forked from UCSC-REAL/SelfSup_NoisyLabel
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcifar_noisy.py
232 lines (207 loc) · 10.4 KB
/
cifar_noisy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
from __future__ import print_function
from PIL import Image
import os
import os.path
import numpy as np
import sys
import copy
if sys.version_info[0] == 2:
import cPickle as pickle
else:
import pickle
import torch
import torch.utils.data as data
from utils import download_url, check_integrity, noisify, noisify_instance
class CIFAR10_noisy(data.Dataset):
"""`CIFAR10 <https://www.cs.toronto.edu/~kriz/cifar.html>`_ Dataset.
Args:
root (string): Root directory of dataset where directory
``cifar-10-batches-py`` exists or will be saved to if download is set to True.
train (bool, optional): If True, creates dataset from training set, otherwise
creates from test set.
transform (callable, optional): A function/transform that takes in an PIL image
and returns a transformed version. E.g, ``transforms.RandomCrop``
target_transform (callable, optional): A function/transform that takes in the
target and transforms it.
download (bool, optional): If true, downloads the dataset from the internet and
puts it in root directory. If dataset is already downloaded, it is not
downloaded again.
"""
base_folder = 'cifar-10-batches-py'
url = "https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz"
filename = "cifar-10-python.tar.gz"
tgz_md5 = 'c58f30108f718f92721af3b95e74349a'
train_list = [
['data_batch_1', 'c99cafc152244af753f735de768cd75f'],
['data_batch_2', 'd4bba439e000b95fd0a9bffe97cbabec'],
['data_batch_3', '54ebc095f3ab1f0389bbae665268c751'],
['data_batch_4', '634d18415352ddfa80567beed471001a'],
['data_batch_5', '482c414d41f54cd18b22e5b47cb7c3cb'],
]
test_list = [
['test_batch', '40351d587109b95175f43aff81a1287e'],
]
def __init__(self, root, train=True,indexes=None,
transform=None, target_transform=None,
download=False,down_sample=False,
noise_type=None, noise_rate=0.2, random_state=0):
self.root = os.path.expanduser(root)
self.transform = transform
self.target_transform = target_transform
self.train = train # training set or test set
self.dataset='cifar10'
self.noise_type=noise_type
self.nb_classes=10
idx_each_class_noisy = [[] for i in range(10)]
#if download:
# self.download()
#if not self._check_integrity():
# raise RuntimeError('Dataset not found or corrupted.' +
# ' You can use download=True to download it')
# now load the picked numpy arrays
if self.train:
self.train_data = []
self.train_labels = []
for fentry in self.train_list:
f = fentry[0]
file = os.path.join(self.root, self.base_folder, f)
fo = open(file, 'rb')
if sys.version_info[0] == 2:
entry = pickle.load(fo)
else:
entry = pickle.load(fo, encoding='latin1')
self.train_data.append(entry['data'])
if 'labels' in entry:
self.train_labels += entry['labels']
else:
self.train_labels += entry['fine_labels']
fo.close()
self.true_labels = copy.deepcopy(self.train_labels)
self.train_data = np.concatenate(self.train_data)
self.train_data = self.train_data.reshape((50000, 3, 32, 32))
self.train_data = self.train_data.transpose((0, 2, 3, 1)) # convert to HWC
#if noise_type is not None:
if noise_type !='clean':
# noisify train data
if noise_type != 'instance':
self.train_labels=np.asarray([[self.train_labels[i]] for i in range(len(self.train_labels))])
self.train_noisy_labels, self.actual_noise_rate = noisify(dataset=self.dataset, train_labels=self.train_labels, noise_type=noise_type, noise_rate=noise_rate, random_state=random_state, nb_classes=self.nb_classes)
self.train_noisy_labels=[i[0] for i in self.train_noisy_labels]
_train_labels=[i[0] for i in self.train_labels]
for i in range(len(_train_labels)):
idx_each_class_noisy[self.train_noisy_labels[i]].append(i)
class_size_noisy = [len(idx_each_class_noisy[i]) for i in range(10)]
self.noise_prior = np.array(class_size_noisy)/sum(class_size_noisy)
print(f'The noisy data ratio in each class is {self.noise_prior}')
self.noise_or_not = np.transpose(self.train_noisy_labels)!=np.transpose(_train_labels)
else:
self.train_noisy_labels, self.actual_noise_rate = noisify_instance(self.train_data, self.train_labels,noise_rate=noise_rate)
#self.train_noisy_labels, self.actual_noise_rate = noisify_instance_new(self.train_data, self.train_labels,noise_rate=noise_rate)
print('over all noise rate is ', self.actual_noise_rate)
#self.train_noisy_labels=[i[0] for i in self.train_noisy_labels]
#self.train_noisy_labels=[i[0] for i in self.train_noisy_labels]
#_train_labels=[i[0] for i in self.train_labels]
for i in range(len(self.train_labels)):
idx_each_class_noisy[self.train_noisy_labels[i]].append(i)
class_size_noisy = [len(idx_each_class_noisy[i]) for i in range(10)]
self.noise_prior = np.array(class_size_noisy)/sum(class_size_noisy)
print(f'The noisy data ratio in each class is {self.noise_prior}')
self.noise_or_not = np.transpose(self.train_noisy_labels)!=np.transpose(self.train_labels)
#self.train_noisy_labels = list(torch.load('CIFAR-10_human.pt')['worse_label'])
if indexes is not None:
self.train_data = self.train_data[indexes]
self.train_noisy_labels = list(np.array(self.train_noisy_labels)[indexes])
self.true_labels = list(np.array(self.true_labels)[indexes])
if down_sample:
count_number =[]
for i in range(self.nb_classes):
idxs = np.where(np.array(self.train_noisy_labels) == i)[0]
count_number.append(len(idxs))
min_num = min(count_number)
train_labeled_idxs = []
for i in range(self.nb_classes):
idxs = np.where(np.array(self.train_noisy_labels) == i)[0]
np.random.shuffle(idxs)
train_labeled_idxs.extend(idxs[:min_num])
np.random.shuffle(train_labeled_idxs)
self.train_data = self.train_data[train_labeled_idxs]
self.train_labels = list(np.array(self.train_labels)[train_labeled_idxs])
self.train_noisy_labels = list(np.array(self.train_noisy_labels)[train_labeled_idxs])
self.true_labels = list(np.array(self.true_labels)[train_labeled_idxs])
else:
f = self.test_list[0][0]
file = os.path.join(self.root, self.base_folder, f)
fo = open(file, 'rb')
if sys.version_info[0] == 2:
entry = pickle.load(fo)
else:
entry = pickle.load(fo, encoding='latin1')
self.test_data = entry['data']
if 'labels' in entry:
self.test_labels = entry['labels']
else:
self.test_labels = entry['fine_labels']
fo.close()
self.test_data = self.test_data.reshape((10000, 3, 32, 32))
self.test_data = self.test_data.transpose((0, 2, 3, 1)) # convert to HWC
def __getitem__(self, index):
"""
Args:
index (int): Index
Returns:
tuple: (image, target) where target is index of the target class.
"""
if self.train:
if self.noise_type !='clean':
img, target = self.train_data[index], self.train_noisy_labels[index]
else:
img, target = self.train_data[index], self.train_labels[index]
else:
img, target = self.test_data[index], self.test_labels[index]
# doing this so that it is consistent with all other datasets
# to return a PIL Image
img = Image.fromarray(img)
if self.transform is not None:
img = self.transform(img)
if self.target_transform is not None:
target = self.target_transform(target)
true_target = self.true_labels[index]
return img, target, true_target, index
def __len__(self):
if self.train:
return len(self.train_data)
else:
return len(self.test_data)
def _check_integrity(self):
root = self.root
for fentry in (self.train_list + self.test_list):
filename, md5 = fentry[0], fentry[1]
fpath = os.path.join(root, self.base_folder, filename)
if not check_integrity(fpath, md5):
return False
return True
def download(self):
import tarfile
if self._check_integrity():
print('Files already downloaded and verified')
return
root = self.root
download_url(self.url, root, self.filename, self.tgz_md5)
# extract file
cwd = os.getcwd()
tar = tarfile.open(os.path.join(root, self.filename), "r:gz")
os.chdir(root)
tar.extractall()
tar.close()
os.chdir(cwd)
def __repr__(self):
fmt_str = 'Dataset ' + self.__class__.__name__ + '\n'
fmt_str += ' Number of datapoints: {}\n'.format(self.__len__())
tmp = 'train' if self.train is True else 'test'
fmt_str += ' Split: {}\n'.format(tmp)
fmt_str += ' Root Location: {}\n'.format(self.root)
tmp = ' Transforms (if any): '
fmt_str += '{0}{1}\n'.format(tmp, self.transform.__repr__().replace('\n', '\n' + ' ' * len(tmp)))
tmp = ' Target Transforms (if any): '
fmt_str += '{0}{1}'.format(tmp, self.target_transform.__repr__().replace('\n', '\n' + ' ' * len(tmp)))
return fmt_str