-
Notifications
You must be signed in to change notification settings - Fork 1
/
util.lua
265 lines (224 loc) · 7.15 KB
/
util.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
require 'hdf5'
rapidjson = require 'rapidjson'
function hdf5_save(path, obj)
local h = hdf5.open(path, 'w')
local function r(prefix, o)
for k, v in pairs(o) do
local p = prefix..'/'..k
if torch.isTypeOf(v, torch.CudaTensor) then
h:write(p, v:float())
elseif torch.isTensor(v) then
h:write(p, v)
elseif type(v) == 'number' then
h:write(p, torch.DoubleTensor(1):fill(v))
elseif type(v) == 'string' then
h:write(p, torch.CharTensor(torch.CharStorage():string(v)))
elseif type(v) == 'boolean' then
h:write(p, torch.IntTensor(1):fill(v and 1 or 0))
else
r(p, v)
end
end
end
r('', obj)
h:close()
end
function hdf5_load(path, fields)
local res = {}
local h = hdf5.open(path, 'r')
if fields then
local returnValue = false
if type(fields) ~= 'table' then
returnValue = true
fields = {fields}
end
for _, f in ipairs(fields) do
if not pcall(function() res[f] = h:read('/'..f):all() end) then
res[f] = nil
end
end
if returnValue then
res = res[fields[1]]
end
else
res = h:all()
end
h:close()
local function dfs(obj)
for k, v in pairs(obj) do
if tonumber(k) ~= nil then
obj[k] = nil
k = tonumber(k)
obj[k] = v
end
if torch.isTypeOf(v, torch.CharTensor) or torch.isTypeOf(v, torch.ByteTensor) then
obj[k] = v:storage():string()
elseif torch.isTypeOf(v, torch.DoubleTensor) and v:nElement() == 1 then
obj[k] = v:squeeze()
elseif torch.isTypeOf(v, torch.IntTensor) and v:nElement() == 1 and (v:squeeze() == 0 or v:squeeze() == 1) then
obj[k] = v:squeeze() == 1 and true or false
elseif type(v) == 'table' then
dfs(v)
end
end
end
if type(res) == 'table' then
dfs(res)
end
return res
end
json_load = rapidjson.load
json_save = function(path, obj) rapidjson.dump(obj, path, {pretty = true, sort_keys = true}) end
function area_1(box)
return (box[3] - box[1] + 1) * (box[4] - box[2] + 1)
end
function overlap(box1, box2)
if torch.isTensor(box2) and box2:dim() == 2 then
local res = box2.new(box2:size(1))
for i = 1, res:nElement() do
res[i] = overlap(box1, box2[i])
end
return res
end
local a1 = area_1(box1)
local a2 = area_1(box2)
local xx1 = math.max(box1[1], box2[1])
local yy1 = math.max(box1[2], box2[2])
local xx2 = math.min(box1[3], box2[3])
local yy2 = math.min(box1[4], box2[4])
local w = math.max(0.0, xx2 - xx1 + 1)
local h = math.max(0.0, yy2 - yy1 + 1)
local inter = w * h
local ovr = inter / (a1 + a2 - inter)
return ovr
end
function localizeMaxBox3d(scores, rois)
if torch.isTensor(scores) and torch.isTensor(rois) then
assert(scores:dim() == 3) -- numSamples x numClasses x numRois
assert(rois:dim() == 3) -- numSamples x numRois x 4
return rois:gather(2, ({scores:max(3)})[2]:expand(scores:size(1), scores:size(2), rois:size(3)))
else
assert(#scores == #rois)
local res = torch.FloatTensor(#scores, scores[1]:size(1), 4)
for exampleIdx = 1, res:size(1) do
res[exampleIdx]:copy(rois[exampleIdx]:gather(1, ({scores[exampleIdx]:max(2)})[2]:expand(scores[exampleIdx]:size(1), rois[exampleIdx]:size(rois[exampleIdx]:dim()))))
end
return res
end
end
function corloc(dataset_subset, localizedBoxes, classLabelInd)
return mIOU(dataset_subset, localizedBoxes, 0.5, classLabelInd)
end
function mIOU(dataset_subset, localizedBoxes, corlocThreshold, classLabelInd)
if type(localizedBoxes) == 'table' then
localizedBoxes = localizeMaxBox3d(unpack(localizedBoxes))
end
assert(localizedBoxes:dim() == 3 and localizedBoxes:size(3) == 4)
local beg_classLabelInd = classLabelInd == nil and 1 or classLabelInd
local end_classLabelInd = classLabelInd == nil and localizedBoxes:size(2) or classLabelInd
local mIOUs = {}
for classLabelInd = beg_classLabelInd, end_classLabelInd do
local overlaps = {}
for exampleIdx = 1, localizedBoxes:size(1) do
local gtBoxes_ = dataset_subset:getGroundTruthBoxes(exampleIdx)
local gtInds = gtBoxes_:select(2, 1):eq(classLabelInd):nonzero()
if gtInds:nElement() > 0 then
local gtBoxes = gtBoxes_:index(1, gtInds:squeeze(2)):narrow(2, 2, 4)
local localizedBox = localizedBoxes[exampleIdx][classLabelInd]
local maxOverlap = 0
for i = 1, gtBoxes:size(1) do
local o = overlap(gtBoxes[i], localizedBox)
if corlocThreshold then
o = o > corlocThreshold and 1 or 0
end
maxOverlap = math.max(maxOverlap, o)
end
table.insert(overlaps, maxOverlap)
end
end
table.insert(mIOUs, torch.FloatTensor(#overlaps == 0 and {0.0} or overlaps):mean())
end
return torch.FloatTensor(mIOUs)
end
function nms_mask(boxes, scores, overlap_threshold, score_threshold)
local function nmsEx(boxes, scores, mask)
--https://raw.githubusercontent.com/fmassa/object-detection.torch/master/nms.lua
local xx1, yy1, xx2, yy2, w, h, area = boxes.new(), boxes.new(), boxes.new(), boxes.new(), boxes.new(), boxes.new(), boxes.new()
local pick = torch.LongTensor()
for classLabelInd = 1, scores:size(1) do
local x1, y1, x2, y2 = boxes:select(2, 1), boxes:select(2, 2), boxes:select(2, 3), boxes:select(2, 4)
area:cmul(x2 - x1 + 1, y2 - y1 + 1)
pick:resize(area:size()):zero()
local _, I = scores[classLabelInd]:sort(1)
local overTh = scores[classLabelInd]:index(1, I):ge(score_threshold)
if overTh:any() then
I = I[overTh]
else
I:resize(0)
end
local count = 1
while I:numel() > 0 do
local last = I:size(1)
local i = I[last]
pick[count] = i
count = count + 1
if last == 1 then
break
end
I = I[{{1, last-1}}]
xx1:index(x1, 1, I)
yy1:index(y1, 1, I)
xx2:index(x2, 1, I)
yy2:index(y2, 1, I)
xx1:cmax(x1[i])
yy1:cmax(y1[i])
xx2:cmin(x2[i])
yy2:cmin(y2[i])
w:add(xx2, -1, xx1):add(1):cmax(0)
h:add(yy2, -1, yy1):add(1):cmax(0)
local intersection = w:cmul(h)
local IoU = h
xx1:index(area, 1, I)
IoU:cdiv(intersection, xx1 + area[i] - intersection)
I = I[IoU:le(overlap_threshold)]
end
if count >= 2 then
mask[classLabelInd]:scatter(1, pick[{{1, count-1}}], 1)
end
end
end
local mask = {}
local threads = require 'threads'
threads.Threads.serialization('threads.sharedserialize')
local jobQueue = threads.Threads(16)
for exampleIdx = 1, #scores do
mask[exampleIdx] = torch.ByteTensor(scores[exampleIdx]:size()):zero()
jobQueue:addjob(nmsEx, function() end, boxes[exampleIdx], scores[exampleIdx], mask[exampleIdx])
end
jobQueue:synchronize()
return mask
end
function makeContiguous(input)
if not input:isContiguous() then
_input = _input or input.new()
_input:resizeAs(input):copy(input)
input = _input
end
return input
end
function getlambda(iter, max_iter, ContinuationFunc)
local lambda =nil
if ContinuationFunc == 'Linear' then
lambda = iter/max_iter
elseif ContinuationFunc == 'Plinear' then
lambda = math.min(1, torch.ceil(iter/4)/max_iter*4)
elseif ContinuationFunc == 'Sigmoid' then
lambda = 1/(1+torch.exp(max_iter/2-iter))
elseif ContinuationFunc == 'Log' then
local low_bound = 0.01
lambda = (torch.log(iter+low_bound)-torch.log(low_bound))/(torch.log(max_iter+low_bound)-torch.log(low_bound))
elseif ContinuationFunc == 'Exp' then
lambda = torch.exp((iter-max_iter)/4)
end
return lambda
end