-
Notifications
You must be signed in to change notification settings - Fork 1
/
xxhash.hpp
719 lines (594 loc) · 25.1 KB
/
xxhash.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
#pragma once
#include <cstdint>
#include <cstring>
#include <array>
#include <type_traits>
#include <cstdint>
#include <vector>
#include <string>
#include <iostream>
/*
xxHash - Extremely Fast Hash algorithm
Header File
Copyright (C) 2012-2018, Yann Collet.
Copyright (C) 2017-2018, Piotr Pliszka.
All rights reserved.
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
You can contact the author at :
- xxHash source repository : https://github.com/Cyan4973/xxHash
- xxHash C++ port repository : https://github.com/RedSpah/xxhash_cpp
*/
/* *************************************
* Tuning parameters
***************************************/
/*!XXH_FORCE_MEMORY_ACCESS :
* By default, access to unaligned memory is controlled by `memcpy()`, which is safe and portable.
* Unfortunately, on some target/compiler combinations, the generated assembly is sub-optimal.
* The below switch allow to select different access method for improved performance.
* Method 0 (default) : use `memcpy()`. Safe and portable.
* Method 1 : `__packed` statement. It depends on compiler extension (ie, not portable).
* This method is safe if your compiler supports it, and *generally* as fast or faster than `memcpy`.
* Method 2 : direct access. This method doesn't depend on compiler but violate C standard.
* It can generate buggy code on targets which do not support unaligned memory accesses.
* But in some circumstances, it's the only known way to get the most performance (ie GCC + ARMv6)
* See http://stackoverflow.com/a/32095106/646947 for details.
* Prefer these methods in priority order (0 > 1 > 2)
*/
#ifndef XXH_FORCE_MEMORY_ACCESS /* can be defined externally, on command line for example */
# if defined(__GNUC__) && ( defined(__ARM_ARCH_6__) || defined(__ARM_ARCH_6J__) || defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6Z__) || defined(__ARM_ARCH_6ZK__) || defined(__ARM_ARCH_6T2__) )
# define XXH_FORCE_MEMORY_ACCESS 2
# elif defined(__INTEL_COMPILER) || (defined(__GNUC__) && ( defined(__ARM_ARCH_7__) || defined(__ARM_ARCH_7A__) || defined(__ARM_ARCH_7R__) || defined(__ARM_ARCH_7M__) || defined(__ARM_ARCH_7S__) ))
# define XXH_FORCE_MEMORY_ACCESS 1
# endif
#endif
/*!XXH_FORCE_NATIVE_FORMAT :
* By default, xxHash library provides endian-independent Hash values, based on little-endian convention.
* Results are therefore identical for little-endian and big-endian CPU.
* This comes at a performance cost for big-endian CPU, since some swapping is required to emulate little-endian format.
* Should endian-independence be of no importance for your application, you may set the #define below to 1,
* to improve speed for Big-endian CPU.
* This option has no impact on Little_Endian CPU.
*/
#if !defined(XXH_FORCE_NATIVE_FORMAT) || (XXH_FORCE_NATIVE_FORMAT == 0) /* can be defined externally */
# define XXH_FORCE_NATIVE_FORMAT 0
# define XXH_CPU_LITTLE_ENDIAN 1
#endif
/*!XXH_FORCE_ALIGN_CHECK :
* This is a minor performance trick, only useful with lots of very small keys.
* It means : check for aligned/unaligned input.
* The check costs one initial branch per hash;
* set it to 0 when the input is guaranteed to be aligned,
* or when alignment doesn't matter for performance.
*/
#ifndef XXH_FORCE_ALIGN_CHECK /* can be defined externally */
# if defined(__i386) || defined(_M_IX86) || defined(__x86_64__) || defined(_M_X64)
# define XXH_FORCE_ALIGN_CHECK 0
# else
# define XXH_FORCE_ALIGN_CHECK 1
# endif
#endif
/*!XXH_CPU_LITTLE_ENDIAN :
* This is a CPU endian detection macro, will be
* automatically set to 1 (little endian) if XXH_FORCE_NATIVE_FORMAT
* is left undefined, XXH_FORCE_NATIVE_FORMAT is defined to 0, or if an x86/x86_64 compiler macro is defined.
* If left undefined, endianness will be determined at runtime, at the cost of a slight one-time overhead
* and a larger overhead due to get_endian() not being constexpr.
*/
#ifndef XXH_CPU_LITTLE_ENDIAN
# if defined(__i386) || defined(_M_IX86) || defined(__x86_64__) || defined(_M_X64)
# define XXH_CPU_LITTLE_ENDIAN 1
# endif
#endif
/* *************************************
* Compiler Specific Options
***************************************/
#define XXH_GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__)
namespace xxh
{
/* *************************************
* Version
***************************************/
constexpr int cpp_version_major = 0;
constexpr int cpp_version_minor = 6;
constexpr int cpp_version_release = 5;
constexpr uint32_t version_number() { return cpp_version_major * 10000 + cpp_version_minor * 100 + cpp_version_release; }
namespace hash_t_impl
{
/* *************************************
* Basic Types - Detail
***************************************/
using _hash32_underlying = uint32_t;
using _hash64_underlying = uint64_t;
template <size_t N>
struct hash_type { using type = void; };
template <>
struct hash_type<32> { using type = _hash32_underlying; };
template <>
struct hash_type<64> { using type = _hash64_underlying; };
}
/* *************************************
* Basic Types - Public
***************************************/
template <size_t N>
using hash_t = typename hash_t_impl::hash_type<N>::type;
using hash32_t = hash_t<32>;
using hash64_t = hash_t<64>;
/* *************************************
* Bit Functions - Public
***************************************/
namespace bit_ops
{
/* ****************************************
* Intrinsics and Bit Operations
******************************************/
#if defined(_MSC_VER)
inline uint32_t rotl32(uint32_t x, int32_t r) { return _rotl(x, r); }
inline uint64_t rotl64(uint64_t x, int32_t r) { return _rotl64(x, r); }
#else
inline uint32_t rotl32(uint32_t x, int32_t r) { return ((x << r) | (x >> (32 - r))); }
inline uint64_t rotl64(uint64_t x, int32_t r) { return ((x << r) | (x >> (64 - r))); }
#endif
#if defined(_MSC_VER) /* Visual Studio */
inline uint32_t swap32(uint32_t x) { return _byteswap_ulong(x); }
inline uint64_t swap64(uint64_t x) { return _byteswap_uint64(x); }
#elif XXH_GCC_VERSION >= 403
inline uint32_t swap32(uint32_t x) { return __builtin_bswap32(x); }
inline uint64_t swap64(uint64_t x) { return __builtin_bswap64(x); }
#else
inline uint32_t swap32(uint32_t x) { return ((x << 24) & 0xff000000) | ((x << 8) & 0x00ff0000) | ((x >> 8) & 0x0000ff00) | ((x >> 24) & 0x000000ff); }
inline uint64_t swap64(uint64_t x) { return ((x << 56) & 0xff00000000000000ULL) | ((x << 40) & 0x00ff000000000000ULL) | ((x << 24) & 0x0000ff0000000000ULL) | ((x << 8) & 0x000000ff00000000ULL) | ((x >> 8) & 0x00000000ff000000ULL) | ((x >> 24) & 0x0000000000ff0000ULL) | ((x >> 40) & 0x000000000000ff00ULL) | ((x >> 56) & 0x00000000000000ffULL); }
#endif
template <size_t N>
inline hash_t<N> rotl(hash_t<N> n, int32_t r) {};
template <>
inline hash_t<32> rotl<32>(hash_t<32> n, int32_t r)
{
return rotl32(n, r);
};
template <>
inline hash_t<64> rotl<64>(hash_t<64> n, int32_t r)
{
return rotl64(n, r);
};
template <size_t N>
inline hash_t<N> swap(hash_t<N> n) {};
template <>
inline hash_t<32> swap<32>(hash_t<32> n)
{
return swap32(n);
};
template <>
inline hash_t<64> swap<64>(hash_t<64> n)
{
return swap64(n);
};
}
/* *************************************
* Memory Functions - Public
***************************************/
enum class alignment : uint8_t { aligned, unaligned };
enum class endianness : uint8_t { big_endian = 0, little_endian = 1, unspecified = 2 };
namespace mem_ops
{
/* *************************************
* Memory Access
***************************************/
#if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==2))
/* Force direct memory access. Only works on CPU which support unaligned memory access in hardware */
template <size_t N>
inline hash_t<N> read_unaligned(const void* memPtr) { return *(const hash_t<N>*)memPtr; }
#elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==1))
/* __pack instructions are safer, but compiler specific, hence potentially problematic for some compilers */
/* currently only defined for gcc and icc */
template <size_t N>
using unalign = union { hash_t<N> uval; } __attribute((packed));
template <size_t N>
inline hash_t<N> read_unaligned(const void* memPtr) { return ((const unalign*)memPtr)->uval; }
#else
/* portable and safe solution. Generally efficient.
* see : http://stackoverflow.com/a/32095106/646947
*/
template <size_t N>
inline hash_t<N> read_unaligned(const void* memPtr)
{
hash_t<N> val;
memcpy(&val, memPtr, sizeof(val));
return val;
}
#endif /* XXH_FORCE_DIRECT_MEMORY_ACCESS */
inline hash_t<32> read32(const void* memPtr) { return read_unaligned<32>(memPtr); }
inline hash_t<64> read64(const void* memPtr) { return read_unaligned<64>(memPtr); }
/* *************************************
* Architecture Macros
***************************************/
/* XXH_CPU_LITTLE_ENDIAN can be defined externally, for example on the compiler command line */
#ifndef XXH_CPU_LITTLE_ENDIAN
inline endianness get_endian(endianness endian)
{
static struct _dummy_t
{
std::array<endianness, 3> endian_lookup = { endianness::big_endian, endianness::little_endian, endianness::unspecified };
const int g_one = 1;
_dummy_t()
{
endian_lookup[2] = static_cast<endianness>(*(const char*)(&g_one));
}
} _dummy;
return _dummy.endian_lookup[(uint8_t)endian];
}
inline bool is_little_endian()
{
return get_endian(endianness::unspecified) == endianness::little_endian;
}
#else
constexpr endianness get_endian(endianness endian)
{
constexpr std::array<endianness, 3> endian_lookup = { endianness::big_endian, endianness::little_endian, (XXH_CPU_LITTLE_ENDIAN) ? endianness::little_endian : endianness::big_endian };
return endian_lookup[static_cast<uint8_t>(endian)];
}
constexpr bool is_little_endian()
{
return get_endian(endianness::unspecified) == endianness::little_endian;
}
#endif
/* ***************************
* Memory reads
*****************************/
template <size_t N>
inline hash_t<N> readLE_align(const void* ptr, endianness endian, alignment align)
{
if (align == alignment::unaligned)
{
return endian == endianness::little_endian ? read_unaligned<N>(ptr) : bit_ops::swap<N>(read_unaligned<N>(ptr));
}
else
{
return endian == endianness::little_endian ? *reinterpret_cast<const hash_t<N>*>(ptr) : bit_ops::swap<N>(*reinterpret_cast<const hash_t<N>*>(ptr));
}
}
template <size_t N>
inline hash_t<N> readLE(const void* ptr, endianness endian)
{
return readLE_align<N>(ptr, endian, alignment::unaligned);
}
template <size_t N>
inline hash_t<N> readBE(const void* ptr)
{
return is_little_endian() ? bit_ops::swap<N>(read_unaligned<N>(ptr)) : read_unaligned<N>(ptr);
}
template <size_t N>
inline alignment get_alignment(const void* input)
{
return ((XXH_FORCE_ALIGN_CHECK) && ((reinterpret_cast<uintptr_t>(input) & ((N / 8) - 1)) == 0)) ? xxh::alignment::aligned : xxh::alignment::unaligned;
}
}
/* *******************************************************************
* Hash functions
*********************************************************************/
namespace detail
{
/* *******************************************************************
* Hash functions - Implementation
*********************************************************************/
constexpr static std::array<hash32_t, 5> primes32 = { 2654435761U, 2246822519U, 3266489917U, 668265263U, 374761393U };
constexpr static std::array<hash64_t, 5> primes64 = { 11400714785074694791ULL, 14029467366897019727ULL, 1609587929392839161ULL, 9650029242287828579ULL, 2870177450012600261ULL };
template <size_t N>
constexpr hash_t<N> PRIME(int32_t n) {};
template <>
constexpr hash32_t PRIME<32>(int32_t n)
{
return primes32[n - 1];
}
template <>
constexpr hash64_t PRIME<64>(int32_t n)
{
return primes64[n - 1];
}
template <size_t N>
inline hash_t<N> round(hash_t<N> seed, hash_t<N> input)
{
seed += input * PRIME<N>(2);
seed = bit_ops::rotl<N>(seed, ((N == 32) ? 13 : 31));
seed *= PRIME<N>(1);
return seed;
}
inline hash64_t mergeRound64(hash64_t acc, hash64_t val)
{
val = round<64>(0, val);
acc ^= val;
acc = acc * PRIME<64>(1) + PRIME<64>(4);
return acc;
}
template <size_t N>
inline void endian_align_sub_mergeround([[maybe_unused]] hash_t<N>& hash_ret, hash_t<N> v1, hash_t<N> v2, hash_t<N> v3, hash_t<N> v4) {};
template <>
inline void endian_align_sub_mergeround<64>(hash_t<64>& hash_ret, hash_t<64> v1, hash_t<64> v2, hash_t<64> v3, hash_t<64> v4)
{
hash_ret = mergeRound64(hash_ret, v1);
hash_ret = mergeRound64(hash_ret, v2);
hash_ret = mergeRound64(hash_ret, v3);
hash_ret = mergeRound64(hash_ret, v4);
}
template <size_t N>
inline hash_t<N> endian_align_sub_ending(hash_t<N> hash_ret, const uint8_t* p, const uint8_t* bEnd, xxh::endianness endian, xxh::alignment align) {};
template <>
inline hash_t<32> endian_align_sub_ending<32>(hash_t<32> hash_ret, const uint8_t* p, const uint8_t* bEnd, xxh::endianness endian, xxh::alignment align)
{
while ((p + 4) <= bEnd)
{
hash_ret += mem_ops::readLE_align<32>(p, endian, align) * PRIME<32>(3);
hash_ret = bit_ops::rotl<32>(hash_ret, 17) * PRIME<32>(4);
p += 4;
}
while (p < bEnd)
{
hash_ret += (*p) * PRIME<32>(5);
hash_ret = bit_ops::rotl<32>(hash_ret, 11) * PRIME<32>(1);
p++;
}
hash_ret ^= hash_ret >> 15;
hash_ret *= PRIME<32>(2);
hash_ret ^= hash_ret >> 13;
hash_ret *= PRIME<32>(3);
hash_ret ^= hash_ret >> 16;
return hash_ret;
}
template <>
inline hash_t<64> endian_align_sub_ending<64>(hash_t<64> hash_ret, const uint8_t* p, const uint8_t* bEnd, xxh::endianness endian, xxh::alignment align)
{
while (p + 8 <= bEnd)
{
const hash64_t k1 = round<64>(0, mem_ops::readLE_align<64>(p, endian, align));
hash_ret ^= k1;
hash_ret = bit_ops::rotl<64>(hash_ret, 27) * PRIME<64>(1) + PRIME<64>(4);
p += 8;
}
if (p + 4 <= bEnd)
{
hash_ret ^= static_cast<hash64_t>(mem_ops::readLE_align<32>(p, endian, align)) * PRIME<64>(1);
hash_ret = bit_ops::rotl<64>(hash_ret, 23) * PRIME<64>(2) + PRIME<64>(3);
p += 4;
}
while (p < bEnd)
{
hash_ret ^= (*p) * PRIME<64>(5);
hash_ret = bit_ops::rotl<64>(hash_ret, 11) * PRIME<64>(1);
p++;
}
hash_ret ^= hash_ret >> 33;
hash_ret *= PRIME<64>(2);
hash_ret ^= hash_ret >> 29;
hash_ret *= PRIME<64>(3);
hash_ret ^= hash_ret >> 32;
return hash_ret;
}
template <size_t N>
inline hash_t<N> endian_align(const void* input, size_t len, hash_t<N> seed, xxh::endianness endian, xxh::alignment align)
{
static_assert(!(N != 32 && N != 64), "You can only call endian_align in 32 or 64 bit mode.");
const uint8_t* p = static_cast<const uint8_t*>(input);
const uint8_t* bEnd = p + len;
hash_t<N> hash_ret;
if (len >= (N / 2))
{
const uint8_t* const limit = bEnd - (N / 2);
hash_t<N> v1 = seed + PRIME<N>(1) + PRIME<N>(2);
hash_t<N> v2 = seed + PRIME<N>(2);
hash_t<N> v3 = seed + 0;
hash_t<N> v4 = seed - PRIME<N>(1);
do
{
v1 = round<N>(v1, mem_ops::readLE_align<N>(p, endian, align)); p += (N / 8);
v2 = round<N>(v2, mem_ops::readLE_align<N>(p, endian, align)); p += (N / 8);
v3 = round<N>(v3, mem_ops::readLE_align<N>(p, endian, align)); p += (N / 8);
v4 = round<N>(v4, mem_ops::readLE_align<N>(p, endian, align)); p += (N / 8);
} while (p <= limit);
hash_ret = bit_ops::rotl<N>(v1, 1) + bit_ops::rotl<N>(v2, 7) + bit_ops::rotl<N>(v3, 12) + bit_ops::rotl<N>(v4, 18);
endian_align_sub_mergeround<N>(hash_ret, v1, v2, v3, v4);
}
else { hash_ret = seed + PRIME<N>(5); }
hash_ret += static_cast<hash_t<N>>(len);
return endian_align_sub_ending<N>(hash_ret, p, bEnd, endian, align);
}
}
template <size_t N>
hash_t<N> xxhash(const void* input, size_t len, hash_t<N> seed = 0, endianness endian = endianness::unspecified)
{
static_assert(!(N != 32 && N != 64), "You can only call xxhash in 32 or 64 bit mode.");
return detail::endian_align<N>(input, len, seed, mem_ops::get_endian(endian), mem_ops::get_alignment<N>(input));
}
template <size_t N, typename T>
hash_t<N> xxhash(const std::basic_string<T>& input, hash_t<N> seed = 0, endianness endian = endianness::unspecified)
{
static_assert(!(N != 32 && N != 64), "You can only call xxhash in 32 or 64 bit mode.");
return detail::endian_align<N>(static_cast<const void*>(input.data()), input.length() * sizeof(T), seed, mem_ops::get_endian(endian), mem_ops::get_alignment<N>(static_cast<const void*>(input.data())));
}
template <size_t N, typename ContiguousIterator>
hash_t<N> xxhash(ContiguousIterator begin, ContiguousIterator end, hash_t<N> seed = 0, endianness endian = endianness::unspecified)
{
static_assert(!(N != 32 && N != 64), "You can only call xxhash in 32 or 64 bit mode.");
using T = typename std::decay_t<decltype(*end)>;
return detail::endian_align<N>(static_cast<const void*>(&*begin), (end - begin) * sizeof(T), seed, mem_ops::get_endian(endian), mem_ops::get_alignment<N>(static_cast<const void*>(&*begin)));
}
template <size_t N, typename T>
hash_t<N> xxhash(const std::vector<T>& input, hash_t<N> seed = 0, endianness endian = endianness::unspecified)
{
static_assert(!(N != 32 && N != 64), "You can only call xxhash in 32 or 64 bit mode.");
return detail::endian_align<N>(static_cast<const void*>(input.data()), input.size() * sizeof(T), seed, mem_ops::get_endian(endian), mem_ops::get_alignment<N>(static_cast<const void*>(input.data())));
}
template <size_t N, typename T, size_t AN>
hash_t<N> xxhash(const std::array<T, AN>& input, hash_t<N> seed = 0, endianness endian = endianness::unspecified)
{
static_assert(!(N != 32 && N != 64), "You can only call xxhash in 32 or 64 bit mode.");
return detail::endian_align<N>(static_cast<const void*>(input.data()), AN * sizeof(T), seed, mem_ops::get_endian(endian), mem_ops::get_alignment<N>(static_cast<const void*>(input.data())));
}
template <size_t N, typename T>
hash_t<N> xxhash(const std::initializer_list<T>& input, hash_t<N> seed = 0, endianness endian = endianness::unspecified)
{
static_assert(!(N != 32 && N != 64), "You can only call xxhash in 32 or 64 bit mode.");
return detail::endian_align<N>(static_cast<const void*>(input.begin()), input.size() * sizeof(T), seed, mem_ops::get_endian(endian), mem_ops::get_alignment<N>(static_cast<const void*>(input.begin())));
}
/* *******************************************************************
* Hash streaming
*********************************************************************/
enum class error_code : uint8_t { ok = 0, error };
template <size_t N>
class hash_state_t {
uint64_t total_len = 0;
hash_t<N> v1 = 0, v2 = 0, v3 = 0, v4 = 0;
std::array<hash_t<N>, 4> mem = {{ 0,0,0,0 }};
uint32_t memsize = 0;
inline error_code _update_impl(const void* input, size_t length, endianness endian)
{
const uint8_t* p = reinterpret_cast<const uint8_t*>(input);
const uint8_t* const bEnd = p + length;
if (!input) { return xxh::error_code::error; }
total_len += length;
if (memsize + length < (N / 2))
{ /* fill in tmp buffer */
memcpy(reinterpret_cast<uint8_t*>(mem.data()) + memsize, input, length);
memsize += static_cast<uint32_t>(length);
return error_code::ok;
}
if (memsize)
{ /* some data left from previous update */
memcpy(reinterpret_cast<uint8_t*>(mem.data()) + memsize, input, (N / 2) - memsize);
const hash_t<N>* ptr = mem.data();
v1 = detail::round<N>(v1, mem_ops::readLE<N>(ptr, endian)); ptr++;
v2 = detail::round<N>(v2, mem_ops::readLE<N>(ptr, endian)); ptr++;
v3 = detail::round<N>(v3, mem_ops::readLE<N>(ptr, endian)); ptr++;
v4 = detail::round<N>(v4, mem_ops::readLE<N>(ptr, endian));
p += (N / 2) - memsize;
memsize = 0;
}
if (p <= bEnd - (N / 2))
{
const uint8_t* const limit = bEnd - (N / 2);
do
{
v1 = detail::round<N>(v1, mem_ops::readLE<N>(p, endian)); p += (N / 8);
v2 = detail::round<N>(v2, mem_ops::readLE<N>(p, endian)); p += (N / 8);
v3 = detail::round<N>(v3, mem_ops::readLE<N>(p, endian)); p += (N / 8);
v4 = detail::round<N>(v4, mem_ops::readLE<N>(p, endian)); p += (N / 8);
} while (p <= limit);
}
if (p < bEnd)
{
memcpy(mem.data(), p, static_cast<size_t>(bEnd - p));
memsize = static_cast<uint32_t>(bEnd - p);
}
return error_code::ok;
}
inline hash_t<N> _digest_impl(endianness endian) const
{
const uint8_t* p = reinterpret_cast<const uint8_t*>(mem.data());
const uint8_t* const bEnd = reinterpret_cast<const uint8_t*>(mem.data()) + memsize;
hash_t<N> hash_ret;
if (total_len > (N / 2))
{
hash_ret = bit_ops::rotl<N>(v1, 1) + bit_ops::rotl<N>(v2, 7) + bit_ops::rotl<N>(v3, 12) + bit_ops::rotl<N>(v4, 18);
detail::endian_align_sub_mergeround<N>(hash_ret, v1, v2, v3, v4);
}
else { hash_ret = v3 + detail::PRIME<N>(5); }
hash_ret += static_cast<hash_t<N>>(total_len);
return detail::endian_align_sub_ending<N>(hash_ret, p, bEnd, endian, alignment::unaligned);
}
public:
hash_state_t(hash_t<N> seed = 0)
{
static_assert(!(N != 32 && N != 64), "You can only stream hashing in 32 or 64 bit mode.");
v1 = seed + detail::PRIME<N>(1) + detail::PRIME<N>(2);
v2 = seed + detail::PRIME<N>(2);
v3 = seed + 0;
v4 = seed - detail::PRIME<N>(1);
};
hash_state_t operator=(hash_state_t<N>& other)
{
memcpy(this, other, sizeof(hash_state_t<N>));
}
error_code reset(hash_t<N> seed = 0)
{
memset(this, 0, sizeof(hash_state_t<N>));
v1 = seed + detail::PRIME<N>(1) + detail::PRIME<N>(2);
v2 = seed + detail::PRIME<N>(2);
v3 = seed + 0;
v4 = seed - detail::PRIME<N>(1);
return error_code::ok;
}
error_code update(const void* input, size_t length, endianness endian = endianness::unspecified)
{
return _update_impl(input, length, mem_ops::get_endian(endian));
}
template <typename T>
error_code update(const std::basic_string<T>& input, endianness endian = endianness::unspecified)
{
return _update_impl(static_cast<const void*>(input.data()), input.length() * sizeof(T), mem_ops::get_endian(endian));
}
template <typename ContiguousIterator>
error_code update(ContiguousIterator begin, ContiguousIterator end, endianness endian = endianness::unspecified)
{
using T = typename std::decay_t<decltype(*end)>;
return _update_impl(static_cast<const void*>(&*begin), (end - begin) * sizeof(T), mem_ops::get_endian(endian));
}
template <typename T>
error_code update(const std::vector<T>& input, endianness endian = endianness::unspecified)
{
return _update_impl(static_cast<const void*>(input.data()), input.size() * sizeof(T), mem_ops::get_endian(endian));
}
template <typename T, size_t AN>
error_code update(const std::array<T, AN>& input, endianness endian = endianness::unspecified)
{
return _update_impl(static_cast<const void*>(input.data()), AN * sizeof(T), mem_ops::get_endian(endian));
}
template <typename T>
error_code update(const std::initializer_list<T>& input, endianness endian = endianness::unspecified)
{
return _update_impl(static_cast<const void*>(input.begin()), input.size() * sizeof(T), mem_ops::get_endian(endian));
}
hash_t<N> digest(endianness endian = endianness::unspecified)
{
return _digest_impl(mem_ops::get_endian(endian));
}
};
using hash_state32_t = hash_state_t<32>;
using hash_state64_t = hash_state_t<64>;
/* *******************************************************************
* Canonical
*********************************************************************/
template <size_t N>
struct canonical_t
{
std::array<uint8_t, N / 8> digest;\
canonical_t(hash_t<N> hash)
{
if (mem_ops::is_little_endian()) { hash = bit_ops::swap<N>(hash); }
memcpy(digest.data(), &hash, sizeof(canonical_t<N>));
}
hash_t<N> get_hash() const
{
return mem_ops::readBE<N>(&digest);
}
};
using canonical32_t = canonical_t<32>;
using canonical64_t = canonical_t<64>;
}