-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
270 lines (211 loc) · 10.7 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
import torch
from torch import nn
from torch import optim
from torchvision import datasets, transforms, models
from collections import OrderedDict
import json
import time
import math
import numpy as np
import argparse
import os
#Import my modules
from netsettings import net_archs, net_classes, net_prefixes, net_params
from classifier import get_classifier
# main training code
if __name__ == '__main__':
parser = argparse.ArgumentParser(prog='Neural net training',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('model_name', type=str, help="""Name of the model to be trained.
Supported models: '""" + "', '".join(list(net_archs.keys())) + "'")
parser.add_argument('--learning_rate', type=float, default=0.001,
help="""Learning rate to use for the Adam optimizer.""")
parser.add_argument('--hidden_units', type=int, default=2,
help="""Number of hidden units for the new classifier.
Recommended values: 2 or 3.""")
parser.add_argument('--training_epochs', type=int, default=15,
help="""Number of epochs to train the model.""")
parser.add_argument('--save_filename', type=str,
help="""Name for the checkpoint file.""")
parser.add_argument('--device', type=str, default='cpu',
help="""Device on which to evaluate the model.""")
args = parser.parse_args()
model_name = args.model_name
learning_rate = args.learning_rate
classifier_hidden = args.hidden_units
epochs = args.training_epochs
device = args.device
if args.save_filename is None:
save_filename = net_prefixes[model_name] + 'checkpoint.pth'
else:
save_filename = args.save_filename
#Validate supplied args
if model_name not in list(net_archs.keys()):
raise ValueError(model_name + ' is not a supported model.')
if device not in ['cuda','cpu']:
raise ValueError(device + ' is not a supported device.')
try:
f = open(save_filename, 'w+')
f.close()
os.remove(save_filename)
except:
raise ValueError(save_filename + ' is not a valid file path.')
#Set up remaining settings
model_class = net_classes[model_name]
model_load = net_archs[model_name]
features_count = net_params[model_class]['features_count']
batch_size = net_params[model_class]['batch_size']
classifier_name = net_params[model_class]['classifier_name']
img_resize = net_params[model_class]['img_resize']
img_crop = net_params[model_class]['img_crop']
#For local training, use the data on an M.2 SSD
data_dir = 'C:/udacity/data/flowers'
#data_dir = 'data/flowers'
train_dir = data_dir + '/train'
valid_dir = data_dir + '/valid'
test_dir = data_dir + '/test'
# TODO: Define your transforms for the training, validation, and testing sets
# Alex Kirko: using the transforms suggested in Part 8 of the PyTorch lesson
# since flowers are symmetrical, it won't hurt to rotate them more
# since we'll be using an ImageNet pre-trained network, it's important to
# normalize the color channels the same way they were normalized when these
# models were trained
train_transforms = transforms.Compose([transforms.RandomRotation(45),
transforms.RandomResizedCrop(img_crop),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406],
[0.229, 0.224, 0.225])])
#Alex Kirko: for validation and test there is no need to introduce randomness to the data
valid_transforms = test_transforms = transforms.Compose([transforms.Resize(img_resize),
transforms.CenterCrop(img_crop),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406],
[0.229, 0.224, 0.225])])
# TODO: Load the datasets with ImageFolder
train_data = datasets.ImageFolder(data_dir + '/train', transform=train_transforms)
valid_data = datasets.ImageFolder(data_dir + '/valid', transform=valid_transforms)
test_data = datasets.ImageFolder(data_dir + '/test', transform=test_transforms)
# TODO: Using the image datasets and the trainforms, define the dataloaders
#Alex Kirko: only the training set benefits from shuffling at the end of each epoch
train_loader = torch.utils.data.DataLoader(train_data, batch_size=batch_size, shuffle=True)
valid_loader = torch.utils.data.DataLoader(valid_data, batch_size=batch_size)
test_loader = torch.utils.data.DataLoader(test_data, batch_size=batch_size)
with open('cat_to_name.json', 'r') as f:
cat_to_name = json.load(f)
model = model_load(pretrained=True)
# Remove gradient tracking from the network parameters
for param in model.parameters():
param.requires_grad = False
# Create a new classifier
# Use dropout probability that the VGG models use -
# authors likely knew what they were doing
classifier = get_classifier(features_count, classifier_hidden=classifier_hidden, dropout_p=0.5)
#Attach the new classifier (it has random weights now)
if classifier_name == 'classifier':
model.classifier = classifier
elif classifier_name == 'fc':
model.fc = classifier
# Move the model to GPU before constructing the optimizer
model.to(device)
# Set up negative likelihood loss and the adam optimizer
# (momentum is useful)
criterion = nn.NLLLoss()
if classifier_name == 'classifier':
optimizer = optim.Adam(model.classifier.parameters(), lr=learning_rate)
elif classifier_name == 'fc':
optimizer = optim.Adam(model.fc.parameters(), lr=learning_rate)
print('Training start.')
train_losses, test_losses = [], []
for e in range(epochs):
start = time.time()
running_loss = 0
train_r_acc = 0
for images, labels in train_loader:
images, labels = images.to(device), labels.to(device)
optimizer.zero_grad()
log_ps = model.forward(images)
#Inception calculates two losses: auxillary and main
if model_name != 'Inception V3':
loss = criterion(log_ps, labels)
else:
loss = criterion(log_ps[0], labels) + criterion(log_ps[1], labels)
loss.backward()
optimizer.step()
#print('Current time: {:.1f}'.format(time.time() - start))
running_loss += loss.item()
#print('Batch training time: {:.1f}'.format(time.time() - start))
#For debugging. Testing accuracy
if model_name != 'Inception V3':
top_log_p, predictions = log_ps.topk(1, dim = 1)
else:
top_log_p, predictions = log_ps[0].topk(1, dim = 1)
#print(predictions)
equals = predictions == labels.view(*predictions.shape)
train_r_acc += torch.mean(equals.type(torch.FloatTensor)).item()
else:
with torch.no_grad():
## TODO: Implement the validation pass and print out the validation accuracy
model.eval()
running_acc = 0
test_loss = 0
for images, labels in valid_loader:
images, labels = images.to(device), labels.to(device)
log_ps = model.forward(images)
top_log_p, predictions = log_ps.topk(1, dim = 1)
equals = predictions == labels.view(*predictions.shape)
running_acc += torch.mean(equals.type(torch.FloatTensor)).item()
test_loss += criterion(log_ps, labels)
train_loss = running_loss / len(train_loader)
test_loss = test_loss / len(valid_loader)
accuracy = running_acc / len(valid_loader)
t_accuracy = train_r_acc / len(train_loader)
train_losses.append(train_loss)
test_losses.append(test_loss)
model.train()
print('Epoch: {}/{}'.format(e+1, epochs))
print('Training loss: {0:.2f}'.format(train_loss))
print('Validation loss: {0:.2f}'.format(test_loss))
print('Validation Accuracy: {0:.2f}'.format(accuracy*100))
print('Training accuracy: {0:.2f}'.format(t_accuracy*100))
print('Epoch training time: {:.1f}'.format(time.time() - start))
# TODO: Do validation on the test set
model.to(device)
print('Testing on the test set.')
with torch.no_grad():
model.eval()
running_acc = 0
test_loss = 0
for images, labels in test_loader:
images, labels = images.to(device), labels.to(device)
log_ps = model.forward(images)
top_log_p, predictions = log_ps.topk(1, dim = 1)
equals = predictions == labels.view(*predictions.shape)
running_acc += torch.mean(equals.type(torch.FloatTensor)).item()
test_loss += criterion(log_ps, labels)
test_loss = test_loss / len(test_loader)
accuracy = running_acc / len(test_loader)
model.train()
print('Epoch: {}/{}'.format(e+1, epochs))
print('Test loss: {0:.2f}'.format(test_loss))
print('Accuracy: {0:.2f}'.format(accuracy*100))
# TODO: Save the checkpoint
class_to_idx = train_data.class_to_idx
optim_state_dict = optimizer.state_dict()
#print("Our model: \n\n", model, '\n')
#print("The state dict keys: \n\n", model.state_dict().keys())
#Based on https://pytorch.org/tutorials/beginner/saving_loading_models.html
checkpoint = {
'epoch': e,
'optim_state_dict': optim_state_dict,
'model_name': model_name,
'optim_class' : 'Adam',
'loss_class' : 'NLLLoss',
'model_device' : device,
'model_state_dict': model.state_dict(),
'class_to_idx' : class_to_idx,
'learning_rate' : learning_rate,
'classifier_hidden' : classifier_hidden
}
torch.save(checkpoint, save_filename)
print('Model saved to ' + save_filename)