-
Notifications
You must be signed in to change notification settings - Fork 218
/
parking_lot.rs
1700 lines (1496 loc) · 59.8 KB
/
parking_lot.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Copyright 2016 Amanieu d'Antras
//
// Licensed under the Apache License, Version 2.0, <LICENSE-APACHE or
// http://apache.org/licenses/LICENSE-2.0> or the MIT license <LICENSE-MIT or
// http://opensource.org/licenses/MIT>, at your option. This file may not be
// copied, modified, or distributed except according to those terms.
use crate::thread_parker::{ThreadParker, ThreadParkerT, UnparkHandleT};
use crate::util::UncheckedOptionExt;
use crate::word_lock::WordLock;
use core::{
cell::{Cell, UnsafeCell},
ptr,
sync::atomic::{AtomicPtr, AtomicUsize, Ordering},
};
use smallvec::SmallVec;
use std::time::{Duration, Instant};
// Don't use Instant on wasm32-unknown-unknown, it just panics.
cfg_if::cfg_if! {
if #[cfg(all(
target_family = "wasm",
target_os = "unknown",
target_vendor = "unknown"
))] {
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord)]
struct TimeoutInstant;
impl TimeoutInstant {
fn now() -> TimeoutInstant {
TimeoutInstant
}
}
impl core::ops::Add<Duration> for TimeoutInstant {
type Output = Self;
fn add(self, _rhs: Duration) -> Self::Output {
TimeoutInstant
}
}
} else {
use std::time::Instant as TimeoutInstant;
}
}
static NUM_THREADS: AtomicUsize = AtomicUsize::new(0);
/// Holds the pointer to the currently active `HashTable`.
///
/// # Safety
///
/// Except for the initial value of null, it must always point to a valid `HashTable` instance.
/// Any `HashTable` this global static has ever pointed to must never be freed.
static HASHTABLE: AtomicPtr<HashTable> = AtomicPtr::new(ptr::null_mut());
// Even with 3x more buckets than threads, the memory overhead per thread is
// still only a few hundred bytes per thread.
const LOAD_FACTOR: usize = 3;
struct HashTable {
// Hash buckets for the table
entries: Box<[Bucket]>,
// Number of bits used for the hash function
hash_bits: u32,
// Previous table. This is only kept to keep leak detectors happy.
_prev: *const HashTable,
}
impl HashTable {
#[inline]
fn new(num_threads: usize, prev: *const HashTable) -> Box<HashTable> {
let new_size = (num_threads * LOAD_FACTOR).next_power_of_two();
let hash_bits = 0usize.leading_zeros() - new_size.leading_zeros() - 1;
let now = TimeoutInstant::now();
let mut entries = Vec::with_capacity(new_size);
for i in 0..new_size {
// We must ensure the seed is not zero
entries.push(Bucket::new(now, i as u32 + 1));
}
Box::new(HashTable {
entries: entries.into_boxed_slice(),
hash_bits,
_prev: prev,
})
}
}
#[repr(align(64))]
struct Bucket {
// Lock protecting the queue
mutex: WordLock,
// Linked list of threads waiting on this bucket
queue_head: Cell<*const ThreadData>,
queue_tail: Cell<*const ThreadData>,
// Next time at which point be_fair should be set
fair_timeout: UnsafeCell<FairTimeout>,
}
impl Bucket {
#[inline]
pub fn new(timeout: TimeoutInstant, seed: u32) -> Self {
Self {
mutex: WordLock::new(),
queue_head: Cell::new(ptr::null()),
queue_tail: Cell::new(ptr::null()),
fair_timeout: UnsafeCell::new(FairTimeout::new(timeout, seed)),
}
}
}
struct FairTimeout {
// Next time at which point be_fair should be set
timeout: TimeoutInstant,
// the PRNG state for calculating the next timeout
seed: u32,
}
impl FairTimeout {
#[inline]
fn new(timeout: TimeoutInstant, seed: u32) -> FairTimeout {
FairTimeout { timeout, seed }
}
// Determine whether we should force a fair unlock, and update the timeout
#[inline]
fn should_timeout(&mut self) -> bool {
let now = TimeoutInstant::now();
if now > self.timeout {
// Time between 0 and 1ms.
let nanos = self.gen_u32() % 1_000_000;
self.timeout = now + Duration::new(0, nanos);
true
} else {
false
}
}
// Pseudorandom number generator from the "Xorshift RNGs" paper by George Marsaglia.
fn gen_u32(&mut self) -> u32 {
self.seed ^= self.seed << 13;
self.seed ^= self.seed >> 17;
self.seed ^= self.seed << 5;
self.seed
}
}
struct ThreadData {
parker: ThreadParker,
// Key that this thread is sleeping on. This may change if the thread is
// requeued to a different key.
key: AtomicUsize,
// Linked list of parked threads in a bucket
next_in_queue: Cell<*const ThreadData>,
// UnparkToken passed to this thread when it is unparked
unpark_token: Cell<UnparkToken>,
// ParkToken value set by the thread when it was parked
park_token: Cell<ParkToken>,
// Is the thread parked with a timeout?
parked_with_timeout: Cell<bool>,
// Extra data for deadlock detection
#[cfg(feature = "deadlock_detection")]
deadlock_data: deadlock::DeadlockData,
}
impl ThreadData {
fn new() -> ThreadData {
// Keep track of the total number of live ThreadData objects and resize
// the hash table accordingly.
let num_threads = NUM_THREADS.fetch_add(1, Ordering::Relaxed) + 1;
grow_hashtable(num_threads);
ThreadData {
parker: ThreadParker::new(),
key: AtomicUsize::new(0),
next_in_queue: Cell::new(ptr::null()),
unpark_token: Cell::new(DEFAULT_UNPARK_TOKEN),
park_token: Cell::new(DEFAULT_PARK_TOKEN),
parked_with_timeout: Cell::new(false),
#[cfg(feature = "deadlock_detection")]
deadlock_data: deadlock::DeadlockData::new(),
}
}
}
// Invokes the given closure with a reference to the current thread `ThreadData`.
#[inline(always)]
fn with_thread_data<T>(f: impl FnOnce(&ThreadData) -> T) -> T {
// Unlike word_lock::ThreadData, parking_lot::ThreadData is always expensive
// to construct. Try to use a thread-local version if possible. Otherwise just
// create a ThreadData on the stack
let mut thread_data_storage = None;
thread_local!(static THREAD_DATA: ThreadData = ThreadData::new());
let thread_data_ptr = THREAD_DATA
.try_with(|x| x as *const ThreadData)
.unwrap_or_else(|_| thread_data_storage.get_or_insert_with(ThreadData::new));
f(unsafe { &*thread_data_ptr })
}
impl Drop for ThreadData {
fn drop(&mut self) {
NUM_THREADS.fetch_sub(1, Ordering::Relaxed);
}
}
/// Returns a reference to the latest hash table, creating one if it doesn't exist yet.
/// The reference is valid forever. However, the `HashTable` it references might become stale
/// at any point. Meaning it still exists, but it is not the instance in active use.
#[inline]
fn get_hashtable() -> &'static HashTable {
let table = HASHTABLE.load(Ordering::Acquire);
// If there is no table, create one
if table.is_null() {
create_hashtable()
} else {
// SAFETY: when not null, `HASHTABLE` always points to a `HashTable` that is never freed.
unsafe { &*table }
}
}
/// Returns a reference to the latest hash table, creating one if it doesn't exist yet.
/// The reference is valid forever. However, the `HashTable` it references might become stale
/// at any point. Meaning it still exists, but it is not the instance in active use.
#[cold]
fn create_hashtable() -> &'static HashTable {
let new_table = Box::into_raw(HashTable::new(LOAD_FACTOR, ptr::null()));
// If this fails then it means some other thread created the hash table first.
let table = match HASHTABLE.compare_exchange(
ptr::null_mut(),
new_table,
Ordering::AcqRel,
Ordering::Acquire,
) {
Ok(_) => new_table,
Err(old_table) => {
// Free the table we created
// SAFETY: `new_table` is created from `Box::into_raw` above and only freed here.
unsafe {
let _ = Box::from_raw(new_table);
}
old_table
}
};
// SAFETY: The `HashTable` behind `table` is never freed. It is either the table pointer we
// created here, or it is one loaded from `HASHTABLE`.
unsafe { &*table }
}
// Grow the hash table so that it is big enough for the given number of threads.
// This isn't performance-critical since it is only done when a ThreadData is
// created, which only happens once per thread.
fn grow_hashtable(num_threads: usize) {
// Lock all buckets in the existing table and get a reference to it
let old_table = loop {
let table = get_hashtable();
// Check if we need to resize the existing table
if table.entries.len() >= LOAD_FACTOR * num_threads {
return;
}
// Lock all buckets in the old table
for bucket in &table.entries[..] {
bucket.mutex.lock();
}
// Now check if our table is still the latest one. Another thread could
// have grown the hash table between us reading HASHTABLE and locking
// the buckets.
if HASHTABLE.load(Ordering::Relaxed) == table as *const _ as *mut _ {
break table;
}
// Unlock buckets and try again
for bucket in &table.entries[..] {
// SAFETY: We hold the lock here, as required
unsafe { bucket.mutex.unlock() };
}
};
// Create the new table
let mut new_table = HashTable::new(num_threads, old_table);
// Move the entries from the old table to the new one
for bucket in &old_table.entries[..] {
// SAFETY: The park, unpark* and check_wait_graph_fast functions create only correct linked
// lists. All `ThreadData` instances in these lists will remain valid as long as they are
// present in the lists, meaning as long as their threads are parked.
unsafe { rehash_bucket_into(bucket, &mut new_table) };
}
// Publish the new table. No races are possible at this point because
// any other thread trying to grow the hash table is blocked on the bucket
// locks in the old table.
HASHTABLE.store(Box::into_raw(new_table), Ordering::Release);
// Unlock all buckets in the old table
for bucket in &old_table.entries[..] {
// SAFETY: We hold the lock here, as required
unsafe { bucket.mutex.unlock() };
}
}
/// Iterate through all `ThreadData` objects in the bucket and insert them into the given table
/// in the bucket their key correspond to for this table.
///
/// # Safety
///
/// The given `bucket` must have a correctly constructed linked list under `queue_head`, containing
/// `ThreadData` instances that must stay valid at least as long as the given `table` is in use.
///
/// The given `table` must only contain buckets with correctly constructed linked lists.
unsafe fn rehash_bucket_into(bucket: &'static Bucket, table: &mut HashTable) {
let mut current: *const ThreadData = bucket.queue_head.get();
while !current.is_null() {
let next = (*current).next_in_queue.get();
let hash = hash((*current).key.load(Ordering::Relaxed), table.hash_bits);
if table.entries[hash].queue_tail.get().is_null() {
table.entries[hash].queue_head.set(current);
} else {
(*table.entries[hash].queue_tail.get())
.next_in_queue
.set(current);
}
table.entries[hash].queue_tail.set(current);
(*current).next_in_queue.set(ptr::null());
current = next;
}
}
// Hash function for addresses
#[cfg(target_pointer_width = "32")]
#[inline]
fn hash(key: usize, bits: u32) -> usize {
key.wrapping_mul(0x9E3779B9) >> (32 - bits)
}
#[cfg(target_pointer_width = "64")]
#[inline]
fn hash(key: usize, bits: u32) -> usize {
key.wrapping_mul(0x9E3779B97F4A7C15) >> (64 - bits)
}
/// Locks the bucket for the given key and returns a reference to it.
/// The returned bucket must be unlocked again in order to not cause deadlocks.
#[inline]
fn lock_bucket(key: usize) -> &'static Bucket {
loop {
let hashtable = get_hashtable();
let hash = hash(key, hashtable.hash_bits);
let bucket = &hashtable.entries[hash];
// Lock the bucket
bucket.mutex.lock();
// If no other thread has rehashed the table before we grabbed the lock
// then we are good to go! The lock we grabbed prevents any rehashes.
if HASHTABLE.load(Ordering::Relaxed) == hashtable as *const _ as *mut _ {
return bucket;
}
// Unlock the bucket and try again
// SAFETY: We hold the lock here, as required
unsafe { bucket.mutex.unlock() };
}
}
/// Locks the bucket for the given key and returns a reference to it. But checks that the key
/// hasn't been changed in the meantime due to a requeue.
/// The returned bucket must be unlocked again in order to not cause deadlocks.
#[inline]
fn lock_bucket_checked(key: &AtomicUsize) -> (usize, &'static Bucket) {
loop {
let hashtable = get_hashtable();
let current_key = key.load(Ordering::Relaxed);
let hash = hash(current_key, hashtable.hash_bits);
let bucket = &hashtable.entries[hash];
// Lock the bucket
bucket.mutex.lock();
// Check that both the hash table and key are correct while the bucket
// is locked. Note that the key can't change once we locked the proper
// bucket for it, so we just keep trying until we have the correct key.
if HASHTABLE.load(Ordering::Relaxed) == hashtable as *const _ as *mut _
&& key.load(Ordering::Relaxed) == current_key
{
return (current_key, bucket);
}
// Unlock the bucket and try again
// SAFETY: We hold the lock here, as required
unsafe { bucket.mutex.unlock() };
}
}
/// Locks the two buckets for the given pair of keys and returns references to them.
/// The returned buckets must be unlocked again in order to not cause deadlocks.
///
/// If both keys hash to the same value, both returned references will be to the same bucket. Be
/// careful to only unlock it once in this case, always use `unlock_bucket_pair`.
#[inline]
fn lock_bucket_pair(key1: usize, key2: usize) -> (&'static Bucket, &'static Bucket) {
loop {
let hashtable = get_hashtable();
let hash1 = hash(key1, hashtable.hash_bits);
let hash2 = hash(key2, hashtable.hash_bits);
// Get the bucket at the lowest hash/index first
let bucket1 = if hash1 <= hash2 {
&hashtable.entries[hash1]
} else {
&hashtable.entries[hash2]
};
// Lock the first bucket
bucket1.mutex.lock();
// If no other thread has rehashed the table before we grabbed the lock
// then we are good to go! The lock we grabbed prevents any rehashes.
if HASHTABLE.load(Ordering::Relaxed) == hashtable as *const _ as *mut _ {
// Now lock the second bucket and return the two buckets
if hash1 == hash2 {
return (bucket1, bucket1);
} else if hash1 < hash2 {
let bucket2 = &hashtable.entries[hash2];
bucket2.mutex.lock();
return (bucket1, bucket2);
} else {
let bucket2 = &hashtable.entries[hash1];
bucket2.mutex.lock();
return (bucket2, bucket1);
}
}
// Unlock the bucket and try again
// SAFETY: We hold the lock here, as required
unsafe { bucket1.mutex.unlock() };
}
}
/// Unlock a pair of buckets
///
/// # Safety
///
/// Both buckets must be locked
#[inline]
unsafe fn unlock_bucket_pair(bucket1: &Bucket, bucket2: &Bucket) {
bucket1.mutex.unlock();
if !ptr::eq(bucket1, bucket2) {
bucket2.mutex.unlock();
}
}
/// Result of a park operation.
#[derive(Copy, Clone, Eq, PartialEq, Debug)]
pub enum ParkResult {
/// We were unparked by another thread with the given token.
Unparked(UnparkToken),
/// The validation callback returned false.
Invalid,
/// The timeout expired.
TimedOut,
}
impl ParkResult {
/// Returns true if we were unparked by another thread.
#[inline]
pub fn is_unparked(self) -> bool {
if let ParkResult::Unparked(_) = self {
true
} else {
false
}
}
}
/// Result of an unpark operation.
#[derive(Copy, Clone, Default, Eq, PartialEq, Debug)]
pub struct UnparkResult {
/// The number of threads that were unparked.
pub unparked_threads: usize,
/// The number of threads that were requeued.
pub requeued_threads: usize,
/// Whether there are any threads remaining in the queue. This only returns
/// true if a thread was unparked.
pub have_more_threads: bool,
/// This is set to true on average once every 0.5ms for any given key. It
/// should be used to switch to a fair unlocking mechanism for a particular
/// unlock.
pub be_fair: bool,
/// Private field so new fields can be added without breakage.
_sealed: (),
}
/// Operation that `unpark_requeue` should perform.
#[derive(Copy, Clone, Eq, PartialEq, Debug)]
pub enum RequeueOp {
/// Abort the operation without doing anything.
Abort,
/// Unpark one thread and requeue the rest onto the target queue.
UnparkOneRequeueRest,
/// Requeue all threads onto the target queue.
RequeueAll,
/// Unpark one thread and leave the rest parked. No requeuing is done.
UnparkOne,
/// Requeue one thread and leave the rest parked on the original queue.
RequeueOne,
}
/// Operation that `unpark_filter` should perform for each thread.
#[derive(Copy, Clone, Eq, PartialEq, Debug)]
pub enum FilterOp {
/// Unpark the thread and continue scanning the list of parked threads.
Unpark,
/// Don't unpark the thread and continue scanning the list of parked threads.
Skip,
/// Don't unpark the thread and stop scanning the list of parked threads.
Stop,
}
/// A value which is passed from an unparker to a parked thread.
#[derive(Copy, Clone, Eq, PartialEq, Debug)]
pub struct UnparkToken(pub usize);
/// A value associated with a parked thread which can be used by `unpark_filter`.
#[derive(Copy, Clone, Eq, PartialEq, Debug)]
pub struct ParkToken(pub usize);
/// A default unpark token to use.
pub const DEFAULT_UNPARK_TOKEN: UnparkToken = UnparkToken(0);
/// A default park token to use.
pub const DEFAULT_PARK_TOKEN: ParkToken = ParkToken(0);
/// Parks the current thread in the queue associated with the given key.
///
/// The `validate` function is called while the queue is locked and can abort
/// the operation by returning false. If `validate` returns true then the
/// current thread is appended to the queue and the queue is unlocked.
///
/// The `before_sleep` function is called after the queue is unlocked but before
/// the thread is put to sleep. The thread will then sleep until it is unparked
/// or the given timeout is reached.
///
/// The `timed_out` function is also called while the queue is locked, but only
/// if the timeout was reached. It is passed the key of the queue it was in when
/// it timed out, which may be different from the original key if
/// `unpark_requeue` was called. It is also passed a bool which indicates
/// whether it was the last thread in the queue.
///
/// # Safety
///
/// You should only call this function with an address that you control, since
/// you could otherwise interfere with the operation of other synchronization
/// primitives.
///
/// The `validate` and `timed_out` functions are called while the queue is
/// locked and must not panic or call into any function in `parking_lot`.
///
/// The `before_sleep` function is called outside the queue lock and is allowed
/// to call `unpark_one`, `unpark_all`, `unpark_requeue` or `unpark_filter`, but
/// it is not allowed to call `park` or panic.
#[inline]
pub unsafe fn park(
key: usize,
validate: impl FnOnce() -> bool,
before_sleep: impl FnOnce(),
timed_out: impl FnOnce(usize, bool),
park_token: ParkToken,
timeout: Option<Instant>,
) -> ParkResult {
// Grab our thread data, this also ensures that the hash table exists
with_thread_data(|thread_data| {
// Lock the bucket for the given key
let bucket = lock_bucket(key);
// If the validation function fails, just return
if !validate() {
// SAFETY: We hold the lock here, as required
bucket.mutex.unlock();
return ParkResult::Invalid;
}
// Append our thread data to the queue and unlock the bucket
thread_data.parked_with_timeout.set(timeout.is_some());
thread_data.next_in_queue.set(ptr::null());
thread_data.key.store(key, Ordering::Relaxed);
thread_data.park_token.set(park_token);
thread_data.parker.prepare_park();
if !bucket.queue_head.get().is_null() {
(*bucket.queue_tail.get()).next_in_queue.set(thread_data);
} else {
bucket.queue_head.set(thread_data);
}
bucket.queue_tail.set(thread_data);
// SAFETY: We hold the lock here, as required
bucket.mutex.unlock();
// Invoke the pre-sleep callback
before_sleep();
// Park our thread and determine whether we were woken up by an unpark
// or by our timeout. Note that this isn't precise: we can still be
// unparked since we are still in the queue.
let unparked = match timeout {
Some(timeout) => thread_data.parker.park_until(timeout),
None => {
thread_data.parker.park();
// call deadlock detection on_unpark hook
deadlock::on_unpark(thread_data);
true
}
};
// If we were unparked, return now
if unparked {
return ParkResult::Unparked(thread_data.unpark_token.get());
}
// Lock our bucket again. Note that the hashtable may have been rehashed in
// the meantime. Our key may also have changed if we were requeued.
let (key, bucket) = lock_bucket_checked(&thread_data.key);
// Now we need to check again if we were unparked or timed out. Unlike the
// last check this is precise because we hold the bucket lock.
if !thread_data.parker.timed_out() {
// SAFETY: We hold the lock here, as required
bucket.mutex.unlock();
return ParkResult::Unparked(thread_data.unpark_token.get());
}
// We timed out, so we now need to remove our thread from the queue
let mut link = &bucket.queue_head;
let mut current = bucket.queue_head.get();
let mut previous = ptr::null();
let mut was_last_thread = true;
while !current.is_null() {
if current == thread_data {
let next = (*current).next_in_queue.get();
link.set(next);
if bucket.queue_tail.get() == current {
bucket.queue_tail.set(previous);
} else {
// Scan the rest of the queue to see if there are any other
// entries with the given key.
let mut scan = next;
while !scan.is_null() {
if (*scan).key.load(Ordering::Relaxed) == key {
was_last_thread = false;
break;
}
scan = (*scan).next_in_queue.get();
}
}
// Callback to indicate that we timed out, and whether we were the
// last thread on the queue.
timed_out(key, was_last_thread);
break;
} else {
if (*current).key.load(Ordering::Relaxed) == key {
was_last_thread = false;
}
link = &(*current).next_in_queue;
previous = current;
current = link.get();
}
}
// There should be no way for our thread to have been removed from the queue
// if we timed out.
debug_assert!(!current.is_null());
// Unlock the bucket, we are done
// SAFETY: We hold the lock here, as required
bucket.mutex.unlock();
ParkResult::TimedOut
})
}
/// Unparks one thread from the queue associated with the given key.
///
/// The `callback` function is called while the queue is locked and before the
/// target thread is woken up. The `UnparkResult` argument to the function
/// indicates whether a thread was found in the queue and whether this was the
/// last thread in the queue. This value is also returned by `unpark_one`.
///
/// The `callback` function should return an `UnparkToken` value which will be
/// passed to the thread that is unparked. If no thread is unparked then the
/// returned value is ignored.
///
/// # Safety
///
/// You should only call this function with an address that you control, since
/// you could otherwise interfere with the operation of other synchronization
/// primitives.
///
/// The `callback` function is called while the queue is locked and must not
/// panic or call into any function in `parking_lot`.
///
/// The `parking_lot` functions are not re-entrant and calling this method
/// from the context of an asynchronous signal handler may result in undefined
/// behavior, including corruption of internal state and/or deadlocks.
#[inline]
pub unsafe fn unpark_one(
key: usize,
callback: impl FnOnce(UnparkResult) -> UnparkToken,
) -> UnparkResult {
// Lock the bucket for the given key
let bucket = lock_bucket(key);
// Find a thread with a matching key and remove it from the queue
let mut link = &bucket.queue_head;
let mut current = bucket.queue_head.get();
let mut previous = ptr::null();
let mut result = UnparkResult::default();
while !current.is_null() {
if (*current).key.load(Ordering::Relaxed) == key {
// Remove the thread from the queue
let next = (*current).next_in_queue.get();
link.set(next);
if bucket.queue_tail.get() == current {
bucket.queue_tail.set(previous);
} else {
// Scan the rest of the queue to see if there are any other
// entries with the given key.
let mut scan = next;
while !scan.is_null() {
if (*scan).key.load(Ordering::Relaxed) == key {
result.have_more_threads = true;
break;
}
scan = (*scan).next_in_queue.get();
}
}
// Invoke the callback before waking up the thread
result.unparked_threads = 1;
result.be_fair = (*bucket.fair_timeout.get()).should_timeout();
let token = callback(result);
// Set the token for the target thread
(*current).unpark_token.set(token);
// This is a bit tricky: we first lock the ThreadParker to prevent
// the thread from exiting and freeing its ThreadData if its wait
// times out. Then we unlock the queue since we don't want to keep
// the queue locked while we perform a system call. Finally we wake
// up the parked thread.
let handle = (*current).parker.unpark_lock();
// SAFETY: We hold the lock here, as required
bucket.mutex.unlock();
handle.unpark();
return result;
} else {
link = &(*current).next_in_queue;
previous = current;
current = link.get();
}
}
// No threads with a matching key were found in the bucket
callback(result);
// SAFETY: We hold the lock here, as required
bucket.mutex.unlock();
result
}
/// Unparks all threads in the queue associated with the given key.
///
/// The given `UnparkToken` is passed to all unparked threads.
///
/// This function returns the number of threads that were unparked.
///
/// # Safety
///
/// You should only call this function with an address that you control, since
/// you could otherwise interfere with the operation of other synchronization
/// primitives.
///
/// The `parking_lot` functions are not re-entrant and calling this method
/// from the context of an asynchronous signal handler may result in undefined
/// behavior, including corruption of internal state and/or deadlocks.
#[inline]
pub unsafe fn unpark_all(key: usize, unpark_token: UnparkToken) -> usize {
// Lock the bucket for the given key
let bucket = lock_bucket(key);
// Remove all threads with the given key in the bucket
let mut link = &bucket.queue_head;
let mut current = bucket.queue_head.get();
let mut previous = ptr::null();
let mut threads = SmallVec::<[_; 8]>::new();
while !current.is_null() {
if (*current).key.load(Ordering::Relaxed) == key {
// Remove the thread from the queue
let next = (*current).next_in_queue.get();
link.set(next);
if bucket.queue_tail.get() == current {
bucket.queue_tail.set(previous);
}
// Set the token for the target thread
(*current).unpark_token.set(unpark_token);
// Don't wake up threads while holding the queue lock. See comment
// in unpark_one. For now just record which threads we need to wake
// up.
threads.push((*current).parker.unpark_lock());
current = next;
} else {
link = &(*current).next_in_queue;
previous = current;
current = link.get();
}
}
// Unlock the bucket
// SAFETY: We hold the lock here, as required
bucket.mutex.unlock();
// Now that we are outside the lock, wake up all the threads that we removed
// from the queue.
let num_threads = threads.len();
for handle in threads.into_iter() {
handle.unpark();
}
num_threads
}
/// Removes all threads from the queue associated with `key_from`, optionally
/// unparks the first one and requeues the rest onto the queue associated with
/// `key_to`.
///
/// The `validate` function is called while both queues are locked. Its return
/// value will determine which operation is performed, or whether the operation
/// should be aborted. See `RequeueOp` for details about the different possible
/// return values.
///
/// The `callback` function is also called while both queues are locked. It is
/// passed the `RequeueOp` returned by `validate` and an `UnparkResult`
/// indicating whether a thread was unparked and whether there are threads still
/// parked in the new queue. This `UnparkResult` value is also returned by
/// `unpark_requeue`.
///
/// The `callback` function should return an `UnparkToken` value which will be
/// passed to the thread that is unparked. If no thread is unparked then the
/// returned value is ignored.
///
/// # Safety
///
/// You should only call this function with an address that you control, since
/// you could otherwise interfere with the operation of other synchronization
/// primitives.
///
/// The `validate` and `callback` functions are called while the queue is locked
/// and must not panic or call into any function in `parking_lot`.
#[inline]
pub unsafe fn unpark_requeue(
key_from: usize,
key_to: usize,
validate: impl FnOnce() -> RequeueOp,
callback: impl FnOnce(RequeueOp, UnparkResult) -> UnparkToken,
) -> UnparkResult {
// Lock the two buckets for the given key
let (bucket_from, bucket_to) = lock_bucket_pair(key_from, key_to);
// If the validation function fails, just return
let mut result = UnparkResult::default();
let op = validate();
if op == RequeueOp::Abort {
// SAFETY: Both buckets are locked, as required.
unlock_bucket_pair(bucket_from, bucket_to);
return result;
}
// Remove all threads with the given key in the source bucket
let mut link = &bucket_from.queue_head;
let mut current = bucket_from.queue_head.get();
let mut previous = ptr::null();
let mut requeue_threads: *const ThreadData = ptr::null();
let mut requeue_threads_tail: *const ThreadData = ptr::null();
let mut wakeup_thread = None;
while !current.is_null() {
if (*current).key.load(Ordering::Relaxed) == key_from {
// Remove the thread from the queue
let next = (*current).next_in_queue.get();
link.set(next);
if bucket_from.queue_tail.get() == current {
bucket_from.queue_tail.set(previous);
}
// Prepare the first thread for wakeup and requeue the rest.
if (op == RequeueOp::UnparkOneRequeueRest || op == RequeueOp::UnparkOne)
&& wakeup_thread.is_none()
{
wakeup_thread = Some(current);
result.unparked_threads = 1;
} else {
if !requeue_threads.is_null() {
(*requeue_threads_tail).next_in_queue.set(current);
} else {
requeue_threads = current;
}
requeue_threads_tail = current;
(*current).key.store(key_to, Ordering::Relaxed);
result.requeued_threads += 1;
}
if op == RequeueOp::UnparkOne || op == RequeueOp::RequeueOne {
// Scan the rest of the queue to see if there are any other
// entries with the given key.
let mut scan = next;
while !scan.is_null() {
if (*scan).key.load(Ordering::Relaxed) == key_from {
result.have_more_threads = true;
break;
}
scan = (*scan).next_in_queue.get();
}
break;
}
current = next;
} else {
link = &(*current).next_in_queue;
previous = current;
current = link.get();
}
}
// Add the requeued threads to the destination bucket
if !requeue_threads.is_null() {
(*requeue_threads_tail).next_in_queue.set(ptr::null());
if !bucket_to.queue_head.get().is_null() {
(*bucket_to.queue_tail.get())
.next_in_queue
.set(requeue_threads);
} else {
bucket_to.queue_head.set(requeue_threads);
}
bucket_to.queue_tail.set(requeue_threads_tail);
}
// Invoke the callback before waking up the thread
if result.unparked_threads != 0 {
result.be_fair = (*bucket_from.fair_timeout.get()).should_timeout();
}
let token = callback(op, result);
// See comment in unpark_one for why we mess with the locking
if let Some(wakeup_thread) = wakeup_thread {
(*wakeup_thread).unpark_token.set(token);
let handle = (*wakeup_thread).parker.unpark_lock();
// SAFETY: Both buckets are locked, as required.
unlock_bucket_pair(bucket_from, bucket_to);
handle.unpark();
} else {
// SAFETY: Both buckets are locked, as required.
unlock_bucket_pair(bucket_from, bucket_to);
}
result
}
/// Unparks a number of threads from the front of the queue associated with
/// `key` depending on the results of a filter function which inspects the
/// `ParkToken` associated with each thread.
///
/// The `filter` function is called for each thread in the queue or until
/// `FilterOp::Stop` is returned. This function is passed the `ParkToken`
/// associated with a particular thread, which is unparked if `FilterOp::Unpark`
/// is returned.