Proxying DNS with python (Nov 13 2012)

So a while ago I needed to proxy my python requests over a SOCKS4/5 proxy, so I
started digging into some modules to do that.

I came across the nice socks module, which would allow me to basically monkey-

patch the socket used by any other module whenever I needed to. Quite handy for

sure!

This example shows how to proxy a urllib2.urlopen() call through a proxy

listening on port 4444 locally (in my case ssh -D 4444).

import socks
import urllib2

Set default proxy

socks.setdefaultproxy(socks.PROXY_TYPE_SOCKS5, 'localhost', 4444)

Wrap our module

socks.wrapmodule(urllib2)

Make our request

print json.loads(urllib2.urlopen(‘http://ifconfig.me/all.json"').read())

Fine and dandy, right? Well sure, as long as we don’t need to proxy our DNS

requests. An example would be when you’re trying to communcate on the TOR
network, or you want to actually send all your traffic through a proxy. If you
don’t, then all your DNS requests get sent to your default DNS server. This can
obviously be bad, since DNS doesn’t use any encryption, so an attacker sitting
in the middle of your connection will still be able to make an educated guess as

to what you’re doing, and even subvert your requests! Not cool.

So I posted a question over at StackOverflow, and kept trying to figure out how

to get it working. No matter what I did, nothing seemed to work.

Until I started thinking about how modules are imported.

What if when a module is initialized it sets up all it’s socket stuff? That’s

what I would do, as that’s a very setup-y thing to do!

Tinkering around, I finally found something that worked:

import socks
import socket

Can be socks4/5
socks.setdefaultproxy(socks.PROXY_TYPE_SOCKS4,'127.0.0.1', 9050)
socket.socket = socks.socksocket

Magic!
def getaddrinfo(*args):

return [(socket.AF_INET, socket.SOCK_STREAM, 6, '', (args[@], args[1]))]
socket.getaddrinfo = getaddrinfo

import urllib
Do some stuff with proxied urllib

This proxies all DNS requests through your proxy server, and works cross-

platform on Win, Linux, and probably 0SX (not tested).

Here’s a nice wrapper function to set/reset proxies for you, pretty useless but

you get the idea.

import socks
import socket
orig sock = socket.socket

This is the way we monkey patch! yay!
def getaddrinfo(*args):

return [(socket.AF_INET, socket.SOCK_STREAM, 6, "', (args[@], args[1]))]
socket.getaddrinfo = getaddrinfo

import urllib

Set our current proxy

def setProxy(type=socks.PROXY_TYPE_SOCKS5, host="127.0.0.1", port="9050"):
socks.setdefaultproxy(type, host, port)
socket.socket = socks.socksocket

Reset proxy to our original socket (no proxy)
def unsetProxy():
socket.socket = orig_sock

Check tor
def checkTor():
if "Sorry" in urllib.urlopen('https://check.torproject.org/').read():
return False
else:
return True

Set our proxy to a local SOCKS5 listening on 4444
setProxy(type=socks.PROXY_TYPE_SOCKS5, host='127.0.0.1"', port=4444)
print "Using tor? [" + str(checkTor()) + "]"

print urllib.urlopen(‘http://ifconfig.me/all.json").read()

Set our proxy to tor running locally
setProxy(type=socks.PROXY_TYPE_SOCKS5, host='127.0.0.1"', port=9050)
print "Using tor? [" + str(checkTor()) + "]"

print urllib.urlopen('http://ifconfig.me/all.json").read()

Reset proxy settings

unsetProxy ()

print "Using tor? [" + str(checkTor()) + "]
print urllib.urlopen('http://ifconfig.me/all.json").read()

« I >

Hope someone finds it useful! I was pulling my hair out for a while about it,

and monkey-patching the socket module is definitely not for the weak of will.

