-
Notifications
You must be signed in to change notification settings - Fork 1
/
test_cmil.lua
176 lines (155 loc) · 4.36 KB
/
test_cmil.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
-- settings for path and models
dofile('settings.lua')
dofile('preprocess.lua')
dofile('opts.lua')
dofile('util.lua')
dofile('dataset.lua')
dofile('layers/util.lua')
require "lfs"
opts.PATHS.MODEL = opts.PATHS.CHECKPOINT_PATTERN:format(SETTINGS.test_epoch_num)
print("model load path:")
print(opts.PATHS.MODEL)
loaded = model_load(opts.PATHS.MODEL, opts)
meta = {
opts = opts,
training_meta = loaded.meta,
example_loader_options = {
evaluate = {
numRoisPerImage = 8192,
subset = SETTINGS.SUBSET_FOR_TESTING,
hflips = true,
numScales = opts.NUM_SCALES
}
}
}
batch_loader = ParallelBatchLoader(
ExampleLoader(
dataset,
base_model.normalization_params,
opts.IMAGE_SCALES,
meta.example_loader_options
)
):setBatchSize({evaluate = 1})
print(meta)
assert(model):cuda()
assert(criterion):cuda()
collectgarbage()
tic_start = torch.tic()
batch_loader:evaluate()
model:evaluate()
scores, labels, rois, outputs, corlocs, log, corlocs_all = {},{},{},{},{},{},{}
for batchIdx = 1, batch_loader:getNumBatches() do
tic = torch.tic()
scale_batches = batch_loader:forward()[1]
scale0_rois = scale_batches[1][2]
scale_outputs, scale_scores, scale_costs = {}, {}, {}
for i = 2, #scale_batches do
batch_images, batch_rois, batch_labels = unpack(scale_batches[i])
batch_images_gpu = torch.CudaTensor(#batch_images):copy(batch_images)
batch_labels_gpu = torch.CudaTensor(#batch_labels):copy(batch_labels)
if nn.gModule then
batch_all_scores = model:forward({batch_images_gpu, batch_rois, scale0_rois})
else
batch_all_scores = model:forward({batch_images_gpu, batch_rois})
end
batch_scores=batch_all_scores[1]
cost = HingeCriterion():setFactor(1 / numClasses):cuda():forward(batch_scores,batch_labels_gpu)
table.insert(
scale_scores,
(type(batch_scores) == 'table' and batch_scores[1] or batch_scores):float()
)
table.insert(scale_costs, cost)
local batch_all_scores3 = makeContiguous(batch_all_scores[3]):clone()
local batch_all_scores4 = makeContiguous(batch_all_scores[4]):clone()
scale_outputs['output_prod_cls'] = scale_outputs['output_prod_cls'] or {}
table.insert(
scale_outputs['output_prod_cls'],
batch_all_scores[2]:view(1,-1,20):transpose(2, 3):float()
)
scale_outputs['output_prod_det'] = scale_outputs['output_prod_det'] or {}
table.insert(
scale_outputs['output_prod_det'],
batch_all_scores3:view(1,-1,20):transpose(2, 3):float()
)
scale_outputs['output_prod_det2'] = scale_outputs['output_prod_det2'] or {}
table.insert(
scale_outputs['output_prod_det2'],
batch_all_scores4:view(1,-1,20):transpose(2, 3):float()
)
end
for output_field, output in pairs(scale_outputs) do
outputs[output_field] = outputs[output_field] or {}
table.insert(outputs[output_field], torch.cat(output, 1):mean(1):squeeze(1))
end
table.insert(scores, torch.cat(scale_scores, 1):mean(1))
table.insert(labels, batch_labels:clone())
table.insert(rois, scale0_rois:narrow(scale0_rois:dim(), 1, 4):clone()[1])
collectgarbage()
local output_string = string.format(
"test batch %04d cost %.5f speed %.2fs/img TotalTime: %.1fmin",
batchIdx,
torch.FloatTensor(scale_costs):mean(),
torch.toc(tic_start)/batchIdx,
torch.toc(tic_start)/60
)
print(output_string)
end
local classLabels = {
'aeroplane',
'bicycle',
'bird',
'boat',
'bottle',
'bus',
'car',
'cat',
'chair',
'cow',
'diningtable',
'dog',
'horse',
'motorbike',
'person',
'pottedplant',
'sheep',
'sofa',
'train',
'tvmonitor'
}
for output_field, output in pairs(outputs) do
corloc_i = corloc(
dataset[batch_loader.example_loader:getSubset(batch_loader.train)],
{output, rois}
)
corlocs[output_field]={}
for i=1,20 do
corlocs[output_field][classLabels[i]] = corloc_i[i]
end
corlocs_all[output_field]=corloc_i:mean()
end
local APtable = {}
local AP = dataset_tools.meanAP(torch.cat(scores, 1), torch.cat(labels, 1))
for i=1,20 do
APtable[classLabels[i]] = AP[i]
end
table.insert(log, {
training = false,
mAP = AP:mean(),
AP = APtable,
corlocs_all = corlocs_all,
corlocs = corlocs,
})
print(log)
subset = batch_loader.example_loader:getSubset(batch_loader.train)
hdf5_save(
opts.PATHS.SCORES_PATTERN:format(subset, SETTINGS.test_epoch_num),
{
subset = subset,
meta = meta,
rois = rois,
labels = torch.cat(labels, 1),
output = torch.cat(scores, 1),
outputs = outputs,
}
)
print('DONE:', torch.toc(tic_start), 'sec')