[net] # Testing #batch=1 #subdivisions=1 # Training batch=64 subdivisions=4 width=800 height=448 channels=3 momentum=0.9 decay=0.0005 angle=0 saturation = 1.5 exposure = 1.5 hue=.1 learning_rate=0.001 burn_in=1000 max_batches = 500200 policy=steps steps=400000,450000 scales=.1,.1 [convolutional] batch_normalize=1 filters=16 size=3 stride=1 pad=1 activation=leaky [maxpool] size=2 stride=2 [convolutional] batch_normalize=1 filters=32 size=3 stride=1 pad=1 activation=leaky [maxpool] size=2 stride=2 [convolutional] batch_normalize=1 filters=64 size=3 stride=1 pad=1 activation=leaky [maxpool] size=2 stride=2 [convolutional] batch_normalize=1 filters=128 size=3 stride=1 pad=1 activation=leaky [maxpool] size=2 stride=2 [convolutional] batch_normalize=1 filters=256 size=3 stride=1 pad=1 activation=leaky [maxpool] size=2 stride=2 [convolutional] batch_normalize=1 filters=512 size=3 stride=1 pad=1 activation=leaky [maxpool] size=2 stride=1 [convolutional] batch_normalize=1 filters=1024 size=3 stride=1 pad=1 activation=leaky ########### [convolutional] batch_normalize=1 filters=256 size=1 stride=1 pad=1 activation=leaky [convolutional] batch_normalize=1 filters=128 size=1 stride=1 pad=1 activation=leaky [upsample] stride=2 [route] layers = -1, 8 ########### [convolutional] batch_normalize=1 filters=256 size=1 stride=1 pad=1 activation=leaky ############ start SAM ############ [convolutional] batch_normalize=1 filters=256 size=1 stride=1 activation=logistic [sam] from=-2 ############ end SAM ############## [convolutional] batch_normalize=1 filters=256 size=3 stride=1 pad=1 activation=leaky [convolutional] size=1 stride=1 pad=1 filters=72 activation=linear [yolo] mask = 0,1,2,3,4,5 anchors = 10,14, 23,27, 37,58, 81,82, 135,169, 344,319 classes=7 num=6 jitter=.3 ignore_thresh = .7 truth_thresh = 1 scale_x_y = 1.05 random=0