the unknown number of people
who will have adopted the innovation after a very long time. It is not
exactly the target market of the innovation, but a subset of it, as no
product diffuses over its entire target market. If a company estimates
and updates the model more than once for their product, the change
in m is a change in the potential market and could help the
company to understand whether their decisions in the meantime
have increased or decreased the number of future adopters. As
limt→∞ Y(t) = m, the whole potential market will have adopted the
innovation at some point.

The innovator parameter p is related to the proportion of people in
the potential market who adopt the innovation regardless the others.
In other words, their decision to adopt is not influenced by the social
system, but by other external factors. The bigger the p, the larger the
number of innovators, thus the faster the diffusion at the beginning.

The imitator parameter q is related to the influence of those actually
using the innovation on those who are not using it yet. This is why
this parameter multiplies F(t), which is the proportion of the market
which had already adopted it. This influence is mainly understood as
a result of the word-of-mouth recommendation. In other words, the
more people use the innovation, the more other people will adopt it.
The bigger the q, the larger the imitator effect, thus, the faster the
diffusion.

Practitioners have been using this model to forecast future
demand. First, they measure the number of adopters over time.
Then, they estimate the parameters m, p, and q. Finally, they
extrapolate S(t) out of the measured time window and use its value
as the forecast demand. They also calculate m− Y(t) as a forecast of
how many people have not adopted the innovation yet.

27
T H E E X T E N D E D M O D E L

I propose adding a new term in the differential equation 36 in order to
include the effect of rejection, as in equation 37. Hereafter I will refer
to: (i) the people who have adopted the innovation as total users; (ii)
the people who have adopted the innovation and remain using it as
active users; and (iii) the people who rejected the innovation as inactive
users. Clearly, the function Y(t) is the number of total users, which is
equal to the sum of the number of active users with the number of
inactive users.

f(t)

1− F(t)
= p+ qF(t) −wR(t), F(0) = 0,R(0) = 0 (37)

The function R(t) is the percentage of accumulated inactive users
at time t. Thus, A(t) = F(t) − R(t) is the percentage of accumulated
active users at time t. Multiplying by m, mA(t) = Y(t) −mR(t) is the
number of active users at time t. Since A(t) > 0, F(t) > R(t), which
makes sense because it is not possible to have more inactive users than
total users.

The negative word-of-mouth parameter w is related to how much
the inactive users really affect the new adopters decision in the
diffusion process. The bigger the w, the greater the negative
influence of these inactive users on the new adopters. Another
possible understanding is that w is related to how much the inactive
users are bad-mouthing the innovation. The bigger the w, the more
they bad-mouth the innovation.

Equation 37 could be rewritten as f(t)
1−F(t) = p+qA(t)+ (q−w)R(t).

This form is useful in order to understand the impact of active users
and inactive users on the rate of adoption at time t.

If w = q, then the rate of adoption increases linearly with the active
users, since f(t)

1−F(t) = p+ qA(t). In other words, the positive word-of-
mouth has exactly the same influence as the negative word-of-mouth
on the new adopters. It also means that the rate of adoption is always
greater than zero, thus the whole potential market will have adopted
the innovation sooner or later.

Ifw < q, then the new adopters are more influenced by the number
of total users than by the number of inactive users. It is just as if the
inactive users do not bad-mouth the innovation so much, or at all.
Again, the rate of adoption is always greater than zero, thus the whole
potential market will have adopted the innovation sooner or later.

If w > q, then the proposed extension really differs from the Bass
model. In this case, the influence of the inactive users is greater than

215

216 the extended model

the influence of total users. So, if the rate of adoption were equal to
zero (wR(t) = p+ qF(t)), the innovation might not be adopted by the
whole potential market, i.e., limt→∞ F(t) < 1.

The main contribution of this work is to have the choice to use the
number of active users, which is the information that most of the com-
panies disclose, in order to estimate the parameters of the proposed
extension model. With that, both the number of inactive users and to-
tal users could be forecast. It is important to notice that the number
of active users (mA(t)) could decrease over time. In fact, forecasting
when this is going to happen may be crucial for corporations.

28
M O D E L S F O R R (t)

The proposed extended model already includes the effect of rejection
through the R(t) function and the w parameter. In order to complete
the model, R(t) has to be well defined. Let r(t) = d

dtR(t) be the rate
of new inactive users at time t. The proposed differential equations for
R(t) are the following:

Model 1: r(t) = νf(t) (38)

Model 2:
r(t)

1− R(t)
= νf(t) (39)

Model 3: r(t) = ν[F(t) − R(t)] (40)

Model 4:
r(t)

1− R(t)
= ν[F(t) − R(t)] (41)

These four models can be grouped into two families, one for the
equations 38 and 39, and another for the equations 40 and 41. The
former relates the rejection to the rate of new people adopting the
innovation, as if people decide whether they will use or reject the
innovation when they try it. Then, they do not change their position
anymore. The latter assumption relates the rejection to the number of
active users, as if the active users first adopt the innovation and then
they continuously reject it.

The rejection parameter ν has a different interpretation in each
family. In equations 38 and 39, it is the proportion of new adopters
who will reject the innovation. In equations 40 and 41, it is the
proportion of active users who are continuously rejecting the
innovation.

Therefore, for all these models of rejection, the complete diffusion
of innovation model has five parameters to be estimated, namely m,
p, q, w, and ν.

28.1 model 1

In this model, the rate of new inactive users at time t is proportional
to the percentage of people adopting the innovation at time t, as if
people decide whether they will use or reject the innovation when
they are adopting it.

The differential equation 38 can be easily solved integrating both
sides. Thus, R(t) = νF(t), A(t) = (1 − ν)F(t), and f(t)/[1 − F(t)] =

p+(q−wν)F(t). As the imitator coefficient must be positive, we must
have wν < q.

217

218 models for r(t)

The solution shows that this model has exactly the same explana-
tory power as the Bass model, neither better nor worse. This happens
because the model’s solution has exactly the same equation after the
linear transformation q∗ = q−wν.

As limt→∞ F(t) = 1, thus limt→∞ R(t) = ν. Hence, the proportion
of inactive users is exactly equal to the rejection parameter.

Solving the differential equation for F(t), it gets
F(t) = (1 − e−(p+q−wν)t)/(1 +

(q−wν)
p e−(p+q−wν)t). Finally, as

R(t) = νF(t), thus
R(t) = ν(1− e−(p+q−wν)t)/(1+

(q−wν)
p e−(p+q−wν)t).

Unfortunately, it is not possible to estimate this model. The
problem is that ∀ν ∈ R+, ∃ν̂ ∈ R+ such as the set of parameters
(m,p,q,w,ν) and (m,p,q,wν/ν̂, ν̂) have exactly the same residuals
when estimated. That is, the model can be estimated for any value
arbitrarily set for ν. Intuitively, as both F(t), A(t), and R(t) have the
same shape, the parameters can be estimated with an empirical
active users dataset and then you can slide up or down F(t) just
changing the values of ν and w.

This result is interesting because it shows that the Bass model can
already explain the diffusion of innovations which follows this model
of rejection. Hence, it just confirms the robustness of the Bass model.

28.2 model 2

The right side of the differential equation 39 is the rate of rejection,
i.e., the probability of someone rejecting the innovation, provided that
he/she has not rejected it yet. Thus, in this model, the rate of rejection
is proportional to the percentage of people adopting the innovation
at time t, i.e., the more people adopt the innovation, the more they
reject it. But if no one is adopting, there would be no rejection also,
which would hold the number of active users the same.

The differential equation 39 can also be solved for R(t) algebraically.
Using the fact that − d

dt log[1 − R(t)] = r(t)/[1 − R(t)] = νf(t), and
integrating both sides of this equation yields:

−
d

dt

∫t
0

log[1− R(τ)]dτ = ν
∫t
0

f(τ)dτ (42)

− log[1− R(t)] = νF(t) (43)

1− R(t) = e−νF(t) (44)

R(t) = 1− e−νF(t) (45)

Finally, f(t)/[1 − F(t)] = p + qF(t) − w[1 − e−νF(t)] and
limt→∞ R(t) = 1− e−ν.

As 0 6 F(t) 6 1⇒ 0 6 νF(t) 6 ν, we can do a good approximation
of e−νF(t) using a Taylor series around the point ν/2 for small values
of ν.

28.3 model 3 219

From the Taylor series centered around ν/2, we know that e−x ≈
e−ν/2(1+ν/2− x). Thus, we have 1− e−νF(t) ≈ 1− e−ν/2(1+ν/2) +
e−ν/2νF(t), and, finally, f(t)/[1− F(t)] = [p−w−we−ν/2(1+ν/2)] +

(q−we−ν/2ν)F(t).
Therefore, for small values of ν, this model has approximately the

same explanation power as the Bass model and we can write
f(t) = p∗ + q∗F(t), where p∗ = p − w − we−ν/2(1 + ν/2) and
q∗ = q−we−ν/2ν.

In contrast to model 1, no parameter could be arbitrarily set in this
model, thus it can be estimated using an empirical active users dataset.

28.3 model 3

In this model, the rate of new inactive users increases linearly with
the number of active users, since A(t) = F(t) − R(t). Thus, while there
are active users, a fraction ν of them will be rejecting the innovation.
Hence, everyone will have rejected the innovation sooner or later.

The differential equation 40 can be rewritten as the following first
order linear differential equation, which has to be solved:

d

dt
R(t) + νR(t) = νF(t) (46)

The solution to this differential equation is:

R(t) = νe−νt
∫t
0

eντF(τ)dτ (47)

= ν
[
F(u) ∗ e−νu

]
(t) (48)

Or, as d
dt

(
eνtF(t)

)
= νeνtF(t) + eνtf(t), R(t) can be rewritten as:

R(t) = F(t) − e−νt
∫t
0

eντf(τ)dτ (49)

= F(t) −
[
f(u) ∗ e−νu

]
(t) (50)

As F(t) =
∫t
0 f(τ)dτ and eντ > 1, we have that:

∫t
0

eντf(τ)dτ > F(t) (51)

−e−νt
∫t
0

eντf(τ)dτ 6 −e−νtF(t) (52)

F(t) − e−νt
∫t
0

eντf(τ)dτ 6 F(t) − e−νtF(t) (53)

From equation 49:

220 models for r(t)

R(t) 6 F(t) − e−νtF(t) (54)

R(t) 6 F(t)(1− e−νt) (55)

Finally, R(t) < F(t), r(t) > 0, and limt→∞ R(t) 6 1.
I did not manage to prove that limt→∞ R(t) = 1, but this result

appeared in all performed simulations. If that is true, then all people
will reject the innovation at some point in time - a fact that makes
sense.

Unfortunately, it seems that there is no closed formula for F(t). Us-
ing equation 47, the final differential equation is:

f(t)

1− F(t)
= p+ qF(t) −wνe−νt

∫t
0

eντF(τ)dτ (56)

Or, using 49, it becomes:

f(t)

1− F(t)
= p+ (q−w)F(t) +we−νt

∫t
0

eντf(τ)dτ (57)

The condition w 6 p + q is sufficient to ensure f(t) > 0, since
w 6 p + q ⇒ wR(t) 6 pR(t) + qR(t) 6 p + qR(t) 6 p + qF(t) ⇒
p+ qF(t) −wR(t) = f(t)/[1− F(t)] > 0 ⇒ f(t) > 0. Assuming that
limt→∞ R(t) = 1, then it is easy to prove that this condition is also
necessary.

28.4 model 4

In this model, the rate of rejection increases linearly with the number
of active users. Thus, while there are active users, the rate of rejection
will be greater than zero. Hence, everyone will have rejected the inno-
vation sooner or later.

Although equation 41 is a Ricatti equation [21], none of the
available techniques could solve the differential equation and it
seems that there is no closed formula for F(t). Hence, the equation
will be analyzed through a linearization around the fixed points.

f(F,R) = (p+ qF−wR)(1− F)

r(F,R) = ν(F− R)(1− R)
(58)

Solving the system f(F,R) = r(F,R) = 0, the following solutions are
found:

28.4 model 4 221

u∗1 = (1, 1) (59)

u∗2 =
(

p

w− q
,

p

w− q

)
(60)

u∗3 =
(
w− p

q
, 1
)

(61)

The only valid solutions are u∗1 and u∗2. The solution u∗3 is not valid
because p + q −w > 0 ⇒ (w − p)/q < 1 ⇒ F < R which is not
possible because it would imply a negative number of active users.

Finally, the linearization around u∗ is:

[
f(R, T) − f(u∗)

r(R, T) − r(u∗)

]
= J|u∗

([
R

T

]
− u∗

)
(62)

J =

[
q(1− F) − (p+ qF−wR) −w(1− F)

ν(1− R) −ν[(1− R) + (F− R)]

]
(63)

Now, let’s analyze the jacobian matrices and their eigenvalue for
each valid solution.

J|u∗1 =

[
−(p+ q−w) 0

0 0

]
(64)

As the eigenvalues of J|u∗1 are 0 and −(p+ q−w) < 0, the point
u∗1 = (1, 1) is a sink, i.e., the neighborhood converges to u∗1 when
t → ∞. It may be interpreted that all users will have rejected the
innovation after a long time.

29
E S T I M AT I O N M E T H O D

The parameters of the model should be estimated using empirical
data in order to check the explanation power of the model. Bass [14]
used a discrete version of his differential equation with ordinary
least squares. While it worked well for him, it has not in the present
work. There are several well-known problems in the estimation of
parameters, most of them related to approximation of derivatives
and instability of the estimators. These problems have been noticed
by many authors [172, 186, 201].

In the present work, the parameters of the models were estimated
using a maximum likelihood function on the residuals between
A(t) = F(t) − R(t) from the model and the empirical values from the
dataset. The residuals were assumed to be normally distributed with
µ = 0, which leads to the same results as the ordinary least square
method. In order to calculate the residuals, F(t) and R(t) were
calculated based on their differential equations using the 4th order
Runge Kutta (RK4) numerical method [33] with ∆t = 0.01.

The empirical data format was (ti, xi), where ti is the time and
xi is the value, and the measurements were not equally spaced over
time. The following Log Likelihood equation was used:

residual(ti, xi | m,p,q,w,ν) = xi −m · [F(ti | p,q,w) − R(ti | ν)]

(65)

Log Likelihood(~t,~x | m,p,q,w,ν) = −

N∑
i=1

[residual(ti, xi | m,p,q,w,ν)]2

(66)

During the evaluation of F(t) and R(t) using the Runge Kutta
numerical method, sometimes the exact value of ti was not reached
because of the chosen ∆t. In these cases, the value of xi was
calculated using a linear approximation with the nearest points. Let
(t̂k, x̂k) and (t̂k+1, x̂k+1) be values calculated from the Runge Kutta
method, such that t̂k < ti < t̂k+1. Then, the calculated value at ti
was x̂k +

(
x̂k+1−x̂k
t̂k+1−t̂k

)
· (ti − t̂k).

Since there is no explicit solution for the parametersm, p, q,w, and
ν which maximize the LogLikelihood function, the parameters were
estimated using the Truncated Newton Constrained (TNC) method
[62, 146, 147] from the SciPy Python Library [100]. The constraints
were m > 0, p > 0, q > 0, w > 0, and ν > 0 for all models. The initial
guess for the TNC method was the same for all models estimation.

223

224 estimation method

Sometimes, the method did not converge and another initial guess
had to be used.

Even though it has not been done yet, the confidence interval, esti-
mator average and estimator variance for each parameter will be cal-
culated using the bootstrap method.

30
R E S U LT S

The models’ parameters were estimated using the number of
Facebook’s active users from December 2004 to March 2013 [190]. In
the dataset, xi was the number of Facebook’s active users at time ti.
The dataset had 23 non-equally time spaced measures. The users
who have accessed Facebook at least once in each month were
counted in the number of active users in that month.

The model 1 has not been estimated because it is not possible to
estimate it.

The estimated models can be seen at figures 93, 94, and 95. These
figures also have forecasts for the number of active users, inactive users,
and total users of Facebook for the next 4 years (from t = 100 to
t = 140).

In spite of the favorable goodness of fit using model 2 (see figure
93), the model does not seem to provide a plausible forecast, because
it would mean that Facebook is reaching a stable number of active
users and the rejections are near the end.

Models 3 and 4 have very similar outcomes (see figures 94 and 95).
Their Bayesian Information Criterion (BIC) are also close, but model 4

has a better fit with the data. Their forecast makes more sense than the
forecast of model 2. It predicts that Facebook is very close to the peak
of active users and, in approximately 3 years, it is going to decline. It is
also interesting to notice that, according to these outcomes, Facebook
may not reach its total potential market.

The difference between the outcomes of model 2 and models 3 and
4 could be explained by the fact that they have different rationales
behind their models of rejection. While differential equation of the
model 2 uses the rate of new total users, the differential equations of
the models 2 and 3 use the proportion of active users.

225

226 results

0 20 40 60 80 100 120 140
−200

0

200

400

600

800

1000

1200

1400

1600

Facebook's active users
m=1498 p=0.0003 q=0.100 w=0.141 v=0.187

mF(t) mR(t) mA(t) Dataset

Figure 93: Fit of Model 2 with Facebook’s active users dataset. mF(t) is the
total users, mR(t) is the inactive users, and mA(t) is the active
users. The unit of these functions are thousands of people. The
parameters are m = 1, 497.50, p = 0.000331, q = 0.100088, w =

0.140595, and ν = 0.187188. The goodness of fit are R2 = 99.84%
and BIC=10,566.52.

0 20 40 60 80 100 120 140
−500

0

500

1000

1500

2000

Facebook's active users
m=1968 p=0.0002 q=0.098 w=0.331 v=0.007

mF(t) mR(t) mA(t) Dataset

Figure 94: Fit of Model 3 with Facebook’s active users dataset. mF(t) is the
total users, mR(t) is the inactive users, and mA(t) is the active
users. The unit of these functions are thousands of people. The
parameters are m = 1, 967.64, p = 0.000184, q = 0.097867, w =

0.330511, and ν = 0.006912. The goodness of fit are R2 = 99.83%
and BIC=11,485.68

results 227

0 20 40 60 80 100 120 140
−500

0

500

1000

1500

2000

Facebook's active users
m=1855 p=0.0002 q=0.100 w=0.334 v=0.007

mF(t) mR(t) mA(t) Dataset

Figure 95: Fit of Model 4 with Facebook’s active users dataset. mF(t) is the
total users, mR(t) is the inactive users, and mA(t) is the active
users. The unit of these functions are thousands of people. The
parameters are m = 1, 854.85, p = 0.000183, q = 0.099738, w =

0.334454, and ν = 0.007007. The goodness of fit are R2 = 99.84%
and BIC=10,724.55

31
C O N C L U S I O N

The main contribution of this work is the parameter estimation
through the empirical number of active users dataset, forecasting the
number of total users, the number of active users, and the number of
inactive users.

If the adopters who have rejected the innovation follow the
equations of model 1 and 2, then the proposed extended model is
transformed into the Bass model through a linear transformation of
the parameters. This confirms the Bass model robustness.

Model 2 does not seem to be a good model of rejection, since the
number of active users never decreases which does not seem to be
plausible.

Models 3 and 4 had very similar results when fitting the Facebook
dataset. The lack of analytical solutions for them, however, is a barrier
to better understand their behavior, and to know whether they will
always have similar outcomes or they will diverge depending on the
data. Model 3 seems to be more analytically manageable.

It is important to notice that, in models 3 and 4, the innovation
may not be adopted by the whole potential market, but it would in
the Bass model. Whether it will be adopted by the whole potential
market or not depends on the parameters w and ν. For instance, it
seems that mF(t) is not converging to m at figures 94 and 95. It is a
major difference between the proposed extended model and the Bass
model.

As this is a working paper, it is also intended to include the
analyses of other datasets, like either Twitter’s number of active users,
or WhatsApp’s, or Netflix’s, or Reddit’s, or Dropbox’s, or Waze’s,
etc. This would enhance the proposed model power of forecasting.

It is also intended to run a backtest with the available data. First, the
parameters of the model are estimated using a subset of the dataset.
Then, through extrapolation, the number of active users is forecast.
Finally, it is compared to this part of the dataset - which must not
have been used in the estimation.

The main limitation of this work is that it has no theory to support
which of the models of rejection best fit with empirical data.
Although there is an extensive literature on negative word-of-mouth,
this literature does not predict which model would be the best. But,
if any of these companies discloses the number of total users and
active users, the estimation method could be adapted to estimate the
parameters using both pieces of information at the same time, which

229

230 conclusion

would make possible to verify which of the models of rejection
provides the best fit.

Future work could explore other models of rejection and also other
estimation methods, like nonlinear least squares [186] and Kalman
filter [201].

Part V

C O N C L U S I O N

32
C O N C L U S I O N

Software is eating the World.

— Mark Andreesen [5]

Modern management and high technology interact in multiple,
profound, ways. Software — given the widespread availability of
general-purpose Turing-complete hardware — seems to have an
immense power of entering arenas which seemed, at some point, to
require either specific hardware or the skill of humans. One of the
members of this thesis committee, Dr. Nichols, will participate
through teleconferencing over the open web, with no use of
hardware specific for the task. The corporate biography of Tonny
Martins, President of IBM Brasil, mentions his successes with
blockchain, AI, and cognitive technology. . . as an executive, not as a
research scientist or specialized engineer [26]. Professor Andrew Ng
tells students at Stanford’s Graduate School of Business that “AI is
the new electricity” [149], as his hyperbolic way to emphasize the
potential transformational power of the technology.

It is not impossible that a purely digital form of money may exist.
It is not impossible that machines may become intelligent. Moreover,
it is not impossible that these two processes may have already begun.

It is worthwhile, in this concluding section, to reflect on some
ideas on what this thesis is and what it is that we, as computational
management scientists, can obtain from this sort of study.
Clemenceau once said that “war is too important to be left to the
generals”. I believe it is not far-fetched to state that technology has
become too important to be isolated to the realm of computer
science, or engineering, or applied mathematics, or any single
discipline. The emergence of scientific journals with names such as
Computational Management Science; INFORMS Journal on
Computing; Ledger; Computational Statistics; ACM Transactions on
Economics and Computation, and so forth, show that there are
growing communities deeply interested in the intersection of
business and the computer sciences. To whom, for instance, does the
OpenAI project belong? To computing or to business? Recall that the
project was created as a risk-management strategy against the
far-fetched, science-fiction sounding — but not impossible —,
possibility of having machines yielding too much power. What about
corporations like Uber? AirBnB? Imagine a new method that

233

234 conclusion

increases profits by 50% at a tech company. Should this method, if
implementable as an algorithm (like PageRank [27]) or a data
structure (like a blockchain) be discussed in conferences of
‘computer science’ or ‘business’? It seems quite arbitrary to name a
single group, as a whole new ecosystem seems to have emerged
within those two. That is why this thesis is computational and why
it is business. This work explores topics that seem, on the surface, to
belong to computer science, but their applicability and impact to
businesses seem too large, too central, to be delegated away,
something “for those nerds in the fifth floor”. As technical decisions
become central to the organization of man’s life, the technician
becomes the visionary, the innovator, the decision-making arbiter,
sometimes the billionaire.

The possibility that there will be some form of purely digital
money has become very real; and we have started this study with
two possible forms of organization of a purely digital money system;
a blockchain and a directed acyclic graph. Consider, just as a matter
of comparison, Brazil’s most important company: Petrobras. As of
this writing, the “market cap” of Ethereum exceeds that of Petrobras
by ten billion dollars, while Bitcoin’s is valued at more than double
of Petrobras (195B usd vs 83B usd). Prices change, of course; but
these technologies should, at a minimum, be taken seriously.

We have explored Kanerva’s Sparse Distributed Memory. In AI,
SDM seems to be a particularly interesting area for study. The model
plausibly reflects a number of well-known aspects of psychology
and neuroscience. For example, neurons can easily compute the
address decoding scheme of the system. Neurons are fragile and
may be lost, whereas the information remains preserved, due to the
distributed character of the model. The “tip-of-the-tongue” behavior
emerges naturally, and so does Miller’s magic number.

There are at least three contributions1 made on SDM: First, I have
illuminated a discrepancy between Kanerva’s theoretical model and
the real system dynamics; Also, we have seen that pattern
classification through supervised learning is possible without
presuming any new SDM mechanism. This is in contrast with the
literature, that presumes additional mechanisms, like genetic
algorithms, to account for supervised learning. Finally, we now have
a tested open-source framework that offers parallelism and can
become a de-facto standard in SDM research. The framework (i)
carefully reproduces crucial figures from Kanerva’s theoretical book;
(ii) shows how noise filtering and (iii) supervised learning can be
done, and, through the use of (iv) Jupyter Notebooks, enables the
reader to easily reproduce all the results on their own machines.
This respects all constraints posed by Robert M. French in his article

1 As many issues have been explored in less detail, it might be advisable to leave it to
history to decide whether these explorations were actually contributions.

conclusion 235

on ‘Computational Modeling in Cognitive Science: A Manifesto for
Change’ [2].

The ability to rapidly reproduce results, and to build on prior
work, is, I believe, fundamental to modern science. Consider, for
instance, the groundbreaking successes in the arena of deep learning.
Having standard computer libraries to work with has brought
together a community, which reinforces the system, as users also
gradually improve these libraries. It may be possible to achieve new
results with multiple layers of a SDM, yet, having to start
development from scratch takes a large opportunity cost from most
scientists — especially those who are less concentrated on the
computer science aspects, but still would be able to contribute
meaningfully.

Finally, we have studied how variations of the Bass Model may
reflect systems or technologies that may wither in time. Though
some innovations, such as the radio, have gained widespread use in
a sustainable form... One may want to review the Bass model when
one is concerned with rapidly-evolving technological ecosystems.
Hardly anyone remembers the names AskJeeves, World Wide Web
Worm, Lycos, WebCrawler, or AltaVista, early web search engines;
later replaced, in the market and by the market, by the almost
unnoticed url http://google.stanford.edu [27].

Another possibility would be to compare the proposed model
with a computation of the momentum of Metcalfe’s law in between
competitors. As the reader may remember, Metcalfe’s law states that
the value of a network grows O(n2) with n being the number of
network nodes. If the proposed model and Metcalfe’s network
effects reflect reality, then there could be an integrated mathematical
model that explains and represents both Metcalfe’s law and the
variation of the Bass model presented herein.

With this, I submit this thesis in the hope that all readers, present
and future, may find the aforementioned studies as useful, genuine,
and legitimate contributions to the thriving field of Computational
Management Science2.

2 Finally, for the skeptical reader that may argue against the decision towards ‘arbi-
trary technical reports on unrelated topics’, a reference to the “fundamental research
theorem”, reprinted in Appendix ??, seems, of course, virtually inescapable.

http://google.stanford.edu

Part VI

A P P E N D I X

A
R E C E N T R E S U LT S I N T H E O RY O F C O M P U T I N G - I

a.1 the halting problem is solvable

A fundamental question in the graduate computer science
curriculum can be posed as follows: Given an average grad student
doing a Ph.D, will the student ever complete his dissertation? This
problem has been termed the "Halting Problem," and it has been an
open problem thus far. In the following, we show that the halting
problem is solvable. Furthermore, the problem can be solved within
the time stipulated by the Graduate College for Ph.Ds or, in the
worst case, with only a constant number of petitions for extensions.

The halting problem was first formulated by Alan Turing, who
observed a number of his graduate students being apparently busy
all the time but never graduating. Turing tried to solve the problem
by first stopping all assistantships after the sixth year and then by
purging all games from the research computers. Needless to say, his
efforts were fruitless. Later, Church almost succeeded in solving the
problem when he placed notices in grad students’ mailboxes
indicating attractive jobs in industry with several orders of
magnitude higher remuneration. The so called Church’s thesis was
that the halting problem is solvable, given enough financial
motivation. Church’s idea backfired when grads found out that they
have to actually work to earn money in the outside world. Thus, far
from solving the halting problem, Church aggravated it (After this,
we are not sure whether Church himself graduated). Recently, Cook
et al have shown that the halting problem falls under a new
complexity class, "NP Hairy." (NP hairy is the class of hopelessly
complicated problems with no known solutions. The hardest
problem in NP hairy has been shown to be the problem of trying to
claim standard deductions in the 1040 form).

In the following, we show that the halting problem is indeed
solvable. For this, we assume the existence of a "Super Grad," who is
capable of working in any area in CS (except possibly numerical
analysis). For notational convenience, we call this super grad, S sub
G sup i,j sub * (written using a funky theoretical CS font). The
property of Super grad is that, given the description of any grad
(mostly in terms of the number of newsfiles he/she reads every day)
and a description of his/her thesis topic, Super grad will either halt
with a dissertation or keep publishing technical reports indefinitely.
Now, we give Super grad a description of himself and his own thesis
topic. If Super grad halts, we are done (and so is he) otherwise we

239

240 recent results in theory of computing - i

get a stream of technical reports. But by the "fundamental research
theorem" of CS Departments (refer to the graduate study manual)
any five arbitrary technical reports on unrelated topics can be
compiled into a Ph.D thesis. Thus, we are done in the second case
too.

Finally, how long does it take for a dissertation to be completed?
The time is either less than or equal to the duration allowed by the
Grad College for the completion of a Ph.D or it is greater. In the
latter case, infinite number of petitions can be filed for extensions.
Since the Grad College never remembers previous petitions, the total
number of petitions received by the Grad College is always one, a
small constant1.

Quod Erat Demonstrandum

1 ‘With apologies to non-CS types’: this seminal, wonderful, result is from Bala Ra-
jagopalan, published on the late rec.humor.funny Usenet in June 12, 1989. Thank
you for reading my thesis!

B I B L I O G R A P H Y

[1] Sparse distributed memory, January 2018. URL
https://en.wikipedia.org/w/index.php?title=Sparse_

distributed_memory&oldid=822493454. Page Version ID:
822493454.

[2] Caspar Addyman and Robert M. French. Computational mod-
eling in cognitive science: A manifesto for change. Topics in
Cognitive Science, 4(3):332–341, 2012. ISSN 1756-8765. doi:
10.1111/j.1756-8765.2012.01206.x. URL http://dx.doi.org/10.

1111/j.1756-8765.2012.01206.x.

[3] M. A. Aguiar and R. M. S. Julia. SDM-Go: An Agent for Go with
an Improved Search Process Based on Monte-Carlo Tree Search
and Sparse Distributed Memory. In 2013 IEEE 16th International
Conference on Computational Science and Engineering, pages 424–
431, December 2013. doi: 10.1109/CSE.2013.71.

[4] Igor Aleksander, Thomas John Stonham, and BA Wilkie. Com-
puter vision systems for industry. Digital Systems for Industrial
Automation, 1(4):305–320, 1982.

[5] Mark Andreesen. Why software is eating the
world. URL https://www.wsj.com/articles/

SB10001424053111903480904576512250915629460.

[6] Ashraf Anwar and Stan Franklin. Sparse distributed memory
for ‘conscious’ software agents. Cognitive Systems Research, 4

(4):339–354, December 2003. ISSN 13890417. doi: 10.1016/
S1389-0417(03)00015-9. URL http://linkinghub.elsevier.

com/retrieve/pii/S1389041703000159.

[7] Moshe Babaioff, Shahar Dobzinski, Sigal Oren, and Aviv Zohar.
On bitcoin and red balloons. In Proceedings of the 13th ACM
conference on electronic commerce, pages 56–73. ACM, 2012.

[8] Ana Babic, Francesca Sotgiu, Kristine de Valck, and Tammo HA
Bijmolt. The effect of electronic word of mouth on sales: A meta-
analytic review of platform, product, and metric factors. Journal
of Marketing Research, 2015.

[9] Lear Bahack. Theoretical bitcoin attacks with less than half of
the computational power (draft). arXiv preprint arXiv:1312.7013,
2013.

241

https://en.wikipedia.org/w/index.php?title=Sparse_distributed_memory&oldid=822493454
https://en.wikipedia.org/w/index.php?title=Sparse_distributed_memory&oldid=822493454
http://dx.doi.org/10.1111/j.1756-8765.2012.01206.x
http://dx.doi.org/10.1111/j.1756-8765.2012.01206.x
https://www.wsj.com/articles/SB10001424053111903480904576512250915629460
https://www.wsj.com/articles/SB10001424053111903480904576512250915629460
http://linkinghub.elsevier.com/retrieve/pii/S1389041703000159
http://linkinghub.elsevier.com/retrieve/pii/S1389041703000159

242 bibliography

[10] Norman TJ Bailey. On queueing processes with bulk service.
Journal of the Royal Statistical Society. Series B (Methodological),
pages 80–87, 1954.

[11] Simon Barber, Xavier Boyen, Elaine Shi, and Ersin Uzun. Bit-
ter to better—how to make bitcoin a better currency. In Inter-
national Conference on Financial Cryptography and Data Security,
pages 399–414. Springer, 2012.

[12] John A Bargh and Tanya L Chartrand. The unbearable auto-
maticity of being. American psychologist, 54(7):462, 1999.

[13] John A Bargh, Peter M Gollwitzer, Annette Lee-Chai, Kimberly
Barndollar, and Roman Trötschel. The automated will: non-
conscious activation and pursuit of behavioral goals. Journal of
personality and social psychology, 81(6):1014, 2001.

[14] Frank M Bass. A new product growth for model consumer
durables. Marketing science, 15(5):215–227, 1969.

[15] Frank M Bass. Comments on “a new product growth for model
consumer durables the bass model”. Management science, 50

(12_supplement):1833–1840, 2004.

[16] Frank M Bass, Trichy V Krishnan, and Dipak C Jain. Why the
bass model fits without decision variables. Marketing science, 13

(3):203–223, 1994.

[17] Martin Berchtold. Processing Sensor Data with the Common
Sense Toolkit (CSTK). Technical report, March 2005. URL
https://www.researchgate.net/publication/241441844_

Processing_Sensor_Data_with_the_Common_Sense_Toolkit_

CSTK.

[18] Alex Biryukov, Dmitry Khovratovich, and Ivan Pustogarov.
Deanonymisation of clients in bitcoin p2p network. In Proceed-
ings of the 2014 ACM SIGSAC Conference on Computer and Com-
munications Security, pages 15–29. ACM, 2014.

[19] BitcoinStats. Data propagation, 2013-2017. http://

bitcoinstats.com/network/propagation/.

[20] BitcoinWiki. Controlled supply, 2017. https://en.bitcoin.it/
wiki/Controlled_supply.

[21] Sergio Bittanti, Alan J Laub, and Jan C Willems. The Riccati
Equation. Springer-Verlag New York, Inc., 1991.

[22] Blockchain.info. Bitcoin blockchain size. https://blockchain.

info/charts/blocks-size. Last accessed on July 14, 2017.

https://www.researchgate.net/publication/241441844_Processing_Sensor_Data_with_the_Common_Sense_Toolkit_CSTK
https://www.researchgate.net/publication/241441844_Processing_Sensor_Data_with_the_Common_Sense_Toolkit_CSTK
https://www.researchgate.net/publication/241441844_Processing_Sensor_Data_with_the_Common_Sense_Toolkit_CSTK
http://bitcoinstats.com/network/propagation/
http://bitcoinstats.com/network/propagation/
https://en.bitcoin.it/wiki/Controlled_supply
https://en.bitcoin.it/wiki/Controlled_supply
https://blockchain.info/charts/blocks-size
https://blockchain.info/charts/blocks-size

bibliography 243

[23] Paula Fitzgerald Bone. Word-of-mouth effects on short-term
and long-term product judgments. Journal of business research,
32(3):213–223, 1995.

[24] M. M. Bongard. The recognition problem. July 1968. URL http:

//www.dtic.mil/docs/citations/AD0682462.

[25] Joseph Bonneau, Edward W Felten, Steven Goldfeder, Joshua A
Kroll, and Arvind Narayanan. Why buy when you can rent?
bribery attacks on bitcoin consensus. 2016.

[26] IBM Brasil. Antonio martins: Presidente da ibm brasil. URL
https://www-03.ibm.com/press/br/pt/biography/53561.wss.

[27] Sergey Brin and Lawrence Page. The anatomy of a large-scale
hypertextual web search engine. Computer networks and ISDN
systems, 30(1-7):107–117, 1998. URL http://infolab.stanford.

edu/~backrub/google.html.

[28] M. S. Brogliato. Understanding the critical distance in sparse
distributed memory. Master’s thesis, Escola Brasileira de Ad-
ministração Pública e de Empresas - EBAPE, Fundação Getulio
Vargas, 2011.

[29] Marcelo Brogliato. SDM Framework Documentation. URL
http://sdm-framework.readthedocs.io/.

[30] Marcelo S Brogliato, Daniel M Chada, and Alexandre Linhares.
Sparse distributed memory: understanding the speed and ro-
bustness of expert memory. Frontiers in Human Neuroscience, 8:
222, 2014.

[31] Alan S Brown. A Review of the Tip-of-the-Tongue Experience.
Psychological Bulletin, 109(2):204–223, 1991.

[32] Roger Brown and David McNeill. The Tip of the Tongue phe-
nomenon. Journal of Verbal Learning and Verbal Behavior, 5:325–
337, 1966.

[33] John Charles Butcher. The numerical analysis of ordinary differ-
ential equations: Runge-Kutta and general linear methods. Wiley-
Interscience, 1987.

[34] Francis A Buttle. Word of mouth: understanding and managing
referral marketing. Journal of strategic marketing, 6(3):241–254,
1998.

[35] Jan Camenisch, Susan Hohenberger, and Anna Lysyanskaya.
Compact e-cash. In Annual International Conference on the The-
ory and Applications of Cryptographic Techniques, pages 302–321.
Springer, 2005.

http://www.dtic.mil/docs/citations/AD0682462
http://www.dtic.mil/docs/citations/AD0682462
https://www-03.ibm.com/press/br/pt/biography/53561.wss
http://infolab.stanford.edu/~backrub/google.html
http://infolab.stanford.edu/~backrub/google.html
http://sdm-framework.readthedocs.io/

244 bibliography

[36] Sébastien Canard and Aline Gouget. Divisible e-cash systems
can be truly anonymous. In Annual International Conference
on the Theory and Applications of Cryptographic Techniques, pages
482–497. Springer, 2007.

[37] John Cannarella and Joshua A Spechler. Epidemiological
modeling of online social network dynamics. arXiv preprint
arXiv:1401.4208, 2014.

[38] Christian Catalini and Joshua S Gans. Some simple economics
of the blockchain. Technical report, National Bureau of Eco-
nomic Research, 2016.

[39] CCRG. CCRG - Cognitive Computing Research Group -
Projects. URL http://ccrg.cs.memphis.edu/projects.html.

[40] Daniel de Magalhães Chada. Are you experienced? Contributions
towards experience recognition, cognition, and decision making. PhD
thesis, 2016.

[41] Timothy M Chan, Kasper Green Larsen, and Mihai Pătraşcu.
Orthogonal range searching on the ram, revisited. In Proceed-
ings of the twenty-seventh annual symposium on Computational ge-
ometry, pages 1–10. ACM, 2011.

[42] David Chaum. Blind signatures for untraceable payments. In
Advances in cryptology, pages 199–203. Springer, 1983.

[43] David Chaum. Security without identification: Transaction sys-
tems to make big brother obsolete. Communications of the ACM,
28(10):1030–1044, 1985.

[44] David Chaum, Amos Fiat, and Moni Naor. Untraceable elec-
tronic cash. In Conference on the Theory and Application of Cryp-
tography, pages 319–327. Springer, 1988.

[45] Bernard Chazelle. A functional approach to data structures
and its use in multidimensional searching. SIAM Journal on
Computing, 17(3):427–462, 1988.

[46] Lulu Yilun Chen and Yuji Nakamura. Bitcoin is having a
civil war right as it enters a critical month, 2017. https:

//www.bloomberg.com/news/articles/2017-07-10/bitcoin-

risks-splintering-as-civil-war-enters-critical-month.

[47] Pei-Yu Chen, Shin-yi Wu, and Jungsun Yoon. The impact of
online recommendations and consumer feedback on sales. ICIS
2004 Proceedings, page 58, 2004.

[48] P. A. Chou. The capacity of the Kanerva associative memory.
IEEE Transactions on Information Theory, 35(2):281–298, March
1989. ISSN 0018-9448. doi: 10.1109/18.32123.

http://ccrg.cs.memphis.edu/projects.html
https://www.bloomberg.com/news/articles/2017-07-10/bitcoin-risks-splintering-as-civil-war-enters-critical-month
https://www.bloomberg.com/news/articles/2017-07-10/bitcoin-risks-splintering-as-civil-war-enters-critical-month
https://www.bloomberg.com/news/articles/2017-07-10/bitcoin-risks-splintering-as-civil-war-enters-critical-month

bibliography 245

[49] Philip A Chou. The Capacity of the Kanerva Associative Mem-
ory is Exponential. In Neural information processing systems,
pages 184–191, 1988.

[50] CoinMarketCap. Cryptocurrency market capitalizations, .
https://coinmarketcap.com/. Last accessed on July 14, 2017.

[51] CoinMarketCap. Bitcoin market capitalizations, . http:

//coinmarketcap.com/currencies/bitcoin/. Last accessed on
July 14, 2017.

[52] Thomas H Cormen. Introduction to algorithms. MIT press, 2009.

[53] Thomas M Cover and Joy A Thomas. Elements of information
theory. John Wiley & Sons, 2012.

[54] N. Cowan. The magical number 4 in short-term memory: A
reconsideration of mental storage capacity. Behavioral and Brain
Sciences, 24:87–185, 2000.

[55] The CSTK Developers. CSTK: The CommonSense ToolKit. URL
http://cstk.sourceforge.net/.

[56] Tomasz S. Czajkowski, Utku Aydonat, Dmitry Denisenko, John
Freeman, Michael Kinsner, David Neto, Jason Wong, Peter
Yiannacouras, and Deshanand P. Singh. From OpenCL to
high-performance hardware on FPGAS. In 22nd International
Conference on Field Programmable Logic and Applications (FPL),
pages 531–534. IEEE, August 2012. ISBN 978-1-4673-2256-0.
doi: 10.1109/FPL.2012.6339272. URL http://ieeexplore.ieee.

org/document/6339272/.

[57] Antônio de Pádua Braga and Igor Aleksander. Geometrical
treatment and statistical modelling of the distribution of pat-
terns in the n-dimensional boolean space. Pattern Recognition
Letters, 16(5):507–515, 1995.

[58] Laurens Debo and Senthil Veeraraghavan. Prices and conges-
tion as signals of quality. Technical report, Working paper,
Chicago Booth School of Business, University of Chicago, 2010.

[59] Christian Decker and Roger Wattenhofer. Information propaga-
tion in the bitcoin network. In Peer-to-Peer Computing (P2P),
2013 IEEE Thirteenth International Conference on, pages 1–10.
IEEE, 2013.

[60] Chrysanthos Dellarocas. The digitization of word of mouth:
Promise and challenges of online feedback mechanisms. Man-
agement science, 49(10):1407–1424, 2003.

https://coinmarketcap.com/
http://coinmarketcap.com/currencies/bitcoin/
http://coinmarketcap.com/currencies/bitcoin/
http://cstk.sourceforge.net/
http://ieeexplore.ieee.org/document/6339272/
http://ieeexplore.ieee.org/document/6339272/

246 bibliography

[61] Chrysanthos Dellarocas, Xiaoquan Michael Zhang, and
Neveen F Awad. Exploring the value of online product reviews
in forecasting sales: The case of motion pictures. Journal of In-
teractive marketing, 21(4):23–45, 2007.

[62] Ron S Dembo and Trond Steihaug. Truncated-newtono algo-
rithms for large-scale unconstrained optimization. Mathematical
Programming, 26(2):190–212, 1983.

[63] Li Deng. The mnist database of handwritten digit images for
machine learning research [best of the web]. IEEE Signal Pro-
cessing Magazine, 29(6):141–142, 2012.

[64] Peter J. Denning. Sparse Distributed Memory. American Sci-
entist, 77:333–335, July 1989. ISSN 0003-0996. URL http:

//adsabs.harvard.edu/abs/1989AmSci..77..333D.

[65] Discussion. Dag, a generalized blockchain, 2014.
https://nxtforum.org/proof-of-stake-algorithm/dag-

a-generalized-blockchain/ (registration at nxtforum.org

required).

[66] Hans Dobbertin, Antoon Bosselaers, and Bart Preneel. Ripemd-
160: A strengthened version of ripemd. In Fast Software Encryp-
tion, pages 71–82. Springer, 1996.

[67] Chris Dods, Nigel P Smart, and Martijn Stam. Hash based dig-
ital signature schemes. In IMA International Conference on Cryp-
tography and Coding, pages 96–115. Springer, 2005.

[68] Wenjing Duan, Bin Gu, and Andrew B Whinston. Do online
reviews matter?—an empirical investigation of panel data. De-
cision Support Systems, 45(4):1007–1016, 2008.

[69] Alon Elmaliah. Iota kerl, 2017. https://github.com/

iotaledger/kerl/blob/master/IOTA-Kerl-spec.md.

[70] Blerim Emruli, Fredrik Sandin, and Jerker Delsing. Vector
space architecture for emergent interoperability of systems by
learning from demonstration. Biologically Inspired Cognitive Ar-
chitectures, 11:53–64, January 2015. ISSN 2212-683X. doi: 10.
1016/j.bica.2014.11.015. URL http://www.sciencedirect.com/

science/article/pii/S2212683X14000784.

[71] Kuo-Chin Fan and Yuan-Kai Wang. A genetic sparse dis-
tributed memory approach to the application of handwritten
character recognition. Pattern Recognition, 30(12):2015–2022,
1997.

[72] Charles H. Ferguson and Charles R. Morris. Computer Wars:
The Post-IBM World. Beard Books, September 2002. ISBN 978-1-
58798-139-5. Google-Books-ID: hOdAStd3mR4C.

http://adsabs.harvard.edu/abs/1989AmSci..77..333D
http://adsabs.harvard.edu/abs/1989AmSci..77..333D
https://nxtforum.org/proof-of-stake-algorithm/dag-a-generalized-blockchain/
https://nxtforum.org/proof-of-stake-algorithm/dag-a-generalized-blockchain/
nxtforum.org
https://github.com/iotaledger/kerl/blob/master/IOTA-Kerl-spec.md
https://github.com/iotaledger/kerl/blob/master/IOTA-Kerl-spec.md
http://www.sciencedirect.com/science/article/pii/S2212683X14000784
http://www.sciencedirect.com/science/article/pii/S2212683X14000784

bibliography 247

[73] Elgar Fleisch. What is the internet of things? an economic per-
spective. Economics, Management & Financial Markets, 5(2), 2010.

[74] M J Flynn, P Kanerva, and N Bhadkamkar. Sparse Dis-
tributed Memory: Principles and Operation. Technical Re-
port CSL-TR-89-400, NASA Ames Research Center, December
1989. URL http://i.stanford.edu/pub/cstr/reports/csl/

tr/89/400/CSL-TR-89-400.pdf.

[75] S Foldes. A characterization of hypercubes. Discrete Mathemat-
ics, 17(1):155–159, 1977.

[76] Harry E Foundalis. PHAEACO: a cognitive architecture inspired
by Bongard’s problems. PhD thesis, Indiana University, 2006.

[77] Stan Franklin, Tamas Madl, Sidney D’Mello, and Javier Snaider.
LIDA: A Systems-level Architecture for Cognition, Emotion,
and Learning. IEEE Transactions on Autonomous Mental Devel-
opment, 6(1):19–41, March 2014. ISSN 1943-0604, 1943-0612. doi:
10.1109/TAMD.2013.2277589. URL http://ieeexplore.ieee.

org/document/6587077/.

[78] R. M. French. When coffee cups are like old elephants, or why
representation modules dont make sense. In A. Riegler and
M. Peschl, editors, Proceedings of the 1997 International Confer-
ence on New Trends in Cognitive Science, pages 158–163. Austrian
Society for Cognitive Science, 1997.

[79] Robert M French. Subcognition and the limits of the turing test.
Mind, 99(393):53–65, 1990.

[80] Robert M French. The turing test: the first 50 years. Trends in
cognitive sciences, 4(3):115–122, 2000.

[81] Robert M French and Christophe Labiouse. Why co-occurrence
information alone is not sufficient to answer subcognitive ques-
tions. Journal of Experimental & Theoretical Artificial Intelligence,
13(4):421–429, 2001.

[82] John Gallaugher and Sam Ransbotham. Social media and cus-
tomer dialog management at starbucks. MIS Quarterly Execu-
tive, 9(4):197–212, 2010.

[83] Adem Efe Gencer, Soumya Basu, Ittay Eyal, Robbert van Re-
nesse, and Emin Gün Sirer. Decentralization in bitcoin and
ethereum networks. arXiv preprint arXiv:1801.03998, 2018.

[84] Henri Gilbert and Helena Handschuh. Security analysis of sha-
256 and sisters. In International workshop on selected areas in cryp-
tography, pages 175–193. Springer, 2003.

http://i.stanford.edu/pub/cstr/reports/csl/tr/89/400/CSL-TR-89-400.pdf
http://i.stanford.edu/pub/cstr/reports/csl/tr/89/400/CSL-TR-89-400.pdf
http://ieeexplore.ieee.org/document/6587077/
http://ieeexplore.ieee.org/document/6587077/

248 bibliography

[85] David Godes and Dina Mayzlin. Using online conversations to
study word-of-mouth communication. Marketing science, 23(4):
545–560, 2004.

[86] Philipp Hacker. Corporate governance for complex cryptocur-
rencies? a framework for stability and decision making in
blockchain-based monetary systems. 2017.

[87] Frank Harary, John P Hayes, and Horng-Jyh Wu. A survey of
the theory of hypercube graphs. Computers & Mathematics with
Applications, 15(4):277–289, 1988.

[88] Ethan Heilman, Alison Kendler, Aviv Zohar, and Sharon Gold-
berg. Eclipse attacks on bitcoin’s peer-to-peer network. In
USENIX Security Symposium, pages 129–144, 2015.

[89] Ethan Heilman, Neha Narula, Thaddeus Dryja, and Madars
Virza. Iota vulnerability report: Cryptanalysis of the curl hash
function enabling practical signature forgery attacks on the iota
cryptocurrency. 2017. https://github.com/mit-dci/tangled-

curl/blob/master/vuln-iota.md.

[90] Tim A Hely, David J Willshaw, and Gillian M Hayes. A new
approach to Kanerva’s sparse distributed memory. IEEE Trans-
actions on Neural Networks, 8(3):791–794, 1997.

[91] Jaap-Henk Hoepman. Distributed double spending prevention.
In International Workshop on Security Protocols, pages 152–165.
Springer, 2007.

[92] Douglas Hofstadter. Gödel, Escher, Bach: An eternal golden braid.
Basic Books, 1980.

[93] Douglas R Hofstadter. On seeing A’s and seeing As. Stan-
ford Humanities Review, 4(2):109–121, 1995. URL https://web.

stanford.edu/group/SHR/4-2/text/hofstadter.html.

[94] Y.-S. Hong and S.-S. Chen. Character recognition in a sparse dis-
tributed memory. IEEE Transactions on Systems, Man, and Cyber-
netics, 21(3):674–678, June 1991. ISSN 00189472. doi: 10.1109/21.
97459. URL http://ieeexplore.ieee.org/document/97459/.

[95] Ying-Ying Hsieh, Jean-Philippe Vergne, and Sha Wang. The
internal and external governance of blockchain-based organiza-
tions: Evidence from cryptocurrencies. 2017.

[96] IM/UFRJ. Programa de Pós-Graduação em Ensino de
Matemática. URL http://www.pg.im.ufrj.br/pemat/dout_

publico.htm.

https://github.com/mit-dci/tangled-curl/blob/master/vuln-iota.md
https://github.com/mit-dci/tangled-curl/blob/master/vuln-iota.md
https://web.stanford.edu/group/SHR/4-2/text/hofstadter.html
https://web.stanford.edu/group/SHR/4-2/text/hofstadter.html
http://ieeexplore.ieee.org/document/97459/
http://www.pg.im.ufrj.br/pemat/dout_publico.htm
http://www.pg.im.ufrj.br/pemat/dout_publico.htm

bibliography 249

[97] Bernard J Jansen, Mimi Zhang, Kate Sobel, and Abdur Chow-
dury. Twitter power: Tweets as electronic word of mouth. Jour-
nal of the American society for information science and technology,
60(11):2169–2188, 2009.

[98] Husam Al Jawaheri, Mashael Al Sabah, Yazan Boshmaf, and
Aimen Erbad. When a small leak sinks a great ship:
Deanonymizing tor hidden service users through bitcoin trans-
actions analysis. arXiv preprint arXiv:1801.07501, 2018.

[99] S. Jockel, F. Lindner, and Jianwei Zhang. Sparse distributed
memory for experience-based robot manipulation. In Proceed-
ings of the 2008 IEEE International Conference on Robotics and
Biomimetics, pages 1298–1303. IEEE, February 2009. ISBN 978-
1-4244-2678-2. doi: 10.1109/ROBIO.2009.4913187. URL http:

//ieeexplore.ieee.org/document/4913187/.

[100] Eric Jones, Travis Oliphant, Pearu Peterson, et al. SciPy: Open
source scientific tools for Python, 2001–. URL http://www.

scipy.org/. [Online; accessed 2014-12-16].

[101] Daniel Kahneman and Amos Tversky. Prospect theory: An anal-
ysis of decisions under risk. Econometrica, 47:278, 1979.

[102] Daniel Kahneman and Amos Tversky. The simulation heuristic.
in d. kahneman, p. slovic, & a. tversky (eds.), judgment under
uncertainty: Heuristics and biases (pp. 201-208), 1982.

[103] Daniel Kahneman and Amos Tversky. Prospect theory: An anal-
ysis of decision under risk. In Handbook of the fundamentals of
financial decision making: Part I, pages 99–127. World Scientific,
2013.

[104] P. Kanerva. Sparse Distributed Memory. MIT Press, 1988.

[105] P. Kanerva. Hyperdimensional computing: An introduction to
computing in distributed representation with high-dimensional
random vectors. Cognitive Computation, 1:139–159, 2009.

[106] Pentti Kanerva. Parallel Structures in Human and Computer
Memory. Cognitiva, 85, June 1985. URL https://cseweb.ucsd.

edu/~gary/PAPER-SUGGESTIONS/SDM_Kanerva.pdf.

[107] Pentti Kanerva. Sparse Distributed Memory and Related Mod-
els. In Associative Neural Memories: Theory and Implementation,
page 41. Oxford University Press, 1993.

[108] Pentti Kanerva. The Spatter Code for Encoding Concepts at
Many Levels. In Maria Marinaro and Pietro G. Morasso, editors,
ICANN ’94, pages 226–229. Springer London, London, 1994.
ISBN 978-3-540-19887-1 978-1-4471-2097-1. doi: 10.1007/978-

http://ieeexplore.ieee.org/document/4913187/
http://ieeexplore.ieee.org/document/4913187/
http://www.scipy.org/
http://www.scipy.org/
https://cseweb.ucsd.edu/~gary/PAPER-SUGGESTIONS/SDM_Kanerva.pdf
https://cseweb.ucsd.edu/~gary/PAPER-SUGGESTIONS/SDM_Kanerva.pdf

250 bibliography

1-4471-2097-1_52. URL http://link.springer.com/10.1007/

978-1-4471-2097-1_52.

[109] Pentti Kanerva. Binary spatter-coding of ordered K-tuples. In
Gerhard Goos, Juris Hartmanis, Jan Leeuwen, Christoph Mals-
burg, Werner Seelen, Jan C. Vorbrüggen, and Bernhard Send-
hoff, editors, Artificial Neural Networks — ICANN 96, volume
1112, pages 869–873. Springer Berlin Heidelberg, Berlin, Hei-
delberg, 1996. ISBN 978-3-540-61510-1 978-3-540-68684-2. doi:
10.1007/3-540-61510-5_146. URL http://link.springer.com/

10.1007/3-540-61510-5_146.

[110] Pentti Kanerva. Fully Distributed Representation. In In Proceed-
ings RWC Symposium, pages 358–365, 1997.

[111] Pentti Kanerva. Hyperdimensional computing: An introduc-
tion to computing in distributed representation with high-
dimensional random vectors. Cognitive Computation, 1(2):139–
159, 2009.

[112] Mingu Kang. In-memory Computing Architectures for Sparse
Distributed Memory. IEEE Transactions on Biomedical Circuits
and Systems, 10:855–862, 2016.

[113] Mingu Kang, Eric P. Kim, Min-sun Keel, and Naresh R.
Shanbhag. Energy-efficient and high throughput sparse dis-
tributed memory architecture. In 2015 IEEE International Sym-
posium on Circuits and Systems (ISCAS), pages 2505–2508. IEEE,
May 2015. ISBN 978-1-4799-8391-9. doi: 10.1109/ISCAS.
2015.7169194. URL http://ieeexplore.ieee.org/document/

7169194/.

[114] Ghassan Karame, Elli Androulaki, and Srdjan Capkun. Two
bitcoins at the price of one? double-spending attacks on fast
payments in bitcoin. IACR Cryptology ePrint Archive, 2012(248),
2012.

[115] Roland Karlsson. A fast activation mechanism for the
kanerva sdm memory. In SICS Research Report R95:10,
Swedish Institute of Computer Science, pages 69–70, 1995.
URL http://citeseerx.ist.psu.edu/viewdoc/download?doi=

10.1.1.44.5112&rep=rep1&type=pdf.

[116] James D. Keeler. Comparison between Kanerva’s SDM and
Hopfield-type neural networks. Cognitive Science, 12(3):299–329,
1988.

[117] Gary A Klein. Sources of power: How people make decisions. MIT
press, 1999.

http://link.springer.com/10.1007/978-1-4471-2097-1_52
http://link.springer.com/10.1007/978-1-4471-2097-1_52
http://link.springer.com/10.1007/3-540-61510-5_146
http://link.springer.com/10.1007/3-540-61510-5_146
http://ieeexplore.ieee.org/document/7169194/
http://ieeexplore.ieee.org/document/7169194/
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.44.5112&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.44.5112&rep=rep1&type=pdf

bibliography 251

[118] Thomas Kluyver, Benjamin Ragan-Kelley, Fernando Pérez,
Brian E Granger, Matthias Bussonnier, Jonathan Frederic, Kyle
Kelley, Jessica B Hamrick, Jason Grout, Sylvain Corlay, et al.
Jupyter notebooks-a publishing format for reproducible com-
putational workflows. In ELPUB, pages 87–90, 2016.

[119] Hee-Yong Kwon. ATM call admission control using sparse
distributed memory. In Neural Networks, 1997., International
Conference on, volume 2, pages 1321–1325. IEEE, 1997. ISBN
978-0-7803-4122-7. doi: 10.1109/ICNN.1997.616226. URL http:

//ieeexplore.ieee.org/document/616226/.

[120] Hee-Yong Kwon, Dong-Keyu Kim, Seung-Jun Song, Je-U. CHoi,
In-Heang Lee, and Hee-Yeung Hwang. ATM call admission
control using sparse distributed memory. II. In Neural Networks
Proceedings, 1998. IEEE World Congress on Computational Intelli-
gence. The 1998 IEEE International Joint Conference on, volume 3,
pages 1799–1803. IEEE, 1998.

[121] Jean-Marie Laborde and Surya Prakash Rao Hebbare. An-
other characterization of hypercubes. Discrete Mathematics, 39

(2):161–166, January 1982. ISSN 0012-365X. doi: 10.1016/
0012-365X(82)90139-X. URL http://www.sciencedirect.com/

science/article/pii/0012365X8290139X.

[122] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner.
Gradient-based learning applied to document recognition. Pro-
ceedings of the IEEE, 86(11):2278–2324, 1998.

[123] Mira Lee and Seounmi Youn. Electronic word of mouth (ewom)
how ewom platforms influence consumer product judgement.
International Journal of Advertising, 28(3):473–499, 2009.

[124] Sergio Demian Lerner. Dagcoin: a cryptocurrency without
blocks, 2015. Available at https://bitslog.wordpress.com/

2015/09/11/dagcoin/.

[125] Yoad Lewenberg, Yonatan Sompolinsky, and Aviv Zohar. Inclu-
sive block chain protocols, 2015. Available at http://www.cs.

huji.ac.il/~avivz/pubs/15/inclusivebtc.pdf.

[126] Owain Lewis. Awesome-Artificial-Intelligence: a curated list of
Artificial Intelligence (AI) courses, books, video lectures and
papers, April 2018. URL https://github.com/owainlewis/

awesome-artificial-intelligence. original-date: 2015-01-
27T09:27:48Z.

[127] Haitong Li, Tony F. Wu, Abbas Rahimi, Kai-Shin Li, Miles
Rusch, Chang-Hsien Lin, Juo-Luen Hsu, Mohamed M. Sabry,
S. Burc Eryilmaz, Joon Sohn, Wen-Cheng Chiu, Min-Cheng

http://ieeexplore.ieee.org/document/616226/
http://ieeexplore.ieee.org/document/616226/
http://www.sciencedirect.com/science/article/pii/0012365X8290139X
http://www.sciencedirect.com/science/article/pii/0012365X8290139X
https://bitslog.wordpress.com/2015/09/11/dagcoin/
https://bitslog.wordpress.com/2015/09/11/dagcoin/
http://www.cs.huji.ac.il/~avivz/pubs/15/inclusive btc.pdf
http://www.cs.huji.ac.il/~avivz/pubs/15/inclusive btc.pdf
https://github.com/owainlewis/awesome-artificial-intelligence
https://github.com/owainlewis/awesome-artificial-intelligence

252 bibliography

Chen, Tsung-Ta Wu, Jia-Min Shieh, Wen-Kuan Yeh, Jan M.
Rabaey, Subhasish Mitra, and H.-S. Philip Wong. Hyperdimen-
sional computing with 3d VRRAM in-memory kernels: Device-
architecture co-design for energy-efficient, error-resilient lan-
guage recognition. In 2016 IEEE International Electron De-
vices Meeting (IEDM), pages 16.1.1–16.1.4. IEEE, December 2016.
ISBN 978-1-5090-3902-9. doi: 10.1109/IEDM.2016.7838428. URL
http://ieeexplore.ieee.org/document/7838428/.

[128] Alexandre Linhares. A glimpse at the metaphysics of
bongard problems. Artificial Intelligence, 121:251–270, 2000.
URL https://www.sciencedirect.com/science/article/pii/

S0004370200000424.

[129] Alexandre Linhares. A glimpse at the metaphysics of bongard
problems. Artificial Intelligence, 121(1-2):251–270, 2000.

[130] Alexandre Linhares. You only get one life, December
2007. URL https://www.slideshare.net/linhares/you-only-

get-one-life.

[131] Alexandre Linhares and Marcelo Salhab Brogliato. Sparse Dis-
tributed Memory Framework Documentation. Technical re-
port, February 2018. URL https://media.readthedocs.org/

pdf/sdm-framework/stable/sdm-framework.pdf.

[132] Alexandre Linhares, Daniel M. Chada, and Christian N.
Aranha. The emergence of Miller’s Magic Number on a Sparse
Distributed Memory. PLOS One, 6(1):e15592, Jan 2011. doi:
10.1371/journal.pone.0015592.

[133] June Ma, Joshua S Gans, and Rabee Tourky. Market structure in
bitcoin mining. Technical report, National Bureau of Economic
Research, 2018.

[134] Vijay Mahajan, Eitan Muller, and Roger A Kerin. Introduction
strategy for new products with positive and negative word-of-
mouth. Management Science, 30(12):1389–1404, 1984.

[135] Jim Marshall and Lisa Meeden. Technical Report: Learning
with a Sparse Distributed Memory. Technical report, Indiana
University, Bloomington, Bloomington, Indiana, May 1989.

[136] Nigel Meade and Towhidul Islam. Modelling and forecasting
the diffusion of innovation–a 25-year review. International Jour-
nal of forecasting, 22(3):519–545, 2006.

[137] Mateus Mendes, Manuel Crisóstomo, and A Paulo Coimbra.
Robot navigation using a sparse distributed memory. In
Robotics and automation, 2008. ICRA 2008. IEEE international con-
ference on, pages 53–58. IEEE, 2008.

http://ieeexplore.ieee.org/document/7838428/
https://www.sciencedirect.com/science/article/pii/S0004370200000424
https://www.sciencedirect.com/science/article/pii/S0004370200000424
https://www.slideshare.net/linhares/you-only-get-one-life
https://www.slideshare.net/linhares/you-only-get-one-life
https://media.readthedocs.org/pdf/sdm-framework/stable/sdm-framework.pdf
https://media.readthedocs.org/pdf/sdm-framework/stable/sdm-framework.pdf

bibliography 253

[138] Meng et al. A modified sparse distributed memory model for
extracting clean patterns from noisy inputs. Proceedings of Inter-
national Joint Conference on Neural Networks, June 2009.

[139] Hongying Meng, Kofi Appiah, Andrew Hunter, Shigang Yue,
Mervyn Hobden, Nigel Priestley, Peter Hobden, and Cy Pet-
tit. A modified sparse distributed memory model for extract-
ing clean patterns from noisy inputs. In Proceedings of Inter-
national Joint Conference on Neural Networks, pages 2084–2089.
IEEE, June 2009. ISBN 978-1-4244-3548-7. doi: 10.1109/IJCNN.
2009.5178873. URL http://ieeexplore.ieee.org/document/

5178873/.

[140] Antje Meyer and Kathryn Bock. The tip-of-the-tongue phe-
nomenon: Blocking or partial activation? Memory & Cognition,
20(6):715–726, 1992.

[141] G. A. Miller. The magical number seven, plus or minus two:
Some limits on our capacity for processing information. Psycho-
logical Review, 63:81–97, 1955.

[142] Joseph Misiti. Awesome-Machine-Learning: A curated list of
awesome Machine Learning frameworks, libraries and software,
April 2018. URL https://github.com/josephmisiti/awesome-

machine-learning. original-date: 2014-07-15T19:11:19Z.

[143] Fabio Montagna, Abbas Rahimi, Simone Benatti, Davide Rossi,
and Luca Benini. PULP-HD: Accelerating Brain-Inspired High-
Dimensional Computing on a Parallel Ultra-Low Power Plat-
form. arXiv:1804.09123 [eess], April 2018. URL http://arxiv.

org/abs/1804.09123. arXiv: 1804.09123.

[144] Aaftab Munshi. The OpenCL specification. In Hot Chips 21
Symposium (HCS), 2009 IEEE, pages 1–314. IEEE, 2009.

[145] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash sys-
tem. 2008. Available at https://bitcoin.org/bitcoin.pdf.

[146] Stephen G Nash. Newton-type minimization via the lanczos
method. SIAM Journal on Numerical Analysis, 21(4):770–788,
1984.

[147] Stephen G Nash. A survey of truncated-newton methods. Jour-
nal of Computational and Applied Mathematics, 124(1):45–59, 2000.

[148] Till Neudecker, Philipp Andelfinger, and Hannes Hartenstein.
A simulation model for analysis of attacks on the bitcoin peer-
to-peer network. In Integrated Network Management (IM), 2015
IFIP/IEEE International Symposium on, pages 1327–1332. IEEE,
2015.

http://ieeexplore.ieee.org/document/5178873/
http://ieeexplore.ieee.org/document/5178873/
https://github.com/josephmisiti/awesome-machine-learning
https://github.com/josephmisiti/awesome-machine-learning
http://arxiv.org/abs/1804.09123
http://arxiv.org/abs/1804.09123
https://bitcoin.org/bitcoin.pdf

254 bibliography

[149] Andrew Ng. Artificial intelligence is the new electricity, 2017.
URL https://www.youtube.com/watch?v=21EiKfQYZXc.

[150] Kenneth A Norman and Randall C O’reilly. Modeling hip-
pocampal and neocortical contributions to recognition memory:
a complementary-learning-systems approach. Psychological Re-
view, 110(4):611, 2003.

[151] Mohammad Norouzi, Ali Punjani, and David J Fleet. Fast ex-
act search in hamming space with multi-index hashing. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 36(6):
1107–1119, 2014.

[152] John A Norton and Frank M Bass. A diffusion theory model
of adoption and substitution for successive generations of
high-technology products. Management science, 33(9):1069–1086,
1987.

[153] Tatsuaki Okamoto. An efficient divisible electronic cash scheme.
In Annual International Cryptology Conference, pages 438–451.
Springer, 1995.

[154] Ivan Osipkov, Eugene Y Vasserman, Nicholas Hopper, and
Yongdae Kim. Combating double-spending using cooperative
p2p systems. In Distributed Computing Systems, 2007. ICDCS’07.
27th International Conference on, pages 41–41. IEEE, 2007.

[155] A Pinar Ozisik, George Bissias, and Brian N Levine. Estima-
tion of miner hash rates and consensus on blockchains. Tech-
nical report, Tech. rep., PDF available from arxiv. org and
https://www. cs. umass. edu/ brian/status-reports. pdf (June
2017).

[156] Ram Pai, Badari Pulavarty, and Mingming Cao. Linux 2.6 per-
formance improvement through readahead optimization. In
Proceedings of the Linux Symposium, volume 2, pages 105–116,
2004.

[157] Luke Parker. Bitcoin ‘spam attack’ stressed network
for at least 18 months, claims software developer, 2017.
https://bravenewcoin.com/news/bitcoin-spam-attack-

stressed-network-for-at-least-18-months-claims-

software-developer/.

[158] Renana Peres, Eitan Muller, and Vijay Mahajan. Innovation dif-
fusion and new product growth models: A critical review and
research directions. International Journal of Research in Marketing,
27(2):91–106, 2010.

https://www.youtube.com/watch?v=21EiKfQYZXc
https://bravenewcoin.com/news/bitcoin-spam-attack-stressed-network-for-at-least-18-months-claims-software-developer/
https://bravenewcoin.com/news/bitcoin-spam-attack-stressed-network-for-at-least-18-months-claims-software-developer/
https://bravenewcoin.com/news/bitcoin-spam-attack-stressed-network-for-at-least-18-months-claims-software-developer/

bibliography 255

[159] Jürgen Pfeffer, T Zorbach, and KM Carley. Understanding on-
line firestorms: Negative word-of-mouth dynamics in social me-
dia networks. Journal of Marketing Communications, 20(1-2):117–
128, 2014.

[160] Scott Plous. The psychology of judgment and decision making.
Mcgraw-Hill Book Company, 1993.

[161] Serguei Popov and Jinn Labs. The tangle. 2016. Available at
https://iota.org/IOTA_Whitepaper.pdf.

[162] United Nations World Food Programme. The year in review
report. 2016.

[163] United Nations World Food Programme. Blockchain against
hunger: Harnessing technology in support of syrian refugees.
2017. URL https://www.wfp.org/news/news-release/.

[164] Rajesh Rao and Olac Fuentes. Hierarchical learning of navi-
gational behaviors in an autonomous robot using a predictive
sparse distributed memory. Autonomous Robots, pages 297–316,
1998.

[165] Rajesh PN Rao and Dana H Ballard. Natural basis functions
and topographic memory for face recognition. In Proceedings
of the 14th International Joint Conference on Artificial Intelligence,
pages 10–19, 1995.

[166] Marsha L Richins. Negative word-of-mouth by dissatisfied con-
sumers: A pilot study. The journal of marketing, pages 68–78,
1983.

[167] Everett M Rogers. Diffusion of innovations. The Free Press, New
York, 1st edition, 1962.

[168] Frank Ruskey. Combinatorial Generation. University of Victoria,
working version (1j-csc 425/520) edition, 2003. URL http://

www.1stworks.com/ref/RuskeyCombGen.pdf.

[169] Magnus Sahlgren and Pentti Kanerva. Permutations as a Means
to Encode Order in Word Space. page 6.

[170] Sayeef Salahuddin. Energy Efficient Computing with Hyperdi-
mensional Vector Space Models. In 2017 International Conference
on Simulation of Semiconductor Processes and Devices (SISPAD),
pages 9–12, Kamakura, Japan. IEEE.

[171] Dominik Schiener. Iota multi-signature scheme, 2017. https:

//github.com/iotaledger/wiki/blob/master/multisigs.md.

https://iota.org/IOTA_Whitepaper.pdf
https://www.wfp.org/news/news-release/
http://www.1stworks.com/ref/RuskeyCombGen.pdf
http://www.1stworks.com/ref/RuskeyCombGen.pdf
https://github.com/iotaledger/wiki/blob/master/multisigs.md
https://github.com/iotaledger/wiki/blob/master/multisigs.md

256 bibliography

[172] David C Schmittlein and Vijay Mahajan. Maximum likelihood
estimation for an innovation diffusion model of new product
acceptance. Marketing science, 1(1):57–78, 1982.

[173] Devavrat Shah et al. Gossip algorithms. Foundations and Trends®
in Networking, 3(1):1–125, 2009.

[174] Helen Shen. Interactive notebooks: Sharing the code. Nature
News, 515(7525):151, 2014.

[175] QingChun ShenTu and JianPing Yu. Research on anonymiza-
tion and de-anonymization in the bitcoin system. arXiv preprint
arXiv:1510.07782, 2015.

[176] Laura Shin. Bitcoin cash skyrockets, bitcoin price drops as
civil war continues, 2017. https://www.forbes.com/sites/

laurashin/2017/11/12/bitcoin-cash-skyrockets-bitcoin-

price-drops-as-civil-war-continues/#67ffeed635b5.

[177] Marcus Tadeu Pinheiro Silva, Antônio Pádua Braga, and Wil-
ian Soares Lacerda. Reconfigurable co-processor for Kanerva’s
sparse distributed memory. Microprocessors and Microsystems,
28(3):127–134, April 2004. ISSN 01419331. doi: 10.1016/j.
micpro.2004.01.003. URL http://linkinghub.elsevier.com/

retrieve/pii/S0141933104000043.

[178] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis
Antonoglou, Matthew Lai, Arthur Guez, Marc Lanctot, Laurent
Sifre, Dharshan Kumaran, Thore Graepel, et al. Mastering chess
and shogi by self-play with a general reinforcement learning al-
gorithm. arXiv preprint arXiv:1712.01815, 2017.

[179] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis
Antonoglou, Aja Huang, Arthur Guez, Thomas Hubert, Lucas
Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game
of go without human knowledge. Nature, 550(7676):354, 2017.

[180] Gunnar Sjodin. Improving the Capacity of SDM. Technical
Report R95:12, Swedish Institute of Computer Science.

[181] Robert E Smith and Christine A Vogt. The effects of integrat-
ing advertising and negative word-of-mouth communications
on message processing and response. Journal of Consumer Psy-
chology, 4(2):133–151, 1995.

[182] Javier Snaider and Stan Franklin. Extended sparse distributed
memory. Paper presented at the Biological Inspired Cognitive
Architectures 2011, Washington D.C. USA.

[183] Javier Snaider and Stan Franklin. Modular Composite Rep-
resentation. Cognitive Computation, 6(3):510–527, September

https://www.forbes.com/sites/laurashin/2017/11/12/bitcoin-cash-skyrockets-bitcoin-price-drops-as-civil-war-continues/#67ffeed635b5
https://www.forbes.com/sites/laurashin/2017/11/12/bitcoin-cash-skyrockets-bitcoin-price-drops-as-civil-war-continues/#67ffeed635b5
https://www.forbes.com/sites/laurashin/2017/11/12/bitcoin-cash-skyrockets-bitcoin-price-drops-as-civil-war-continues/#67ffeed635b5
http://linkinghub.elsevier.com/retrieve/pii/S0141933104000043
http://linkinghub.elsevier.com/retrieve/pii/S0141933104000043

bibliography 257

2014. ISSN 1866-9956, 1866-9964. doi: 10.1007/s12559-
013-9243-y. URL http://link.springer.com/10.1007/s12559-

013-9243-y.

[184] Javier Snaider, Stan Franklin, Steve Strain, and E. Olusegun
George. Integer sparse distributed memory: Analysis and re-
sults. Neural Networks, 46:144–153, October 2013. ISSN 08936080.
doi: 10.1016/j.neunet.2013.05.005. URL http://linkinghub.

elsevier.com/retrieve/pii/S0893608013001354.

[185] Yonatan Sompolinsky and Aviv Zohar. Accelerating bitcoin’s
transaction processing. fast money grows on trees, not chains,
2013. Available at https://eprint.iacr.org/2013/881.pdf.

[186] V Srinivasan and Charlotte H Mason. Technical note-nonlinear
least squares estimation of new product diffusion models. Mar-
keting science, 5(2):169–178, 1986.

[187] Alvin J. Surkan. WSDM: Weighted Sparse Distributed Mem-
ory Prototype Expressed in APL. In Proceedings of the Interna-
tional Conference on APL, APL ’92, pages 235–242, New York, NY,
USA, 1992. ACM. ISBN 978-0-89791-477-2. doi: 10.1145/144045.
144142. URL http://doi.acm.org/10.1145/144045.144142.

[188] Richard S Sutton and Andrew G Barto. Reinforcement learning:
An introduction, volume 1. MIT press Cambridge, 1998.

[189] David Sønstebø. The transparency compendium.
https://blog.iota.org/the-transparency-compendium-

26aa5bb8e260. Last accessed on July 20, 2017.

[190] The Associated Press. Number of active users at facebook over
the years, May 2013. URL http://news.yahoo.com/number-

active-users-facebook-over-230449748.html.

[191] Andreas Turk and Gunther Gorz. Kanerva’s Sparse Distributed
Memory: An Object-oriented Implementation on the Connec-
tion Machine. In Proceedings of the 14th International Joint Con-
ference on Artificial Intelligence - Volume 1, IJCAI’95, pages 473–
479, San Francisco, CA, USA, 1995. Morgan Kaufmann Pub-
lishers Inc. ISBN 978-1-55860-363-9. URL http://dl.acm.org/

citation.cfm?id=1625855.1625917.

[192] Yoshinori Uesaka, Pentti Kanerva, and Hideki Asoh, editors.
Foundations of real-world intelligence. Number no. 125 in CSLI
lecture notes. CSLI Publications, Stanford, Calif, 2001. ISBN
978-1-57586-339-9 978-1-57586-338-2.

[193] Richard Van Noorden, Brendan Maher, and Regina Nuzzo. The
top 100 papers. Nature, 514(7524):550, 2014.

http://link.springer.com/10.1007/s12559-013-9243-y
http://link.springer.com/10.1007/s12559-013-9243-y
http://linkinghub.elsevier.com/retrieve/pii/S0893608013001354
http://linkinghub.elsevier.com/retrieve/pii/S0893608013001354
https://eprint.iacr.org/2013/881.pdf
http://doi.acm.org/10.1145/144045.144142
https://blog.iota.org/the-transparency-compendium-26aa5bb8e260
https://blog.iota.org/the-transparency-compendium-26aa5bb8e260
http://news.yahoo.com/number-active-users-facebook-over-230449748.html
http://news.yahoo.com/number-active-users-facebook-over-230449748.html
http://dl.acm.org/citation.cfm?id=1625855.1625917
http://dl.acm.org/citation.cfm?id=1625855.1625917

258 bibliography

[194] David Vorick. Getting rid of blocks, 2015. Available at slides.
com/davidvorick/braids.

[195] A. Wagner and D. Corneil. Embedding Trees in a Hypercube is
NP-Complete. SIAM Journal on Computing, 19(3):570–590, June
1990. ISSN 0097-5397. doi: 10.1137/0219038. URL https://

epubs.siam.org/doi/abs/10.1137/0219038.

[196] Hasitha Muthumala Waidyasooriya, Masanori Hariyama, and
Kunio Uchiyama. Design of FPGA-Based Computing Systems with
OpenCL. Springer, 2018.

[197] Henry S Warren. Hacker’s delight. Pearson Education, 2013.

[198] Bitcoin Wiki. Block size limit controversy, 2017. https://en.

bitcoin.it/wiki/Block_size_limit_controversy.

[199] Elizabeth Woyke. How blockchain can bring financial services
to the poor. MIT Technology Review, 2017.

[200] Yan Wu, Greg Wayne, Alex Graves, and Timothy Lillicrap.
The Kanerva Machine: A Generative Distributed Memory.
arXiv:1804.01756 [cs, stat], April 2018. URL http://arxiv.org/

abs/1804.01756. arXiv: 1804.01756.

[201] Jinhong Xie, X Michael Song, Marvin Sirbu, and Qiong Wang.
Kalman filter estimation of new product diffusion models. Jour-
nal of Marketing Research, pages 378–393, 1997.

[202] Yang Zongkai, Lang Weimin, and Tan Yunmeng. A new fair
micropayment system based on hash chain. In e-Technology,
e-Commerce and e-Service, 2004. EEE’04. 2004 IEEE International
Conference on, pages 139–145. IEEE, 2004.

slides.com/davidvorick/braids
slides.com/davidvorick/braids
https://epubs.siam.org/doi/abs/10.1137/0219038
https://epubs.siam.org/doi/abs/10.1137/0219038
https://en.bitcoin.it/wiki/Block_size_limit_controversy
https://en.bitcoin.it/wiki/Block_size_limit_controversy
http://arxiv.org/abs/1804.01756
http://arxiv.org/abs/1804.01756

	Abstract
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Introduction
	1 Introduction
	1.1 Distributed financial ledgers
	1.2 Sparse Distributed Memory
	1.2.1 Decisions with serious skin in the game
	1.2.2 Artificial Intelligence

	1.3 Diffusion of innovation
	1.4 The fine print...

	Hathor: An alternative towards a scalable cryptocurrency
	2 Introduction
	3 Bitcoin & Blockchain
	4 Iota & Tangle
	5 Analysis of Bitcoin
	5.1 Hash function
	5.2 Mining one block
	5.3 Mining several blocks
	5.4 Mining for a miner
	5.5 Orphan blocks
	5.6 Analysis of network's hash rate change
	5.6.1 Hash rate suddenly changing
	5.6.2 Hash rate smoothly changing
	5.6.3 Piecewise linear model of hash rate change
	5.6.4 Comparison of the models

	5.7 Attack in the Bitcoin network
	5.8 Confirmation time and network capacity

	6 Hathor's architecture
	6.1 Transaction confirmation
	6.2 Time between blocks
	6.3 Weight of the transactions
	6.4 Issuance rate
	6.5 Transaction fees
	6.6 Transaction validation
	6.7 Orphan blocks
	6.8 Governance
	6.9 Expected number of tips

	7 Methodology
	8 Analysis of Hathor
	8.1 Confirmation time
	8.2 Visualizing the network
	8.3 Number of tips
	8.4 Network validated transactions

	9 Conclusion

	An invitation to Sparse Distributed Memory: from the theoretical model to the system dynamics
	10 Introduction
	10.1 Desiderata for a theory of memory
	10.2 The wasted effort of duplicated, ad hoc, work

	11 Notation
	12 Sparse Distributed Memory
	12.1 Neurons as pointers
	12.2 Concepts
	12.3 Read operation
	12.3.1 Generalized read operation

	12.4 Critical Distance

	13 Framework Architecture
	13.1 Bitstring
	13.1.1 The distance between two bitstrings

	13.2 Address space
	13.2.1 Scanning for activated hard locations
	13.2.2 OpenCL kernels

	13.3 Counters
	13.4 Read and write operations

	14 Results (i): Performance
	14.1 Kernels comparison
	14.2 Scanners comparison
	14.3 Read and write operations
	14.3.1 Summary of results

	15 Results (ii): Framework validation
	15.1 Distance between random bitstrings
	15.2 Number of activated hard locations
	15.3 Intersection of two circles
	15.4 Storage and retrieval of sequences
	15.4.1 k-fold memory using only one SDM

	16 Results (iii): Loss of neurons
	17 Results (iv): Critical distance
	17.1 A deviation from the equator distance?
	17.2 Counter bias
	17.3 Read bias
	17.4 Critical distance of 209

	18 Results (v): Generalized read operation
	19 Results (vi): Supervised classification application
	20 Results (vii): Image noise filtering application
	21 Results (viii): The possibility of unsupervised reinforcement learning
	21.1 Training
	21.2 Results

	22 Results (ix): Information-theoretical write operation
	23 Conclusion
	23.1 Another `funny thing'...
	23.2 Magic numbers
	23.3 Symmetrical, rapidly accessible, hard locations
	23.4 ``i'' versus ``l''
	23.5 Deep learning, multiple SDMs — and the incredible animal behavior of Dr. Linhares
	23.6 Not a real Conclusion

	24 Appendix

	Diffusion and dismissal of innovation: forecasting the number of Facebook’s active users
	25 Introduction
	26 The Bass model
	27 The extended model
	28 Models for R(t)
	28.1 Model 1
	28.2 Model 2
	28.3 Model 3
	28.4 Model 4

	29 Estimation method
	30 Results
	31 Conclusion

	Conclusion
	32 Conclusion

	Appendix
	A Recent Results in Theory of Computing - I
	A.1 The Halting Problem is Solvable

	Bibliography

