-
Notifications
You must be signed in to change notification settings - Fork 0
/
live.py
58 lines (45 loc) · 1.58 KB
/
live.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
# -*- coding: utf-8 -*-
"""
Created on Mon Oct 23 08:08:21 2017
@author: Arafat
"""
"""We are basically dealing with gradient descent"""
import numpy as np
def compute_error_for_given_points(b, m, points):
totalError = 0
for i in range(len(points)):
x = points[i,0]
y = points[i,1]
totalError += (y - (m*x + b))**2
return totalError / float(len(points))
def step_gradient(b_current, m_current, points, learningRate):
b_gradient = 0
m_gradient = 0
N = float(len(points))
for i in range(len(points)):
x = points[i, 0]
y = points[i, 1]
b_gradient += -(2/N) * (y - (m_current*x + b_current))
m_gradient += -(2/N) * x * (x - (m_current*x + b_current))
#same thing
"""b_gradient += -(2/N) * y
m_gradient += -(2/N) * x * x"""
new_b = b_current - (learningRate * b_gradient)
new_m = m_current - (learningRate * m_gradient)
return [new_b, new_m]
def gradient_descent_runner(points, starting_b, starting_m, learning_rate, num_iterations):
b, m = step_gradient(starting_b, starting_m, np.array(points), learning_rate)
return [b, m]
def run():
points = np.genfromtxt('data.csv', delimiter=',')
#hyper-parameters
learning_rate = 0.0001
#y = mx + b (slope formula)
initial_b = 0
initial_m = 0
num_iterations = 1000
[b,m] = gradient_descent_runner(points, initial_b, initial_m, learning_rate, num_iterations)
print(b)
print(m)
if __name__ == '__main__':
run()