-
Notifications
You must be signed in to change notification settings - Fork 8
/
wearmask.py
executable file
·253 lines (215 loc) · 10.1 KB
/
wearmask.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
import os
import sys
import argparse
import numpy as np
import cv2
import tqdm
import face_recognition
import math
import dlib
from PIL import Image, ImageFile
__version__ = '0.3.0'
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
IMAGE_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'masks')
# IMAGE_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'images')
DEFAULT_IMAGE_PATH = os.path.join(IMAGE_DIR, 'default-mask.png')
BLACK_IMAGE_PATH = os.path.join(IMAGE_DIR, 'black-mask.png')
BLUE_IMAGE_PATH = os.path.join(IMAGE_DIR, 'blue-mask.png')
RED_IMAGE_PATH = os.path.join(IMAGE_DIR, 'red-mask.png')
SKIN_IMAGE_PATH = os.path.join(IMAGE_DIR, 'skin-mask.png')
CROPE_SIZE = 128
def rect_to_bbox(rect):
"""获得人脸矩形的坐标信息"""
# print(rect)
x = rect[3]
y = rect[0]
w = rect[1] - x
h = rect[2] - y
return (x, y, w, h)
predictor = dlib.shape_predictor("./models/shape_predictor_68_face_landmarks.dat")
def face_alignment(faces):
# 预测关键点
faces_aligned = []
for face in faces:
face_gray = cv2.cvtColor(face, cv2.COLOR_BGR2GRAY)
rec = dlib.rectangle(0, 0, face.shape[0], face.shape[1])
shape = predictor(face_gray, rec)
#shape = predictor(np.uint8(face), rec)
# left eye, right eye, nose, left mouth, right mouth
order = [36, 45, 30, 48, 54]
for j in order:
x = shape.part(j).x
y = shape.part(j).y
# 计算两眼的中心坐标
eye_center = ((shape.part(36).x + shape.part(45).x) * 1. / 2, (shape.part(36).y + shape.part(45).y) * 1. / 2)
dx = (shape.part(45).x - shape.part(36).x)
dy = (shape.part(45).y - shape.part(36).y)
# 计算角度
angle = math.atan2(dy, dx) * 180. / math.pi
# 计算仿射矩阵
RotateMatrix = cv2.getRotationMatrix2D(eye_center, angle, scale=1)
# 进行仿射变换,即旋转
RotImg = cv2.warpAffine(face, RotateMatrix, (face.shape[0], face.shape[1]))
faces_aligned.append(RotImg)
return faces_aligned
def cli(pic_path ,save_pic_path):
parser = argparse.ArgumentParser(description='Wear a face mask in the given picture.')
# parser.add_argument('pic_path', default='/Users/wuhao/lab/wear-a-mask/spider/new_lfw/Aaron_Tippin/Aaron_Tippin_0001.jpg',help='Picture path.')
# parser.add_argument('--show', action='store_true', help='Whether show picture with mask or not.')
parser.add_argument('--model', default='hog', choices=['hog', 'cnn'], help='Which face detection model to use.')
group = parser.add_mutually_exclusive_group()
group.add_argument('--black', action='store_true', help='Wear black mask')
group.add_argument('--blue', action='store_true', help='Wear blue mask')
group.add_argument('--red', action='store_true', help='Wear red mask')
args = parser.parse_args()
if not os.path.exists(pic_path):
print(f'Picture {pic_path} not exists.')
sys.exit(1)
mask_path = SKIN_IMAGE_PATH
unmasked_paths = FaceMasker(pic_path, mask_path, True, 'cnn',save_pic_path).mask()
return unmasked_paths
class FaceMasker:
KEY_FACIAL_FEATURES = ('nose_bridge', 'chin')
def __init__(self, face_path, mask_path, show=False, model='cnn',save_path = ''):
self.face_path = face_path
self.mask_path = mask_path
self.save_path = save_path
self.show = show
self.model = model
self._face_img: ImageFile = None
self._mask_img: ImageFile = None
def mask(self):
face_image_np = face_recognition.load_image_file(self.face_path)
face_locations = face_recognition.face_locations(face_image_np, model=self.model)
face_landmarks = face_recognition.face_landmarks(face_image_np, face_locations)
self._face_img = Image.fromarray(face_image_np)
self._mask_img = Image.open(self.mask_path)
found_face = False
for face_landmark in face_landmarks:
# check whether facial features meet requirement
skip = False
for facial_feature in self.KEY_FACIAL_FEATURES:
if facial_feature not in face_landmark:
skip = True
break
if skip:
continue
# mask face
#found_face = True
#self._mask_face(face_landmark)
found_face = True
self._mask_face(face_landmark)
unmasked_paths = []
if found_face:
# align
src_faces = []
src_face_num = 0
with_mask_face = np.asarray(self._face_img)
for (i, rect) in enumerate(face_locations):
src_face_num = src_face_num + 1
(x, y, w, h) = rect_to_bbox(rect)
detect_face = with_mask_face[y:y + h, x:x + w]
src_faces.append(detect_face)
# 人脸对齐操作并保存
faces_aligned = face_alignment(src_faces)
face_num = 0
for faces in faces_aligned:
face_num = face_num + 1
faces = cv2.cvtColor(faces, cv2.COLOR_RGBA2BGR)
size = (int(CROPE_SIZE), int(CROPE_SIZE))
faces_after_resize = cv2.resize(faces, size, interpolation=cv2.INTER_AREA)
cv2.imwrite(self.save_path, faces_after_resize)
# if self.show:
# self._face_img.show()
# save
# self._save()
else:
#在这里记录没有裁的图片
print('Found no face.' + self.save_path)
unmasked_paths.append(self.save_path)
return unmasked_paths
def _mask_face(self, face_landmark: dict):
nose_bridge = face_landmark['nose_bridge']
nose_point = nose_bridge[len(nose_bridge) * 1 // 4]
nose_v = np.array(nose_point)
chin = face_landmark['chin']
chin_len = len(chin)
chin_bottom_point = chin[chin_len // 2]
chin_bottom_v = np.array(chin_bottom_point)
chin_left_point = chin[chin_len // 8]
chin_right_point = chin[chin_len * 7 // 8]
# split mask and resize
width = self._mask_img.width
height = self._mask_img.height
width_ratio = 1.2
new_height = int(np.linalg.norm(nose_v - chin_bottom_v))
# left
mask_left_img = self._mask_img.crop((0, 0, width // 2, height))
mask_left_width = self.get_distance_from_point_to_line(chin_left_point, nose_point, chin_bottom_point)
mask_left_width = int(mask_left_width * width_ratio)
if mask_left_width > 0 and new_height > 0:
mask_left_img = mask_left_img.resize((mask_left_width, new_height))
# right
mask_right_img = self._mask_img.crop((width // 2, 0, width, height))
mask_right_width = self.get_distance_from_point_to_line(chin_right_point, nose_point, chin_bottom_point)
mask_right_width = int(mask_right_width * width_ratio)
if mask_right_width > 0 and new_height> 0:
mask_right_img = mask_right_img.resize((mask_right_width, new_height))
# merge mask
size = (mask_left_img.width + mask_right_img.width, new_height)
mask_img = Image.new('RGBA', size)
mask_img.paste(mask_left_img, (0, 0), mask_left_img)
mask_img.paste(mask_right_img, (mask_left_img.width, 0), mask_right_img)
# rotate mask
angle = np.arctan2(chin_bottom_point[1] - nose_point[1], chin_bottom_point[0] - nose_point[0])
rotated_mask_img = mask_img.rotate(angle, expand=True)
# calculate mask location
center_x = (nose_point[0] + chin_bottom_point[0]) // 2
center_y = (nose_point[1] + chin_bottom_point[1]) // 2
offset = mask_img.width // 2 - mask_left_img.width
radian = angle * np.pi / 180
box_x = center_x + int(offset * np.cos(radian)) - rotated_mask_img.width // 2
box_y = center_y + int(offset * np.sin(radian)) - rotated_mask_img.height // 2
# add mask
self._face_img.paste(mask_img, (box_x, box_y), mask_img)
def _save(self):
path_splits = os.path.splitext(self.face_path)
new_face_path = path_splits[0] + '-with-mask' + path_splits[1]
self._face_img.save(new_face_path)
print(f'Save to {new_face_path}')
@staticmethod
def get_distance_from_point_to_line(point, line_point1, line_point2):
distance = np.abs((line_point2[1] - line_point1[1]) * point[0] +
(line_point1[0] - line_point2[0]) * point[1] +
(line_point2[0] - line_point1[0]) * line_point1[1] +
(line_point1[1] - line_point2[1]) * line_point1[0]) / \
np.sqrt((line_point2[1] - line_point1[1]) * (line_point2[1] - line_point1[1]) +
(line_point1[0] - line_point2[0]) * (line_point1[0] - line_point2[0]))
return int(distance)
if __name__ == '__main__':
dataset_path ='./CASIA-WebFace'
save_dataset_path = './webface_masked'
#dataset_path = './lfw'
#save_dataset_path = './lfw_masked'
unmasked_paths=[]
for root, dirs, files in os.walk(dataset_path, topdown=False):
for dir in tqdm.tqdm(dirs):
fs = os.listdir(root + '/' + dir)
for name in fs:
new_root = root.replace(dataset_path, save_dataset_path)
new_root = new_root + '/' + dir
if not os.path.exists(new_root):
os.makedirs(new_root)
# deal
imgpath = os.path.join(root,dir, name)
save_imgpath = os.path.join(new_root,name)
if os.path.exists(save_imgpath):
pass
else:
unmasked_paths = cli(imgpath,save_imgpath)
if unmasked_paths != []:
fiePath = './record/record_unmasked_faces.txt'
with open(fiePath, 'w', encoding='utf-8') as f:
for v in unmasked_paths:
f.write(v + '\n')
f.write('\n')