-
Notifications
You must be signed in to change notification settings - Fork 2
/
cwe.py
579 lines (436 loc) · 20.1 KB
/
cwe.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
# encoding: utf-8
from __future__ import division
from __future__ import unicode_literals
import argparse
import math
import struct
import sys
import warnings
import os
import codecs
import numpy as np
import pypinyin as ppy
from multiprocessing import Pool, Value, Array
import time
u'''
chinese character enhanced word embedding.
'''
MIN_CHINESE = 0x4E00
MAX_CHINESE = 0x9FA5
character_size = (MAX_CHINESE - MIN_CHINESE + 1)
'''
语素可以用一下hash,确定位置
'''
# 词信息
class VocabItem:
def __init__(self, word):
self.word = word
self.character = [] # character
for character in word:
character_ord = ord(character)
if character_ord < MIN_CHINESE or character_ord > MAX_CHINESE:
self.character = []
break
# 加入character的相对位置
self.character.append(character_ord - MIN_CHINESE)
self.count = 0
self.path = None # Path (list of indices) from the root to the word (leaf)
self.code = None # Huffman encoding
# 词汇表
class Vocab:
def __init__(self, fi, min_count):
vocab_items = []
vocab_hash = {}
word_count = 0
fi = codecs.open(fi, 'r', encoding='utf-8')
# Add special tokens <bol> (beginning of line) and <eol> (end of line)
for token in [u'<bol>', u'<eol>']:
vocab_hash[token] = len(vocab_items) # vocab index
vocab_items.append(VocabItem(token)) #
for line in fi:
tokens = line.split()
for token in tokens:
if token not in vocab_hash:
vocab_hash[token] = len(vocab_items) # vocab index
vocab_items.append(VocabItem(token))
# assert vocab_items[vocab_hash[token]].word == token, 'Wrong vocab_hash index'
vocab_items[vocab_hash[token]].count += 1 # 出现次数加一
word_count += 1
if word_count % 10000 == 0:
sys.stdout.write(u"\rReading word %d" % word_count)
sys.stdout.flush()
# Add special tokens <bol> (beginning of line) and <eol> (end of line)
vocab_items[vocab_hash[u'<bol>']].count += 1
vocab_items[vocab_hash[u'<eol>']].count += 1
word_count += 2
self.bytes = fi.tell()
self.vocab_items = vocab_items # List of VocabItem objects
self.vocab_hash = vocab_hash # Mapping from each token to its index in vocab
self.word_count = word_count # Total number of words in train file
# Add special token <unk> (unknown),
# merge words occurring less than min_count into <unk>, and
# sort vocab in descending order by frequency in train file
self.__sort(min_count)
# assert self.word_count == sum([t.count for t in self.vocab_items]), 'word_count and sum of t.count do not agree'
print(u'Total words in training file: %d' % self.word_count)
print(u'Total bytes in training file: %d' % self.bytes)
print(u'Vocab size: %d' % len(self))
def __getitem__(self, i):
return self.vocab_items[i]
def __len__(self):
return len(self.vocab_items)
def __iter__(self):
return iter(self.vocab_items)
def __contains__(self, key):
return key in self.vocab_hash
def __sort(self, min_count):
tmp = []
tmp.append(VocabItem(u'<unk>'))
unk_hash = 0
count_unk = 0
for token in self.vocab_items:
if token.count < min_count:
count_unk += 1
tmp[unk_hash].count += token.count
else:
tmp.append(token)
tmp.sort(key=lambda token: token.count, reverse=True)
# Update vocab_hash
vocab_hash = {}
for i, token in enumerate(tmp):
vocab_hash[token.word] = i
self.vocab_items = tmp
self.vocab_hash = vocab_hash
print()
print(u'Unknown vocab size:', count_unk)
def indices(self, tokens):
return [self.vocab_hash[token] if token in self else self.vocab_hash[u'<unk>'] for token in tokens]
u'''
构造霍夫曼树:https://www.wikiwand.com/zh-hans/%E9%9C%8D%E5%A4%AB%E6%9B%BC%E7%BC%96%E7%A0%81
'''
def encode_huffman(self):
# Build a Huffman tree
vocab_size = len(self) # len 635
count = [t.count for t in self] + [1e15] * (vocab_size - 1) # len 1269
parent = [0] * (2 * vocab_size - 2) # len 1268
binary = [0] * (2 * vocab_size - 2) # len 1268
# vocab 是按从大到小排序的
pos1 = vocab_size - 1 # 634
pos2 = vocab_size # 635
for i in range(vocab_size - 1):
# Find min1 寻找最小频率1
if pos1 >= 0:
if count[pos1] < count[pos2]:
min1 = pos1
pos1 -= 1
else:
min1 = pos2
pos2 += 1
else:
min1 = pos2
pos2 += 1
# Find min2
if pos1 >= 0:
if count[pos1] < count[pos2]:
min2 = pos1
pos1 -= 1
else:
min2 = pos2
pos2 += 1
else:
min2 = pos2
pos2 += 1
count[vocab_size + i] = count[min1] + count[min2] # 合并最小出现次数的两个节点
parent[min1] = vocab_size + i
parent[min2] = vocab_size + i
binary[min2] = 1 # 有点像桶标记思路
# Assign binary code and path pointers to each vocab word
root_idx = 2 * vocab_size - 2
for i, token in enumerate(self):
path = [] # List of indices from the leaf to the root
code = [] # Binary Huffman encoding from the leaf to the root
node_idx = i
while node_idx < root_idx:
if node_idx >= vocab_size:
path.append(node_idx)
code.append(binary[node_idx])
node_idx = parent[node_idx]
path.append(root_idx)
# These are path and code from the root to the leaf
token.path = [j - vocab_size for j in path[::-1]]
token.code = code[::-1]
class UnigramTable:
"""
A list of indices of tokens in the vocab following a power law distribution,
used to draw negative samples.
"""
def __init__(self, vocab):
vocab_size = len(vocab)
power = 0.75
norm = sum([math.pow(t.count, power) for t in vocab]) # Normalizing constant 正常化常量,用于当分母
table_size = 1e8 # Length of the unigram table 100000000.0
table = np.zeros(int(table_size), dtype=np.uint32)
print(u'Filling unigram table')
p = 0 # Cumulative probability 累积概率
i = 0
for j, token in enumerate(vocab):
p += float(math.pow(token.count, power)) / norm # p的最大值就是1
while i < table_size and (float(i) / table_size) < p:
table[i] = j
i += 1
self.table = table
def sample(self, count):
indices = np.random.randint(low=0, high=len(self.table), size=count)
return [self.table[i] for i in indices]
# 这里是取近似值
def sigmoid(z):
if z > 6:
return 1.0
elif z < -6:
return 0.0
else:
return 1 / (1 + math.exp(-z))
'''
初始化Matrix syn0, syn0_c, syn1
'''
def init_net(dim, vocab_size, character_size): # dim=635, vocab_size=100
# Init syn0 with random numbers from a uniform distribution on the interval [-0.5, 0.5]/dim
# 用区间[-0.5,0.5] / dim的均匀分布的随机数初始化syn0
tmp = np.random.uniform(low=-0.5 / dim, high=0.5 / dim, size=(vocab_size, dim))
syn0_c = np.random.uniform(low=-0.5 / dim, high=0.5 / dim, size=(character_size, dim))
# Create and return a ctypes object from a numpy array
syn0 = np.ctypeslib.as_ctypes(tmp)
syn0 = Array(syn0._type_, syn0, lock=False)
syn0_c = np.ctypeslib.as_ctypes(syn0_c)
syn0_c = Array(syn0_c._type_, syn0_c, lock=False)
# Init syn1 with zeros
tmp = np.zeros(shape=(vocab_size, dim))
syn1 = np.ctypeslib.as_ctypes(tmp)
syn1 = Array(syn1._type_, syn1, lock=False)
return (syn0, syn0_c, syn1)
'''
根据pid来划分fi文件
'''
def train_process(pid):
# Set fi to point to the right chunk of training file
start = vocab.bytes / num_processes * pid
end = vocab.bytes if pid == num_processes - 1 else vocab.bytes / num_processes * (pid + 1)
fi.seek(start)
print(u'Worker %d beginning training at %d, ending at %d \n' % (pid, start, end))
alpha = starting_alpha
word_count = 0
last_word_count = 0
while fi.tell() < end: #
line = fi.readline().strip()
# Skip blank lines
if not line:
continue
# Init sent, a list of indices of words in line
sent = vocab.indices([u'<bol>'] + line.split() + [u'<eol>']) # 构造一行,加上<bol> 和 <eol>
for sent_pos, token in enumerate(sent):
if word_count % 10000 == 0:
global_word_count.value += (word_count - last_word_count)
last_word_count = word_count
# Recalculate alpha
alpha = starting_alpha * (1 - float(global_word_count.value) / vocab.word_count)
if alpha < starting_alpha * 0.0001:
alpha = starting_alpha * 0.0001
# Print progress info
sys.stdout.write(u"\rAlpha: %f Progress: %d of %d (%.2f%%)" %
(alpha, global_word_count.value, vocab.word_count,
float(global_word_count.value) / vocab.word_count * 100))
sys.stdout.flush()
# Randomize window size, where win is the max window size 随机化窗口大小,其中win是最大窗口大小
current_win = np.random.randint(low=1, high=win + 1)
context_start = max(sent_pos - current_win, 0)
context_end = min(sent_pos + current_win + 1, len(sent))
# 前后上下文
context = sent[context_start: sent_pos] + sent[sent_pos + 1: context_end] # Turn into an iterator?
# 中 CBOW, skip-gram 模型中加入pinyin信息
# CBOW
if cbow:
neu1 = np.zeros(dim)
neu1e = np.zeros(dim)
# pinyin_list_cnt = 0
character_index_list = []
for c in context:
neu1c = np.zeros(dim)
neu1c = np.add(neu1c, syn0[c])
# 加上 character
if len(vocab[c].character) > 0:
for character_index in vocab[c].character:
neu1c = np.add(neu1c, np.multiply(syn0_c[character_index], 1.0 / len(vocab[c].character)))
character_index_list.append(character_index)
neu1c = np.multiply(neu1c, 1.0 / 2)
neu1 = np.add(neu1, neu1c)
assert len(neu1) == dim, u'neu1pinyin and dim do not agree'
neu1 = np.multiply(neu1, 1.0 / len(context))
# Compute neu1e and update syn1
if neg > 0:
# negative sampling
classifiers = [(token, 1)] + [(target, 0) for target in table.sample(neg)]
else:
# hierarchical softmax
classifiers = zip(vocab[token].path, vocab[token].code) # 通过Huffman tree获取
for target, label in classifiers:
z = np.dot(neu1, syn1[target])
p = sigmoid(z)
g = alpha * (label - p)
neu1e += g * syn1[target] # Error to backpropagate to syn0
syn1[target] += g * neu1 # Update syn1
# Update syn0 # 哦,这里是这么更新的。
for c in context:
syn0[c] += neu1e
# character_rate: the factor <float> of learning rate for pinyin, default is 1.0
for character_index in character_index_list:
syn0_c[character_index] += neu1e * character_rate
# Skip-gram
else:
for c in context:
# Error to backpropagate to syn0
neu1e = np.zeros(dim)
# Compute neu1e and update syn1
if neg > 0:
# negative sampling
classifiers = [(token, 1)] + [(target, 0) for target in table.sample(neg)]
else:
# hierarchical softmax
classifiers = zip(vocab[token].path, vocab[token].code)
for target, label in classifiers:
# z = np.dot(syn0[context_word], syn1[target])
neu1 = np.zeros(dim)
neu1c = np.zeros(dim)
neu1c += syn0[c]
if len(vocab[c].character) > 0:
for character_index in vocab[c].character:
neu1c += np.multiply(syn0_c[character_index], 1.0 / len(vocab[c].character))
neu1c = np.multiply(neu1c, 1.0 / 2)
neu1 += neu1c
z = np.dot(neu1, syn1[target])
p = sigmoid(z)
g = alpha * (label - p)
neu1e += g * syn1[target] # Error to backpropagate to syn0
syn1[target] += g * syn0[c] # Update syn1
# Update syn0
syn0[c] += neu1e
# Update syn0_c
if len(vocab[c].character) > 0:
for character_index in vocab[c].character:
syn0_c[character_index] += neu1e * character_rate
word_count += 1
# Print progress info
global_word_count.value += (word_count - last_word_count)
sys.stdout.write(u"\rAlpha: %f Progress: %d of %d (%.2f%%)" %
(alpha, global_word_count.value, vocab.word_count,
float(global_word_count.value) / vocab.word_count * 100))
sys.stdout.flush()
fi.close()
u'''
保存 vector
'''
def save(vocab, syn0, syn0_c, fo, binary):
print(u'Saving model to', fo)
dim = len(syn0[0])
if binary:
fo = codecs.open(fo, 'wb', encoding='utf-8')
fo.write('%d %d\n' % (len(syn0), dim))
fo.write('\n')
for token, vector in zip(vocab, syn0):
for character_index in token.charater:
vector = np.add(vector, np.multiply(syn0_c[character_index, :], 1.0 / len(token.charater)))
fo.write('%s ' % token.word)
for s in vector:
fo.write(struct.pack('f', s))
fo.write('\n')
else: # 按字符串保存
fo = codecs.open(fo, 'w', encoding='utf-8')
fo.write('%d %d\n' % (len(syn0), dim)) # syn0, dim (635, 100)
for token, vector in zip(vocab, syn0):
word = token.word
tmp_vector = np.zeros(dim)
tmp_vector = np.add(tmp_vector, vector)
for character_index in token.character:
tmp_vector = np.add(tmp_vector, np.multiply(syn0_c[character_index], 1.0 / len(token.character)))
vector_str = ' '.join([str(s) for s in tmp_vector])
fo.write('%s %s\n' % (word, vector_str))
fo.close()
'''
'''
def __init_process(*args):
global vocab, syn0, syn0_c, syn1, table, cbow, neg, dim, starting_alpha
global win, num_processes, character_rate, global_word_count, fi
# initargs = (vocab, syn0, syn1, table, cbow, neg, dim, alpha, win, num_processes, global_word_count, fi)
vocab, syn0_tmp, syn0_pinyin_tmp, syn1_tmp, table, cbow, neg, dim, starting_alpha, win, num_processes, character_rate, global_word_count = args[
:-1]
fi = codecs.open(args[-1], 'r', encoding='utf-8')
with warnings.catch_warnings():
warnings.simplefilter('ignore', RuntimeWarning)
syn0 = np.ctypeslib.as_array(syn0_tmp)
syn1 = np.ctypeslib.as_array(syn1_tmp)
syn0_c = np.ctypeslib.as_array(syn0_pinyin_tmp)
'''
'''
def train(fi, fo, cbow, neg, dim, alpha, win, min_count, num_processes, binary, character_rate):
# Read train file to init vocab (词汇表)
vocab = Vocab(fi, min_count)
# Init net
syn0, syn0_c, syn1 = init_net(dim, len(vocab), (MAX_CHINESE - MIN_CHINESE + 1))
global_word_count = Value('i', 0)
table = None
#
if neg > 0:
print(u'Initializing unigram table')
table = UnigramTable(vocab)
else:
print(u'Initializing Huffman tree')
vocab.encode_huffman()
# Begin training using num_processes workers
t0 = time.time()
pool = Pool(processes=num_processes, initializer=__init_process,
initargs=(vocab, syn0, syn0_c, syn1, table, cbow, neg, dim, alpha,
win, num_processes, character_rate, global_word_count, fi))
# Apply `func` to each element in `iterable`, collecting the results in a list that is returned.
pool.map(train_process, range(num_processes))
t1 = time.time()
print()
print(u'Completed training. Training took', (t1 - t0) / 60, u'minutes')
# Save model to file
save(vocab, syn0, syn0_c, fo, binary)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
# train_file = "/Users/LeonTao/PycharmProjects/deborausujono/word2vecpy/data/input-chinese"
# output_file = "/Users/LeonTao/PycharmProjects/deborausujono/word2vecpy/data/output-chinese"
# /Users/LeonTao/NLP/Corpos/wiki/zhwiki-latest-simplified_tokened.txt
train_file = "/Users/LeonTao/PycharmProjects/deborausujono/word2vecpy/data/people's_daily_cleaned"
output_file = "/Users/LeonTao/PycharmProjects/deborausujono/word2vecpy/data/people's_daily_character_cbow_100d"
t0 = time.time()
u'''
修改内容:
negative: 5
min-count for pinyin:
'''
parser.add_argument('-train', help='Training file', dest='fi', default=train_file) # , required=True
parser.add_argument('-model', help='Output model file', dest='fo', default=output_file) # , required=True
parser.add_argument('-cbow', help='1 for CBOW, 0 for skip-gram', dest='cbow', default=1, type=int)
parser.add_argument('-negative',
help='Number of negative examples (>0) for negative sampling, 0 for hierarchical softmax',
dest='neg', default=5, type=int)
parser.add_argument('-dim', help='Dimensionality of word embeddings', dest='dim', default=100, type=int)
parser.add_argument('-alpha', help='Starting alpha', dest='alpha', default=0.025, type=float)
parser.add_argument('-window', help='Max window length', dest='win', default=5, type=int)
parser.add_argument('-min-count', help='Min count for words used to learn <unk>', dest='min_count', default=5,
type=int)
parser.add_argument('-processes', help='Number of processes', dest='num_processes', default=1, type=int)
parser.add_argument('-binary', help='1 for output model in binary format, 0 otherwise', dest='binary', default=0,
type=int)
parser.add_argument('-character-rate', help='the factor <float> of learning rate for character, default is 1.0',
dest='character_rate', default=1.0, type=float)
# TO DO: parser.add_argument('-epoch', help='Number of training epochs', dest='epoch', default=1, type=int)
print(u'os.getcwd: {}'.format(os.getcwd()))
# -train data/input -model data/output -cbow 1 -negative 5 -dim 100 -window 5
args = parser.parse_args()
print(u'args: {} \n'.format(args))
train(args.fi, args.fo, bool(args.cbow), args.neg, args.dim, args.alpha, args.win,
args.min_count, args.num_processes, bool(args.binary), args.character_rate)
t1 = time.time()
print(u"cost time: {}".format(t1 - t0))