-
Notifications
You must be signed in to change notification settings - Fork 0
/
run_confact.py
391 lines (342 loc) · 15.2 KB
/
run_confact.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
#!/usr/bin/env python
# coding=utf-8
# Copyright The HuggingFace Team and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import os
import sys
from dataclasses import dataclass, field
from typing import Optional
import numpy as np
import torch
import transformers
import dgl
from transformers.trainer_utils import get_last_checkpoint
from transformers import (
AutoConfig,
AutoTokenizer,
EvalPrediction,
HfArgumentParser,
Trainer,
TrainingArguments,
default_data_collator,
set_seed,
)
from transformers.integrations import WandbCallback, rewrite_logs
from model.modeling_v3 import MyConFact_Deberta
from dataset import MyDataset, Split
logger = logging.getLogger(__name__)
@dataclass
class ModelArguments:
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
"""
model_name_or_path: str = field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
)
model_type: str = field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
)
config_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
)
tokenizer_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
)
cache_dir: Optional[str] = field(
default=None,
metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
)
use_fast_tokenizer: bool = field(
default=True,
metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
)
model_revision: str = field(
default="main",
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
)
use_auth_token: bool = field(
default=False,
metadata={
"help": "Will use the token generated when running `transformers-cli login` (necessary to use this script "
"with private models)."
},
)
@dataclass
class DataTrainingArguments:
"""
Arguments pertaining to what data we are going to input our model for training and eval.
"""
task: Optional[str] = field(default="creak",
metadata={"help": "Task name"})
data_dir: Optional[str] = field(default="./data/",
metadata={"help": "Location of data"})
overwrite_cache: bool = field(
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
)
max_seq_length: Optional[int] = field(
default=512,
metadata={
"help": "The maximum total input sequence length after tokenization. If passed, sequences longer "
"than this will be truncated, sequences shorter will be padded."
},
)
max_fact_length: Optional[int] = field(
default=512,
metadata={
"help": "The maximum total input fact length after tokenization. If passed, sequences longer "
"than this will be truncated, sequences shorter will be padded."
},
)
max_cptrel_num: Optional[int] = field(
default=50,
metadata={
"help": "The maximum total input sequence length after tokenization. If passed, sequences longer "
"than this will be truncated, sequences shorter will be padded."
},
)
max_fctrel_num: Optional[int] = field(
default=20,
metadata={
"help": "The maximum total input sequence length after tokenization. If passed, sequences longer "
"than this will be truncated, sequences shorter will be padded."
},
)
pad_to_max_length: bool = field(
default=False,
metadata={
"help": "Whether to pad all samples to the maximum sentence length. "
"If False, will pad the samples dynamically when batching to the maximum length in the batch. More "
"efficient on GPU but very bad for TPU."
},
)
def main():
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
else:
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
## Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
handlers=[logging.StreamHandler(sys.stdout)],
)
log_level = training_args.get_process_log_level()
logger.setLevel(log_level)
transformers.utils.logging.set_verbosity(log_level)
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
)
logger.info(f"Model parameters {model_args}")
logger.info(f"Training/evaluation parameters {training_args}")
## Detecting last checkpoint.
last_checkpoint = None
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
last_checkpoint = get_last_checkpoint(training_args.output_dir)
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
"Use --overwrite_output_dir to overcome."
)
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
)
## Set seed before initializing model.
set_seed(training_args.seed)
dgl.seed(training_args.seed)
## Setting up model and tokenizer configs
config = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
)
tokenizer = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
use_fast=model_args.use_fast_tokenizer,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
)
model = MyConFact_RGCN.from_pretrained(
model_args.model_name_or_path,
config = config,
cache_dir = model_args.cache_dir,
revision = model_args.model_revision,
use_auth_token = True if model_args.use_auth_token else None
) ## tobe checked
if data_args.max_seq_length is None:
max_seq_length = tokenizer.model_max_length
if max_seq_length > 1024:
logger.warning(
f"The tokenizer picked seems to have a very large `model_max_length` ({tokenizer.model_max_length}). "
"Picking 1024 instead. You can change that default value by passing --max_seq_length xxx."
)
max_seq_length = 1024
else:
if data_args.max_seq_length > tokenizer.model_max_length:
logger.warning(
f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the"
f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}."
)
max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length)
## Get datasets
if training_args.do_train:
train_dataset = MyDataset(
data_dir = data_args.data_dir,
tokenizer = tokenizer,
task = data_args.task,
max_seq_length = max_seq_length,
max_fact_length = data_args.max_fact_length,
max_cptrel_num = data_args.max_cptrel_num,
max_fctrel_num = data_args.max_fctrel_num,
overwrite_cache = data_args.overwrite_cache,
mode = Split.train
)
if training_args.do_eval:
eval_dataset = MyDataset(
data_dir = data_args.data_dir,
tokenizer = tokenizer,
task = data_args.task,
max_seq_length = max_seq_length,
max_fact_length = data_args.max_fact_length,
max_cptrel_num = data_args.max_cptrel_num,
max_fctrel_num = data_args.max_fctrel_num,
overwrite_cache = data_args.overwrite_cache,
mode = Split.dev
)
if training_args.do_predict:
test_dataset = MyDataset(
data_dir = data_args.data_dir,
tokenizer = tokenizer,
task = data_args.task,
max_seq_length = max_seq_length,
max_fact_length = data_args.max_fact_length,
max_cptrel_num = data_args.max_cptrel_num,
max_fctrel_num = data_args.max_fctrel_num,
overwrite_cache = data_args.overwrite_cache,
mode = Split.test
)
if data_args.task == 'creak':
contra_dataset = MyDataset(
data_dir = data_args.data_dir,
tokenizer = tokenizer,
task = data_args.task,
max_seq_length = max_seq_length,
max_fact_length = data_args.max_fact_length,
max_cptrel_num = data_args.max_cptrel_num,
max_fctrel_num = data_args.max_fctrel_num,
overwrite_cache = data_args.overwrite_cache,
mode = Split.contrast
)
## Metric
def compute_metrics(eval_predictions):
predictions, label_ids = eval_predictions
preds = np.argmax(predictions, axis=1)
return {"accuracy": (preds == label_ids).astype(np.float32).mean().item()}
## Initialize our Trainer
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset if training_args.do_train else None,
eval_dataset=eval_dataset if training_args.do_eval else None,
compute_metrics=compute_metrics,
tokenizer=tokenizer,
data_collator=default_data_collator,
)
## Training
if training_args.do_train:
checkpoint = None
if training_args.resume_from_checkpoint is not None:
checkpoint = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
checkpoint = last_checkpoint
train_result = trainer.train(resume_from_checkpoint=checkpoint, ignore_keys_for_eval=["my_metrics"])
trainer.save_model() # Saves the tokenizer too for easy upload
metrics = train_result.metrics
max_train_samples = (
data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
)
metrics["train_samples"] = min(max_train_samples, len(train_dataset))
trainer.log_metrics("train", metrics)
trainer.save_metrics("train", metrics)
trainer.save_state()
## Evaluation
if training_args.do_eval:
logger.info("*** Evaluate ***")
metrics = trainer.evaluate(eval_dataset=eval_dataset)
max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(
eval_dataset)
metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))
trainer.log_metrics("eval", metrics)
trainer.save_metrics("eval", metrics)
# Test Set Prediction
if training_args.do_predict:
logger.info("*** Predict: Test ***")
predictions, labels, metrics = trainer.predict(test_dataset)
max_predict_samples = (
data_args.max_predict_samples if data_args.max_predict_samples is not None else len(
test_dataset)
)
metrics["predict_samples"] = min(max_predict_samples, len(test_dataset))
trainer.log_metrics("predict", metrics)
trainer.save_metrics("predict", metrics)
if data_args.task == 'creak':
label2id = {'true': 0, 'false': 1}
id2label = {v: k for k, v in label2id.items()}
elif data_args.task == 'csqa2':
label2id = {'yes': 0, 'no': 1}
id2label = {v: k for k, v in label2id.items()}
predictions = np.argmax(predictions, axis=1)
output_predict_file = os.path.join(training_args.output_dir,
"test_predictions.txt")
if trainer.is_world_process_zero():
with open(output_predict_file, "w") as writer:
writer.write("index\tprediction\n")
for index, item in enumerate(predictions):
item = id2label[item]
writer.write(f"{index}\t{item}\n")
logger.info("*** Predict: Contrast ***")
predictions, labels, metrics = trainer.predict(contra_dataset)
max_predict_samples = (
data_args.max_predict_samples if data_args.max_predict_samples is not None else len(
contra_dataset)
)
metrics["contra_samples"] = min(max_predict_samples,
len(contra_dataset))
trainer.log_metrics("contra", metrics)
trainer.save_metrics("contra", metrics)
predictions = np.argmax(predictions, axis=1)
output_predict_file = os.path.join(training_args.output_dir,
"contra_predictions.txt")
if trainer.is_world_process_zero():
with open(output_predict_file, "w") as writer:
writer.write("index\tprediction\n")
for index, item in enumerate(predictions):
item = id2label[item]
writer.write(f"{index}\t{item}\n")
if __name__ == "__main__":
main()