forked from microsoft/FLAML
-
Notifications
You must be signed in to change notification settings - Fork 0
/
setup.py
132 lines (125 loc) · 3.62 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import setuptools
import os
here = os.path.abspath(os.path.dirname(__file__))
with open("README.md", "r", encoding="UTF-8") as fh:
long_description = fh.read()
# Get the code version
version = {}
with open(os.path.join(here, "flaml/version.py")) as fp:
exec(fp.read(), version)
__version__ = version["__version__"]
install_requires = [
"NumPy>=1.17.0rc1",
"lightgbm>=2.3.1",
"xgboost>=0.90",
"scipy>=1.4.1",
"pandas>=1.1.4",
"scikit-learn>=0.24",
]
setuptools.setup(
name="FLAML",
version=__version__,
author="Microsoft Corporation",
author_email="hpo@microsoft.com",
description="A fast library for automated machine learning and tuning",
long_description=long_description,
long_description_content_type="text/markdown",
url="https://github.com/microsoft/FLAML",
packages=setuptools.find_packages(include=["flaml*"]),
package_data={
"flaml.default": ["*/*.json"],
},
include_package_data=True,
install_requires=install_requires,
extras_require={
"notebook": [
"jupyter",
"matplotlib",
"openml==0.10.2",
],
"spark": [
"pyspark>=3.2.0",
"joblibspark>=0.5.0",
],
"test": [
"flake8>=3.8.4",
"thop",
"pytest>=6.1.1",
"coverage>=5.3",
"pre-commit",
"torch",
"torchvision",
"catboost>=0.26",
"rgf-python",
"optuna==2.8.0",
"openml==0.10.2",
"statsmodels>=0.12.2",
"psutil==5.8.0",
"dataclasses",
"transformers[torch]",
"datasets",
"nltk",
"rouge_score",
"hcrystalball==0.1.10",
"seqeval",
"pytorch-forecasting>=0.9.0,<=0.10.1",
"mlflow",
"pyspark>=3.2.0",
"joblibspark>=0.5.0",
"nbconvert",
"nbformat",
"ipykernel",
"pytorch-lightning<1.9.1", # test_forecast_panel
],
"catboost": ["catboost>=0.26"],
"blendsearch": ["optuna==2.8.0"],
"ray": [
"ray[tune]~=1.13",
],
"azureml": [
"azureml-mlflow",
],
"nni": [
"nni",
],
"vw": [
"vowpalwabbit>=8.10.0, <9.0.0",
],
"hf": [
"transformers[torch]==4.26",
"datasets",
"nltk",
"rouge_score",
"seqeval",
],
"nlp": [ # for backward compatibility; hf is the new option name
"transformers[torch]==4.26",
"datasets",
"nltk",
"rouge_score",
"seqeval",
],
"ts_forecast": [
"holidays<0.14", # to prevent installation error for prophet
"prophet>=1.0.1",
"statsmodels>=0.12.2",
"hcrystalball==0.1.10",
],
"forecast": [
"holidays<0.14", # to prevent installation error for prophet
"prophet>=1.0.1",
"statsmodels>=0.12.2",
"hcrystalball==0.1.10",
"pytorch-forecasting>=0.9.0",
],
"benchmark": ["catboost>=0.26", "psutil==5.8.0", "xgboost==1.3.3"],
"openai": ["openai==0.27.0", "diskcache", "optuna==2.8.0"],
"synapse": ["joblibspark>=0.5.0", "optuna==2.8.0", "pyspark>=3.2.0"],
},
classifiers=[
"Programming Language :: Python :: 3",
"License :: OSI Approved :: MIT License",
"Operating System :: OS Independent",
],
python_requires=">=3.6",
)