-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
302 lines (275 loc) · 11.1 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
import os
import logging
# create logger for the project.
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s.%(msecs)03d %(levelname)s %(module)s - %(funcName)s: %(message)s",
datefmt='%Y-%m-%d %H:%M:%S'
)
def load_pretrained_bert_tokenizer(pretrained_name):
"""
Loads pretrained BERT model and tokenizer from HuggingFace.
Parameters
----------
pretrained_name: str
The pre-trained name for the model on HuggingFace's hub.
Ref: https://huggingface.co/models
Returns
-------
tokenizer: transformers.PreTrainedTokenizer
A tokenizer object from the HuggingFace's `transformers` package.
model: transformers.PreTrainedModel
The BERT pre-trained model at HuggingFace's `transformers` package.
"""
if pretrained_name in {"bert-base-cased", "bert-base-uncased",
"bert-base-multilingual-cased",
"bert-base-multilingual-uncased"}:
from transformers import BertTokenizer, BertModel
BERT_tokenizer = BertTokenizer
BERT_module = BertModel
elif pretrained_name in {"camembert-base"}:
from transformers import CamembertForMaskedLM, CamembertTokenizer
BERT_tokenizer = CamembertTokenizer
BERT_module = CamembertForMaskedLM
elif pretrained_name in {"flaubert/flaubert_base_cased"}:
from transformers import FlaubertModel, FlaubertTokenizer
BERT_tokenizer = FlaubertTokenizer
BERT_module = FlaubertModel
else:
raise ValueError(f"{pretrained_name} model is not supported!")
# create the objects and return them
tokenizer = BERT_tokenizer.from_pretrained(pretrained_name)
model = BERT_module.from_pretrained(pretrained_name)
return tokenizer, model
def load_optimizer(bert_punc_cap, optimizer_name, learning_rate):
"""
Loads the optimizer from PyTorch.
Parameters
----------
bert_punc_cap: torch.nn.Module
The model responsible for restoring punctuations & capitalization.
optimizer_name: str
The name of the Optimizer Module on PyTorch.
learning_rate: float
The learning rate.
Returns
-------
torch.optim.Optimizer
The optimizer.
Raises
------
ValueError:
If the given name wasn't supported!
"""
if optimizer_name.lower() == "adam":
from torch.optim import Adam
return Adam(bert_punc_cap.parameters(), lr=learning_rate)
else:
raise ValueError(f"{optimizer_name} optimizer is not supported!")
def load_criterion(criterion_name):
"""
Loads the criterion class from PyTorch.
Parameters
----------
criterion_name: str
The name of the criterion class on PyTorch.
Returns
-------
torch.nn.Loss
The Loss function.
Raises
------
ValueError:
If the given name wasn't supported!
"""
if criterion_name.lower() == "cross_entropy":
from torch.nn import CrossEntropyLoss
return CrossEntropyLoss()
else:
raise ValueError(f"{criterion_name} criterion is not supported!")
def create_data_loaders(
data_dir,
dataset_name,
langs,
tokenizer,
segment_size,
batch_size,
punc_to_class,
case_to_class,
):
"""
Creates train, valid, and test dataloaders for training.
Parameters
----------
data_dir: str
A relative/absolute path to save the trained model.
dataset_name: str
The name of the dataset.
langs: list(str)
A list of supported languages.
tokenizer: transformers.PreTrainedTokenizer
A tokenizer object from the HuggingFace's `transformers` package.
segment_size: int
The
batch_size: int
The batch size.
punc_to_class: dict
A dictionary mapping a punctuation token to the class index.
case_to_class: dict
A dictionary mapping a case token to the class index.
Returns
-------
train_dataloader: torch.utils.data.DataLoader
A data loader of the train data.
valid_dataloader: torch.utils.data.DataLoader
A data loader of the valid data.
test_dataloader: torch.utils.data.DataLoader
A data loader of the test data.
"""
from data_handler import DataHandler
if dataset_name == "mTEDx":
langs = [lang.strip() for lang in langs.split(',')]
train_sents, valid_sents, test_sents = [], [], []
for lang in langs:
base_path = os.path.join(data_dir, dataset_name, lang)
with open(os.path.join(base_path, "train."+lang)) as fin:
train_sents.extend(fin.readlines())
with open(os.path.join(base_path, "valid."+lang)) as fin:
valid_sents.extend(fin.readlines())
with open(os.path.join(base_path, "test."+lang)) as fin:
test_sents.extend(fin.readlines())
else:
raise ValueError(f"{dataset_name} dataset is not supported!")
# create data loaders
data_handler = \
DataHandler(tokenizer, segment_size, punc_to_class,case_to_class)
logging.info("Creating dataloader for train data")
train_dataloader = \
data_handler.create_dataloader(train_sents[:10], batch_size, True)
logging.info("Creating dataloader for valid data")
valid_dataloader = \
data_handler.create_dataloader(valid_sents[:10], batch_size, True)
logging.info("Creating dataloader for test data")
test_dataloader = \
data_handler.create_dataloader(test_sents[:10], batch_size)
return train_dataloader, valid_dataloader, test_dataloader
if __name__ == "__main__":
import argparse
from pprint import pformat
parser = argparse.ArgumentParser()
parser.add_argument('--seed', type=int, default=1234,
help='Seed for PyTorch, Numpy and random')
parser.add_argument('--pretrained_bert', type=str,
default="bert-base-multilingual-cased",
help='A text describing the pretrianed bert from HuggingFace.')
parser.add_argument('--optimizer', type=str,
help='A text describing the optimizer to be used.')
parser.add_argument('--lr', type=float, default=1e-5,
help='A float describing the training learning rate.')
parser.add_argument('--data_dir', type=str, default="data",
help='A relative/absolute path to load the data.')
parser.add_argument('--criterion', type=str,
help='A text describing the optimizer to be used.')
parser.add_argument('--alpha', type=float, default=0.5,
help='A float for the tuning parameter between punc_loss & cap_loss.')
parser.add_argument('--dataset', type=str, default="mTEDx",
help='A text describing the dataset to be used.')
parser.add_argument('--langs', type=str, default="fr",
help='Comma-separated text determining the languages for training.')
parser.add_argument('--save_path', type=str,
help='A relative/absolute path to save the trained model.')
parser.add_argument('--batch_size', type=int, default=256,
help='An integer describing the batch size used for training.')
parser.add_argument('--segment_size', type=int, default=32,
help='An integer describing the context size for the model.')
parser.add_argument('--dropout', type=float, default=0.3,
help='A float describing the training dropout rate.')
parser.add_argument('--max_epochs', type=int, default=50,
help='The maximum number of epochs to train the model.')
parser.add_argument('--num_validations', type=int, default=1,
help='An integer describing how many times to validate per epoch.')
parser.add_argument('--patience', type=int, default=5,
help='An integer of how many validations to wait for performance improvement before early stopping.')
parser.add_argument('--stop_metric', type=str, default="overall_f1",
choices=["valid_loss", "punc_valid_loss", "case_valid_loss",
"punc_overall_f1", "case_overall_f1", "overall_f1"],
help='The metric at which early-stopping should be applied.')
# parse arguments
args = vars(parser.parse_args())
# other hyper-parameters
args["punc_to_class"] = {
",": 1, "،": 1,
".": 2, "...": 2,
"?": 3, '؟': 3, '¿': 3,
"!": 4, "¡": 4,
":": 5,
";": 6, "؛": 6,
}
args["class_to_punc"] = {
0: '', #'O'
1: ',', #'COMMA'
2: '.', #'PERIOD'
3: '?', #'QUESTION'
4: '!', #"EXCLAMATION"
5: ':', #"COLON"
6: ';', #"SEMICOLON"
}
args["case_to_class"] = {
'O': 0, #Other
'F': 1, #First_cap
'A': 2 #All_cap
}
args["class_to_case"] = {
0: 'O', #Other
1: 'F', #First_cap
2: 'A' #All_cap
}
# log training arguments
logging.info("Initialize training with the following arguments:")
logging.info(pformat(args))
# setting the seed
logging.info(f"Setting the seed to: {args['seed']}")
from utils import set_all_seeds
set_all_seeds(args["seed"])
# load pre-trained model & tokenizer
logging.info(f"Loading pre-trained BERT: {args['pretrained_bert']}")
BERT_tokenizer, BERT_model = \
load_pretrained_bert_tokenizer(args["pretrained_bert"])
# save model's hyper-parameters in save_path
os.makedirs(args["save_path"], exist_ok=True)
from utils import write_yaml
write_yaml({
"segment_size": args["segment_size"],
"dropout": 0.3,
"punc_to_class": args["punc_to_class"],
"class_to_punc": args["class_to_punc"],
"case_to_class": args["case_to_class"],
"class_to_case": args["class_to_case"]
}, os.path.join(args["save_path"], "config.yaml"))
# create bert_punc_cap
logging.info("Loading BertPuncCap")
from model import BertPuncCap
bert_punc_cap = BertPuncCap(BERT_model, BERT_tokenizer,
model_path=os.path.join(args["save_path"]), load_option="latest")
# load optimizer
logging.info(f"Loading optimizer: {args['optimizer']}")
optimizer = load_optimizer(bert_punc_cap, args["optimizer"], args["lr"])
# load criterion
logging.info(f"Loading criterion: {args['criterion']}")
criterion = load_criterion(args["criterion"])
# load data loaders
logging.info(f"Loading dataset: {args['dataset']} "
+ f"for langs: [{args['langs']}]")
train_dataloader, valid_dataloader, _ = \
create_data_loaders(args["data_dir"], args["dataset"], args["langs"],
BERT_tokenizer,
args["segment_size"], args["batch_size"],
args["punc_to_class"], args["case_to_class"])
# create Trainer
from trainer import Trainer
trainer = Trainer(bert_punc_cap, optimizer, criterion, train_dataloader,
valid_dataloader, args["save_path"], args["batch_size"],
args["lr"], args["max_epochs"], args["num_validations"],
args["alpha"], args["patience"], args["stop_metric"])
logging.info("Started training...")
trainer.train()