[convolutional] batch_normalize=1 filters=64 size=1 stride=1 pad=1 activation=leaky ### modified cem (using spp instead global average pooling) ### ### SPP ### [maxpool] stride=1 size=5 [route] layers=-2 [maxpool] stride=1 size=9 [route] layers=-4 [maxpool] stride=1 size=13 [route] layers=-1,-3,-5,-6 ### End SPP ### [upsample] stride=2 [route] layers = # layer with size 13x13 [convolutional] batch_normalize=1 filters=256 size=1 stride=1 pad=1 activation=leaky [upsample] stride=2 [shortcut] activation=leaky from=-4 [route] layers = # layer with size 26x26 [convolutional] batch_normalize=1 filters=256 size=1 stride=1 pad=1 activation=leaky [shortcut] activation=leaky from=-3 ########################## [convolutional] batch_normalize=1 filters=256 size=1 stride=1 activation=logistic [sam] from=-2 ########################## [convolutional] batch_normalize=1 filters=128 size=1 stride=1 pad=1 activation=leaky [convolutional] batch_normalize=1 filters=128 size=3 stride=1 pad=1 activation=leaky [convolutional] size=1 stride=1 pad=1 filters=255 activation=linear [yolo] mask = 3,4,5 anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326 classes=80 num=9 jitter=.3 ignore_thresh = .7 truth_thresh = 1 random=1 [route] layers = -7 ########################## [maxpool] stride=2 size=2 [convolutional] batch_normalize=1 filters=128 size=1 stride=1 pad=1 activation=leaky [convolutional] batch_normalize=1 filters=128 size=1 stride=1 activation=logistic [sam] from=-2 ########################## [convolutional] batch_normalize=1 filters=128 size=1 stride=1 pad=1 activation=leaky [convolutional] batch_normalize=1 filters=128 size=3 stride=1 pad=1 activation=leaky [convolutional] size=1 stride=1 pad=1 filters=255 activation=linear [yolo] mask = 6,7,8 anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326 classes=80 num=9 jitter=.3 ignore_thresh = .7 truth_thresh = 1 random=1 [route] layers = -16 ########################## [convolutional] batch_normalize=1 filters=64 size=1 stride=1 pad=1 activation=leaky [upsample] stride=2 [convolutional] batch_normalize=1 filters=64 size=1 stride=1 activation=logistic [sam] from=-2 ########################## [convolutional] batch_normalize=1 filters=64 size=1 stride=1 pad=1 activation=leaky [convolutional] batch_normalize=1 filters=64 size=3 stride=1 pad=1 activation=leaky [route] layers = -1,-2 [convolutional] size=1 stride=1 pad=1 filters=255 activation=linear [yolo] mask = 0,1,2 anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326 classes=80 num=9 jitter=.3 ignore_thresh = .7 truth_thresh = 1 random=1