[net] # Testing # batch=1 # subdivisions=1 # Training batch=64 subdivisions=32 width=1024 height=1024 channels=3 momentum=0.9 decay=0.0005 angle=0 saturation = 1.5 exposure = 1.5 hue=.1 learning_rate=0.001 burn_in=1000 max_batches = 200000 policy=steps steps=50000,190000 scales=.1,.1 [convolutional] batch_normalize=1 filters=16 size=3 stride=1 pad=1 activation=leaky [maxpool] size=2 stride=2 [convolutional] batch_normalize=1 filters=32 size=3 stride=1 pad=1 activation=leaky [maxpool] size=2 stride=2 [convolutional] batch_normalize=1 filters=64 size=3 stride=1 pad=1 activation=leaky [maxpool] size=2 stride=2 [convolutional] batch_normalize=1 filters=128 size=3 stride=1 pad=1 activation=leaky [maxpool] size=2 stride=2 [convolutional] batch_normalize=1 filters=256 size=3 stride=1 pad=1 activation=leaky [maxpool] size=2 stride=2 [convolutional] batch_normalize=1 filters=512 size=3 stride=1 pad=1 activation=leaky [maxpool] size=2 stride=1 [convolutional] batch_normalize=1 filters=1024 size=3 stride=1 pad=1 activation=leaky ########### [convolutional] batch_normalize=1 filters=256 size=1 stride=1 pad=1 activation=leaky [convolutional] batch_normalize=1 filters=512 size=3 stride=1 pad=1 activation=leaky [convolutional] size=1 stride=1 pad=1 filters=51 activation=linear [yolo] mask = 6,7,8 anchors = 10, 29, 24, 23, 18, 48, 40, 37, 33, 76, 66, 57, 56,123, 109, 97, 141,196 classes=12 num=9 jitter=.3 ignore_thresh = .7 truth_thresh = 1 random=1 [route] layers = -4 [convolutional] batch_normalize=1 filters=128 size=1 stride=1 pad=1 activation=leaky [upsample] stride=2 [route] layers = -1, 8 [convolutional] batch_normalize=1 filters=256 size=3 stride=1 pad=1 activation=leaky [convolutional] size=1 stride=1 pad=1 filters=51 activation=linear [yolo] mask = 3,4,5 anchors = 10, 29, 24, 23, 18, 48, 40, 37, 33, 76, 66, 57, 56,123, 109, 97, 141,196 classes=12 num=9 jitter=.3 ignore_thresh = .7 truth_thresh = 1 random=1 [route] layers = -3 [convolutional] batch_normalize=1 filters=128 size=1 stride=1 pad=1 activation=leaky [upsample] stride=2 [route] layers = -1, 6 [convolutional] batch_normalize=1 filters=128 size=3 stride=1 pad=1 activation=leaky [convolutional] size=1 stride=1 pad=1 filters=51 activation=linear [yolo] mask = 0,1,2 anchors = 10, 29, 24, 23, 18, 48, 40, 37, 33, 76, 66, 57, 56,123, 109, 97, 141,196 classes=12 num=9 jitter=.3 ignore_thresh = .7 truth_thresh = 1 random=1